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4. Mahler’s Classification of Complex Numbers

Masaaki Amou and Yann Bugeaud

We present Mahler’s work on his classification of numbers and discuss subsequent
works closely related to this classification.

1 Introduction

In 1932, Mahler [M11] introduced his classification of numbers, in which the
complex numbers are divided into four disjoint classes A, S, T and U . Numbers
belonging to each class are called A-, S-, T - and U -numbers, respectively.
However, in a previous paper [M9] published in 1930, Mahler already gave the
definition of ‘S-numbers’, which correspond to the union of A-numbers and
S-numbers in [M11]. Here and below, ‘S-number’ always refers to the definition
given in [M9], while S-number has its now usual meaning. As we shall see below,
in these papers, Mahler’s aim is to prove algebraic independence of certain
numbers, such as e or π, and a Liouville number. This led him to introduce
his classification, where two numbers belonging to distinct classes should be
algebraically independent, or equivalently, two algebraically dependent numbers
should belong to the same class.

In this survey, we briefly explain Mahler’s original papers on his classification
of numbers as well as subsequent related works by other mathematicians.
Sections 2, 3 and 4 are devoted to a presentation of Mahler’s papers [M9], [M11]
and [M12], respectively. In Section 4, we also discuss several subsequent works.
In these sections, we follow Mahler’s style, using his notation to be consistent
with the original papers. In Section 5, we introduce Koksma’s classification of
numbers, which is closely related to Mahler’s classification. In Section 6, we
discuss various results on the existence of numbers in classes S, T and U , and
also present an open problem on the existence of numbers in given subclasses
of Mahler’s and Koksma’s classifications. In Section 7, we introduce a third
classification of numbers due to Sprindžuk, and give several results on this
classification. In Section 8, we gather several results on the transcendence of
values of certain functions from the point of view of Mahler’s classification.
In Section 9, we briefly mention Mahler’s papers [M27] and [M179] as well as
works related to these papers.

Finally, we remark that the books [8], [16], [38] and [43] treat Mahler’s and
Koksma’s classifications; in particular, [16] includes many references on this
topic.
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2 The origin

The main purpose of [M9] was to show the algebraic independence of e and a
Liouville number. Recall that a real number u is called a Liouville number if,
for any positive real number ω, there exists a rational number x/y with y > 0,
such that

0 < |u− x/y| < y−ω. (1)

From its continued fraction expansion, we deduce that e is not a Liouville
number. Moreover, as was shown in 1929 by Popken [33], for any positive
integer m, there exists a positive number c(m), depending only on m, such that∣∣∣∣∣

m∑
h=0

aheh

∣∣∣∣∣ ≥ a−m−c(m)/(log log a), ah ∈ Z, a = max(|a0|, . . . , |am|), (2)

provided that a is sufficiently large.

In 1930, Mahler [M9] introduced the notion of ‘S-number’ and observed that
Popken’s result [33] shows that e is an example of an ‘S-number’.

Definition 2.1 (Mahler [M9]). A number s is called an ‘S-number’ if there
exist a positive number γ and, for each positive integer m, a positive number
Γ(m) with the following property: for any integers a0, a1, . . . , am, we have either

m∑
h=0

ahs
h = 0,

or ∣∣∣∣∣
m∑
h=0

ahs
h

∣∣∣∣∣ ≥ Γ(m)a−γm, a = max(|a0|, . . . , |am|). (3)

According to Stolarsky [44], the terminology ‘S-number’ was chosen to honour
Siegel. The fundamental result in [M9] is the following statement.

Theorem 2.2 (Mahler [M9]). Let t be an ‘S-number’ and s be a number such
that there are integer polynomials C0(X), . . . , Cf (X) with Cf (t) 6= 0 and

C(s|t) :=

f∑
i=0

Ci(t)s
i = 0.

Then s is also an ‘S-number’.

Theorem 2.2 implies that, if a number u is not an ‘S-number’, then u and any
transcendental ‘S-number’ are algebraically independent. In particular, e and a
Liouville number are algebraically independent.

