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MATHEMATICS 

ON THE APPROXIMATION OF n 

BY 

K. MAHLER 

(Communicated by Prof. J. F. KoKSMA at the meeting of November 29, 1952) 

The aim of this paper is to determine an explicit lower bound free of unknown 
constants for the distance of n from a given rational or algebraic number. 

1. In my paper "On the approximation of logarithms of algebraic 
numbers", which is to appear in the Transactions of the Royal Society, 
the following result was proved: 

Lemma: Let x be a real or complex number different from 0 and 1; let 
log x denote the principal value of the natural logarithm of x; and let m 
and n be two positive integers such that 

(1) m + 1 2 I log xI· 
There exist (m + 1)2 polynomials 

Ahk (x) (h, k = 0,1, ... , m) 

in x with rational integral coefficients, of degrees not greater than n, and 
with the following further properties: 

(a) The determinant 
D (x) = II Ahk (x) II 

does not vanish. 

(b) Ahk (x) < < m! 2m-(3n/2) (n + 1)2m+I ( V32)(m+l) n (1 +X+ ... + xn). 

(c) The m + 1 functions 
m 

Rh (x) = .L Ahk (x) (log x)k (h = 0,1, ... , m) 
k=O 

satisfy the inequalities 

I Rh (x) I m! 2-(Sn/2) (e Vn)m+l e(2n+l) IJogx I ( xlym+l) n. 

Denote by y a further real or complex number, and put 

m k . m (logx)k-yk 
Sh (x,y) = .L Ahk (x) y , Th (x,y) = .L Ahk (x) 1 (h = 0,1, ... , m), 

k=O k=l og x-y 

so that 

(2) Rh (x) - Sh (x, y) = Th (x, y) (log z- y), 

identically in x and y. This identity will enable us to find a measure of 
irrationality for n. 
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2. For this purpose, substitute in the last formulae the values 

. l i p i x = t, og x = n 2 , y = q 2 

for x, log x, and y; here p and q may be any two positive integers for 
which 

(3) 

Then 

so that 

p < 4q. 

!log xl < 2, IYI < 2, 

I (logx\k-yk I = I (log x)k-1 +(log x)k-2 y + ... +(log x) yk-2 + yk-11 < 2k-1 k 
logx-y 

and 

Hence 

(4) 1Th(x,y)l<2mm. max IAhk(x)l· 
•...• m 

3. From now on assume that 

m = 10 and n 50. 

This choice of m satisfies the condition (1) of the lemma. The lemma 
may then be applied, and we find, first, that 

max I Ahk (x) I 10! 210-(3n/2l (n + 1)21 2l55/2ln (l +I X I+ ... +I X In) = 
... ,m 

whence, by (4), 

(5) 

Secondly, 

= 10! 210 (n + 1)22 226n, 

(6) IRh (x) 10! 2-(3n/2) ell nll/2 enn+(n/2)( v;ttn = 10! e11+(n/2) 

Thirdly, D(x) =!= 0. Hence the index h, = h0 say, can be chosen such 
that Sh,(x, y) =1= 0. Now (2q)m Sho(x, y) evidently is an integer in the 
Gaussian field K(i). Its absolute value is therefore not less than unity, 
whence, by the choice of m, 

(7) 

4. Assume now that n 50 can be selected so as to satisfy the 
inequality 

(8) 101 ell+(n/2) nll/2 (16n11 e")n l. 2-10 q-10 
. llll """' 2 • 

By (6) and (7), this inequality implies that 

I Rh, (x) ISh, (x,y) I, 
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and so, by (2), 

i IS11 , (x, y) I:(; ITh, (x, y) (log x- y) J. 

It follows then from (5) and (7) that 

(9) I n - ]!_ I = 2llog X - y I I sh, (x, y) I 
q Th, (x,y) 

2-1oq-10{10.10! 220(n+ 1)22 226n}-1. 

The two inequalities (8) and (9) are equivalent to 

(10) 

and 

(11) 

( ll11 )n 211 10! e11+(n/2) nll/2 q10 
l6:nll e" ::;--- ' 

respectively. Here 

ll11 > 103.4181 
l6:nll e" ' 

and also, on account of n 50, 

211 10! e11+(n/2) < 1015.3306 < 10.10! 230 < 1016.5907 < 100.3319n. 

