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algebraic functions approximating the logarithmic function are obtained. On
substituting numerical algebraic values for the variable, a lower bound for the
distance of its logarithm from variable algebraic numbers is found. As a further
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A new identity is given by means of which infinitely many algebraic functions approximating
the logarithmic function In x are obtained. On substituting numerical algebraic values for the
variable, a lower bound for the distance of its logarithm from variable algebraic numbers is found.
As a further application, it is proved that the fractional part of the number ¢ is greater than ¢~%0¢
for every sufficiently large positive integer a.

After earlier and weaker results by Mordukhay-Boltowskoy (1923), Siegel (1929) and
Popken (1929), I proved in 1931 (Mahler 1932) that Inx, for rational x<=0, =1, is not a
Liouville number and even not a U-number, and I determined a measure of transcendency
for such logarithms. Up to now this measure has not been improved, although Fel’dman
(1951) recently proved a very general related inequality for the logarithms of arbitrary
algebraic numbers.

In this paper, I once more study the question of approximations to In x. The new work is
based on a simple system of identities I found a year ago. These are of the form

éﬁAhk(x) (Inx)t = Ry(x) (h=0,1,...,m), A)

where the A’s are polynomials of degree not greater than n with integral coefficients and of
determinant ¢(x—1)m+Dn (o 0),

while the R’s have at x = 1 a zero of order at least (m+1)#. From the integral defining
R, (x) one easily derives upper bounds for | 4,,(x) | and | R,(x) |.

Let now £==0, =1, be an algebraic number which need not be a constant. On allowing
m and n to vary, the identities (A) become infinitely many approximative algebraic equa-
tions for In£ with algebraic coefficients. By means of these, it is proved in Chapter 2 that
Ing is not a U-number. In this way my old result has for the first time been extended to
arbitrary algebraic numbers. Moreover, the new proof is much simpler than the old one.
It is based on an idea due to Siegel (1929). It may be mentioned that the measure of
transcendency now obtained does not contain any unknown numerical constants.

In Chapter 3 this measure is further improved under the restrictive assumption that
both £ and the approximations to In{ are rational numbers. As an application, it is proved

that |2a_ea1l>'23_62|
JSor all pairs of positive integers a and a;.
In the last chapter, I finally apply the identities (A) to prove that

ed— [ea] > a—40a, lnf_ [lnf] >j‘—401nln f’

when both «¢ and f are sufficiently large positive integers; here [x] denotes the integral
part of x.

Vor. 245. A. 898. (Price 6s.6d.) 46 [Published 15 January 1953
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The formulae (A) may also be used to show that
|ag+a,e+...+a,em|>e",
when m is a positive integer tending to infinity, a,, 4, ..., 4,, are m bounded integers not all

zero, and ¢>1 does not depend on the a’s or on m. However, this result is very weak and it
would therefore be of great interest to replace it by-a better one.

CHAPTER 1. THE APPROXIMATION FUNCTIONS

1. Let m and n be two positive integers and x==0 and z two complex variables. We
define x* by

x? = ezln x

where In x stands for the principal value of the logarithm which is real when x is a positive
number. We further denote by N=[L,2,...n]

the least common multiple of 1, 2, ..., #, and put, for shortness,

P = m! Nm(nl)m*1,
Finally, let Q(z) be the polynomial

Q(z) = {z(z+1) ... (z-+n)}m+L.
We study in this chapter the integrals

P Zhyztn
= S~ =0,1,...
R, (x) om) ¢ Q(2) dz (A I OB

extended over the circle C in the complex z-plane of centre z = 0 and arbitrary radius p
greater than 7, described in the positive direction. In the next two sections, R,(x) will be
evaluated in two different ways. The resulting identity will lead us to the approximation
formulae needed in the following chapters.

2. The rational function Q(z)~! has at z = co a zero of order (m-+1) (n+41), and its poles
are at points of absolute value not greater than z. The function possesses therefore a Laurent
expansion

Q)= 3 oz,

Kk=(m+1)(n+1)

convergent for | z | >n. The other factor, z*x?*", of the integrand can be developed into the

ower series ©
p zhxz+n = x" z (ln x_)_l_<zk-) Iz,
& k!
which converges for all z. Hence, on multiplying these two series and integrating the
product series term by term, we obtain for R,(x) the convergent development

o (ln x)x~h~1

cot
k=(mE T+ (Kg}l* 1)!

R, (x) = Px» (h=0,1,...,m).

It shows that R,(x) vanishes at ¥ = 1 to the exact order
(m+41) (n+1)—h—1=(m+1)n,

because In x has at this point a zero of the first order.
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3. By the residue theorem, R,(») may also be written as

Ri(x) =P 3 1,

where 7, denotes the residue of the integrand

Zhyztn
QR
at the pole z = —A. This residue is evaluated as follows.
At z = —1, Q(z) has a zero of order m+1. Hence §,(z) = 2 has at z =—A a pole of

Q(2)
order not greater than m--1, and the other poles of this function lie at least at a distance 1
from this point. Therefore S,(z) can be developed into a Laurent series

Sie) = 3 A0+
3 Kk=—m—1
convergent inside the circle of centre z = —2 and radius 1. On the other hand,

xZtn — xn—A % (ln‘f)K(Z_F/]\)K
-0 K-

for all values of z. Hence, on multiplying these two series term by term, the residue r, is
found to be equal to

7y = x"A % Y&, "——(lnf)Ka
k=0 K2
&L o mea (D)
whence R(x)=P3% 3 y{M an-2A2 (h=0,1,...,m).
K=0 A=0 K!
We therefore put 4, (x) =% i yan gt (hk=0,1,...,m),
=)
and have Ry(x) = § Ay (x) (Inx)k (h=0,1,...,m)
=0

identically in x.
4. The functions 4,,(x) are polynomials in x, their terms of highest degree being

P
e Lt

This term can be obtained more explicitly as follows.
Write the Laurent series for Sy(z) = Q(z)~! at z = 0 in the simpler form
= 3 g
Then, from Q(z) = {z(z+1) ... (z+n)}"+1,
s = (),
and the coefficients y{»# of the more general function §,(z) = z45)(z) are given by
(0 if —m—-1<k<-m+h-2,
YO — )
x lyk_,, if k=—m—+h—1.
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It is therefore obvious that 4,,(x) is of smaller degree than n if £+k>=>m+1; that it is of
exact degree » and has the highest term

EPf (nl) —(m+l)xn
if A4k = m; and that its degree does not exceed n if A+k<m—1.

5. The last remarks enable us to evaluate the determinant

Ago(x)  Ag(x) oo Ag,()
D(x) = Alf)(x) A1'1(x) Aln'z(x)
| dpols) A(®) o Ap()

If, to start with, the elements of D(x) are replaced by their highest terms
gy@k’i’lx",
and the terms of lower degree omitted, we obtain a triangular determinant with elements
0 below the diagonal /+-£ = m, hence equal to
m (P ~ Pl (p])~(m+12

I —yO,m=k) gn\ =T N a(mtDn

T,H,{N-H x } Fqrer o
Therefore D(x) itself is of the form

D(x) =F ol ol xtm+n 4 terms in lower powers of x.

