On the number of integers which can be REPRESENTED BY A BINARY FORM

Pál Erdős and Kurt Mahler

Summary. Let $F(x, y)$ be a binary form of degree $n \geqslant 3$ with integer coefficients and non-vanishing discriminant, and let $A(u)$ be the number of different positive integers $k \leqslant u$, for which $|F(x, y)|=k$ has at least one solution in integers x, y. In this paper, using Mahler's the p-adic generalisation of the Thue-Siegel theorem, Erdős and Mahler prove that

$$
\liminf _{u \rightarrow \infty} A(u) u^{-2 / n}>0
$$

Acknowledgement. The article
P. Erdős and K. Mahler. On the number of integers which can be represented by a binary form. J. Lond. Math. Soc., 13:134-139, 1938.
is reproduced here with kind permission of the London Mathematical Society. This material is excluded from reuse and has not been licensed under the CCBY licence of the full work, no reproduction of any kind for this material is permitted without permission from the London Mathematical Society.

Il est facile de prouver que

$$
\lim _{n \rightarrow \infty} d_{n}=0
$$

Ce fait entraîne que

$$
\lim _{n \rightarrow \infty}\left|S_{n}(t)+\sum_{j=1}^{n} d_{j} r_{j}(t)\right|=0
$$

presque partout. En remarquant que

$$
c_{\kappa}=d_{\kappa}-\frac{1}{2} d_{\kappa-1} \quad(\kappa>1),
$$

nous voyons que les séries

$$
\sum_{\kappa=1}^{\infty} c_{\kappa}^{2} \text { et } \sum_{\kappa=1}^{\infty} d_{\kappa}{ }^{2}
$$

sont simultanément convergentes ou divergentes. Ce fait, avec le théorème bien connu que la série

$$
\sum_{\kappa=1}^{\infty} d_{\kappa} r_{\kappa}(t)
$$

est convergente ou divergente presque partout suivant que la somme $\sum_{\kappa=1}^{\infty} d_{\kappa}^{2}$ est fini ou non, entraîne notre théorème.

Lwów (Poland).

ON THE NUMBER OF INTEGERS WHICH CAN BE REPRESENTED BY A BINARY FORM

P. Erdös and K. Mahler*.

Let $F(x, y)$ be a binary form of degree $n \geqslant 3$ with integer coefficients and non-vanishing discriminant, and let $A(u)$ be the number of different positive integers $k \leqslant u$, for which $|F(x, y)|=k$ has at least one solution in integers x, y. We prove that

$$
\begin{equation*}
\liminf _{u \rightarrow \infty} A(u) u^{-2 / n}>0 . \tag{a}
\end{equation*}
$$

The proof is simple, but not elementary, since it depends on the p-adic generalization of the Thue-Siegel theorem. The result remains true when x and y are restricted by conditions

$$
x \geqslant 0, \quad \alpha x \leqslant y \leqslant \beta x \quad(a, \beta \text { constants }) .
$$

* Received 15 December, 1937; read 16 December, 1937.
© 1938 London Mathematical Society

Integers which can be represented by a binary form. 135

Thus, for instance, when $F(x, y)$ is not negative definite, and $A(u)$ is now the number of positive integers $k \leqslant u$, for which $F(x, y)=k$ has at least one solution, then again (a) is true. In the special case $F(x, y)=x^{n}+y^{n}$, $n \geqslant 3$ and odd, one of us (Erdös) had already found an elementary proof for (a) some weeks ago, but this proof could not be generalized.

1. The following notation will be used :
$F(x, y)=\sum_{h=0}^{n} a_{h} x^{n-h} y^{h}\left(a_{0} a_{n} \neq 0\right)$ is a binary form of degree $n \geqslant 3$ with integer coefficients and discriminant $d \neq 0$.
x, y are two integers, for which $F(x, y) \neq 0$.
$|x, y|=\max (|x|,|y|)$.
N is a sufficiently large positive integer.
A is an integer not zero with sufficiently large modulus $|A|$.
ϑ is a number satisfying $0<\vartheta \leqslant 1$, to be assigned later.
c_{0}, c_{1}, \ldots are positive numbers, which depend only on the form F.
$\gamma=\max \left(\left|a_{0}\right|,|d|, n\right)$.
p is a prime number satisfying $\gamma<p \leqslant N^{s}$.
P is a prime number satisfying either $P \leqslant \gamma$ or $P>N^{9}$.
$p^{a} \| A$ denotes that A is divisible by p^{a}, but not by p^{a+1}.
$g(A)$ is the arithmetical function defined by $g(A)=\prod_{\substack{\gamma<p \leqslant N^{9} \\ p^{a} \| A \\ p^{4} \leqslant N^{9}}} p^{a}$.
2. Lemma 1. For sufficiently large N

