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8. The Skolem–Mahler–Lech Theorem

Jason P. Bell

Statement and history

One of Mahler’s most important works was his contribution to the understand-
ing of zeros of linear recurrences in characteristic zero; the culmination of this
result is today known by the Skolem–Mahler–Lech theorem, and is a corner-
stone in the theory of linear recurrence sequences. We recall that if K is a field
then a K-valued linear recurrence sequence is a sequence f : N0 → K with the
property that there exist m ∈ N and b1, . . . , bm ∈ K such that

f(n) =

m∑
j=1

bjf(n− j)

for sufficient large natural numbers n. The Skolem–Mahler–Lech theorem as-
serts that if K has characteristic zero then a K-valued linear recurrence se-
quence {an}n∈N0 has the property that the set of natural numbers n for which
an = 0 is a union of at most finitely many infinite arithmetic progressions along
with a finite set.

The first step in this theorem was made by Skolem [7], who proved the result
when an ∈ Z for each n; Mahler’s contribution [M31] was to extend Skolem’s
result to the case where an is an algebraic number for every n. Lech [4] extended
the result to arbitrary fields of characteristic zero. (We note that Mahler [M138,
M145] later gave a different, independent, proof from that of Lech of the general
result. It is said that Mahler was unaware of Lech’s result at the time of
publishing his proof and was somewhat embarrassed by the discovery that
Lech had proved the result already.)

Skolem’s method and proof

One of the reasons for the huge impact of the Skolem–Mahler–Lech theorem is
that linear recurrence sequences appear in many different guises, and this has
led to many subsequent generalizations and extensions of the theorem. If K is a
field (no assumption on characteristic) and f : N0 → K is a K-valued sequence
then there are many equivalent formulations of being a linear recurrence. In
fact, the following are equivalent:
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1. the sequence f(n) satisfies a linear recurrence;

2. there exist a natural number m, a matrix A ∈ Mm(K), and column
vectors v, w ∈ Km such that for n ≥ 0 we have

f(n) = wtAnv;

3. the formal power series ∑
n≥0

f(n)xn

is the power series expansion of a rational function (not having a pole at
x = 0) about x = 0;

4. there exist ` ∈ N, d ∈ N0 and ci,j , αj ∈ K for 0 ≤ i ≤ d and 1 ≤ j ≤ `
such that for all sufficiently large n we have the formula

f(n) =

d∑
i=0

∑̀
j=1

ci,jn
iαnj .

The final characterization of linear recurrence sequences on the above list is
what is exploited in the proof of the Skolem–Mahler–Lech theorem. The proof
goes via what is today known as Skolem’s method. Lech’s key insight that
allowed him to go beyond what Skolem and Mahler had accomplished was to
observe that for a K-valued linear recurrence sequence with K of characteristic
zero, one can restrict to a finitely generated extension of the rational numbers;
namely, the field Q ((ci,j)i,j , αj)), where the ci,j and αj are as in item (4). It can
then be shown, using the standard Lefschetz principle arguments, that if p is a
prime number then Q ((ci,j)i,j , (αj)j) can be embedded into a finite extension
E of Qp; moreover this can be done in such a way that the nonzero elements
among {ci,j , αj} are sent to units in the valuation ring of E. We remark that
this embedding is immediate in the case that f(n) takes values in algebraic
numbers, since the field Q ((ci,j)i,j , (αj)j) is a finite extension of Q. Thus this
embedding is the missing insight that Lech needed to extend Skolem’s result
and Mahler’s result. Once one has this, it can then be shown that there exists
a natural number k such that for each b ∈ {0, 1, . . . , k − 1}, the map

n 7→ f(nk + b) =

d∑
i=1

∑̀
j=1

ci,j(kn+ b)iαbj(α
k
j )n

can be interpolated by a p-adic analytic map. Since the valuation ring of E
is compact, one can then use Strassman’s theorem and conclude that for a
given b, the map either vanishes identically on E or it has only finitely many
zeros. Translating this statement to the linear recurrence, we see that either
f(kn+ b) is either identically zero for all n or there are finitely many zeros on
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the progression kN + b. We remark that since characterization (4) generally
only applies to large n, it is possible that f(kn + b) = 0 for sufficiently large
n rather than all n, but this still gives the same conclusion about arithmetic
progressions along with finite sets.

