Documenta Math.

On the approximation of π

Kurt Mahler

SUMMARY. The aim of this paper is to determine an explicit lower bound, free of unknown constants, for the distance of π from a given rational or algebraic number. In particular, Mahler proves that, for all positive integers $p, q \ge 2$,

$$\left|\pi - \frac{p}{q}\right| > \frac{1}{q^{42}}.$$

ACKNOWLEDGEMENT. The article

K. Mahler. On the approximation of π . Nederl. Akad. Wetensch. Proc. Ser. A 56=Indag. Math., 15:30–42, 1953.

is reproduced here with kind permission of the Royal Netherlands Academy of Arts and Sciences. This material is excluded from reuse and has not been licensed under the CCBY licence of the full work, no reproduction of any kind for this material is permitted without permission from the Royal Netherlands Academy of Arts and Sciences.

MATHEMATICS

ON THE APPROXIMATION OF π

вч

K. MAHLER

(Communicated by Prof. J. F. KOKSMA at the meeting of November 29, 1952)

The aim of this paper is to determine an explicit lower bound free of unknown constants for the distance of π from a given rational or algebraic number.

1. In my paper "On the approximation of logarithms of algebraic numbers", which is to appear in the Transactions of the Royal Society, the following result was proved:

Lemma: Let x be a real or complex number different from 0 and 1; let log x denote the principal value of the natural logarithm of x; and let m and n be two positive integers such that

(1)
$$m+1 \ge 2 |\log x|.$$

There exist $(m + 1)^2$ polynomials

$$A_{hk}(x)$$
 (h, k = 0,1,...,m)

in x with rational integral coefficients, of degrees not greater than n, and with the following further properties:

(a) The determinant

$$D(x) = \left\|A_{hk}(x)\right\|$$

does not vanish.

- $A_{hk}(x) < < m! \ 2^{m (3n/2)} \ (n+1)^{2m+1} \ (\sqrt{32})^{(m+1)n} \ (1 + x + \dots + x^n).$ (b)
- The m + 1 functions (c)

$$R_{h}(x) = \sum_{k=0}^{m} A_{hk}(x) (\log x)^{k} \qquad (h = 0, 1, ..., m)$$

satisfy the inequalities

$$|R_{h}(x)| \leqslant m! \ 2^{-(3n/2)} \ (e\sqrt{n})^{m+1} \ e^{(2n+1) |\log x|} \left(\frac{|\sqrt{8}|\log x|}{m+1}\right)^{(m+1)n}$$

Denote by y a further real or complex number, and put

$$S_{h}(x,y) = \sum_{k=0}^{m} A_{hk}(x) y^{k}, \quad T_{h}(x,y) = \sum_{k=1}^{m} A_{hk}(x) \frac{(\log x)^{k} - y^{k}}{\log x - y} \quad (h = 0, 1, \dots, m),$$
so that

(2) $R_h(x) - S_h(x, y) = T_h(x, y) (\log z - y),$

identically in x and y. This identity will enable us to find a measure of irrationality for π .

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

2. For this purpose, substitute in the last formulae the values

$$x = i, \ \log x = \pi \frac{i}{2}, \ y = \frac{p}{q} \frac{i}{2}$$

for x, log x, and y; here p and q may be any two positive integers for which

(3) p < 4q.

Then

$$|\log x| < 2, |y| < 2,$$

so that

$$\left|\frac{(\log x)^k - y^k}{\log x - y}\right| = \left|(\log x)^{k-1} + (\log x)^{k-2}y + \dots + (\log x)y^{k-2} + y^{k-1}\right| < 2^{k-1}k$$

and

$$\sum_{k=1}^{m} \left| \frac{(\log x)^k - y^k}{\log x - y} \right| < \sum_{k=1}^{m} 2^{k-1} k \leqslant \sum_{k=1}^{m} 2^{k-1} m < 2^m m.$$

Hence

(4)

$$\left|T_{h}\left(x,y
ight)
ight|<2^{m}\,m\cdot\max_{h,k=0,1,\dots,m}\left|A_{hk}\left(x
ight)
ight|.$$

3. From now on assume that

$$m = 10$$
 and $n \ge 50$.

This choice of m satisfies the condition (1) of the lemma. The lemma may then be applied, and we find, first, that

$$\max_{h,k=0,1,\dots,m} |A_{hk}(x)| \leq 10! \ 2^{10-(3n/2)} (n+1)^{21} \ 2^{(55/2)n} (1+|x|+\dots+|x|^n) = \\ = 10! \ 2^{10} (n+1)^{22} \ 2^{26n},$$

whence, by (4),

(5)
$$|T_h(x,y)| < 10.10! 2^{20} (n+1)^{22} 2^{26n}$$
.