$$
G(N)=\prod_{\substack{|x, y| \leqslant N \\ F(x, y) \neq 0}} g(F(x, y)) \leqslant N^{89 n(2 N+1)^{2}}
$$

Proof. By definition, $p>n$ and p is prime to a_{0} and d. Hence, for given a and y, there are at most n incongruent values of $x\left(\bmod p^{a}\right)$, for which $F(x, y) \equiv 0\left(\bmod p^{a}\right)$. Therefore, for given p and a with

$$
\gamma<p \leqslant p^{a} \leqslant N^{9}
$$

the conditions

$$
|x, y| \leqslant N, \quad F(x, y) \neq 0, \quad F(x, y) \equiv 0 \quad\left(\bmod p^{a}\right)
$$

have at most

$$
n(2 N+1)\left\{\left[\frac{2 N+1}{p^{a}}\right]+1\right\} \leqslant \frac{2 n(2 N+1)^{2}}{p^{a}}
$$

P. Erdös and K. Mahler

solutions x, y. It follows that the exponent b, with $p^{b} \| G(N)$, satisfies the inequality

$$
b \leqslant \sum_{a=1}^{\infty} \frac{2 n(2 N+1)^{2}}{p^{a}}=\frac{2 n(2 N+1)^{2}}{p-1} \leqslant \frac{4 n(2 N+1)^{2}}{p}
$$

Hence, for sufficiently large N,

$$
G(N) \leqslant \exp \left\{\sum_{y<p \leqslant N^{9}} \frac{4 n(2 N+1)^{2}}{p} \log p\right\} \leqslant N^{29 \cdot 4 n(2 N+1)^{2}},
$$

since

$$
\sum_{p \leqslant u} \frac{\log p}{p} \leqslant 2 \log u
$$

for sufficiently large u.
Lemma 2. If μ is the number of pairs x, y with

$$
|F(x, y)| \leqslant N^{t}, \quad|x, y| \leqslant N
$$

then $\mu \leqslant \frac{1}{3} N^{2}$ for sufficiently large N.
Proof. For a given m with $|m| \leqslant N^{\downarrow}$ and a given y with $|y| \leqslant N$, the equation $F(x, y)=m$ has at most n integer solutions x, and therefore

$$
\mu \leqslant n(2 \sqrt{ } N+1)(2 N+1) \leqslant \frac{1}{3} N^{2}
$$

Lemma 3. For sufficiently large N, there are at least $\frac{4}{3} N^{2}$ pairs of integers x, y with $|x, y| \leqslant N$ and $(x, y)=1$.

Proof. Obviously, the number of these pairs is at least $4 M$, where M denotes the number of pairs with $1 \leqslant x \leqslant N, 1 \leqslant y \leqslant N,(x, y)=1$, so that

$$
M \geqslant N^{2}-\sum_{p} \frac{N^{2}}{p^{2}} \geqslant N^{2}\left(2-\sum_{h=1}^{\infty} \frac{1}{h^{2}}\right)=N^{2}\left(2-\frac{\pi^{2}}{6}\right) \geqslant \frac{N^{2}}{3}
$$

Lemma 4. For sufficiently large N, there are at least $\frac{1}{2} N^{2}$ pairs of integers x, y with

$$
|x, y| \leqslant N, \quad F(x, y) \neq 0, \quad(x, y)=1, \quad g(F(x, y)) \leqslant|F(x, y)|^{1609 n}
$$

Proof. By Lemmas 2 and 3, there are at least $\frac{4}{3} N^{2}-\frac{1}{3} N^{2}=N^{2}$ pairs x, y with

$$
|x, y| \leqslant N, \quad|F(x, y)| \geqslant N^{\ddagger}, \quad(x, y)=1 .
$$

Hence, if Lemma 4 were false, there would be more than $N^{2}-\frac{1}{2} N^{2}=\frac{1}{2} N^{2}$ pairs x, y with

$$
g(F(x, y)) \geqslant|F(x, y)|^{1609 n} \geqslant N^{809 n}
$$

$$
\text { and therefore } \quad G(N) \geqslant N^{809 \cdot n \supsetneqq N^{2}}>N^{89 n(2 N+1)^{2}}
$$ in contradiction to Lemma 1.