Proposed extensions of the Skolem–Mahler–Lech theorem

In this section, we describe two proposed extensions of the Skolem–Mahler–
Lech theorem: one dynamical, and one involving differential equations.

We begin with a conjecture of Rubel. We recall that a characterization of a
linear recurrence sequence over a field K is that it is the power series expansion
of a rational function. Rational functions form a distinguished subset of the
collection of so-called D-finite power series; these are power series which satisfy
a homogeneous linear differential equation with polynomial coefficients. The
class of D-finite power series is very broad, including power series expansions
of algebraic functions along with exponentials and other important functions.
Rubel [6, Problem 16] conjectured that a complex power series

f(z) :=

∞∑
n=0

anz
n,

satisfying a homogeneous linear differential equation with polynomial coeffi-
cients, should have the property that the set

S := {n ∈ N0 : an = 0}

has the same form as in the Skolem–Mahler–Lech theorem: namely that it
should be a finite union of infinite arithmetic progressions along with a finite
set. This result would have substantial implications for Diophantine equations,
since many such equations can be expressed in terms of zero sets of coefficients
of D-finite power series.

In terms of progress on Rubel’s conjecture, the strongest current result is due
to Bézivin [2] and Methfessel [5], who showed using Szemerédi’s theorem that
a weak version holds: the zero set is a finite union of infinite arithmetic pro-
gressions along with a set of zero density.

We now give a proposed dynamical extension of the Skolem–Mahler–Lech the-
orem. We note that if one uses the matrix characterization of linear recurrence
sequences given above, then one can view a linear recurrence sequence f(n)
as a sequence of the form wTAnv where A is a matrix with entries in K and
v and w are column vectors. Then f(n) = 0 if and only if Anv lies in the
subspace w⊥ of vectors x such that wT · x = 0. If we think of A as a linear
endomorphism of some vector space V then {Anv : n ≥ 0} is just the orbit of
the vector v under this linear transformation. Thus the Skolem–Mahler–Lech
theorem asserts that the set of points in this orbit that lie in a given subspace
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can be described in terms of arithmetic progressions along with a finite set.
We note that if A is invertible then one can “run the recurrence backwards”
and Skolem’s method then gives that the set of integers for which wTAnv = 0
is a finite union of doubly-infinite arithmetic progressions along with a finite
set. One way to think of this is that the zero set is then a finite union of
cosets of additive subgroups of Z (with a singleton being a coset of the trivial
group). This immediately reminds one of the Mordell–Lang conjecture (now a
theorem due to Faltings and Vojta), which states that in a semiabelian variety
X (we use addition as the group operation) over C, if Γ is a finitely generated
(abelian) subgroup and Y is a Zariski closed subset of Y then Γ ∩ Y is a finite
union of cosets of subgroups of Γ. This result can also be recast in a dynamical
fashion. For each γ ∈ Γ, we have a translation map Tγ on X, x 7→ γ + x. If
Γ is an infinite cyclic group with generator γ, then the result is simply that
{n : Tnγ (e) ∈ Y } is a finite union of cosets of Γ.

As it turns out, the Skolem–Mahler–Lech theorem and the cyclic case of the
Mordell–Lang conjecture can be unified into a single dynamical conjecture,
which is called the Dynamical Mordell–Lang conjecture. This conjecture states
that given an endomorphism Φ of a quasiprojective variety X defined over an
algebraically closed field K of characteristic zero, a point α ∈ X(K), and a
subvariety V of X, the set of n for which Φn(x) ∈ V (K) is a finite union of
arithmetic progressions along with a finite set. When Φ is an étale self-map the
result is known [1]. In particular, this gives the case when Φ is an automorphism
and one can derive both the cyclic case of the Mordell–Lang conjecture and
the Skolem–Mahler–Lech result form this theorem.