To obtain these lower terms, add to the first column of D(x) the second column times
In x, the third column times (In x)2, etc., finally, the last column times (In x) . By theidentities

S A (%) (Inx)t = Ry(x)  (h=0,1,...,m),
k=0

the new first column consists then of the elements

Ry(x), R(x), ..., R,(x),
all of which, by [2], vanish at x = 1 to at least the order (m+-1) zn. Since the other elements
of D(x) are regular at x = 1, the determinant is then necessarily divisible by (x—1)(m*Dn,
By the form of its highest term, D(x) must then be identical with

pmt 1 (7’1') —(m+1)2

el NI

D(x) =+

Hence, in particular, D(x)40 if x=1,
a result we shall frequently apply in later chapters.

6. We next investigate the arithmetical form of the coefficients %% in

P
Ap(x) = 75;/\207(—’11’;@1’5"_"-
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These coefficients were originally obtained from the Laurent expansion
Si(2) =2Q)H = 3 pA)-

Now, for A = 0,1, ...,n, Q(z)~! can be written as

Q@)™ = () T+~ T e+ 43y,

and so also as \ 1 )
-1 = (— m+ _ —m— —m— A _z_«}—_ —m=1n=-A ‘E+_ —m=1
Q(2)7! = (—)Am D (n—A) }=m=1 (z41) 1}31(1 ,4) H(H V) .

Further, by the definition of N as the least common multiple of 1,2, ..., n, the quotients

%[and ‘%’, where p=1,2,..,landv=1,2,...,n—A1,

v=1

are integers; there exist therefore integral coefficients o/ such that

A N \-m=1n=A N \—m-1 0

1‘[(1——) H(1+~t) = X oM.
Y2 v k=0

p=1 v=1
Hence, from the product for @(z)-1,
Q) = (— 1M U —) 71 3 AN (242,
k=0
On multiplying this series by
v n
2= {2 = 3 (B (~0ps 405
k=0
it is evident that the coefficients y» can be written as

g — (—1)Am D (n— ) !}—m—lz(:) (—A)h=x1 gD N=ke,
1

where the summation extends over all pairs of integers «;, k, satisfying
0<K,<h, k=0, k1 +Ky = k+m-+1, hence also k,<k+m-+1.
. ‘ 7\ m+1
In this formula {A(n—2)1}m=1 = (nl)-m-1 (/1)
is a rational number the denominator of which divides (n!)”+1. It follows therefore that
(n!)m+l Nx+m+l /},E(A,h)
is a rational integer. In particular, all products
' hk=0,1,...,m
! m+1Nm—~k (A, h) ( 4 > > )
(n) L\ =010
are integers, hence even more all products
hk=0,1,...,m
1\m+1 ATm A(A, h) ) [iatd i
e i T

Since, for £ = 0,1, ...,m, k! is a divisor of m!, we obtain then the final result that a/l the
(m+1)2 polynomials

| n
Ay (%) = %’N”’(n!)m“/\go YOP A (k= 0,1, ...,m)

have rational integral cogfficients. This property will prove of importance in the later applica-
tions.
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7. If p(x) = po+p1 %+ pax?4-...+p,&" is a polynomial with arbitrary real or complex
coefficients, then we write
[p(x) | =max (| po |, | s oo [ 21)s

and call | p(») | the height of p(x). Our next aim is to find an estimate for the height of 4, (x).
This requires obtaining an upper bound for the Laurent coefficients y&# in

$,(2) =2Q(2) = 3 yAP(z+)"

K=—m—1
whenk =—1,—2, ..., —m—1.
By Cauchy’s theorem, am L J‘ zhdz
7 = omi ) 6, Q(2) (2 F )R
where C; may be chosen as the circle of centre z = —A and radius £, described in the positive

direction. Since 0<<A<n and 0</A<m, we have on this circle,
|z|<A+3<n+1, hence |z!|<(n-+1)m,

further | (z4+A)1<1,
because k41 = —k<0 in A, ().
Next,

A

Q(2) = {H((Z—i-/l) —ﬂ)}mﬂ (z_|_/1)m+1{1—f( (z+4) —i—V)}MH’

p=1 v=1

so that for all points on C),

n

o-b)" = (o) @ (e

A m+1 -,
@ 1={ 113" i o e
@Y)! (@n—2)!(2n)! !l 1 mt1
:{ (2n)! n!n!/Il(n—/l)!”'Qz“(?"'”)“} ’

or, what is the same, 1Q(2) |>{(§Z>—l (z) (znn) al 2_27.—1}”%1.

-1
Put, for the moment, g = @Z) (j{) (2”) A=0,1,...,n).

n
- <1 if /1<”g1,
Then gy =¢q,-n and Doy 2441
@ 2n—21—1 . n—1
>1 if A>——.
2
Therefore G0>¢> >y and ¢, >q, 1> Gy
. 2n \"Y/ n \[2n
whence min (907 G5 -5 qn) = Quym = (2[%71]) ([%n]> ( n ) .
. n n 2n 2n
Further, since (/1)<([%n])’ (2/1)<(n)
n 1 2 /n 2"
and () =1 S 0) it

for allA = 0,1, ...,n, we have

DOCUMENTA MATHEMATICA - EXTRA VOLUME MAHLER SELECTA (2019) 527-555



534 KURT MAHLER

LOGARITHMS OF ALGEBRAIC NUMBERS 377
Hence, when z is on the contour C,,

0@ 1>{;

! 2—2n—l}m+1 = (n41)~m-12-m+ D@D (plym+1,
Therefore, from the integral,

I '}’(/\ s h) I <%_221f(n+ 1)m{(n+ 1)—m—1 2—(m+l)(n+1)(n!) m+1}—l — ‘%(n‘i‘ 1)2m+1 2(m+1)(n+1)(n!)—m—l,

and so {%78‘,;2’1 < Jm! Nn(n41)me1 gmi b,

m!
= ‘HNM(”!)MH 748

whence, finally,
[, (x) | <im! Nm(n+ 1)2m+1 m Dt (p | = 0,1,...,m).
In the notation of majorants, this may also be written as
Ay (%) <gm! N™(n+-1)2m+1 2m+ D@t D(] x4, 7).

8. We conclude this chapter by determining an upper bound for R,(x). In the integral

for this function, P [ zhxztndz

Rh(x) “om ¢ Q@)
C was assumed to be a circle in the z-plane of centre z = 0 and arbitrary radius p>n,

described in the positive direction. In order to simplify the final result, we assume, from

now on, that x<=1 and m+1>2|Inx|
= >

(m+1)n

and we fix p by = x|
so that p=2n>n and p—n=ip.
On the contour C, | 2| <pm, |xtn|<Lelptmilng

since 0< A< m. Further, on this contour,

B B
Since (1—;)(1—%) .(1—%):{(1+/)—I)(1+p 2) (Hﬂ)}_l
and (1+k1—1)(l+l—03—2) (1+p )<exp(}\i1p’1/1)<exp(/\§lm)

= exp (ZEn + l))gexP (n(n_lj_l_)) R

Q(z) admits on C the lower bound
Q@) |=pm e b exp (5 (m+1) (n1)).

