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9. A Mahler Miscellany

Yann Bugeaud and Michael Coons

1 Introduction

Kurt Mahler’s first paper [M1] was published in 1927. Like most first papers
from students, it came about for many reasons—certainly interest was one of
them—but the setting was an important one. It was the mid-late 1920s in
Germany, which was the place (and time) to be for mathematics and physics.
The mathematics and physics culture in Germany was booming and this boom
was nowhere more pronounced than in Göttingen in 1926. In that year, Mahler
found himself working in an illustrious group of applied mathematicians. Indeed,
in 1926, the famous American applied mathematician Norbert Wiener received a
Guggenheim fellowship to work with Max Born in Göttingen and then to travel
on to work with Niels Bohr in Copenhagen. In that year, Born’s assistant was
Werner Heisenberg, who would follow Wiener to Copenhagen and there develop
what would later become his famous uncertainty principle. It is in this setting
that, while in Göttingen, Wiener was given an (unpaid) assistant—a (barely)
23-year-old Kurt Mahler! Collectively, Wiener [24] and Mahler [M1] produced a
two-part series of papers entitled, “The spectrum of an array and its application
to the study of the translational properties of a simple class of arithmetical
functions.” Wiener describes the purpose of the series in the first paragraphs of
his part. “The purpose of the present paper is to extend the spectrum theory
already developed by the author in a series of papers to the harmonic analysis
of functions only defined for a denumerable set of arguments—arrays, as we
shall call them—and the application of this theory to the study of certain power
series admitting the unit circle as an essential boundary.”

Concerning the actual contribution, given a sequence A, Wiener describes
a method to construct a monotone non-decreasing function A(x), which he
calls the spectral function of A. By a result of Fréchet, A(x) may contain
three possible additive parts: a monotone step function, a function which
is the integral of its derivative, and a continuous function which has almost
everywhere a zero derivative. In more modern terminology, what Wiener
is describing is how one creates the diffraction measure associated to the
sequence A. The three possible parts of the measure are then described by the
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Lebesgue Decompositon Theorem: Any regular Borel measure µ on Rd has a
unique decomposition µ = µpp + µac + µsc where µpp, µac and µsc are mutually
orthogonal and also |µ| = |µpp|+ |µac|+ |µsc|. Here, µpp is a pure point measure
corresponding to the monotone step function, µac is an absolutely continuous
measure corresponding to the function that is the integral of its derivative, and
µsc is a singular continuous measure corresponding to the continuous function
which has almost everywhere a zero derivative. Wiener provided examples giving
pure point measures and absolutely continuous measures. As one might expect,
periodic sequences have pure point diffraction measures. Wiener’s example of
a sequence with an absolutely continuous diffraction measure is reminiscent
of the sequence of digits of Champernowne’s number, which will be described
in a later section of this chapter. Mahler’s contribution was an example of a
sequence whose associated diffraction measure is purely singular continuous;
it remains a central result in diffraction theory in the context of aperiodic
order (see Baake and Grimm [4, Section 10.1] for details and further advances
and impact). His example—the Thue–Morse sequence, sometimes called the
Thue–Morse–Mahler sequence—is paradigmatic and a fundamental example
in an area of transcendence theory now called Mahler’s method; see Boris
Adamczewski’s chapter in this volume for more details about Mahler’s method.
The Thue–Morse sequence t = {t(n)}n>0 is defined by t(0) = 1, t(1) = −1,
t(2n) = t(n) and t(2n+ 1) = −t(n). The sequence starts

t := 1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1,−1, 1, . . . ;

it is now ubiquitous in the areas of theoretical computer science and symbolic
dynamics.

While it is considered a work of dynamical systems, Mahler’s first work touches
on many ideas and structures related to number theory. Even its purpose
was the study of certain transcendental power series—“power series admitting
the unit circle as an essential boundary.” Special sequences with interesting
arithmetical structure took a leading role, including Champernowne’s sequence
and the Thue–Morse sequence, and in Mahler’s arguments we see the importance
of finite characteristic. All of these concepts played important roles in Mahler’s
further research and by considering the details in these areas, Mahler created
an influential body of work, much of which has been described in the previous
chapters of this volume.