1 The Skolem–Mahler–Lech Theorem in positive characteristic

The Skolem–Mahler–Lech theorem naturally leads to the question of what hap-
pens for zero sets of linear recurrence sequences in positive characteristic? In
this setting, Lech gave examples which show that the direct translation of the
theorem does not hold in characteristic p > 0. The simplest counterexample is
to take K = Fp(t) and take f(n) = (1+ t)n− tn−1, which is easily seen to be a
linear recurrence sequence. Then if n is a power of p, we see that f(n) = 0; on
the other hand, if n is not a power of p then there is some j ∈ {1, 2, . . . , n− 1}
such that

(
n
j

)
is nonzero mod p and since t is transcendental we then see that

f(n) is nonzero. Thus the zero set of f(n) is just the sequence {1, p, p2, . . .},
which is not a finite union of arithmetic progressions along with a finite set.

A positive characteristic analogue of the Skolem–Mahler–Lech theorem was
given by Derksen [3]. Derksen’s analogue of the Skolem–Mahler–Lech theorem
shows that the zero sets of linear recurrences over a field of characteristic p > 0
are given by finite unions of arithmetic progressions along with finite sets along
with what he names p-normal sets. Intuitively, p-normal sets are sets built up
from powers of p, much like the set in the counterexample just given.
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Although the positive characteristic characterization is somewhat more com-
plicated than the elegant characterization given in the Skolem–Mahler–Lech
theorem (characteristic zero), Derksen’s result has one key advantage: it is
effective. Skolem’s problem is whether it is decidable if a Z-valued linear re-
currence sequence has a zero term. This problem is still open, despite its
simple-looking nature. In positive characteristic, Derksen is able to provide
algorithms which allow one to completely settle the positive characteristic ana-
logue of Skolem’s problem and, moreover, to describe the zero set completely.
Much of Derksen’s argument relies on using finite-state automata, from which
he is able to derive effectivity.

We recall that if p is a prime number and ∆ is a finite set, then one has the
notion of a p-automatic map

f : N0 → ∆,

which is defined as follows. For each j ∈ {0, 1, . . . , p− 1}, we have a map

ej : N0 → N0

defined by ej(n) = pn+ j. We let Σ denote the submonoid of self-maps on N0

generated by the collection of all ej under composition. The map f is said to
be a p-automatic sequence if there are only finitely many distinct sequences in
the collection

{f ◦ e : e ∈ Σ}.

Then we can say that a subset S ⊆ N0 is a p-automatic set if the characteristic
sequence of S is a p-automatic sequence.

The name automatic comes from the fact that such sequences can in fact be
generated by a finite state automaton, taking as input the base-p expansion of
a natural number n as input and giving f(n) ∈ ∆ as output. Derksen’s first
result towards his characterization was that if f(n) is a sequence satisfying a
recurrence over a field K of characteristic p, then the set of natural numbers
n such that f(n) = 0 is a p-automatic set. Even this first theorem is enough
to deal with the thorny decidability problems that one encounters in charac-
teristic zero, as his proof gives a way of bounding the number of states in the
corresponding automaton.

In fact, Derksen gives a refinement of this result by describing which types of
automata can occur; by doing so, he obtains his characterization of p-normal
sets. Let p be a prime number. A subset S ⊆ N is p-normal if it is a finite
union of sets of the form

Sq(c0; . . . , cd) := {c0 + c1q
k1 + · · ·+ cdq

kd : k1, . . . , kd ∈ N} ∩ N,

where q is a power of p and c0, . . . , cd are nonzero rational numbers satisfying
c0 + · · ·+ cd ∈ Z and (q − 1)ci ∈ Z, for i = 0, . . . , d.
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After obtaining his characterization of zero sets in terms of automata, Derksen
shows that if one has a linear recurrence sequence that does not vanish on any
infinite arithmetic progressions then the automata which accepts the natural
numbers whose base-p expansions are in the zero set has the property that
it cannot have two distinct cycles based at a single state. This in turn gives
Derksen’s main theorem: if f(n) is a sequence satisfying a recurrence over a
field K of characteristic p, then the set of natural numbers n such that f(n) = 0
is a finite union of arithmetic progressions along with a p-normal set.
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