Integers which can be represented by a binary form. 137
Lemma 5. For all x and y,

$$
|F(x, y)| \leqslant c_{1}|x, y|^{n} .
$$

Proof. Obvious with $c_{1}=\left|a_{0}\right|+\ldots+\left|a_{n}\right|$.
Lemma 6. For sufficiently large N, there are at least $\frac{1}{2} N^{2}$ pairs of integers x, y with

$$
\begin{equation*}
|x, y| \leqslant N, \quad F(x, y) \neq 0, \quad(x, y)=1 \tag{1}
\end{equation*}
$$

such that $|F(x, y)|=k_{1} k_{2}$, where k_{1} and k_{2} are positive integers such that k_{1} is divisible by at most c_{2} different primes, and $k_{2} \leqslant|F(x, y)|^{\dagger}$.

Proof. We apply Lemma 4 with $\vartheta=1 /(1120 n)$ and

$$
k_{2}=g(F(x, y)), \quad k_{1}=\frac{|F(x, y)|}{k_{2}}
$$

k_{1} and k_{2} are positive integers, since $g(F(x, y))$ is a positive integer which divides $F(x, y)$. By Lemma 4, for at least $\frac{1}{2} N^{2}$ pairs x, y satisfying (1),

$$
k_{2} \leqslant|F(x, y)|^{1609 n}=|F(x, y)|^{\dot{7}}
$$

The other factor k_{1} is divisible only by prime numbers of the form P with either $P \leqslant \gamma$ or $P>N^{s}$. But there are at most γ primes of the first form, and, since by Lemma 5

$$
|F(x, y)| \leqslant c_{1} N^{n}
$$

there are at most $1200 n^{2}$ different primes of the second form, which can divide $F(x, y)$, for sufficiently large N.
3. To conclude the proof we use the following generalization of the Thue-Siegel theorem*:

Lemma 7. Suppose that x and y are integers with

$$
F(x, y) \neq 0, \quad(x, y)=1
$$

that $P_{1}, P_{2}, \ldots, P_{1}$ are tifferent prime numbers, and that

$$
Q(x, y)=P_{1}^{h_{1}} P_{2}^{h_{2}} \ldots P_{t}^{h_{t}}
$$

[^0]is the greatest product of powers of these primes which divides $F(x, y)$. Then the inequality
$$
\frac{|F(x, y)|}{Q(x, y)} \leqslant|x, y|^{\left\lvert\, n-1-\frac{1}{2}\right.}
$$
has at most c_{3}^{t+1} solutions in different pairs x, y.
Suppose now that k is a positive integer, for which $|F(x, y)|=k$ has at least one solution. Then, by Lemma 5,
$$
c_{1}|x, y|^{n} \geqslant k, \quad \text { i.e. } \quad|x, y| \geqslant\left(\frac{k}{c_{1}}\right)^{1 / n}
$$
so that $|x, y|$ cannot be too small. The integer $k=k_{1} k_{2}$ is a product of two positive integers k_{1} and k_{2}, of which k_{1} has no other prime factors than P_{1}, \ldots, P_{l}, while l_{2} is prime to P_{1}, \ldots, P_{i}; hence, in particular,
$$
k_{1}=Q(x, y), \quad k_{2}=\frac{|F(x, y)|}{Q(x, y)}
$$

Suppose that

$$
k_{2} \leqslant k^{\frac{1}{7}}
$$

so that

$$
k_{2} \leqslant c_{1}^{\frac{3}{4}}|x, y|^{\frac{1}{2} n}
$$

Since $n \geqslant 3$, we have

$$
\frac{1}{2} n-1-\frac{1}{28} \geqslant \frac{1}{2} n-\frac{1}{3} n-\frac{1}{28}=\frac{1}{6} n-\frac{1}{28} \geqslant \frac{1}{7} n+\left(\frac{3}{6}-\frac{3}{7}-\frac{1}{28}\right)=\frac{1}{7} n+\frac{1}{28} .
$$