Mahler’s proof of Theorem 2.2 includes more precise information on s, namely:
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4. Mahler’s Classification of Complex Numbers 81

(a) If s is an algebraic number of degree f and a0, . . . , am are integers, not
all zero, then∣∣∣∣∣

m∑
h=0

ahs
h

∣∣∣∣∣ ≥ Γ(m)a−(f−1), a = max(|a0|, . . . , |am|). (4)

(b) If s is a transcendental number and a0, . . . , am are integers, not all zero,
then ∣∣∣∣∣

m∑
h=0

ahs
h

∣∣∣∣∣ ≥ ∆(m)a−δm, a = max(|a0|, . . . , |am|), (5)

with δ = γfg+f−1, where γ is a positive real number for which (3) holds
with t instead of s and g is the maximum degree of the polynomials Ci(X).

Let us sketch the proof of (b). We may assume that C(X|Y ) in Z[X,Y ] is
irreducible. Then the zeros s0 = s, s1, . . . , sf−1 of C(X|t) are all transcendental
numbers. Let a0, . . . , am be integers, not all zero. Set

L(t|a0 · · · am) = Cf (t)m
f−1∏
ν=0

(
m∑
h=0

ahs
h
ν

)
. (6)

(Note that, instead of the factor Cf (t)m on the right-hand side of (6), the
factor Cf (t)fm was used in [M9].) It follows from the fundamental theorem of
symmetric functions that

L(t|a0 · · · am) =

gm∑
`=0

A`t
`, A` ∈ Z, |A`| ≤ αaf ,

with a positive constant α depending only on C(X|Y ). Hence we have, by (3)
applied to the ‘S-number’ t, that

|L(t|a0 · · · am)| ≥ Γ(gm)(αaf )−γgm.

This implies the desired assertion with

∆(m) = |Cf (t)|−m
f−1∏
ν=1

(
m∑
h=0

|sν |h
)−1

Γ(gm)α−γgm.

3 Mahler’s classification

Mahler introduced his classification of numbers in [M11]. The main purpose of
that paper is to prove the following results.

Theorem 3.1 (Mahler [M11]). Let ϑ1, . . . , ϑN be N algebraic numbers which
are linearly independent over the rationals and λ be a Liouville number. Then
the numbers

eϑ1 , . . . , eϑN , λ

are algebraically independent over the field of algebraic numbers.
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82 Masaaki Amou and Yann Bugeaud

Theorem 3.2 (Mahler [M11]). Let z be a nonzero real logarithm of a positive
rational number or z = π, and λ a Liouville number. Then the numbers z and
λ are algebraically independent over the field of algebraic numbers.

The validity of these results rely on a quantitative refinement of the Lindemann–
Weierstrass theorem and of the Lindemann theorem, respectively. More precisely,
Mahler proved the following results.

Theorem 3.3 (Mahler [M11]). Let ϑ1, . . . , ϑN be N algebraic numbers in an
algebraic number field of degree n which are linearly independent over the
rationals. Then∣∣∣∣∣

M1∑
i1=0

· · ·
MN∑
iN=0

ai1...iN ei1ϑ1+···+iNϑN

∣∣∣∣∣ ≥ a−TN,nM1···MN

for

ai1...iN ∈ Z, a := max |ai1...iN |,

provided that a is sufficiently large, where TN,n is a positive number depending
only on N and n.

Theorem 3.4 (Mahler [M11]). Let z be a nonzero real logarithm of a positive
rational number or z = 2πi. Then there exist a real number c > 1 and, for every
positive integer m, a positive number C(m) such that for all integers a0, . . . , am,
not all zero, we have∣∣∣∣∣

m∑
i=0

aiz
i

∣∣∣∣∣ ≥ C(m)a−c
m

, a := max{|a0|, . . . , |am|},

provided that a is sufficiently large.

Though Theorem 3.3 (resp., Theorem 3.4) does not directly imply Theorem 3.1
(resp., Theorem 3.2), it is easily seen that an argument similar to that given
in Section 2, by using Theorem 3.3 (resp., Theorem 3.4) instead of Popken’s
result, works well to prove Theorem 3.1 (resp., Theorem 3.2). It follows from
Theorem 3.4 that the number z there is not a Liouville number. But Theorem 3.4
does not ensure that z is an ‘S-number’. (To determine whether z is an ‘S-
number’ or not is still an open problem.) Therefore, the main result in [M9]
is not sufficient to prove Theorem 3.2. This fact motivated Mahler to classify
numbers other than ‘S-numbers’ in a suitable way.