Secondly,

(6)
$$|R_h(x)| \leq 10! 2^{-(3n/2)} e^{11} n^{11/2} e^{n\pi + (\pi/2)} \left(\frac{|\sqrt{2}\pi|}{11}\right)^{11n} = 10! e^{11 + (\pi/2)} n^{11/2} \left(\frac{16\pi^{11} e^{\pi}}{11^{11}}\right)^n.$$

Thirdly, $D(x) \neq 0$. Hence the index $h_i = h_0$ say, can be chosen such that $S_{h_0}(x, y) \neq 0$. Now $(2q)^m S_{h_0}(x, y)$ evidently is an integer in the Gaussian field K(i). Its absolute value is therefore not less than unity, whence, by the choice of m,

(7)
$$|S_{h_0}(x,y)| \ge 2^{-10} q^{-10}.$$

4. Assume now that $n \ge 50$ can be selected so as to satisfy the inequality

(8)
$$10! e^{11+(\pi/2)} n^{11/2} \left(\frac{16\pi^{11} e^{\pi}}{11^{11}}\right)^n \leq \frac{1}{2} 2^{-10} q^{-10}.$$

By (6) and (7), this inequality implies that

$$|R_{h_0}(x)| \leq \frac{1}{2} |S_{h_0}(x,y)|,$$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

Kurt Mahler

32

and so, by (2),

$$\frac{1}{2} |S_{h_0}(x,y)| \leq |T_{h_0}(x,y)| (\log x - y)|.$$

It follows then from (5) and (7) that

(9)
$$\left|\pi - \frac{p}{q}\right| = 2\left|\log x - y\right| \ge \left|\frac{S_{h_{0}}(x, y)}{T_{h_{0}}(x, y)}\right| \ge 2^{-10} q^{-10} \{10.10! \ 2^{20} (n+1)^{22} \ 2^{26n}\}^{-1}.$$

The two inequalities (8) and (9) are equivalent to

(10)
$$\left(\frac{11^{11}}{16\pi^{11}e^{\pi}}\right)^n \ge 2^{11} 10! e^{11 + (\pi/2)} n^{11/2} q^{10},$$

and

(11)
$$\left| \pi - \frac{p}{q} \right| \ge \{10.10! \ 2^{30} \ (n+1)^{22} \ 2^{26n} \}^{-1} \ q^{-10},$$

respectively. Here

$$rac{11^{11}}{16\pi^{11}\,e^{\pi}} > 10^{3.4181}\,, \qquad 2^{26} < 10^{7.8268},$$

and also, on account of $n \ge 50$,

 $2^{11} \ 10! \ e^{11 + (\pi/2)} < 10^{15.3306} < 10^{0.3067n}, \quad 10.10! \ 2^{30} < 10^{16.5907} < 10^{0.3319n}.$

Further, on denoting by Log N the decadic logarithm of N,

 $n^{11/2} = 10^{11/2} (\log n/n)n \leqslant 10^{11/2} (\log 50/50)n < 10^{0.1869n}$

and

$$(n+1)^{22} = 10^{22 (\log (n+1)/n)n} \leq 10^{22 (\log 51/50)n} < 10^{0.7514n}.$$

These numerical formulae show that the inequality (10) certainly holds if

 $10^{3.4181n} > 10^{0.3067n + 0.1869n} q^{10},$

i.e., if

$$10^{2.9245n} > q^{10}$$
,

and they further give

10.10!
$$2^{30} (n+1)^{22} 2^{26n} < 10^{0.3319n+0.7514n+7.8268n} = 10^{8.9101n}$$
.

We thus have proved the following result:

"Let p and q be two positive integers such that p < 4q, and let n be an integer for which

(12) $n \ge 50, \quad 10^{2.9245n} > q^{10}.$

Then

(13)
$$\left|\pi - \frac{p}{q}\right| > 10^{-8.9101n} q^{-10}$$
."

5. This result be further simplified. Define n as function of q by the inequalities

$$10^{2.9245(n-1)} \leq q^{10} < 10^{2.9245n}$$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

This choice of n is permissible provided q is so large that

 $q^{10} \geqslant 10^{2.9245 \times 49} = 10^{143.3005}$.

It suffices then to make the further assumption that

$$q \geqslant 2.14 imes 10^{14},$$

because then

(14)

$$q^{10} > 10^{143.304}.$$

Since $n \ge 50$ and therefore $n-1 \ge \frac{49}{50}n$, we have now $q^{10} \ge 10^{2.9245 \times 0.98n} > 10^{2.8661n}$,

hence, by (13),

(15)
$$\left|\pi - \frac{p}{q}\right| > q^{-(8.9101/2.8661) \times 10 - 10} > q^{-41.09} > q^{-42}.$$

The proof assumed, as we saw, that p < 4q and that (14) is satisfied. If (14) holds, but $p \ge 4q$, then trivially

$$\pi - \frac{p}{q} \Big| \geqslant 4 - \pi > q^{-42},$$

and (15) remains true.