Thus, when

$$
k: \geqslant c_{1}^{4 n+1}=c_{4} \text {, i.e. }|x, y| \geqslant\left(\frac{k}{c_{1}}\right)^{1 / n} \geqslant c_{1}^{4},
$$

we get

$$
c_{1}{ }^{\frac{1}{}|x, y|^{-\frac{1}{2 n}} \leqslant 1, \quad \text { and } \quad k_{2} \leqslant c_{1}{ }^{\frac{1}{2}}|x, y|^{-\frac{1}{3}}|x, y|^{i n+2 s} \leqslant|x, y|^{\mid 2 n-1-2 s} . ~}
$$

Hence Lemma 7 leads to

Lemma 8. If the positive integer k is larger than c_{4}, and if it can be written in the form $k=k_{1} k_{2}$, where k_{1} is divisible by only t different prime numbers, and where $k_{2} \leqslant k^{\dagger}$, then the equation $|F(x, y)|=k$ has not more than c_{3}^{t+1} different solutions x, y in relatively prime integers x and y.

Theorem 1. For every sufficiently large positive u, there are at least $c_{0} u^{2 / n}$ different positive integers $k \leqslant u$, for which the equation $|F(x, y)|=k$ has at least one solution in relatively prime integers x and y.

Proof. Suppose, in Lemma 6, that

$$
N=\left(\frac{u}{c_{1}}\right)^{1 / n}, \quad \text { i.e. }|F(x, y)| \leqslant u \text { for }|x, y| \leqslant N
$$

Integers which can be represented by a binary form. 139
Then it follows that there are at least

$$
\frac{1}{2} c_{1}^{-1 / n} u^{2 / n}
$$

different pairs of relatively prime integers x, y with $|x, y| \leqslant N$, for which

$$
|F(x, y)|=k \neq 0
$$

is a product of two positive integers $k=k_{1} k_{2}$, such that k_{1} is divisible by at most c_{2} different primes, while $k_{2} \leqslant k^{\dagger}$. Hence, by Lemma 8, either $k \leqslant c_{4}$, or the number of different relatively prime solutions of $|F(x, y)|=k$ is not larger than $c_{3}^{c_{2}+1}$. Therefore, for sufficiently large u, there must be at least

$$
\frac{1}{2} c_{3}^{-\left(c_{2}+1\right)} \cdot \frac{1}{2} c_{1}^{-1 / n} u^{2 / n}
$$

different positive integers $k \leqslant u$, for which $|F(x, y)|=k$ has at least one solution in integers x, y with $(x, y)=1$.
4. By a theorem of Siegel*, the inequality

$$
0<|F(x, y)| \leqslant u
$$

has only $O\left(u^{2 / n}\right)$ solutions in integers x, y. Hence the number of integers k, with $1 \leqslant k \leqslant u$, which can be represented by $|F(x, y)|$, say the number $A(u)$, must also be $O\left(u^{2 / n}\right)$, and so Theorem 1 gives the exact order of this function and shows that $\lim \inf A(u) / u^{2 / n}>0$, while $\lim \sup A(u) / u^{2 / n}<\infty$.

University of Manchester.

ON THE PRODUCT OF THREE HOMOGENEOUS LINEAR FORMS

H. Davenfort \dagger.

1. Let ξ, η, ζ be three real homogeneous linear forms in x, y, z with determinant 1. Let \ddagger

$$
\begin{equation*}
M=\min |\xi \eta \zeta| \tag{1}
\end{equation*}
$$

when x, y, z assume integral values not all zero.

* As Prof. Siegel's proof has not been published, see K. Mahler, Acta Math., 62 (1934), 92 ff .
\dagger Received and read 16 December, 1937.
\ddagger min means lower bound, whether attained or not.

[^0]: * See K. Mahler, Math. Annalen, 108 (1933), 51, Satz 6, from which Lemma 7 is a trivial consequence, if $F(x, y)$ is irreducible. But Satz 6 remains true when $F(x, y)$, though reducible, has a non-vanishing discriminant, if only the representations of $k=0$ are excluded; a proof for this generalized theorem and so for the general case of Lemma 7 will be published in the near future.