We now explain Mahler’s classification of numbers. Let z be a real or complex
number. For positive integers m and a, we define

ωm(a) = ωm(a|z) := min

∣∣∣∣∣
m∑
k=0

akz
k

∣∣∣∣∣ ,
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4. Mahler’s Classification of Complex Numbers 83

where the minimum is taken over all nonzero sums with integers ak satisfying
|ak| ≤ a. Then we further define

ωm = ωm(z) := lim sup
a→∞

log(1/ωm(a|z))
log a

, ω = ω(z) := lim sup
m→∞

ωm(z)

m
.

If ωm(z) < ∞ for all m, we set µ(z) = ∞ and, otherwise, we set µ(z) = µ,
where µ is the smallest m for which ωm(z) = ∞. Note that z is a Liouville
number if and only if µ(z) = 1.

Definition 3.5 (Mahler’s classification). A number z is called an

A-number, if ω = 0;
S-number, if 0 < ω <∞;
T -number, if ω =∞ and µ =∞;
U -number, if ω =∞ and µ <∞.

Set σ = σ(z) = 1 or 2 if z is real or complex, respectively. Mahler gave the
following properties on his classification:

a) For any algebraic number z of degree n, we have

ωm ≥
m+ 1

σ
− 1 for m ≤ n− 1,

ωm ≤
n

σ
− 1 for all m,

ω = 0, µ =∞;

b) For any transcendental number z, we have

ωm ≥
m+ 1

σ
− 1 for all m, ω ≥ 1

σ
;

c) If z1 and z2 are algebraically dependent transcendental numbers satisfying

f∑
i=0

g∑
j=0

Cijz
i
1z
j
2 = 0, Cij ∈ Z, Cfg 6= 0,

we have

ωm(z1) ≤ f − 1 + fωmg(z2), ω(z1) ≤ fgω(z2), µ(z1) ≤ fµ(z2).

In fact, the first inequalities in a) and b) follow from the pigeonhole principle.
The second inequality in a) follows from a result of Liouville [28]. Finally, c)
follows from the argument given in the paper [M9]; see also Section 2. Mahler
proved the following fundamental results.

Theorem 3.6 (Mahler [M11]). The set of A-numbers is the set of algebraic
numbers.
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Theorem 3.7 (Mahler [M11]). Two algebraically dependent numbers belong to
the same class.

Since Theorem 3.4 asserts that the number z there is not a U -number, it follows
from Theorem 3.7 that z and a U -number are algebraically independent, gener-
alising Theorem 3.2. From Theorem 3.3 it is possible to generalise Theorem 3.1
replacing a Liouville number λ there by a U -number.

As a special case of Theorem 3.3 for N = 1, Mahler gave the estimates

ωm(eϑ) ≤ 2n(2n− 1)m+ (2n− 1) for all m, ω(eϑ) ≤ 2n(2n− 1),

where ϑ is an algebraic number of degree n. In the special case ϑ = 1, it follows
from Popken’s result (2) that

ωm(e) = m for all m, ω(e) = 1.

In this respect, Mahler proved that we can take c(m) = cm2 logm in (2), where
c is a positive real number [M11, Satz 3].

4 Mahler’s conjecture on S-numbers

A little after having defined his classification of numbers, in 1932 Mahler [M12]
proved that almost all real and almost all complex numbers are S-numbers.
Throughout this paper, ‘almost all’ refers to the (linear or planar) Lebesgue
measure. To state his result more precisely, for f(X) in Z[X], we denote by
∂(f) its degree and by H(f) its height, that is, the maximum of the absolute
values of its coefficients.

Theorem 4.1 (Mahler [M12]). Let m be a positive integer and ε be a positive
number. Then, for almost all real and for almost all complex numbers x,

|f(x)| ≥ H(f)−(4+ε)m

holds for all f(X) in Z[X] with ∂(f) ≤ m and sufficiently large H(f). Therefore,
almost all real and almost all complex numbers x are S-numbers satisfying
ωm(x) ≤ 4m for all m.