It is therefore obvious from the integral that

| R, () |<%2prme(p+n)llnxl{p(m+1)(n+1)exp (——g(m—}—l) (n+1))}~1
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Here exp (_g (m+1) (n+1)) — e-+DlInx]
whence

I Rh(x) |<Plom+1 e(p+n)|1nx|p—(m+1)(n+l) e(n+1)\1n,ﬂ — Pe(2n+l)|lnxiepllnx1p~(m+l)n‘

On replacing now P and p by their expressions in m, #n and x, we obtain the following upper
bound for R,(x):
(Zn:k 1) n)—(m+l)n

l Rh(x) Iém' Nm(nl)mkl e(2n+1)[lnx| e(m+1)n( Rt

[Inx| ’

; | Nm(pl)m+1 o@nt1)In x| e|lnx L)(mﬂ)"

that is, | Ry(x) | <m! Nm(nl)m+1e¢ ((m+1) p
9. The two inequalities

Ahk(x) < %ml Nm(n+ 1)2m+1 2(m+1)(n+1)(1 +x... ~I-x”)

i! Inx I")(m+1)n

| Nm(p 1\ m+1 a(2n+1)|Inx| | B |
and | R,(x) | <m! Nm(nl)m+1e ((m+1)n

b
proved in the last section, can be put into a more convenient form, if we make use of the

elementary inequality* i
nl<en' nte"

and of the inequality of Rossert
N=[1,2,..,n] <2
both of which hold for all positive integers.
The inequality for | 4,,(x) ] takes then the form
Ay (x) <Eml 2bmn (- 1)2m A1 QmADEED(] oy -x7),

which may also be written as
Ay (%) Km! 2m=in(p |- 1)2m+L( /32)0mtDn (] x4, 4x2).

Similarly, the upper bound for R,(x) becomes

; ’ e|lnx|\(m+hn
[ Rh(x) [ <m| 2%mn(e \/ﬂ>"‘+l n(m+l)n e—(m+1)n e(bz—?— )iInx| ((;nl_i:islﬁ)

>

and this may be put in the form

’ » ) 8| Inx [\(m+Dn
19-in m+1 a@nt1)(Inx) (Z 17777 |

| Ry(x) | <m! 2t (e Jn)mile Cart)

10. The main results of this chapter may now be formulated as follows.

TuEOREM 1. Let x be a real or complex number different from 0 and 1; let Inx be the principal value
of the logarithm; and let m and n be two positive integers of which the first one satisfies the inequality

m+1>2]|Inx|.
* The sequence a,, ay, as, ... defined by
a,=nlntter (n=1,2,3,...)

is easily seen to be decreasing; therefore ¢, <a,=e.
1 In his paper (1941) Rosser gives the result that (In V)/n assumes its maximum at n = 113 and that this

maximum is less than 1:0389. On the other hand, % In 2 is greater than 1-0397.
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Then there exist (m+-1)? polynomials
Ay(x)  (hk=0,1,...,m)
in x of degree not greater than n, with the following properties:
(a) The ?’eterminant | Ap(®) [npmo,tom
does not vanish.
(b) Every polynomial A, (x) has integral coefficients such that
Ay (x) <m! 2m=n(p4-1)2m+1 ((/32)m+ D (1 4+ .., +x").
(¢) The m~+1 functions
Ry(x) = 3 A (x) (Inx)t  (h=0,1,...,m)
satisfy the inequalities e

| Ry(x) | <m!27t(e Jn)m+1 e@n+ilnxi (8‘} | lnﬂ)(m+l)n

m-+1

CHAPTER 2. THE LOGARITHMS OF ALGEBRAIC NUMBERS
11. The next investigations make use of the following lemma:
TueoreM 2. Let J&) =fotfixt ... fyxt,  where f,>0,
be an irreducible polynomial with integral coefficients, and let
g) gl, AR g¢—1
be the roots of the equation f(x) = 0. If
8(%) = gotgixt... g x
is a polynomial with integral coefficients for which g(&) =0, then
|g(&) |[={(-+1)7 3% [ F(x) |V [g(x) [#~1} .
Proof. The hypothesis g(£) =0 implies that also
&(&)=+=0, ..., g(§¢—1) =+ 0,
hence that the product y=J3e) g&) - &(€s-1)

does not vanish. This product is symmetrical in §,&,, ...,§¢_1 and of degree ¢ in each of
these roots. It is therefore a rational integer, whence

l7[=1.
Since, for [ =1,2,...,¢—1,

[g(&) |<]g() A+HG]+ &I <Igx) ] (1+] &)Y,

y admits the upper bound

- () 12
|7 1<f 2@ g (T +ED)

Now, in the equation for the &’s,

Jo S
DR x4. xf =0,
Jo Js

the coefficients are in absolute value not greater than

[/%)]

Js

Vor. 245. A. 47
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Therefore, by a result of Siegel*,

(HIENTT &)< (s,

and so even more §(1+|5z|)<(¢+1) 3¢£f}(::ﬂ
Hence 1<l7l <A@ | TET 1 (tg-+1) L LY

whence the assertion.
12. Let £ be a real or complex algebraic number different from 0 and 1, and let

S(x) = forfixt+ ... +fyx%,  where f;>0,
be an irreducible polynomial with integral coefficients of which £ is a zero. Denote by
n=1In¢
the principal value of the logarithm of £ as defined in § 1. We consider a linear form
r=ayt+an+...+a,n"

in the g+1 powers 1,7,7% ...,7# of y with integral coefficients 4y, a,, ..., @, not all zero.
Our aim is to obtain a lower bound for || in terms of §, the degree g, and the height

a=max(|al,|a], ..., |a,])
of r.
As in the first chapter, let m and n be two positive integers; they will be fixed later, but
we assume from now on that m>p, m1>2|7).

The m —pu+1 linear forms in 1,7, 7% ..., 7™ derived from r:

r=aytantaynt...+a,n"
m= artant..tae, nt+a,nH,

e = agy" A a I A e,
are linearly independent because the matrix Q of their coeflicients contains a non-zero

minor of order m—p-+1. For let v be the largest number for which a,=0; then the minor
of Q which has g, as its upper left-hand corner element is triangular and no elements in its

main diagonal vanish.
By the first chapter, the m+1 linear forms

Ry(§) = Apo(§) + A (&) 1+ . + 44, E) ™ (A= 0,1,...,m)

in 1,7,7% ...,7™ are likewise independent because their determinant is not zero. It is then
possible to select x of these forms, the forms

R, (&), Ru(), s Ry, (&),
say, where 1<y <hy<...<h,<m,
such that the m--1 linear forms
Ty Ty ey ”]m‘ﬂa R}n(é)’ ha(g)) A Rh#(g) .
* Compare the proof of Hilfssatz I in Siegel’s paper (1921).
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are also independent. Hence, if A(x) denotes the determinant
ay a, a, e e 4y, 0
0 a, a, -1 Gy 0
A(x)= 0 0 0 e Ay a, eee e e aﬂ ,
Apo(x)  Ap(x)  App(x) o o Ay (%)
Apo(x)  Apa(x)  Apo(®) oo Ay (%)
then A(£) is the determinant of these linear forms, and therefore
A(g) +o.