6. It is now of greater interest that the remaining condition (14) can be replaced by a more natural one.

Theorem 1: If p and $q \ge 2$ are positive integers, then

$$\left|\pi - \frac{p}{q}\right| > q^{-42}.$$

Proof: By what has already been shown, it suffices to verify that there are no pairs of positive integers p, q for which

$$2\leqslant q<2.14 imes 10^{14}, \quad \left|\pi-rac{p}{q}
ight|\leqslant q^{-42}.$$

If such pairs of integers exist, they necessarily have the additional property that

$$\left|\pi-\frac{p}{q}\right| < \frac{1}{2\,q^2},$$

because otherwise

$$\frac{1}{2\,q^2} \leqslant \left|\pi - \frac{p}{q}\right| \leqslant q^{-42}, \quad q^{40} \leqslant 2, \quad q < 2,$$

which is false. It follows then, by the theory of continued fractions, that p/q must be one of the convergents p_n/q_n of the continued fraction

$$\pi = b_0 + \frac{1}{|b_1|} + \frac{1}{|b_2|} + \dots = [b_0; b_1, b_2, \dots]$$

for π ; here the incomplete denominators b_0, b_1, b_2, \ldots are positive integers. According to J. WALLIS, the development begins as follows:

3 Series A

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557–570

Kurt Mahler

 $\mathbf{34}$

A trivial computation shows that the convergent belonging to the incomplete denominator 13 is already greater than 2.14×10^{14} . The largest of the preceding incomplete denominators is 292. Hence, by the theory of continued fractions, we find that

$$\begin{aligned} \left| \pi - \frac{p_n}{q_n} \right| > \frac{1}{q_n(q_{n+1} + q_n)} = \\ &= \frac{1}{q_n\{(b_{n+1} + 1)q_n + q_{n-1}\}} > \frac{1}{(b_{n+1} + 2)q_n^2} \geqslant \frac{1}{294q_n^2} > q_n^{-42} \end{aligned}$$

for every convergent the denominator of which lies in the range we are considering. There are therefore no pairs of integers p, q of the required kind. This completes the proof.

The theorem required that $q \ge 2$. If one is satisfied with an estimate for $|\pi - (p/q)|$ valid when q is greater than *some* large value q_0 , then the exponent 42 can be replaced by 30. No new ideas being involved, the proof may be omitted.

7. As a second application of the lemma in §1 we study now the approximation of π by arbitrary algebraic numbers.

Let ω be a real or complex algebraic number of degree ν over the Gaussian field K(i), and let

$$f(z) = 0$$
, where $f(z) = a_0 z^{\nu} + a_1 z^{\nu-1} + \ldots + a_{\nu}$

and where further the coefficients $a_0 \neq 0, a_1, \ldots, a_r$ are integers in K(i), be an irreducible equation for ω over this field. Denote by

$$a = \max(|a_0|, |a_1|, \ldots, |a_{\nu}|)$$

the height of this equation and by

$$\omega_0 = \omega, \, \omega_1, \, \ldots, \, \omega_{\nu-1}$$

its roots. These roots are all different, and it is well known that

(16)
$$|\omega_i| \leq a+1$$
 $(j=0, 1, \ldots, \nu-1).$

8. In the case when ω is a real algebraic number, the defining equation f(z) = 0 may be assumed to have *rational* integral coefficients. For let

$$F(z) = 0$$
, where $F(z) = A_0 z^N + A_1 z^{N-1} + \ldots + A_N$,

and where $A_0 \neq 0, A_1, \ldots, A_N$ are rational integers, be an equation for ω irreducible over the rational field. It suffices to show that this equation is also irreducible over K(i), hence that F(z) differs from f(z) only by a constant factor different from zero.

Let the assertion be false. Then F(z) can be written as

$$F(z) = \{A(z) + iB(z)\} \{C(z) + iD(z)\}$$

where A(z), B(z), C(z), and D(z) are polynomials with rational coefficients such that neither A(z) + iB(z) nor C(z) + iD(z) is a constant. Since F(z)is a real polynomial, also

$$F(z) = \{A(z) - iB(z)\} \{C(z) - iD(z)\}$$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

and therefore, on multiplying the two equations,

 $F(z)^2 = \{A(z)^2 + B(z)^2\} \{C(z)^2 + D(z)^2\}.$

Since unique factorization holds for polynomials in one variable over the rational field, this formula implies that

$$F(z) = c \{A(z)^2 + B(z)^2\}$$

where $c \neq 0$ is a rational constant.

Put now $z = \omega$. Then F(z) and therefore $A(z)^2 + B(z)^2$ vanish, hence also both A(z) and B(z). This means that A(z) and B(z) are divisible by $z - \omega$, thus F(z) by $(z - \omega)^2$. This is impossible because F(z) is irreducible, so that it cannot have multiple linear factors.

9. Substitute now

$$x = i$$
, $\log x = \pi \frac{i}{2}$, $y = \omega \frac{i}{2}$

for x, log x, and y in the identity

(2)
$$R_h(z) - S_h(x, y) = T_h(x, y) (\log x - y)$$

of §1, and assume further that

$$| < 4, m \ge 3.$$

One proves just as in §2 and §3 that

(17)
$$|R_h(x)| \leq m! 2^{-(3n/2)} (e \sqrt{n})^{m+1} e^{n\pi + (\pi/2)} \left(\frac{\sqrt{2}\pi}{m+1}\right)^{(m+1)n}$$

 $|\omega|$

and

(18)
$$|T_h(x,y)| < 2^m m \cdot m! \ 2^{m-(3n/2)} \ (n+1)^{2m+2} \ (\sqrt[n]{32})^{(m+1)n}$$

On the other hand, the then given lower bound for $S_{h_0}(x, y)$ is no longer valid and must be replaced by a more involved expression.