It easily follows from a covering argument that (using Mahler’s terminology
ω1(x)) the set of real numbers x with ω1(x) > 1 has linear Lebesgue measure
zero. As an extension of this fact, at the end of his paper [M12], Mahler stated
the following conjecture.

Mahler’s conjecture 4.2 (1st form). Let m be a positive integer, and ε be a
positive number. Then, for almost all real (resp. complex) numbers x, we have

|f(x)| ≥ H(f)−γm, (7)

with γ = 1 + ε (resp. γ = 1/2 + ε), for all f(X) in Z[X] with ∂(f) ≤ m and
sufficiently large H(f).
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4. Mahler’s Classification of Complex Numbers 85

In view of the property b) given in Section 2, we may rewrite this conjecture in
the following form, where the assertion for complex numbers is slightly refined.

Mahler’s conjecture 4.3 (2nd form). For almost all real (resp. complex)
numbers x and for all m,

ωm(x) = m (resp. ωm(x) = (m− 1)/2). (8)

After partial results were obtained by several authors, Mahler’s conjecture (2nd
form) was finally confirmed in 1965 by Sprindžuk [42]; see also [43]. Since then
a refined version of Mahler’s conjecture for real numbers was stated and proved
by A. Baker [7], where H(f)−γm in the right-hand side of (7) is replaced by
ψ(H)m with a positive monotonic decreasing function ψ(H) of the positive
integer variable H such that

∑
ψ(H) converges; see also [8, Ch. 9] and [16,

Ch. 4]. A. Baker also conjectured that the function ψ(H)m can be replaced
by H−m+1ψ(H). This conjecture was confirmed by Bernik [14]; see also [15,
Ch. 2.4]. Furthermore, Beresnevich’s result in [13] implies that the convergence
of
∑
ψ(H) is necessary in Bernik’s result; see also [16, Ch. 6.6]. Kleinbock and

Margulis [23] gave an alternative proof of Sprindžuk’s theorem, along with a
stronger version.

5 Koksma’s classification

In 1939, Koksma [24] introduced a classification of numbers which is closely
related to Mahler’s classification. In what follows, for an algebraic number α,
we denote by H(α) its height, that is, the maximum of the absolute values of
the coefficients of its minimal polynomial over Z.

Let ξ be a real or complex number. For positive integers n and H, we define

ω∗n(H) = ω∗n(ξ,H) := min |ξ − α|,

where the minimum is taken over all algebraic numbers α 6= ξ with degα ≤ n
and H(α) ≤ H. We further define

ω∗n = ω∗n(ξ) := lim sup
H→∞

log(1/ω∗n(ξ,H))

logH
, ω∗ = ω∗(ξ) := lim sup

n→∞

ω∗n(ξ)

n
.

If ω∗n(ξ) <∞ for all m, then we set µ∗(ξ) = µ∗ =∞ and, otherwise, µ∗(ξ) = µ∗

is the smallest n for which ω∗n(ξ) =∞.

Definition 5.1 (Koksma’s classification). A number ξ is called an

A∗-number, if ω∗ = 0;
S∗-number, if 0 < ω∗ <∞;
T ∗-number, if ω∗ =∞ and µ∗ =∞;
U∗-number, if ω∗ =∞ and µ∗ <∞.
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Note that Koksma classified only transcendental numbers, where ξ is defined to
be an S∗-number if ω∗ <∞. Under this setting, Koksma proved that the class
of S∗-numbers (resp., of T ∗-numbers, of U∗-numbers) is the same as the class
of S-numbers (resp., of T -numbers, of U -numbers). Since it is easily shown that
ω∗n(ξ) ≤ ωn(ξ), we see that ω(ξ) = 0 implies ω∗(ξ) = 0. On the other hand,
Wirsing [45] proved that, for a real (resp., complex) transcendental number ξ
and for all n, we have

ω∗n(ξ) ≥ (ωn(ξ) + 1)/2 (resp. ω∗n(ξ) ≥ ωn(ξ)/2).

This shows that ω(ξ) 6= 0 implies ω∗(ξ) 6= 0. Therefore, Koksma’s classification
is indeed equivalent to Mahler’s classification.