18. The first m— p+- 1 rows of A(x) consist of integers, while the last x rows are formed by
polynomials in x at most of degree » and with integral coefficients. Hence A(x) is itself a
polynomial in x of degree not greater than un with integral coeflicients. An upper bound for
these coeflicients is obtained by the following estimation.

By theorem 1,

Ap(%) KA1 +x+...4+x), where A =m!2m-ir(n41)2m+1( /32)0m+Dn,
Therefore, the product of any y of the polynomials 4,,(x) is majorized by
A1 454 ... 4 xm)~,
Here (1+x+...+4")* can be written as
(Ix+.+am)r =gt 8+, 00,

where the j’s are integers and positive. On putting x = 1, we see that

Jotiit ety = (n+1)%,
and so (I4+x+...+am)r L (n+ 1)~ (1424 ... 4 xmn).

Now A(x) consists of (m-1)! terms, each of which is clearly majorized by the expression

am AR x4 .. xm) A
Hence Alx) L (m~4-1) a1 Ar(n4-1)4 (1454 ... +x47),
or, say, Alx) <A, am (1454 ... Fxmn),
where 4, = (m+1)! A*(n+1)# = (m~+1) (m!)#+120m=tnn(n 4 1)2m+Dp ( /32)(m+Dun,

In just the same way, we can majorize the cofactors of the elements of A(x). In particular,
denote by Dy(x), Di(x)y oy D, (x), Wi(r), ..., W)

the cofactors of the m -+ 1 successive elements of the first column of A(x). A similar calculation
to the last leads to

D,(x) <dyamr#(1+x+... 42 (i=0,1,...,m—p),
where, for shortness,
Az — (m!)/”l 2(m——§n),u(n+ 1)2(m+1)/4 <J32)(m+l)pn,
and also to Wi(x) KAgam # Y (L 4x4.. 4Dy (7=1,2,..., ),

where Ay = (m!)# 2m=10G=D(g 4 1) 2m+ D=1 ( /32)(m+ D=,
47-2
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The determinant A(x) can be expressed in terms of these cofactors. Multiply the second,
third, ..., (m+1)st column of A(x) by 7, 72, ..., ™, respectively, and add to the first column.
The new first column is then

Ty, e, A Ry (%), R(x), ..., R,w(x),
and therefore, identically in x,
mp
M) =1 S pi0,(x) + $ Ry (x) i ()-
i= Jj=
14. Put now x = { in the last identity and write

S=1/) | =max ([ fo|, [ A5 |f¢,)

Then, first, from theorem 2,
| AGE) [Z{(g+ 1) nfon(dy am=s -1},

or |A() | = A3 a-tm=rt D@,
where

Ay = (§4 1) 3udnfrn(m4-1)8-1 (m!) @ DG=D gm=Inu@ =1 (p 4 1) Am+ Du@=1) ( /32)(m+Dp@=Dn,

Secondly, | 04(€) | < dgam#(1+ ||+ | €},
| V() | <dAgam=r+ (14| E |+ ... 4| & [=Dn).
1
__._‘.__< < o

Here f+l\|§[\f+l,
because the equation Jotfif4 . fEP =0

for £ may be written as Js€=— (J—r‘%_l —k—ﬁg—;—z—}— +%) R

and so either |£[<1 or

|EI<IGEI<UEI €12 =Ly whence [gl<fr1,

A similar proof holds for the lower bound. Therefore, since f+1<2f,

VH[E ]+ oo [E <L (1) o (f 1) = (ffﬂ%fiﬂ?l- < g ifun,

and, in the same way, L[|+ ...+ | |@ - DrL 2w Drtlfw=Dn,
Hence the inequalities for ®,(£) and ¥;(§) take the simpler form,

| ©(&) [<2emrifrmdyamr,

, \II‘](g) I <2(,u-—1)n+{f(/4—l)nA3am—,u+l'

Thirdly, the logarithm 7 = In{ was defined as the principal value, so that by the bounds
fors |7 1< {0 £ D> +r<{{In (f+ 1))+,
Since In (f41) < f, this means that
7| <{/P+r<f+3<4f
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. N
T #
Since {1+(ln2) ; <108,
7 admits the further bound given by

1 ™V <@ ")V <101 1
1<) () | = (mwn) o ) [ <omeen.
The first of these two estimations implies, in particular, that

m=u i m=—p i (f+3)m—,“.1_1
Slnlis S =g

because f+ 8 <2(f+2). Therefore, by the bound for ®,(£),

<R(f+3)mr <P,

m—p
350, ‘<A5am-ﬂ,

=0
where, for shortness, we have put
Ay = 22mtun=2r2fmrpn=1) 4,
that is, Ay = (m!)/u-l Qm(,n2>~ﬂ(§n+2)+2fm+,u(n—1>(n+ 1)2(m+1m (J32)(m+l)ﬂn'
Next, by theorem 1,
| Ry(£) | <m! 271n(e Jn)m+1 D1 (JL) ki |)‘”‘“’".

m—+1
The two estimates for 7 imply then that

] 3 (m+1)n
| Ry(®)| <t 2-in(e mymet senen (FO MR,

hence that

$ R, (6 W0 ]<A

i=1
with the abbreviation

AG =Uu. m! 2—§n(an)m+l C4f(2n+l)(

ﬂ@ﬂw)‘"’”)" Q=D If =Dy

m-+1
In explicit form,

Ag = p.m! 2-1n(e Jn)m+1 e4fen+D (ﬂi)é_l{‘,(if}_)_)(wrl)"

m-+1
X 2(/4—1>n+1f(/4'1)ﬂ(m!)/4 2(m~§n)</rl)(n_|_ 1)2(m+l)(/4—1) (\/32)(77:4-1)(/4“1)7:’

or, after some simplification,
Ag= ,a(m!)/‘“ 2m(/4—1)~;n(,4+2)+1(e Jn) L ghfnt Df (u=Dn

X (n+ 1)2(m+1)(14—1)(

Q¥ +iu=1) 5} Iy ( f41)\0m+Dn
m—+1 ) :