Further, on denoting by Log N the decadic logarithm of N, 
n 11/2 = 1 Oll/2 (Log n/n)n 1 Oll/2 (Log 50/50)n < 1 00.1869n 

and 
(n + 1)22 = 1022(Log(n+ll/nln 1022(Log51/50ln < 100.7514n. 

These numerical formulae show that the inequality (10) certainly holds if 
103.4181n > 100.3067n+0.1869n q10, 

i.e., if 
1 02.9245n > q10, 

and they further give 

10.10! 230 (n + 1)22 226n < 100.3319n+0.7514n+7.8268n = 108.9101n, 

We thus have proved the following result: 

"Let p and q be two positive integers such that p < 4q, and let n be an 
integer for which 

(12) 

Then 

(13) 

n 1 02.9245n > q10. 

In_ I> 1o-s.91o1n q-10.'' 

5. This result be further simplified. Define n as function of q by 
the inequalities 

1 02.9245(n-1) :(; q10 < 1 02.9245n. 
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This choice of n is permissible provided q is so large that 

q10 1 02.9245x 49 = 10143.3005. 

It suffices then to make the further assumption that 

(14) q 2.14 X 1014, 

because then 
q10 > 10143.304. 

Since n and therefore n- 1 n, we have now 
q10 102.9245x0.98n > 102.8661n, 

hence, by (13), 

(15) I n - I > q-(8.9101/2.8661) X 1Q--10 > q-41.09 > q-42. 

The proof assumed, as we saw, that p < 4q and that (14) is satisfied. 
If (14) holds, but p 4q, then trivially 

In - 4- n > q_-42, 

and (15) remains true. 

6. It is now of greater interest that the remaining condition (14) can 
be replaced by a more natural one. 

Theorem 1: If p and q 2 are positive integers, then 

1 > q-42. 

Proof: By what has already been shown, it suffices to verify that there 
are no pairs of positive integers p, q for which 

2 < q < 2.14 X 1014, In - I< q-42. 

If such pairs of integers exist, they necessarily have the additional 
property that 

q 2 q2' 
because otherwise 

In _1!_1 <-I 

2 <In- q-42, q40 < 2, q < 2, 

which is false. It follows then, by the theory of continued fractions, that 
pfq must be one of the convergents Pnfqn of the continued fraction 

-b II II -b·bb n - 0 + flJ;: + fb; + ... - [ 0' 1• 2• •.• ] 

for n; here the incomplete denominators b0 , bv b2, .•• are positive integers. 
According to J. WALLIS, the development begins as follows: 

n = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 

2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 1, ... ]. 
3 Series A 
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A trivial computation shows that the convergent belonging to the incom-
plete denominator 13 is already greater than 2.14 x 1014• The largest of 
the preceding incomplete denominators is 292. Hence, by the theory of 
continued fractions, we find that 

l l l -42 
= -qn-{-(b_n_+_l_+ __ l_)_q_n_+_qn-1} > (bn+l + 2)q;;?: 294q; > qn 

for every convergent the denominator of which lies in the range we are 
considering. There are therefore no pairs of integers p, q of the required 
kind. This completes the proof. 

The theorem required that q ;?: 2. If one is satisfied with an estimate 
for ln-(p/q)l valid when q is greater than some large value%, then the 
exponent 42 can be replaced by 30. No new ideas being involved, the 
proof may be omitted. 

7. As a second application of the lemma in § l we study now the 
approximation of n by arbitrary algebraic numbers. 

Let w be a real or complex algebraic number of degree v over the 
Gaussian field K(i), and let 

f(z) = 0, where f(z) = a0z• + a1z•-l + ... + a. 

and where further the coefficients a0 =\= 0, a1 , ••• , a. are integers in K(i), 
be an irreducible equation for w over this field. Denote by 

a= max ( la0 1, la1 1, . · ·, Ia. I) 
the height of this equation and by 

Wo = W, Wl, ••• ' Wv-1 

its roots. These roots are all different, and it is well known that 

(16) (j = 0, 1, ... 'v- 1). 