It was also proved by Wirsing [45] that, for a real (resp., complex) transcendental
number ξ and for all n,

ω∗n(ξ) ≥ ωn(ξ)/(ωn(ξ)− n+ 1) (resp. ω∗n(ξ) ≥ ωn(ξ)/(2ωn(ξ)− n+ 2)),

which, combined with ω∗n(ξ) ≤ ωn(ξ), implies that

ω∗n(ξ) = n if ωn(ξ) = n (resp. ω∗n(ξ) = (n− 1)/2 if ωn(ξ) = (n− 1)/2).

Therefore, Sprindžuk’s solution to Mahler’s conjecture (2nd form) also con-
firms the analogous conjecture where ωm in (8) is replaced by ω∗m. Moreover,
Wirsing [45] conjectured that ω∗n(ξ) ≥ n (resp., ω∗n(ξ) ≥ (n− 1)/2)) holds for
every transcendental real (resp., complex) number ξ and every positive integer
n. This conjecture is still open.

6 Existence of numbers in Mahler’s and Koksma’s classifications

We know from the previous section that almost all real numbers ξ are S-numbers
satisfying ωn(ξ) = n for every n. On the other hand, in 1970, A. Baker and
W. Schmidt [9] proved that there exist S-numbers ξ for which ω(ξ) is arbitrarily
large; see also [16, Chs. 5.6 and 5.7]. In 1953, LeVeque [27] proved the existence
of U -numbers ξ with µ(ξ) being any given positive integer; see also [16, Ch. 7.6].
The existence of T -numbers, which remained an open question for many years,
was confirmed in 1968 by Schmidt [36]; see also [37]. We state here a refinement
of Schmidt’s result in [37] given by R. C. Baker [10] as follows (see also [16,
Chs. 7.1-7.5]): let (ωn)n∈N and (ω∗n)n∈N be two nondecreasing sequences of
elements of R≥0 ∪ {∞} such that, for all n,

ω∗n ≤ ωn ≤ ω∗n + (n− 1)/n, ωn > n3 + 3n2 + 5n+ 1.

Then there exists a real transcendental number ξ such that, for all n,

ω∗n(ξ) = ω∗n and ωn(ξ) = ωn. (9)
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The following problem was posed in connection with this result [16, Prob-
lem 1]: let (ωn)n∈N and (ω∗n)n∈N be two nondecreasing sequences of elements of
R≥0 ∪ {∞} such that, for all n,

n ≤ ω∗n ≤ ωn ≤ ω∗n + n− 1.

Then prove (or disprove) the existence of a real transcendental number ξ such
that the equalities (9) hold for all n.

Since, for a real transcendental number ξ, we have ωn(ξ) ≤ ω∗n(ξ) + n − 1
(see [38, Hilfssatz 19]), assuming the validity of Wirsing’s conjecture, the setting
of this problem is as general as possible. Defining Ωn to be the set consisting
of the values ωn(ξ)− ω∗n(ξ) for the real numbers ξ, we have by R. C. Baker’s
result above that [0, (n− 1)/n] is contained in Ωn for all n. For this part of the
problem, we have better results, namely

[0, 1] ⊂ Ω2, [0, 2) ⊂ Ω3, and
[
0, n2 + n−2

4(n−1)

)
⊂ Ωn for n ≥ 4

(see [17, 18] for the first two results and [19] for the last one). Refining the lower
bound O(n3) for ωn in R. C. Baker’s result seems to be a difficult problem.

7 Sprindžuk’s classification

In 1962, Sprindžuk [41] (see also [43, pp. 140-142]) introduced a classification of
numbers, which is also based on the behaviour of the quantity ωn(ξ|H) defined
in Section 3 for a given number ξ. However, in his classification, the role of the
variable n in Mahler’s classification (corresponding to the degree) is replaced
by that of the variable H (corresponding to the height).
Let ξ be a real or complex number. For positive integers n and H, we rewrite
the quantity ωn(ξ|H) as ωn(ξ,H). Then we define

ω̃(ξ,H) := lim sup
n→∞

log log(1/ωn(ξ,H))

log n
, ω̃ = ω̃(ξ) := sup

H∈N
ω̃(ξ,H).