The equation A(g) = 77:2—:()”’7 iD,&)+ g R, (5) Y;(8)

leads therefore finally to the inequality
A;—la—(m—,w+l)(¢—1)<A5am—/4 I r | _}_Aeam—/r#l’

that is, 1< A, Azam= 1031 | 1|+ A, Agam=w+D9,
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Here, after some simplification,
AA45 = (p+ 1) 3ﬂ¢f_lfm+/»<2n—l>(m + 1)¢—1 (m!)(/frl)sb (n+ 1)2(m+1)/4¢
X Qm=im)pup+pn—2)+2(m+1) (J32>(W‘F1)ﬂ¢”
and A dg = pu(p+1)#» 3enfCu=Dn(pm 4 1)#=1 (m!) @+ D$ (4 1) Am+Dwg-1)

2-1+id 5t In (f+ 1))(m+l)n

% (e./n m+1e4f(2n+1)2(m—§n),u¢+/m~m~n+l(
(en) m--1

15. Assume from now on that
m—+1=50f>50, n=30In(m+1).
Then, first, by In (f+1)<f,
[7]<10tn (f+1) <10f<}i(m+1)
and so the condition m+1=2|Ing|
from theorem 1 is automatically satisfied. Secondly,

n>=301n (m+1)>301n50>100

and also n>301Inf.
Thirdly, if ¢ assumes all positive values, then (In¢)/t assumes its maximum at ¢ = e, and

therefore nt
—<g

Since #=>1, ¢ =1, we obtain then the following estimates:

Ing 1 1
{ﬂ}ﬂ¢(m+l)n<e w Gnt 1)n<ee 5000

{(¢ + 1 pn 3/4¢n}/¢¢(m+l)n < {quﬁn},uqﬁ(m-H)n — 6m+1 < 650

2 Inf 2Inf f 1 ll
{fm+,u(2n 1)}p¢(rn+l)n<fn mtl . egn f f m+1<630 e25

11
{f(2p~1)n}/4¢(m+l)n <fm+1 <e EQ
N S In(m+1) 1 1
{(m+ l)qﬂ l}ﬂ¢(m+1)n<e(m +Dn <650x30 ‘"61500
_ S 2In(m+1) 1
{(m!)(ﬂ+l)¢}/c¢(m+l)ng{(mmyﬂH)¢}/¢¢(m+l)n<e n <CI5,

1 2ln(n+1) 2101
{(n,*,1)2(m+1),u¢}/¢¢(m+l)n —e 7 <e 100 s

2In101
{(n+1)2(mr1)(,u¢ 1)}/L¢(m+1)n<e 100 R

1,1lnn 1 ,In100
{( Jn m+l},u¢(m+l)n<en 2n <CIOO 100

_12fn 6
{e4f(2n4 1)}/1.¢(m+1)n < e(m+1)n < eZa

N S— 1 3 3
{2 m—in) pp+ pun—2)+2(m-+ 1)}M¢(m+l)n < {2 mup+2(m-+ 1)}/4¢(m+1)n < 2n< 2100’

N S 1 1 L
{2(m~%n) pp+ pn—m—n-+ I}/L¢(m+1)n < {2m,u¢}//,¢(m+ Dn <on < 2100
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These estimates imply that

1l 1,1 1 1 210l 3
A4A5<(650630 25&615006156 100 2100J32)ﬂ¢(m+1)n
and
11 1 1 1 2m10l 1 1100 6 _1 215t In (f4-1)\(m+Dn
+
00 100 100 259100 +1 P A
Ay A< (50002 630 ¢25¢ ¢ T30 15 ¢ 100 ¢ 00" 6259100 /39)uhm )n( ] ) .

A simple numerical calculation gives then
| . ) In (S 1))m0n
Ay Ay < e 99BupmiOn A, Ao < e224Tugm+Dn (_‘g%jr,,,_ ,

5/(25) alud (m+yn
and, a fortiori, A, dg<emoron, 4, d,<(¥ ) +1r11(f+1)) .

Here, in the second formula, Vii<e, 2<el.

This formula implies therefore that

1 (e¥4+1In (f41)\m+Dn
Aydgg ()T

Since both @ and # are positive integers, we find then that
A, A atm=r+D$=1 < 20+ Dn gm+ 1)

1 /e3r$+1]n (f+1) (m+1)n
(m-p+)p ~— (2~ \J T 7] (m+1)¢
and A, Aga <2( mil ) a .

Now it was proved in the last section that
1< A, Agam=r+D8=1 |y | 4 A, Agatm=r+D¢,

so that, by the formulae just proved, we have

3up+1 +1
1 < e2ud(m+1)n g(m+1)¢ | r | +1 (C up+1n (f—tl))(m )na(m+l)¢‘
2 m—+1

If here the second term on the right-hand side does not exceed 4, the first term necessarily
does so, and a lower bound for 7 follows at once. We therefore finally choose m by

m+1 = max ([e*#+11n (f+1)]+1, 50f)

and afterwards n by n = max (301n (m+1), I:IHTa] + 1) .
This choice is permitted because the former restrictions on m and = are evidently satisfied,
From it, Sup1
m~+1>et#+n (f+1), e In(f+1) <eM<1
m-+1

and n>1£ﬂ§, ern>aq.
Hence

1(63”¢+11n (le))(’”“)"awmkl(i”ﬂl&([ﬂ!)('”“’"aww _ l(i)("“'”‘ﬁ 1

2 m+1 2 \et+ n (f1) 2 \emn 2’

and the second term is in fact less than 4. Therefore, as already said, we find the following

lower bound for 7: 7| > 3(e2nbm+vn gm 1) -1,
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Our discussion has thus led to this general result:
TurEOREM 3. Let £ be a real or complex algebraic number different from 0 and 1, and let
JoHfixt o Hfyxb =0 (f3>0)
be an irreductble equation with integral coeflicients for &; write
F=max(foly 1fils oo 153,
Denote by 7=1In§
the principal value of the logarithm of &, and by
r=aytag+...+a,n"
where a=max(|al, |a], ..., |a,]) =1,
a polynomial in y with integral coefficients not all zero. Put
m = max ([e**#+11In (f+1)], 50/ —1),

and n = max (301n (m+1), [I%l] -+ 1).

Then | 7] > §(e2na)~(m+Dd,
and therefore n is transcendental.

Remark. The hypothesis that g = log & is the principal value of the logarithm is not essential
in this theorem, and a similar result can be proved for each other value.

16. Theorem 3 establishes a lower bound for 7 uniformly in the four parameters f, ¢, a
and p. On specializing these, we obtain results that are of interest in themselves.

Assume, first, that £ and 7, hence also f and ¢, are fixed, but that x is so large that

elrptl 21?(570{ 1_) ,
and that, with this choice of g, a satisfies the inequality
a=(m-+1)%0k,
Then m+1 = [e¢+ ! n (f+1)]+1<e?* In (f+1)+1
and n:l:l_nf +1<}n_q+l’
7 u

and the bound for 7 implies that
|7|> }(e2#a?) et I+ 1+ g,

In terms of my old classification of transcendental numbers*, 7 = In{ cannot then be
a U-number, but is either an S-number or a 7-number, and furthermore

0, (1) <3(e#* 1 In (f+1)41) ¢-
There is no difficulty in improving this inequality slightly to
0,(n) = O(e#¥) as  p—c0;
here § may be any constant greater than #(In 32).