10. Since the determinent D(x) does not vanish, there is again an index $h = h_0$ such that

$$S_{h_{\mathfrak{o}}}\left(x,y
ight)=S_{h_{\mathfrak{o}}}\left(i,\omega\,rac{i}{2}
ight)
eq0.$$

This means that also the $\nu - 1$ numbers

$$S_{h_{\mathbf{0}}}ig(i,\,\omega_1rac{i}{2}ig), \quad S_{h_{\mathbf{0}}}ig(i,\,\omega_2rac{i}{2}ig),\ldots, \quad S_{h_{\mathbf{0}}}ig(i,\,\omega_{r-1}rac{i}{2}ig)$$

obtained from $S_{h_0}(i, \omega i/2)$ on replacing ω by its conjugates $\omega_1, \omega_2, \ldots, \omega_{\nu-1}$ with respect to K(i) do not vanish. For let z be a variable. The expression $S_{h_0}(i, zi/2)$ is a polynomial in z with coefficients in K(i) which does not vanish at $z = \omega$. Therefore the polynomial cannot be divisible by the irreducible polynomial f(z) of which ω is a root, and so it admits none of its other roots ω_j .

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

It follows then that the product

$$\sigma = \prod_{j=0}^{\nu-1} S_{h_0}\left(i, \, \omega_j \, \frac{i}{2}\right)$$

does not vanish. This product is a symmetric polynomial in $\omega, \omega_1, \ldots, \omega_{\nu-1}$ which is in each ω_i of degree m; moreover,^t the coefficients of this polynomial are elements of K(i), and their common denominator is a divisor of $2^{m\nu}$. Therefore σ itself lies in the Gaussian field, and its denominator is in absolute value not greater than

$$2^{m\nu} |a_0|^m \leqslant 2^{m\nu} a^m.$$

Since σ is not zero, the inequality

$$2^{m\nu}a^m |\sigma| \ge 1,$$

holds, and we find that

(19)
$$|S_{h_0}(x,y)| \ge \left\{2^{m\nu} a^m \prod_{j=1}^{\nu-1} \left|S_{h_0}\left(i, \omega_j \frac{i}{2}\right)\right|\right\}^{-1}.$$

11. By definition,

$$S_{h_0}\left(i,\omega_j\frac{i}{2}\right) = \sum_{k=0}^m A_{h_0k}\left(i\right) \left(\omega_j\frac{i}{2}\right)^k.$$

Here, by (16),

$$|\omega_j| \leqslant a+1,$$

so that

$$\sum_{k=0}^{m} \left| \omega_{j} \frac{i}{2} \right|^{k} \leqslant \sum_{k=0}^{m} \left(\frac{a+1}{2} \right)^{k} \leqslant (m+1) \left(\frac{a+1}{2} \right)^{m} \leqslant (m+1) a^{m}$$

since $a \ge 1$. Therefore

$$\left|S_{h_{\theta}}\left(i,\omega_{j}\frac{i}{2}\right)\right| \leq (m+1) a^{m} \max_{h,k=0,1,\ldots,m} |A_{hk}(i)|,$$

whence, by the lemma in 1.),

$$\left|S_{h_0}\left(i,\omega_j\frac{i}{2}\right)\right| \leqslant a^m (m+1)! \ 2^{m-(3n/2)} (n+1)^{2m+2} (\sqrt{32})^{(m+1)n}.$$

Therefore, from (19),

$$(20) |S_{h_0}(x,y)| \ge \{2^{m\nu} a^m (a^m (m+1)! 2^{m-(3n/2)} (n+1)^{2m+2} (\sqrt[1]{32})^{(m+1)n})^{\nu-1}\}^{-1}.$$

12. From now on we proceed in a similar way as in 4.). Let again $m \ge 3$ and n be chosen such that

(a)
$$|R_{h_0}(x)| \leq \frac{1}{2}|S_{h_0}(x,y)|;$$

then from the identity (2),

(b) $|S_{h_0}(x,y)| \leq 2|T_{h_0}(x,y)| (\log x - y)|,$

so that a lower bound for

 $2|\log x - y| = |\pi - \omega|$

is obtained.