The quantity ω̃ is called the order of ξ. If it is finite, we also define

µ̃(ξ,H) := lim sup
n→∞

log(1/ωn(ξ,H))

nω̃(ξ)
, µ̃ = µ̃(ξ) := lim sup

H→∞

µ̃(ξ,H)

logH
.

In the case where µ̃(ξ) = ∞, we set H0 = H0(ξ) = ∞ if there exists no H
such that µ̃(ξ,H) =∞, and, otherwise, H0 = H0(ξ) denotes the smallest H for
which µ̃(ξ,H) =∞.

Definition 7.1 (Sprindžuk’s classification). A number ξ is called an

Ã-number, if 0 ≤ ω̃ < 1 or if ω̃ = 1 and µ̃ = 0;
S̃-number, if 1 < ω̃ <∞ or if ω̃ = 1 and µ̃ > 0;
T̃ -number, if ω̃ =∞ and H0 =∞;
Ũ -number, if ω̃ =∞ and H0 <∞.
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Sprindžuk proved that the class Ã is the set of algebraic numbers, and that
almost all real and almost all complex numbers are S̃-numbers of order at
most 2. For the second assertion, Chudnovsky claimed (with a sketch of the
proof) that the upper bound 2 can be replaced by the best possible value 1;
see [5, Appendix] for a complete proof. Indeed, the following more precise
statement was proved later (see [6]): let ε be a positive real number; then, for
almost all real numbers ξ, there exists a positive constant c(ξ, ε), depending
only on ξ and ε, such that

|P (ξ)| > exp{−(2 + ε)n logH − (2.5 + ε)n log n}

holds for all nonzero polynomials P (X) in Z[X] of degree n and height H
provided that max(n,H) ≥ c(ξ, ε).
We may expect that a stronger assertion holds, namely that, for every positive
real number ε, for almost all real numbers ξ, there exist a positive constant
c(ξ, ε), depending only on ξ and ε, and a constant C(n), depending only on n,
such that

|P (ξ)| > exp{−(1 + ε)n logH − C(n)}

holds for all nonzero polynomials P (X) in Z[X] of degree n and height H
provided that max(n,H) ≥ c(ξ, ε) [16, Problem 51]. This problem can be
viewed as a refinement of Mahler’s conjecture on S-numbers, in a different
direction from the refinements mentioned in Section 4.

We now turn to a problem on Sprindžuk’s classification analogous to the one
on Mahler’s and Koksma’s classifications discussed in Section 6. Let (ω̃H)H∈N
be a sequence of elements of R≥0 ∪ {∞} satisfying

ω̃H = 0 for H < H0, 1 ≤ ω̃H ≤ ω̃H ≤ ∞ for H ≥ H0, (10)

for some positive integer H0. It is easily seen that, for any real number ξ, the
sequence (ω̃H)H∈N with ω̃H = ω̃(ξ,H) satisfies (10) for some H0. Conversely,
it was proved in [5] that, for any sequence (ω̃H)H∈N satisfying (10), there exist
uncountably many real numbers ξ which satisfy ω̃H = ω̃(ξ,H) for all H; see
also [16, Ch. 8.1]. This result gives a full answer to the existence of real numbers
in a given subclass defined according to Sprindžuk’s classification.

8 Values of certain functions in Mahler’s classification

It is very likely that values taken by ‘classical’ functions at (reasonable) nonzero
algebraic numbers are S-numbers if they are transcendental. We quote below
several results supporting this guess.

(a) Let α1, . . . , αn and β1, . . . , βn be nonzero algebraic numbers, and set

Λ =

n∑
j=1

βj logαj .
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4. Mahler’s Classification of Complex Numbers 89

If Λ 6= 0, then it is a consequence of Baker’s results (see [8, Chs. 2 and 3])
that Λ is either an S- or a T -number.

(b) Let ℘(z) be a Weierstrass elliptic function with algebraic invariants, and
α a nonzero algebraic number. Then the value ℘(α) is either an S- or a
T -number [34]. Moreover, if ℘(z) has complex multiplication, then ℘(α)
is an S-number [20].