In the remainder of this short chapter, we briefly describe several works of Kurt
Mahler not yet considered in the previous chapters, together with some of their
further developments. We use [Mx] to quote Mahler’s paper numbered x in the
Kurt Mahler Archive—also contained in this volume as Bibliography of Kurt
Mahler.

Remark 1.1. It is amusing to note that only a handful of papers have been
written in collaboration. In total, Mahler had fourteen collaborators and, with
the exception of Erdős—with whom he wrote two papers—wrote only one paper
with each of them.
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2 The Cugiani–Mahler theorem

Roth’s celebrated theorem (1955) in Diophantine approximation [19] has a long
history. Liouville established in 1844 that a non-zero real algebraic number
cannot be approximated by rational numbers at an order greater than its degree;
this result was subsequently improved by Thue (1909), Siegel (1921) and later
by Dyson (1947) and Gelfond (1948). In the meantime, in 1936, Schneider [21]
proved an important, and almost forgotten, result; see also [M52].

Theorem 2.1 (Schneider, 1936). Let ξ be an irrational, algebraic real number.
Let ε be a positive real number. Let {pj/qj}j>1 be the sequence of reduced
rational solutions of ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε
,

ordered such that 3 6 q1 < q2 < . . . Then either the sequence {pj/qj}j>1 is
finite, or

lim sup
j→+∞

log qj+1

log qj
= +∞.

Mahler [M41, M42] established a p-adic analogue and generalisation of Schnei-
der’s theorem. He noted [M45, M46] the interest of constructing b-ary expan-
sions, whose transcendence can be proved without being trivial, and he used
the (p-adic extension of the) Schneider theorem to derive several transcendence
statements, including the transcendence of the Champernowne number

0.1234567891011121314 . . .

See also [M209, Section 18]. Let us highlight the main result in [M46].

Theorem 2.2 (Mahler, 1937). Let f(x) be a non-constant polynomial with
integer coefficients such that f(k) > 0 for positive integers k. Then, the decimal
number

0.f(1)f(2)f(3) · · · ,
formed by concatenating the decimal expansions of the f(k), is both transcen-
dental and not a Liouville number.

In 1958, Cugiani [12], by means of a subtle modification of the proof of Roth’s
theorem, proved the following improvement of Schneider’s result.

Theorem 2.3 (Cugiani, 1958). Let ξ be a real algebraic number of degree d.
For an integer q > 16, set

ε(q) =
9d

(log log log q)1/2
·

Let {pj/qj}j>1 be the sequence of reduced rational solutions of∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+ε(q)
,
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ordered such that 16 6 q1 < q2 < . . .. Then, either the sequence {pj/qj}j>1 is
finite, or

lim sup
j→+∞

log qj+1

log qj
= +∞.

Cugiani’s theorem was extended by Mahler in his monograph [M146] to include
p-adic valuations. The corresponding statement is referred to as the Cugiani–
Mahler theorem. For further extensions together with a much simpler proof,
see [7] and the survey [9].

3 Fields of power series

Mahler investigated Diophantine approximation and the geometry of numbers
[M72] in fields of power series. In [M106], he proved the analogue of Liouville’s
inequality in fields of power series and established that, unlike for real algebraic
numbers, Liouville’s inequality is best possible in fields of power series over a
finite field; that is, he showed that an analogue of Roth’s theorem does not hold
in fields of power series over a finite field. To do this, he observed that, for any
prime number p, the power series

Θp = X−1 +X−p +X−p
2

+X−p
3

+ · · ·

is a root in Fp((X−1)) of the algebraic equation Zp − Z + X−1 = 0, and for
n > 1, its n-th partial sum, an/bn, where

an := Xpn−1

(X−1 +X−p +X−p
2

+ · · ·+X−p
n−1

) and bn := Xpn−1

are polynomials in Fp[X], satisfies∣∣∣∣Θp −
an
bn

∣∣∣∣ =
1

|bn|p
.

Here, the norm |Θ| of the power series Θ = a−nX
n + . . . + a1X

−1 + . . . in
Fp((X−1)) with a−n 6= 0 is defined by |Θ| = pn.

Remark 3.1. We note that Baum and Sweet [5] gave an explicit example of an
algebraic power series over the field of two elements, whose continued fraction
expansion has bounded partial quotients. An interested reader may consult the
surveys [17, 20].