By (17) and (20), the condition (a) is certainly satisfied if

$$m! \ 2^{-(3n/2)} \ (e^{\sqrt{n}})^{m+1} \ e^{n\pi + (\pi/2)} \left(\frac{\sqrt{2}\pi}{m+1}\right)^{(m+1)n} \leq \\ \leq \frac{1}{2} \left\{ 2^{m\nu} \ a^m \ (a^m(m+1)! \ 2^{m-(3n/2)} \ (n+1)^{2m+2} \ (\sqrt{32})^{(m+1)n} \right)^{\nu-1} \right\}^{-1},$$

or, what is the same, if

$$(21) \quad \left(\frac{4\ (m+1)}{2^{5\nu/2}\ \pi}\right)^{(m+1)m} \geqslant \\ \geqslant \frac{(m+1)!^{\nu}}{m+1} 2^{(2\nu-1)m-(3n\nu/2)+1} e^{m+n\pi+(\pi/2)+1} \left(\sqrt{n}\ (n+1)^{2(\nu-1)}\right)^{m+1} a^{m\nu}.$$

Under this hypothesis, we find from (b), by (18) and (20), that

$$egin{array}{l} |\pi-\omega| > \{2^{m
u} \, a^m \, (a^m \, (m+1)! \, 2^{m-(3n/2)} \, (n+1)^{2m+2} \, (\sqrt[]{32})^{(m+1)n})^{
u-1}\}^{-1} imes \ imes \{2^m \, m \cdot m! \, 2^{m-(3n/2)} \, (n+1)^{2m+2} \, (\sqrt[]{32})^{(m+1)n}\}^{-1}. \end{array}$$

whence, after some trivial simplification,

(22)
$$|\pi - \omega| > \left\{ \frac{m}{m+1} (m+1)!^{\nu} 2^{(2\nu+1)m-(3n\nu/2)} (n+1)^{2(m+1)\nu} (\sqrt{32})^{(m+1)n\nu} a^{m\nu} \right\}^{-1}$$
.

In order to put (21) and (22) into a more convenient form, we now apply the well-known inequality

$$(m+1)! \leq e \sqrt{m+1} (m+1)^{m+1} e^{-(m+1)}$$

It follows that (21) is satisfied if

$$\frac{\left(\frac{4(m+1)}{2^{5\nu/2} \pi}\right)^{(m+1)n}}{\times e^{(m+1)+n\pi + (\pi/2)}} \geq e^{\nu} (m+1)^{(\nu/2)-1} (m+1)^{(m+1)\nu} e^{-(m+1)\nu} 2^{2(m+1)\nu-2\nu-(m+1)-(3n\nu/2)+2} \times e^{(m+1)+n\pi + (\pi/2)} \left(\frac{1}{(n+1)^2} (n+1)^{2\nu}\right)^{m+1} a^{m\nu},$$

and so even more if

$$(23) \quad \begin{cases} \left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)n} \geq \frac{4e^{\pi/2}(m+1)^{(\nu/2)-1}(e/4)^{\nu}}{(n+1)^{(m+1)/2}} \cdot \frac{(e/2)^{m+1}(4/e)^{(m+1)\nu}}{(n+1)^{m+1}} \cdot (e^{\pi} \cdot 2^{-(3\nu)/2})^n \times (m+1)^{(m+1)\nu} (n+1)^{2(m+1)\nu} a^{m\nu}. \end{cases}$$

Therefore, assuming that (23) holds, by (22)

$$\begin{aligned} |\pi - \omega|^{-1} < &\frac{m}{m+1} e^{\nu} (m+1)^{\nu/2} (m+1)^{(m+1)\nu} e^{-(m+1)\nu} 2^{2\nu(m+1)-2\nu+(m+1)-(3n\nu/2)-1} \times \\ &\times (n+1)^{2(m+1)\nu} (\sqrt{32})^{(m+1)n\nu} a^{m\nu}, \end{aligned}$$

whence

(24)
$$\begin{cases} |\pi - \omega|^{-1} < \left(\frac{e}{4}\right)^{\nu} (m+1)^{\nu/2} \left(\frac{4}{e}\right)^{(m+1)\nu} 2^{m+1} 2^{-3/2n\nu-1} \cdot (m+1)^{(m+1)\nu} (n+1)^{2(m+1)\nu} \times (\sqrt{32})^{(m+1)n\nu} a^{m\nu} \cdot (\sqrt{32})^{(m+1)n\nu} \cdot (\sqrt{32})^{(m$$

13. So far $m \ge 3$ and n are restricted solely by the condition (23). In order further to simplify (23) and (24), assume from now on that (25) $m+1 \ge 20 \cdot 2^{s_{12}(\nu-1)}, \quad n \ge (m+1) \log (m+1).$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

$\mathbf{38}$

Since $\frac{5}{2} \log 2 > 1$, by the first of these conditions,

$$m + 1 \ge 20 e^{\nu - 1} \ge 20 (1 + (\nu - 1)) = 20\nu > 3.$$

The second condition implies then that

$$n \ge 20\nu \log (20\nu).$$

Now 20 log 20 > 59, 20 log 40 > 73, and so

$$n \ge 60 \nu$$
,

both when v = 1 and when $v \ge 2$.