8. In the case when w is a real algebraic number, the defining equation 
f(z) = 0 may be assumed to have rational integral coefficients. For let 

F(z) = 0, where F(z) = A 0zN + A 1zN-l + ... + AN, 

and where A0 =\= 0, Av ... , AN are rational integers, be an equation for 
w irreducible over the rational field. It suffices to show that this equation 
is also irreducible over K(i), hence that F(z) differs from f(z) only by a 
constant factor different from zero. 

Let the assertion be false. Then F(z) can be written as 

F(z) = {A(z) + iB(z)} {O(z) + iD(z)} 

where A(z), B(z), O(z), and D(z) are polynomials with rational coefficients 
such that neither A(z) + iB(z) nor O(z) + iD(z) is a constant. Since F(z) 
is a real polynomial, also 

F(z) = {A(z)- iB(z)} {O(z)- iD(z)} 
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and therefore, on multiplying the two equations, 

F(z) 2 = {A(z)2 + B(z)2} {O(z)2 + D(z)2}. 

Since unique factorization holds for polynomials in one variable over the 
rational field, this formula implies that 

F(z) = c {A(z)2 + B(z)2} 

where c =1= 0 is a rational constant. 
Put now z = w. Then F(z) and therefore A(z)2 + B(z)2 vanish, hence 

also both A(z) and B(z). This means that A(z) and B(z) are divisible by 
z- w, thus F(z) by (z- w)2• This is impossible because F(z) is irre-
ducible, so that it cannot have multiple linear factors. 

9. Substitute now 

X= i, log x = n.!:... 
2 ' 

for x, log x, and y in the identity 

(2) 

of § 1, and assume further that 

!wl < 4, m;?: 3. 

One proves just as in § 2 and § 3 that 

(17) I Rh (x) m! 2-(3n/2) (e Vri)m+1 enn+(n/2) 

and 

(18) ITh(x,y)l < 2mm • m! 2m-(3n/2> (n+ 1)2m+2 (V32)(m+1ln 

On the other hand, the then given lower bound for Sh,(x, y) is no longer 
valid and must be replaced by a more involved expression. 

10. Since the determinent D(x) does not vanish, there is again an 
index h = h0 such that 

Sh, (x,y) = Sh, (i, w ;) =i= 0. 

This means that also the v- 1 numbers 

Sh,(i, ro1 ;), sh,(i, ro2 ;), ... , Sh,(i, w.-1 ;) 

obtained from Sh,(i, wi/2) on replacing w by its conjugates wv w2 , ••• ,w._1 
with respect to K(i) do not vanish. For let z be a variable. The expres-
sion Sho(i, zi/2) is a polynomial in z with coefficients in K(i) which does 
not vanish at z = w. Therefore the polynomial cannot be divisible by 
the irreducible polynomial f(z) of which w is a root, and so it admits 
none of its other roots wi. 
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It follows then that the product 

does not vanish. This product is a symmetric polynomial in w, wv . .. , w._ 1 

which is in each w1 of degree m; moreover,1 the coefficients of this 
polynomial are elements of K(i), and their common denominator is a 
divisor of 2m•. Therefore a itself lies in the Gaussian field, and its denomi-
nator is in absolute value not greater than 

2mv laolm :::;:; 2mv am. 

Since a is not zero, the inequality 
2mv am Ia I ;;?: 1, 

holds, and we find that 

(19) 

11. By definition, 

Here, by (16), 

so that 

JO lwi; lk (m+1) (m+1)am 

since a ;;?: l. Therefore 

I sh,(i, wi ; ) (m + 1) am .. ml Ahk(i) I' 
whence, by the lemma in 1.), 

1 sh,(i. wi ; ) 1 (m + 1)! 2m-(3n/2) (n + 1)2m+2 ( V32)(m+lln. 

Therefore, from (19), 

(20) JSI!o (x, y) 1 ;;?: {2mv am (am (m + 1)! 2m-(3n/2l (n + 1)2m+2 ( V32)(m+lln)"-1}-1. 