* See my paper (1932, §1).
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The inequality thus proved for v () generalizes an old result of mine (1932, Satz 5)
which had, until now, only been proved for the logarithms of rational numbers.

17. The estimate for r given in theorem 3 is reasonably sharp when « tends to infinity
while ¢, fand x are fixed ; it is very much less good when these last three parameters are also
allowed to increase indefinitely.

For assume, as a second application, that both # and ¢ are unbounded, but that f and a
remain fixed. Then, finally,

m+1=[e#?* ! In(f+1)+1], n=30In(m+1)
and therefore | r , >3 (eﬁo,uln[64“d’+l1n(f+1)+1] d)—[e‘*""“ln(f»\—l)ﬂlqﬁ’
whence | r l > e—o(/¢2¢2 Cqurb)_

For constant ¢, this inequality is contained in one by Fel’dman (1951) that is very much

sharper.
As a third application, assume that only fincreases while the other three parameters are
fixed. Then the theorem leads to 7| >e-outan,

18. As a final application, let { and { be two real algebraic numbers satisfying the
inequalities £=1, >0
By Lindemann’s theorem, fr—evt =0

for any two positive integers « and ». We shall improve this inequality by replacing it by
a lower bound for | g —ek |

in terms of ¥ and .

If, first, fre<) or few>e,
then et [ShetsE o |fi—ed | >,
respectively, hence in either case,

e e | > § max (€1 ).

Assume therefore, secondly, that fl<ire <.
Then min (&, e*) > § max (&, e*),
and we deduce from the mean value theorem of the differential calculus that

gu — Cv§

Wi g pp > mmin (€% e) > § max (&, %),

Let, as before, £ be a root of the irreducible equation
Jotfixt . Afyxt =0 (f3>0)
and put p=1ng f=max (], [fil. oo 1Sy
Denote further by Gt&at...+gal=0 (g,>0)

an irreducible equation for { with integral coefficients, and write
g=max (| g, &l - Ig;b!)'

Vor. 245. A. 48
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The number zé’ then satisfies the equation
oW +gu x4 g ux = 0.

By the result proved in § 16, there exist two positive numbers ¢, and ¢,, independent of
and v, such that

| otV +-gru? "+ ..+ gty | = e fmax (u,0)} %
this follows on identifying Uy Gy Ay, ey 4,
with %a gov'/,3 gluy¢—1’ e gu/;u"//>
respectively, because then

a = max (| gy, | @], -y | 0, ]) <glmax (u,0)}¥.
Denote by {,{j, ..., {y-; the conjugates of {, hence byZ{, %{,, . ;—’g,,_l the conjugates

of g £. Then, identically in x,
oW g u T xt A g utat = gy (ux—0f) (wx—0f,) ... (ux—vg,_,),
and the inequality for 7 may be written as
8y | (ug =) (ug—vGy) ... (ug—v§y_,) | >e {max (u, v)}~ .
Here every linear factor up =gy, ooy up—0g,_,

is of absolute value not larger than ¢; max (u,v), where ¢;>0 does not depend on # and v.
The last inequality implies therefore that

| up—o | =2, fmax (1, )},
where ¢,>0 and ¢;> 0 likewise are independent of # and », whence
| g —e¥ | >c, max (£, e*%) {max (u, v)}~%.

It follows that there exists to every positive number ¢ a positive number y = y(¢) in-
dependent of # and v such that for all positive integral values of these variables,

[£—e* | =y{max (&, )}~
From this inequality we deduce at once that the lower bound

M(E,ef) = inf |E—et]|

u,v=1,2,3,...

is attained and is positive. It is further clear that for any ¢ there are at most a finite number
of pairs of positive integers u, v such that

g et | <t

Finally, when ¢ tends to infinity, the number N(¢) of integral pairs «, v satisfying this in-
equality has the property that N(t) = 0((In)?)
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CHAPTER 3. THE LOGARITHMS OF RATIONAL NUMBERS

19. In this chapter the estimations thatled to theorem 3 are repeated, this time, however,
under the restrictive assumption that £ is a rational number and that only rational approxi-
mations of In§ are considered.

Let & be the rational number £ = S
1 b
where fand f; are two positive integers such that
J=h=1,
so that =2, 1<¢<f, o0<Ing{<inf.

Denote by a = ¢,>0, ¢,>0, ..., a,,>0 a system of m+1 integers and put
a
Ag=0, A= (lng)k——z" (k=1,2,...,m).

Further, write A=max ([, [, |As]; -0 [ A0 ]);

our next aim is to determine a lower bound for A.
20. The identities

Ry(€) = 3 A€ M (h=0,1,...,m)

lead immediately to the relations

1 m m
P 2 Ay() ap = Ry(§) — X Ap(E) A (h=0,1,...,m).
E=0 £=0
Here the sums by=fr S Ay a, (h=0,1,...,m)
£=0 ‘
assume integral values, and since D(§) =0,

at least one of them is different from zero. There is then an index % such that
b,+0 and therefore [b,[>1,

and so, with this choice of £,

(@) < IR | -+md_max (| 4,(€) |- M
Denote now by «, £, y three positive constants to be selected later; in particular, let
a=2.
From now on, we assume that m = [alnf] (2)
and n=zmax [fln (m+1),yln (n+1),2]. (3)
The condition for m implies that
m+1>2Inf>2In¢,

so that theorem 1 may be applied; hence
| (&) | <ml2m=t(n4-1)2m+1 (/32)m+Dn (14 £ ... 4-£n)
(m+1)n
and | R,(E) | <m!2-in(e /n)m+! e<2n+1>ln§<~%l?_‘§) e
48-2
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Here, from the inequality in § 9,
ml — (m+1)!<(m—|—1)'”+le‘"‘
) m+1 = J(m+1)
Further 1+4+E+.. &< (n+1) &
and SpEn = fn fpEmer fomel,
We find therefore that
(m+1) m—in 2m+2 (m+)n fn
,Ahk(g), J(m+l) 2 (”+l) * ('\/32) * g»
whence
n 2 m 2 2ym+1 (m+1)n fn.
Srm_max (| 458 )< 7055 () (nt ) e g Jazymenn
(m_'_l)m*: e-m —271. mil £on 1(~/(8)hl§ (m+1)n
and that IR”@KWQ (eymymeigmst (L5050 ) ,
m+1 ( )lnf (D 2n+1
whence fIR, g)|\J(m+1){( met 1) gt (L e,

21. These inequalities can be further simplified. First, since m>1 and n>2,
2-ine 2% 1
< —
Jm TS 2 2
m 2\™
Secondly, let Kk(m) = NCES): (E) .
The logarithmic derivative

dInk(m) _ 1 omt2
dm m 2(m+l)+ln —— —0-3068....