As a first application of (25), we determine an upper estimate for the expression

$$A_0 = (m+1)^{\nu/n} (n+1)^{2\nu/n}$$

Since $n \ge 60\nu \ge 60$,

$$n+1\leqslant \frac{61}{60}\,n, \ \left(\frac{61}{60}\right)^{2^{\nu/n}}\leqslant \left(\frac{61}{60}\right)^{1/30}, \ A_0\leqslant \left(\frac{61}{60}\right)^{1/30}(m+1)^{\nu/n}\,n^{2\nu/n}, \ =B_0 \ {\rm say}.$$

Next

$$\frac{\partial \log B_0}{\partial n} = -\frac{\nu}{n^2} \log \left(m+1\right) - \frac{2\nu}{n^2} \left(\log n-1\right)$$

is negative because $\log n \ge \log 60 > 1$. Therefore B_0 is not decreased on replacing n by $(m + 1) \log (m + 1)$, and we find that

$$A_0 \leqslant \left(\frac{61}{60}\right)^{1/50} \exp\left\{\frac{\nu \log (m+1) + 2\nu \left(\log (m+1) + \log \log (m+1)\right)}{(m+1) \log (m+1)}\right\}$$

 \mathbf{or}

$$A_{0} \leqslant \left(\frac{61}{60}\right)^{1/30} \exp\left\{\frac{3\nu}{m+1} + \frac{2\nu}{m+1} \frac{\log\log(m+1)}{\log(m+1)}\right\}.$$

Here $\frac{\log \log (m+1)}{\log (m+1)}$ decreases with increasing *m* because $\log (m+1) \ge$ $\ge \log 20 > e$; hence

$$\frac{\log \log (m+1)}{\log (m+1)} \leqslant \frac{\log \log 20}{\log 20} < \frac{1}{2},$$

whence finally,

$$A_0 \leqslant \left(\!\frac{61}{60}\!\right)^{\!\!\!1/30} \exp\left(\!\frac{3\,\nu+\nu}{20\,\nu}\!\right) = \left(\!\frac{61}{60}\!\right)^{\!\!\!1/30} e^{1/5} < \tfrac{5}{4}.$$

We next discuss certain factors that occur on the right-hand sides of (23) and (24).

In

$$A_1 = \frac{4\,e^{\pi/2}\,(m+1)^{(\nu/2)-1}\,(e/4)^\nu}{(n+1)^{(m+1)/2}}\,,$$

evidently

 $\log (m+1) > e, \ n+1 > (m+1) \ \log (m+1) > e(m+1), \ m+1 \ge 20\nu, \ (e/4)^{\nu} < 1,$ whence

whence

$$A_1 < \frac{4 \, e^{\pi/2} \, (m+1)^{(\nu/2)-1} \cdot 1}{\{e(m+1)\}^{10\nu}} < 4 \, e^{(\pi/2)-10} \, (m+1)^{-9\nu} < 1.$$

Next let

$$A_2 = \frac{(e/2)^{m+1} \, (4/e)^{(m+1)\nu}}{(n+1)^{m+1}}.$$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557–570

Then by the last inequalities and by (25),

$$A_2 < \Big\{ \frac{(e/2)^1 \, (4/e)^{\nu}}{e(m+1)} \Big\}^{m+1} \leqslant \Big\{ \frac{(e/2)^{\nu} \, (4/e)^{\nu}}{e \cdot 20 \cdot 2^{5(\nu-1)/2}} \Big\}^{(m+1)} = \Big(\frac{2^{5/2}}{20 \, e \cdot 2^{3\nu/2}} \Big)^{m+1} < 1.$$

Let further

$$A_3 = (e^{\pi} \cdot 2^{-(3\nu/2)})^{1/(m+1)}.$$

Since $\nu \ge 1$ and $m+1 \ge 20$,

$$A_{3} \leqslant (e^{\pi} \cdot 2^{-(3/2)})^{1/20} < \tfrac{6}{5}.$$

Consider finally the expression

$$A_{4} = \left(\frac{e}{4}\right)^{\nu} (m+1)^{\nu/2} \left(\frac{4}{e}\right)^{(m+1)\nu} 2^{(m+1)-(3n\nu/2)-1}.$$

Here

$$v \ge 1, \ \left(\frac{e}{4}\right)^v 2^{-1} < 1, \ m+1 < e^{m+1}, \ n \ge (m+1)\log(m+1),$$

so that

$$A_4 < e^{(m+1)\,\nu/2} \left(\frac{4}{e}\right)^{(m+1)\nu} \, 2^{(m+1)\nu - (3/2)\,(m+1)\nu\log\,(m+1)} = \left(\frac{8\,e^{-1/2}}{(m+1)^{(3/2)\log 2}}\right)^{(m+1)\nu} \, .$$

Since now $\frac{3}{2} \log 2 > 1$ and $m + 1 \ge 20$, we find that

$$A_4 < \left(\frac{2 \, e^{-1/2}}{5}\right)^{(m+1)\nu} < 1.$$

14. The inequalities for the A's lead easily to a great simplification of the result in 12.).

The right-hand side of (23) can be written as

$$A_1 A_2 A_3^{(m+1)n} A_0^{(m+1)n} a^{m\nu}$$

and so, by what has just been proved, is less than

$$1 \cdot 1 \cdot \left(\frac{6}{5}\right)^{(m+1)n} \left(\frac{5}{4}\right)^{(m+1)n} a^{(m+1)\nu} = \left(\frac{3}{2}\right)^{(m+1)n} a^{(m+1)\nu}$$