12. From now on we proceed in a similar way as in 4.). Let again 
m ;;?: 3 and n be chosen such that 

(a) IRht(x)l :::;:; tiSho(x, y)l; 

then from the identity (2), 

(b) ISht(x,y)l :::;:; 21Th,(x,y) (log x- y)l, 

so that a lower bound for 

2llogx-yl = ln-wl 
is obtained. 
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By (17) and (20), the condition (a) is certainly satisfied if 

do )<m+1)n 
m! 2-<an/2) (eVnr+l en"+<n/2) 

{2m• a,m (a,m(m+ 1)! 2m-(3n/2) (n+ 1)2m+2 ( V32)<m+1)ny-1}-I, 

or, what is the same, if 

Under this hypothesis, we find from (b), by (18) and (20), that 

1 :n; _ cp 1 > {2m• a,m ( a,m (m + 1)! 2m-(3n/2) (n + l)2m+2 ( V32)<m+1ln)>-1}-1 X 

X {2m m. m! 2m-(3n/2) (n + 1)2m+2 ( V32)<m+1)n}-1. 

whence, after some trivial simplification, 

(22) 1 :n: _ w 1 > { m: 1 (m + 1)!• 2<2•+1)m-(3n•/2) (n+ 1)2<m+1)• ( v32)<m+1)n• am• r1• 

In order to put (21) and (22) into a more convenient form, we now 
apply the well-known inequality 

(m + 1)! ::::;;; e Vm + 1 (m + 1)m+l e-<m+l), 

It follows that (21) is satisfied if 

(4(m+ l))<m+1ln :::::;:: e•(m+ 1)<•/2l-1(m+1)<m+1l•e-<m+1l• 22<m+1)v-2v-<m+1)-(3nv/2)+2 X 
25•/2 :n; ,;/' 

xe<m+l)+nn+(n/2) (n + 1)2•)m+1 a,m• 
(n+l)2 ' 

and so even more if 

I (4(m+ l))<m+l)n 4enf2(m-l- l)<•/2l-1(e/4)• (ej2)m+l (4je)<m+1)v " -(av)/2 n 
(23) 25•/2:n; , (n+l)<m+1l/2 ' (n+I)m+1 ·(e ·2 ) X 

X (m + 1)<m+1)v (n + 1)2(m+l)v a,m•. 

Therefore, assuming that (23) holds, by (22) 

l:n;-w < e"(m + 1)"/2 (m + l)<m+l)v e-<m+1)v 22•<m+1l-2•+<m+ll-(3nv/2l-1 X 
m+l 

X (n + 1)2(m+l)v (V32)<m+l)nv a,m•, 
whence 

(24) I :n:-w < (m + 1)"/2 2m+l 2-'f,nv-1, (m + l)<m+l)v (n + 1)2(m+ll•x 

X (V32)<m+1)nv a,m•. 

13. So far m 3 and n are restricted solely by the condition (23). 
In order further to simplify (23) and (24), assume from now on that 

(25) m + 1 20· 2'1,<•-11, n (m + 1) log (m + 1). 
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Since log 2 > 1, by the first of these conditions, 

rn + 1 20 e•-1 20 (1 + (v- 1)) = 20v > 3. 

The second condition implies then that 

n 20v log (20v). 

Now 20 log 20 > 59, 20 log 40 > 73, and so 

n > 60v, 

both when v = 1 and when 1' 2. 
As a first application of (25), we determine an upper estimate for the 

A 0 = (rn + 1)>fn (n + 1)2''/n. 

Since n 60v ?: 60, 

61 (61)2>/n (61)1/30 oS: (61)1/30 ••/n 2vfn 
n + 1 60 n, 60 60 ' Ao - 60 ( rn + 1) n ' = B0 say. 

Next 
o log B 0 v 2v 

= - n 2 log ( rn + 1) - n 2 (log n - 1) 

is negative because log n 60 > 1. Therefore B0 is not decreased on 
replacing n by (rn + 1) log (rn + 1), and we find that 

A oS: (61)1/30 ex { vlog (rn+1)+2v(log(rn+1)+loglog(rn+1))} 
O'""' 60 · P (m+1) log (m+1) 

or 
A oS: (61)1/30 ex { log (m+ 1) } 
o- 60 P rn+1 m+1 log (m+1) · 

loglog(m+1) 
Here log (m+ 1) decreases with increasing rn because log (rn + 1);;, 

;;, log 20 > e; hence 
log log (m+ 1) oS: log log 20 < .l 

log (m+ 1) - log 20 2 ' 
whence finally, 

A oS: (61)1/30 (3v+v) _ (61)1/30 115 
0 - 60 exp 20v - 60 e < 4' 

We next discuss certain factors that occur on the right-hand sides 
of (23) and (24). 