is positive for m< 2 and negative for m>3, because it is a decreasing function of m and

din<(m)
dm

<5 3.
_; 24 10

m

Hence, when m runs over the positive integers, «(m) attains its maximum either at m = 2
or at m = 3, whence

12
K(m)gmax( -)<1 for m=1,2,3,....

e?,/3’
It is then clear, by n>2, that we always have
2-inm 2\m 1
Jm+1) () <z
The inequalities above imply therefore that
2fym max (| Ay()[) <{(m+1) (n+1)%)me1 (J32)mrDn fr

and 27 | Ry | <{(m+1) Jagmet (LD BN panes

and so (1) takes the simple form

-§<{(m+1>Jn}m+‘ (J,(:Z:Iff)(mﬂ) SELA(mA1) (n- 1) (J32)meDn . (g)
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22. The hypothesis (2) implies that

m+tl
ni1salnf, fecs, SONIJE

391

Next, we assumed as part of (3) that n>>2; let us now make the stronger hypothesis that

n>=>6. Then
In(m+1) ln(n+l) <2+ ) Inf +1'k
{(m+1) Jn}m+1f2n+l<( n 2n )(m+l)n<(e o ﬁ’ 27)(mt~l)n
Intm+1)  HnG+D, Inf +2

and {(m+1) (n+1)2}m+1fn — (C n n m+l)(m+l)n<(eac ﬂ y)(m+l)n
and therefore (4) gives the relation

13 l

6o 2 +1) 1,1.2

s (EHE b e

We shall now try to fix n as a function of @ and m such that

18,1,
eSa ﬂ 27J8 (m+)n 1
I <z
( « ) @’
1,1,2
hence, by (5), that also A>{(ex £ 7, /32)m+Dn g}=1,

If (A) is to hold, we must have
13, 1

a>eba B2y J8.
It is now easily seen that this inequality can be satisfied by taking

a=10, f=3.
For this choice implies that

m+1>10In2>6-9, hence m-+1>7,

and n>8In7>5'8, hence n>6,
as required. Also y may now be chosen as
-5
r= In7’
Inr+1),
because is a decreasing function of #>>6, and so
6 o
N> In(z+1) if n>e.
13,11
eba B 2y /8
Therefore ———7“—~“/~ = e 05507 e,
1 +1 2

as asserted, and also e* 7J32 = eZ8148... 3,

We deduce therefore from (A) and (B) that, if

eli(m+1n > a,

then /1>(e3(m+l)n a)—l‘

48-3
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23. The inequality (a) is equivalent to
~2Ina
n= i

This condition, and the earlier conditions (3) for z, are all satisfied if nis fixed by the equation
7 = max ([SIn (m+1)]+1, [21na:|+1)

Hence the following result has been obtained:
THEOREM 4. Let f and f, be two integers such that f>1,>1 and let
m = [101Inf].

If a is a positive integer, if ay, a,, ..., a,, are non-negative integers, and if further
n = max([3ln (m+1)]+1, 21na]+1)

[ k

In J:) %

( J e

Itis not difficult to deduce from this theorem a less precise but simpler one involving only

the rational approximations to In ( f/f;). Denote by a,/a, where a>1 and a, >0, a rational
approximation to In( f]f;) satisfying the inequality

then max ( ) > (e3mthng)=1,

k=1,2,...,m

%gzlnf;

it is obvious that this condition is satisfied as soon as a,/a is sufficiently near to In ( f]f;.) We

use the fact that in ko fa)k ap) kol Kokl g\ ¥
() =(3) = (=) 2,0 ()

a
the second factor on the right-hand side is in absolute value not greater than
k-1
S (Inf)k+1(2Inf)* = (Inf)F1 (1424224 ...+ 2F-1) < 2k(Inf) &1
k=0

Hence, fork =1,2,...,m,

k k
lni) —(ﬂ) <2m (Inf)m-1 lnf a,
(it =) <2ty it
Apply now the last theorem with the fractions
4 % a
a b a EARRRS a b
T a
replaced by a0 an t gmo

and the denominator a replaced by the denominator a™, respectively. It is obvious that the
theorem remains true if the value of z is increased. We therefore obtain the following result.
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THEOREM 5. Let f and fi, a and a,, be _four integers satisfying the inequalities

f>.fl>15 a>1> a1>0, %<21nf,
and let m=[10Inf], n=max([3In(m+1)]+1,[2lna]+1).

Then

lnfi*%l>{2m(lnf)m_1 e¥mtn gmi-1,
1

24. As an application of the last theorem, let us study the expression

Q= |f*—freu],
which may also be written as D=fe|1—e|,
where, for shortness, A=1In i—a—l.
fi a
S fi Al>L, h A=
uppose, first, [ 2] =g hence | ad | >0
1 1 2+1 -1 24
2 — = 2a
Then ed>1+5 og > © <2a+1’
and therefore |l—e‘“/\|>1%e‘1“‘>1—e“%‘_‘>1—2—(1=~1——
= = 2a+1  2a+1’
@ 1
h > S s
whence 0] %0t if 4] 52
Assume, secondly, that
1 1 1
_— — <=,
[/l|<2a2, hence that |a/1|<2a\2
It is then not possible that %‘> 21Inf,

because this inequality implies that

f a

In<s—-1

1
fi oa
So, by theorem 5, we have necessarily

|A|>9, where &= {2m(Inf)n-1edm+ngmi-1,

1
|| =

2a?

N

Further, by the mean-value theorem of the differential calculus,
l1—e A =ale™ ™,
where 7 lies between 0 and A, so that
e >eTlA>emi> 4
Therefore, finally, ®=fo|al|e-e>Lfad if |A| <%§.
25. Let, in particular,

f=2, fi=1, ®—|2—cu, Azan—%.
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394 K. MAHLER ON THE APPROXIMATION OF

We shall determine the minimum M = M(2,e) of ® when « and ¢, run over all pairs of
positive integers.

Since |25 —e?| = 0-6109..., =« say,
this minimum cannot be greater than a. So it only remains to decide whether @ can assume
values less than « for positive integers a, 4;.

If, first 1
5 bl l /1 l >§5§,
2a
>_“
then o> Sat 1’
and therefore O>2>aq,

as is easily proved by complete induction on a.

Let, secondly, 1
} A I <é:;2:
so that 0> 24-1g5,

Here, by theorem 5,

m=1[10In2] =6, [3In(m+1)]+1=6, n=max(6,[2Ina]+1),
and therefore

n=[2nad]+1<2Ilna+1 if «>138, ie.if [2lna]>5.
Further 9=>{28(In 2)5 e3*72Ina+D) g6}-1 — {96(In 2)5 e2! g#8}- 1,
Since 26(In 2)% <e’,
@ satisfies then the inequality
O>20-le 24 g4, = g(a) say, if a>13.
Here ¢(a) is an increasing function of a if
dIn

ﬂ@ s ln2—ﬂ>0,
da a

thus certainly if ¢>>512. Since
$(512) = 2511 =24 512747 = 288 o241 >¢,

we find therefore that O>o if a=512.