(c) Let E(z) be an E-function over an algebraic number field K (see [26,
Ch. II §1] and [39, Ch. 3 §1] for the definition of E-functions) satisfying a
homogeneous linear differential equation

m∑
j=0

Qj(z)E
(m−j)(z) = 0, Qj(z) ∈ K[z].

Assume that the functions E(z), E′(z), . . . , E(m−1)(z) are algebraically
independent over K(z). Then, for any nonzero algebraic number α distinct
from the zeros of Q0(z), the value E(α) is either an S- or a T -number; see
[25], [26, Ch. VII §5] and [39, Chs. 11 and 12]. This result includes the
case where E(z) is the Bessel function J0(z) and α is an arbitrary nonzero
algebraic number [40]. If m = 1, then the value E(α) is an S-number.

(d) Let R(z) be a power series over an algebraic number field K which satisfies
a k-Mahler equation, namely, a functional equation of the form

m∑
j=0

Qj(z)R(zk
m−j

) = 0, Qj(z) ∈ K[z].

Assume that the functions R(z), R(zk), . . . , R(zk
m−1

) are algebraically
independent over K(z). Then, for any algebraic number α with 0 < |α| < 1
in the disk of convergence of R(z) centred at the origin such that αk

ν

is
distinct from the zeros of Q0(z) for every nonnegative integer ν, the value
R(α) is either an S- or a T -number; see [30, Ch. 4.4]. If m = 1, then
the value R(α) is an S-number [22]. If m = 1 and α = 1/b for a nonzero
integer b, then we further have ω(R(1/b)) ≤ k + 2

√
k + 2; see [4].

(e) Let R(z) be the generating series of a k-automatic sequence, or more
generally a k-regular sequence over Z; see [2, Chs. 5.1 and 16.1] for the
definitions. It is known that R(z) satisfies a k-Mahler equation; see [11]
and [30, Ch. 5.1]. Let b be an integer with |b| ≥ 2. Then, if R(1/b) is
irrational, it is either an S- or a T -number; see [1] or [12] for the automatic
case or the regular case, respectively.

The above results, except very few of them, ensure only that each value under
consideration is either an S- or a T -number. To exclude the latter possibility in
each case is an important, but presumably very difficult, problem.

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 79–93



90 Masaaki Amou and Yann Bugeaud

9 Other works

Let p be a prime number. In 1935, Mahler [M27] proposed a classification of p-
adic numbers, in analogy with his classification of complex numbers. He proved
several fundamental results corresponding to those given in [M11]. The analog
of Mahler’s conjecture for p-adic S-numbers was established by Sprindžuk [43,
Part II, Ch. II], and the existence of p-adic T -numbers was proved by Schlickewei
[35]; see also [31].

In 1971, Mahler [M179] introduced a new classification of numbers. For a
given complex number ξ, he defined the ‘order function’ O(u|ξ) of ξ in the
integer variable u, and classified complex numbers by a certain equivalence
relation between their order functions. He proved fundamental results on the
classification including the fact that two algebraically dependent numbers belong
to the same class. Answering the problems posed by Mahler [M179], Durand
[21] proved, in particular, the existence of uncountably many classes and that
of a particular class to which almost all real and almost all complex numbers
belong; the latter result was obtained independently by Nesterenko [29]. For
related works, see [3] and [32]; see also [16, Ch. 8.2].
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[M9] K. Mahler, Über Beziehungen zwischen der Zahl e und Liouvilleschen
Zahlen, Math. Z. 31 (1930), 729–732.

[M11] K. Mahler, Zur Approximation der Exponentialfunktion und des Log-
arithmus, I, II, J. Reine Angew. Math. (Crelle) 166 (1932), 118–150.
([M11] and [M13] combined)
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[21] A. Durand, Quatre problèmes de Mahler sur la fonction ordre d’un
nombre transcendant, Bull. Soc. Math. France 102 (1974), 365–377.

[22] A. I. Galočkin, A transcendence measure for the values of functions
satisfying certain functional equations, Mat. Zametki 27 (1980), no. 2,
175–183.

[23] D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces
and Diophantine approximation on manifolds, Ann. of Math. (2) 148
(1998), no. 1, 339–360.
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