In 

evidently 

log(rn+1}>e, n+1 >(rn+1) log(rn+1) > e(rn+1), rn+1 20v, (e/4)• < 1, 

whence 
A < 4en/2(m+l)(>/2l-1,} < 4e(n/2l-10(rn + 1)-9•< 1 

1 {e(m+ 1)}10v · 

Next let 
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Then by the last inequalities and by (25), 

A { (e/2)1 (4/e)• }m+1 { (e/2)• (4/e)• l(m+1l = ( 25/2 )m+1 
2 < e(m+ l) e• 20. 25(v 1l/2 20 e• 23v/2 < 1. 

Let further 
A3 = ( e'"'. 2-(3v/2l)1/(m+1l, 

Since v 1 and m + 1 20, 
A3 (e"· 2-(3/2l)l/2o < 

Consider finally the expression 

(e)" (4)(m+1lv A 4 = 4 (m + 1)"/2 e 2(m+1J-(anv/2l-1. 

Here 

v;;?: 1, (i)" 2-1 < 1, m + 1 < em+l, n;;?: (m + 1) log (m + 1), 

so that 

( 4)(m+1)v ( 8 e-1/2 )(m+1)v A 4 < e(m+1lv/2 _e 2(m+1Jv-(3/2) (m+1)vlog (m+1) 
= (m+l)(3/2)log2 • 

Since now i log 2 > 1 and m + 1 20, we find that 

( 2 e-1/2)(m+1lv 
A4< -5- < 1. 

14. The inequalities for the A's lead easily to a great simplification 
of the result in 12.). 

The right-hand side of (23) can be written as 
At A2 Abm+1)n am• 

and so, by what has just been proved, is less than 

( 6)(m+1)n (5)(m+1)n (m+ 1)v (3)(m+1)n ( +1)v 
1·1· 5 4 a = 2 am • 

Similarly the right-hand side of (24) has the value 
A 4 Abm+1)n 2(5/2) (m+1)nv am• 

and is therefore smaller than 

( 5 )(m+1)n 4 . 2(5/2)v a(m+1)v. 

We have therefore the following result: 
"Let m and n satisfy the inequalit·1:es (25) and let further 

(26) 

Then 

( 4(m+I))n :>-: v 
25•/2n """ 2 a· 

( 27) In- w I > { 2(5/2l•r a• r(m+1)." 

The proof assumed that lwl < 4, but we may now dispense with this 
condition. For if lw I ;;?: 4, then trivially, 

l { (5 )n }-(m+1l In - w I ;;?: 4 - n > 5 > 4. 2(5/2Jv a" . 
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15. The first inequality (25) is satisfied if 

(28) m = [20. 2(5/2H•-1l], 

for then 
20 X 2(5/2) (v-1) < m + 1 < 20. 2(5/2) (v-1) + l. 

This choice of m means that 

2 4(m+I) 2 4x20 20V2 
3 X 25•/2n ?:o 3 X 25/2 n 

The condition (26) is therefore certainly fulfilled if 

en ?:o a:, i.e., n ?:o v log a. 

Let then from now on n be defined by the formula, 

(29) n =[max ((m + 1) log (m + 1), v log a)]+ 1, 

so that both inequalities (25) and (26) hold, hence also the inquality 
(27) for In - w I· 

It is now convenient to distinguish two cases. 
If, firstly, 

then 
(m + 1) log (m + 1) > v log a, 

and therefore, by (29), 

n = [(m + 1) log (m + 1)] + 1 < (m + 1) log (m + 1) + l. 
Further 

2(5/2)v = ....!:.._ 20. 2(5/2Hv-1) < 1 < m+ 1 
2 ys Vs e ' 

whence 

2(5/2l•r a• < (m + l)m+1 = e(m+l){Iog(m+l)}'. 