Similarly the right-hand side of (24) has the value $A_4\; A_0^{(m+1)n}\; 2^{(5/2)\;(m+1)n\nu} \, a^{m\nu}$

and is therefore smaller than

$$\left(\frac{5}{4} \cdot 2^{(5/2)\nu}\right)^{(m+1)n} a^{(m+1)\nu}.$$

We have therefore the following result:

"Let m and n satisfy the inequalities (25) and let further

(26)
$$\left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^n \geqslant \left(\frac{3}{2}\right)^n a^\nu.$$

Then

(27)
$$|\pi - \omega| > \left\{ \left(\frac{5}{4} \cdot 2^{(5/2)\nu} \right)^n a^\nu \right\}^{-(m+1)}$$
.

The proof assumed that $|\omega| < 4$, but we may now dispense with this condition. For if $|\omega| \ge 4$, then trivially,

$$|\pi - \omega| \ge 4 - \pi > \frac{1}{5} > \left\{ \left(\frac{5}{4} \cdot 2^{(5/2)\nu} \right)^n a^{\nu} \right\}^{-(m+1)}.$$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557–570

 $\mathbf{40}$

15. The first inequality (25) is satisfied if (28) $m = [20 \cdot 2^{(5/2)} \cdot (y-1)],$

for then

$$20 \times 2^{(5/2)} (m-1) < m+1 \leq 20 \cdot 2^{(5/2)} (m-1) + 1.$$

This choice of m means that

$$\frac{2}{3} \times \frac{4(m+1)}{2^{5\nu/2}\pi} \geqslant \frac{2}{3} \times \frac{4 \times 20}{2^{5/2}\pi} = \frac{20 \sqrt{2}}{3\pi} > e.$$

The condition (26) is therefore certainly fulfilled if

$$e^n \geqslant a^{\nu}$$
, i.e., $n \geqslant \nu \log a$.

Let then from now on n be defined by the formula,

(29)
$$n = [\max((m+1)\log(m+1), \nu \log a)] + 1,$$

so that both inequalities (25) and (26) hold, hence also the inquality (27) for $|\pi - \omega|$.

It is now convenient to distinguish two cases.

If, firstly,

$$a < (m+1)^{(m+1)/\nu},$$

 \mathbf{then}

$$(m+1)\log(m+1) > \nu \log a$$

and therefore, by (29),

$$n = [(m + 1) \log (m + 1)] + 1 \le (m + 1) \log (m + 1) + 1.$$

Further

$$\frac{5}{2} \; 2^{(5/2)\nu} = \frac{1}{\sqrt{8}} \, 20 \cdot 2^{(5/2)(\nu-1)} < \frac{m+1}{\sqrt{8}} < \frac{m+1}{e} \, ,$$

whence

$$\left(\frac{5}{4} 2^{(5/2)\nu}\right)^n a^{\nu} < \left(\frac{m+1}{e}\right)^{(m+1)\log(m+1)+1} (m+1)^{m+1} = \frac{m+1}{e} e^{(m+1) \{\log(m+1)\}^2}.$$

Let, secondly,

 $a \geqslant (m+1)^{(m+1)/\nu},$

so that

$$(m+1)\log(m+1) \leq \nu \log a.$$

Now

$$n = [\nu \log a] + 1 \leqslant \nu \log a + 1,$$

hence

$$\left(\frac{5}{4} \ 2^{(5/2)\nu}\right)^n a^{\nu} < \left(\frac{m+1}{e}\right)^{\nu \log a + 1} a^{\nu} = \frac{m+1}{e} \ a^{\nu \log (m+1)}.$$

The following result has therefore been obtained:

Theorem 2: Let ω be a real or complex algebraic number. Denote by R the rational field K if ω is real, and the Gaussian imaginary field K(i) if ω is non-real. Further denote by v the degree of ω over R, by

$$a_0 z^{\nu} + a_1 z^{\nu-1} + \dots + a_{\nu} = 0$$
 $(a_0 \neq 0)$

DOCUMENTA MATHEMATICA · EXTRA VOLUME MAHLER SELECTA (2019) 557-570

an equation for ω with integral coefficients in R which is irreducible over this field, and by

$$a = \max(|a_0|, |a_1|, \ldots, |a_{\nu}|)$$

the height of this equation. Put

$$m = [20 \cdot 2^{(5/2) (\nu-1)}], \quad \tilde{a} = \max(a, (m+1)^{(m+1)/\nu}).$$

Then

(30)
$$|\pi - \omega| > \left(\frac{m+1}{e}\right)^{-(m+1)} \tilde{a}^{-(m+1)\nu \log (m+1)}.$$

Remarks: 1) We note that the theorem remains true if \tilde{a} is replaced by any larger number.