It follows that any possible solution of
d<a

belongs to a value of a less than 512; moreover,

1
<

— _a
[/1[—!1112 2| <32

Therefore, by the theory of continued fractions, a,/a is one of the finite set of convergents

2 7 9 61 192 253

T 1’ 3 100 13> 88’ 2777 365

Q|
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of the continued fraction
TSI U YUY
1n2—l1 +t2 +| +T+ 6 + 3 +|-*1—+

for In2. The table
|2t —e!'| =0718...>q,
2% —e?| =a,
|210 —e7| > 72>a,
|23 —e°| > 88>a,
| 288 —efl| > 9x10%>a,
[ 2277 —el92| > 8 x 10% >0,
| 2365 —e23 | > 9 x 102>,

shows then that the minimum of @ is attained for ¢ = 3, ¢, = 2 and that
| 2 _ea | > | 23 g2 |

for all pairs of positive integers a, a;, with equality only in this obvious case.
I am greatly indebted to Mr D. F. Ferguson, M.A., for determining by the same method
the following extreme values:

|8¢—eu|> |3!—el| =0-281...,
|42—eu|> |41—e!| =1-281...,
|52—eu|> |5l—el| =2-281...,
|62—es |> |6'—e?| =1-389...,
[7¢—en |> |7'—e?| =0-389...,
| 20°—ea | >| 20! —e3 | = 0-085...,
| 902 —eu | >]902—¢®| = 3-083....

CHAPTER 4. THE LOGARITHMS OF INTEGERS

26. Let fbe a very large positive integer and @, an arbitrary integer. On putting f] = 1
and ¢ = 1 in theorem 5, the following result is obtained : *

If m=[10lnf] and =z=[3Iln(m+1)]+1,
then |Inf—a, |>{2m(lnf)m-1 e3m+Dn}-1,

In this inequality, 2m(lnf)m-1<(21nf)m< el0lns(nlns+ln2)
and e3m+1n < @310l f+1) BIn(10InS+1+1),
Therefore, for sufficiently large f,

[Inf—a, |>f-cn,

where ¢ may be any constant greater than 10490 = 100. In the present chapter, we shall
improve on this estimate by a slight change in the computations of the last chapter.

* The condition ¢; <2 In f of the theorem may evidently be disregarded.
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27. For this purpose, denote by fa very large positive integer, by «>>2 and £ two positive
constants to be selected at once, by m and n the integers
m=[alnf], n=[fln(m+1)]+1,
and by a,, a,, ..., a,, arbitrary integers; further put
A= max (| (Inf)—a).

=1,2,...,

The definitions of m and » imply that
n=yln(n+1), n>%

for any two given positive constants y and §, provided only f'is already large enough.
Therefore a trivial change in the estimations in §21 and §22 leads immediately to the

inequality 24,1,
A

1
e EN/S (m+1)n 1,12
_—_— Vi (m+1)n
2<( 2 ) +A(e¢ 777 /32) )
. 1,12
It is then clear that A>(e* £'7 /82)~(min
248, 1, 1
provided that a=e o £ 2 /8.
Choose now a=10, f=1.

A trivial calculation shows that
2,1 1,1
a>ex' b8, (ex' B /32)%h <,

246, 1, 1 1,1.2
and so also az=e * +l9+27’J8, (e“+ﬂ+7J32)“ﬁ<e29,
if only y>0 is sufficiently large and §>0 is sufficiently small, as shall be assumed from

now on. Since m~alnf, n~plnlnf,

as f tends to infinity, we have thus the following result:
THEOREM 6. Let f be a sufficiently large positive integer. If m = [101Inf], and if a, a,, ..., a,,
are m arbitrary integers, then
max (| (In)—a )=/
k=1,2,..., m

28. With a slight change of notation, denote now by a the integer nearest to Inf, and put

so that —i<A< +4

and therefore max (Inf,a)<Inf+1 = :H_Z—liff} Inf.
(Inf)*—a*

Inf—a
whence, for k =1,2,...,m,

(Inf)*—a*

Inf—a

Then = (Inf)s1+a(Inf)*-2+... + a1 <k{max (Inf, a)}51,

<m{max (Inf, a)}”‘ém{l +§—1-}1-f}m (Inf)m.
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1

. 1 m 10Inf ~
Since m = [101Inf], {1 +§157} <{exp (.21;17)’ — ¢,
Hence m{l + ﬁi—f}m (Inf)"<10Inf .5 (Inf)10/ < (Inf)1tins

as soon as f is sufficiently large. We find then that

l (lnf)’“—a’f <(Inf)lnf — flllalns (k= 1,2, ... m),

| Inf—a
and therefore [Inf—a|>f~1ns max (|(Inf)k—adt|).
k=1,2,..., m
On the other hand, max  (|(Inf)k—a*|)>f-2ins
E=1,2,...,m

by theorem 6 applied with a, = a* for k£ = 1,2, ...,m. We combine these two inequalities
and note that the resulting formula remains true even when the integer « is not the one
nearest to Inf. Hence we find:

TueoreM 7. If fis a sufficiently large positive integer and if a is an arbitrary integer, then
| lnf__a | >f—401nlnf'
The exponent 40In1n f tends to infinity very slowly; the theorem is thus not excessively
weak, the more so since one can easily show that

|lnf~a[<}r

for an infinite increasing sequence of positive integers f and suitable integers a.

29. By means of the last result it is possible to determine a lower bound for the fractional
parts of the powers of e.
Denote by a a large positive integer and by f the integer nearest to e?; therefore

er— i< f<er+4.

By the mean value theorem of differential calculus,

where « is a certain number between a and Inf, hence e* a number between e¢ and f.
Therefore ¢ >et—1> let,
whence |ec—f|>%e*|a—Inf|,
and so theorem 7 implies that

I e —f | > _%_Cc‘z]l‘—‘}()lnlnf = lea e—40Infinlny,
Here f<er+4, Inf<a+In(l+ie 9 <a+ie s

1 —a _1_ —a
and lnlnfglna—i—ln(l—f—-z;e )glna—[—zae .
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Hence InfInlnf<(a+4e %) (ln a+ -2% e“’) =alna+4In (ea) e+ 4ia €%,
and ﬁnally %e(tf—401n1nf> e—40alna

as soon as a and therefore f are sufficiently large. Similarly as in the last section we may
drop the condition that fis the integer nearest to e The result is therefore as follows.

THEOREM 8. If a is a sufficiently large positive integer and if f is an arbitrary inleger, then
| et *J[ i > q~40a,
This estimate is rather weak, but it does not seem easy to obtain any substantial im-

provement.

I am in great debt to my colleague, Mr G. E. H. Reuter, who read through this manu-
script with great care and discovered several minor mistakes in the original version, and

also to the referees.
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