Let, secondly, 

so that 
(m + 1) log (m + 1) < v log a. 

Now 
n = [v log a] + 1 < v log a + 1, 

hence 

The following result has therefore been obtained: 

Theorem 2: Let w be a real or complex algebraic number. Denote by 
R the rational field K if w is real, and the Gaussian imaginary field K(i) if 
w is non-real. Further denote by v the degree of w over R, by 
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an equation for w with integral coefficients in R which is irreducible over 
this field, and by 

a,= max (la0 1, la1 1 , ... , Ia. I) 
the height of this equation. Put 

m = [20 • 2(5/2)(v-llJ, a = m':I.X (a, (m + l)(m+ll/•). 

Then 
(30) l:rt- w I> (m;I)-(m+l) a-(m+1lvlog(m+ll. 

Remarks: 1) We note that the theorem remains true if a is replaced 
by any larger number. 

2) When 
a, < (m + l)'m+1l/•, 

the estimate (30) is not as good as that by N. I. FEL'DMAN (Izvestiya 
Akad. Nauk SSSR, ser. mat. 15, 1951, 53-74), viz. 

l:rt- w I > exp {- y1v (1 + v log v +log a) log (2 + v log v +log a)}, 
where Yv just as y2 in the next line, is a positive absolute constant. 
Fel'dman's inequality implies that 

> exp {- y2n2 (log n)2} 
for all sufficiently large positive integers n, while my result yields a much 
less good lower estimate. 

If, however, 
a, (m + 

then Theorem 2 is much stronger, and it furthermore gives a lower bound 
for l:rt- wl free of unknown constants. The exponent of 1/a, 

(m + 1) v log (m + 1), 
is not greater than 

( 20 • 2'5/Zl (•-1l + 1) v log ( 20 • 2'5i2><•-1l + 1) 

and therefore, for large n, is of the order 
0 (2'5/2l• v2) 

16. As an application of Theorem 2, let us determine a lower bound 
for lsin ual when a is a fixed positive algebraic number and u is a positive 
integral variable such that u :rtja. 

Define a second positive integer v by 

Then 

and therefore 

max (u,v) max(u, 2: u) < c: + 1)u. 

Let, say, a have the degree v over the rational field, and let it satisfy 
the irreducible equation 

(A0 =!= 0) 
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with rational integral coefficients of height 

A= max (IA0 1, IA1 1, ... , lA. I) l. 
Then the rational multiple of a, 

is a root of the equation 

u 
OJ= va, 

A 0v•z• + A 1uv•-Iz•-l + . . . + A.u• = 0 
of height 

a,= max (lAo v•l, IA1 uv•-1 1, ... , IA.u• A (max (u, v))" < (2; + 1)"A u•. 

Let again 
m = [20 . 2(5/2) (v-1)], a= max (a, (m + l)(m+1li•), 

so that 

+1)"Au·, (m+1)(m+1lt•), =a* say, 

whence, by Theorem 2, 

]n _OJ 1 > a,*-(m+l)vlog(m+ll. 

On the other hand, 

1 sin t 1 ! 1 t 1 if 1 t 1 , 

hence 

I sin u a I = I sin ( u a - v n) I v In - OJ I , n 

and we find, finally, that 
. a (m+l)-(m+l) Ism ual > n 2 u -e- a,*-(m+1)vlog(m+Il. 

In the special case when a= 1, Theorem 1 gives a stronger result, viz. 

I sin u I > -\ u-41 • 
n 

This inequality has been proved for u n, i.e. for u 4, but it is easily 
verified that it holds also for 1 u 3. 

By way of example, the power series 
00 zu I-.--

s1nua 

has the radius of convergence 1, and the Dirichlet series 
oo u-s 
I-.-s1n ua 

converges when the real part of s is greater than (m + 1)v log (m + 1). 

I wish to thank Mr C. G. LEKKERKERKER for his careful checking of 
the numerical work of this paper, and for pointing out a minor error. 

October 20, 1952. 
Mathematics Department, 
Manchester University. 

570 Kurt Mahler

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 557–570