4 Fractional parts of powers of rational numbers

In [M135], Mahler improved his previous result of [M51] by showing that for
any ε > 0, there exists an integer n0(ε) such that

‖(3/2)n‖ > 2−εn, (1)
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for every n > n0(ε), where ‖ · ‖ denotes the distance to the nearest integer.
This result is deeply connected to Waring’s problem. The proof depends on
Ridout’s p-adic extension of Roth’s theorem and so, the number n0(ε) cannot
be given explicitly. Weaker lower bounds can be obtained using estimates for
p-adic linear forms in logarithms or by the hypergeometric method; see [10,
Section 3.7] for references.

Corvaja and Zannier [11] extended (1) by replacing 3/2 by general algebraic
numbers greater than one. Let α > 1 be a real algebraic number and ` a real
number in (0, 1). They established that, if ‖αn‖ < `n for infinitely many positive
integers n, there is a positive integer d such that αd is a Pisot number (recall
that a Pisot number is a real algebraic integer greater than one, all of whose
Galois conjugates are in the open unit disc). Their conclusion is best possible.
The proof rests on a skilful application of the Schmidt Subspace Theorem; see
[16] for an extension.

In [M167], Mahler introduced the notion of Z-numbers—the positive real num-
bers ξ such that

0 6 {ξ(3/2)n} < 1/2

holds for every n > 0, where {·} denotes the fractional part. Mahler proved
that, for any non-negative integer m, the real interval (m,m+ 1) contains at
most one Z-number. The existence of Z-numbers remains an open problem.

In 1995, Flatto, Lagarias and Pollington [15] proved that

lim sup
n→+∞

{ξ(3/2)n} − lim inf
n→+∞

{ξ(3/2)n} > 1/3,

for every real number ξ > 0. An alternative (and much simpler) proof, together
with an extension to fractional parts of powers of algebraic numbers, was given
by Dubickas [13], who established the following result. Recall that a Salem
number is a real algebraic integer greater than one, all of whose Galois conjugates
are in the closed unit disc, with only one of them in the open unit disc.

Theorem 4.1 (Dubickas, 2006). Let ξ > 0 and α > 1 be real numbers, with
α algebraic. Let P (X) denote the minimal defining polynomial of α over Z.
Further, suppose that ξ lies outside the field Q(α) if α is a Pisot number or a
Salem number. Then,

lim sup
n→+∞

{ξαn} − lim inf
n→+∞

{ξαn} > 1

`(α)
,

where

`(α) := inf{L(PG) : G(X) = b0 +b1X+ · · ·+bmX
m ∈ R[X], b0 = 1 or bm = 1}

and L(PG) is the sum of the absolute values of the coefficients of the polynomial
PG(X).

At present, it is unknown whether the sequence of fractional parts of (3/2)n is
dense in [0, 1]; see [10, Chapter 3] for more references and further results.
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5 Algebraic number theory

In [M157], extending results from [M43, M53], Mahler used an inequality from
the reduction theory of quadratic forms to establish new results for ideal bases
in algebraic number fields. In particular, let

Φ(x) := Φ(x1, . . . , xn) =

n∑
h=1

n∑
k=1

ϕhkxhxk

be a symmetric positive definite quadratic form of positive discriminant DΦ,
and let F (x) := |

√
Φ(x)|. The convex body K = K(Φ) is the ellipsoid

K := {x : Φ(x) < 1}

of volume

V := πn/2 Γ
(n

2
+ 1
)−1

D
−1/2
Φ .

Then, there exist n lattice points gk := (g1k, g2k, . . . , gnk), k = 1, . . . , n, of
determinant 1, such that

n∏
k=1

Φ(g1k, g2k, . . . , gnk) 6 (n!)3DΦ.

Using this inequality, Mahler [M157] proved the following theorem.

Theorem 5.1 (Mahler, 1964). Let ϑ be an algebraic number of degree n > 2
and λ(p) be an arbitrary ceiling of Q(ϑ) with corresponding divisor aλ. Then,
there exists a basis α1, . . . , αn of the (fractional) ideal [aλ] such that, for each
k = 1, 2, . . . , n,

C−(n−1)λ(q) 6 |αk|q 6 Cλ(q)

C−nλ(r) 6 |αk|r 6 λ(r)

holds for all infinite prime divisors q and finite prime divisors r, where, here,
C := C(ϑ) > 1 is an explicitly computable constant.