2) When

$$a < (m+1)^{(m+1)/\nu},$$

the estimate (30) is not as good as that by N. I. FEL'DMAN (Izvestiya Akad. Nauk SSSR, ser. mat. 15, 1951, 53-74), viz.

 $|\pi - \omega| > \exp \{-\gamma_1 \nu (1 + \nu \log \nu + \log a) \log (2 + \nu \log \nu + \log a)\},\$ where γ_1 , just as γ_2 in the next line, is a positive absolute constant. Fel'dman's inequality implies that

 $\pi^n - [\pi^n] > \exp\{-\gamma_2 n^2 (\log n)^2\}$

for all sufficiently large positive integers n, while my result yields a much less good lower estimate.

If, however,

$$a \ge (m+1)^{(m+1)/p},$$

then Theorem 2 is much stronger, and it furthermore gives a lower bound for $|\pi - \omega|$ free of unknown constants. The exponent of 1/a,

$$(m+1) \nu \log (m+1),$$

is not greater than

$$(20 \cdot 2^{(5/2)(\nu-1)} + 1) \nu \log (20 \cdot 2^{(5/2)(\nu-1)} + 1)$$

and therefore, for large n, is of the order

$$O(2^{(5/2)\nu}\nu^2)$$

16. As an application of Theorem 2, let us determine a lower bound for $|\sin u\alpha|$ when α is a fixed positive algebraic number and u is a positive integral variable such that $u \ge \pi/\alpha$.

Define a second positive integer v by

$$-\frac{\pi}{2} < u a - v \pi \leq \frac{\pi}{2}.$$

Then

$$\frac{a}{2\pi}u \leqslant \frac{a}{\pi}u - \frac{1}{2} \leqslant v < \frac{a}{\pi}u + \frac{1}{2} < \frac{2a}{\pi}u,$$

and therefore

$$\max(u,v) \leqslant \max\left(u,\frac{2a}{\pi}u\right) < \left(\frac{2a}{\pi}+1\right)u$$

Let, say, α have the degree ν over the rational field, and let it satisfy the irreducible equation

$$A_0 z^{\nu} + A_1 z^{\nu-1} + \ldots + A_{\nu} = 0 \qquad (A_0 \neq 0)$$

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570

42

with rational integral coefficients of height

 $A = \max(|A_0|, |A_1|, \ldots, |A_{\nu}|) \ge 1.$

Then the rational multiple of α ,

$$\omega = \frac{u}{v} \alpha,$$

is a root of the equation

$$A_0 v^{\nu} z^{\nu} + A_1 u v^{\nu-1} z^{\nu-1} + \ldots + A_{\nu} u^{\nu} = 0$$

of height

$$a = \max\left(|A_0 v^{\nu}|, |A_1 u v^{\nu-1}|, \dots, |A_{\nu} u^{\nu}|\right) \leqslant A \left(\max(u, v)\right)^{\nu} < \left(\frac{2a}{\pi} + 1\right)^{\nu} A u^{\nu}.$$

Let again

$$m = [20 \cdot 2^{(5/2)}], \quad \tilde{a} = \max(a, (m+1)^{(m+1)/\nu})$$

so that

$$ilde{a} \leqslant \max\left(\left(rac{2a}{\pi}+1
ight)^{r}A \ u^{r}, \ (m+1)^{(m+1)/r}
ight), = a^{*} ext{ say,}$$

whence, by Theorem 2,

$$|\pi - \omega| > \left(\frac{m+1}{e}\right)^{-(m+1)} a^{*-(m+1)\nu \log (m+1)}.$$

On the other hand,

$$|\sin t| \ge \frac{2}{\pi} |t|$$
 if $|t| \le \frac{\pi}{2}$,

hence

$$|\sin u \alpha| = |\sin (u \alpha - v \pi)| \ge \frac{2}{\pi} v |\pi - \omega|,$$

and we find, finally, that

$$|\sin u a| > \frac{a}{\pi^2} u \left(\frac{m+1}{e}\right)^{-(m+1)} a^{*-(m+1)\nu \log (m+1)}.$$

In the special case when $\alpha = 1$, Theorem 1 gives a stronger result, viz.

$$|\sin u| > \frac{1}{\pi^2} u^{-41}.$$

This inequality has been proved for $u \ge \pi$, i.e. for $u \ge 4$, but it is easily verified that it holds also for $1 \le u \le 3$.

By way of example, the power series

$$\sum_{u=1}^{\infty} \frac{z^u}{\sin u \, a}$$

has the radius of convergence 1, and the Dirichlet series

$$\sum_{u=1}^{\infty} \frac{u^{-s}}{\sin u a}$$

converges when the real part of s is greater than $(m + 1)\nu \log (m + 1)$.

I wish to thank Mr C. G. LEKKERKERKER for his careful checking of the numerical work of this paper, and for pointing out a minor error.

October 20, 1952.

Mathematics Department, Manchester University.

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557-570