The benefit of this result is that one could then construct ideal bases rather
than just a system of independent ideal elements.

6 p-adic analysis

Weierstraß’ famous approximation theorem states that, if ε > 0 and f is a
continuous real-valued function defined on an interval [a, b], there is a polynomial
p such that |f(x)− p(x)| < ε on [a, b], that is, continuous real-valued functions
can be uniformly approximated on closed intervals by polynomials.

In [M139], on the suggestion of J. F. Koksma, Mahler proved a p-adic analogue
of Weierstraß’ approximation theorem for a continuous function defined on the
ring of p-adic integers and taking p-adic values. In particular, he proved the
following theorem.
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Theorem 6.1 (Mahler, 1958). Let f be a continuous function on Zp, the p-adic
integers. For integers n > 0, define

an :=

n∑
k=0

(−1)k
(
n

k

)
f(n− k).

Then, {an}n>0 is a p-adic null sequence and

f(x) =
∑
n>0

an

(
x

n

)
holds for all x in Zp.

As de Shalit [22] points out, this is closely related to the fact that the functions(
x
n

)
, for n > 0, form an algebraic basis for the Zp-module of polynomials over

Qp which take integral values on Zp. See [22] for a further extension.

7 On the digits of the multiples of an irrational number

Let b > 2 be an integer. Weyl’s Theorem asserts that, for any irrational number
ξ, the sequence {mξ}m>1 is uniformly distributed modulo one. This implies
that, for any finite block D of digits from {0, 1, . . . , b−1}, there exist arbitrarily
large integers m such that D occurs at least once in the b-ary expansion of
mξ. This does not, however, provide any information regarding the number of
occurrences of D in the b-ary expansion of mξ. The question whether there is a
positive integer m such that D occurs infinitely often in the b-ary expansion of
mξ was addressed by Mahler in [M185].

Theorem 7.1 (Mahler, 1973). Let ξ be an irrational number, b > 2 be an
integer and k be any positive integer. Then, there exists a positive integer
B = B(b, k), independent of ξ, with the following property. There is an integer
m in {1, . . . , B} such that the b-ary representation of mξ contains infinitely
many occurrences of every possible sequence D of k digits 0, 1, 2, . . . , b− 1.

In fact, Mahler gave an explicit value for B(b, k); see [10, Section 8.6] for more
references and a proof that one can take B(b, k) = bk(b+ 1).

Mahler considered the p-adic analogue in [M191] and proved the following.

Theorem 7.2 (Mahler, 1974). Let

ξ =
∑
h>0

ahp
h

be any irrational p-adic integer and r any positive integer. Then, there exists a
positive integer m less than p2pr such that every possible sequence of r digits
occurs infinitely often among the digits of mξ.
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8 Linear differential equations

Before moving on to the final section, we note that Mahler’s lecture notes [M200]
provide us with a very good reference on the works of Siegel and Šhidlovskĭı on
E-functions. On the same topic, see [M166] and [M171], among other papers,
as well as the chapter in this volume by Nesterenko.

9 Open problems

In his lecture notes [M200], Mahler asked whether there exists an entire tran-
scendental function

f(z) =
∑
n>0

anz
n ∈ Q[[z]]

such that the image and the pre-image of any algebraic number are algebraic
numbers. This was recently confirmed in [18].

The paper “Some suggestions for further research” [M216] was very influential.

It starts with a result of Maillet asserting that, if λ is a Liouville number and
f(z) any non-constant rational function with rational coefficients, then f(λ) is
also a Liouville number. Mahler asked whether there are entire transcendental
functions with the same property.

Mahler also formulated explicitly the following question:

How close can irrational elements of Cantor’s set be approximated by rational
numbers

(i) in Cantor’s set, and

(ii) by rational numbers not in Cantor’s set?

This and analogous questions on intrinsic/extrinsic approximation have moti-
vated several recent works, including [6, 8, 14].

Mahler further asked [M216] whether Cantor’s set contains no irrational algebraic
elements and suggested as a possible approach the use of “a p-adic form of
Schmidt’s theorem on the rational approximations of algebraic numbers.” It
should be pointed out that this very approach has been used by Adamczewski,
Bugeaud and Luca [1, 2] to prove the transcendence of irrational numbers whose
expansion in some integer base is stammering (see also [23] for a special case).
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