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ON COMPOUND CONVEX BODIES (I)
By KURT MAHLER

[Received 30 June 1954. Read 25 November 1954]

THE compounds of a matrix (see e.g. (1), chapter 5) play an important role
in several branches of mathematics, e.g. in algebraic geometry. The present
paper discusses applications of such matrices to the theory of convex bodies
and to the geometry of numbers.

For a given dimension n and order p of the compound, it is shown how
to associate with every symmetric convex body K in Rn a second symmetric

(n\convex body K in BN where N = [ is in general greater than n. The
W

bodies K and K are connected by many interesting properties. Thus their
volumes satisfy the inequality

0 < cx < V{K)V{K)~P < c2,
where P = ( I, and where cx and c2 depend only on n and p. From this

\p-lj
it is deduced that the successive minima mv ra2,..., mn of K, and the suc-
cessive minima ixx, /z2,..., fiN of K, both for the lattices of all points with
integral coordinates, have the property that

0 < c7MK ^(JLK^MK (K = 1, 2,..., N).
Here c7 depends likewise only on n and p, and Mx, M2,..., MN are all the
products of p distinct factors mk arranged according to increasing size.
This second result is used to show a general transfer principle connecting
systems of linear inequalities with their compound systems.

1. Let 1 ^ p ^ n—1, and let
XW = (xnl, Bff2>..., xm) (IT = 1, 2,..., p)

. be p points in 7i-dimensional Euclidean space Rn. There are
(n\

distinct sets of p integers vx, v2,..., vp satisfying
1 < vx < v2 < ... < vp < n\

associate with each such set the determinant
lvp

Finally arrange these determinants in an arbitrary order (e.g. lexico-
Proc. London Math. Soc. (3) 5 (1955)
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ON COMPOUND CONVEX BODIES 359
graphically) and denote them in this order by £l5 £2>---> £#• There corre-
sponds then to the set of points X(1), X(2),..., Z(p) in Rn the point

S = ft, &,..., £v), = [X(1>,X<2>,..., X<»] say,
in iV-dimensional Euclidean space RN.

If, in particular, X{1), X(2),..., X{p) are linearly independent, the pxn
matrix

L Xpl Xp% . . . Xpn

is of exact rank p, and so at least one of the minors xv „„ „ is not zero.
Hence S is in this case different from the origin 0 of RN. On the other
hand S = 0 if the given points in Rn are linearly dependent, e.g. if two
of them coincide.

It is well known (see e.g. (3), chapter 5) that if 2 ^ p ^ n—2, the
determinants xVlViV cannot assume values independent of one another,
but satisfy a certain set of homogeneous quadratic equations; e.g. in the
lowest non-trivial case when n = 4, p = 2 there is just one such condition,
and, on changing the sign of one of the determinants, it can be written as

Sxh+UU+UU = to-
la, other words, for all choices of X(1), X(2),..., X^v) in Rn the derived point
S = [X(1),Z(2),...,X(p)] is restricted to a certain algebraic manifold Sl(n,p)
in RN in the form of a cone of centre 0, the Orassmann manifold, and this
manifold coincides with the whole space only when either p = 1 or
p = Ti—1.

n.
2. Let now i£(1), K®\..., K^ be any p bounded closed convex bodies in R

To simplify the discussion, and because this suffices for the later application,
we shall impose the further condition that each body K^n) contains the origin 0
of the coordinate system as an inner point and is, moreover, symmetric in this
point. It is Tictf demanded that thep bodies K^, i£(2),..., K^ are all distinct,
and in fact these bodies will later on be made to coincide.

Denote now by s

the set of all points S = [X<«,X<2>,...,Xk>] where, for ir = 1, 2,..., p, X<w>
runs independently over all points of K^. From this definition it is at once
obvious that 2 is a bounded closed point set which lies entirely on the
manifold £l(n,p). In general, 2 naturally need not be a convex set.

Denote then by K ^ j - ^ R{2)^ ^ K^

the convex hull of 2, i.e. the smallest closed convex set that contains 2 .
We call K the compound of K®>, K™,..., K®>.
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360 K. MAHLER
Since the origin 0 oiRn belongs to all sets K(7T\ the compound K similarly

contains the origin 0 of RN. Moreover, K is symmetrical in 0 since Z(1) is
symmetrical in 0 and

We can further show that 0 is an inner point of K, and hence that the com-
pound is a convex body. For, by the hypothesis, 0 is an inner point of each
body KM. Hence a positive number 8 can be chosen such that the closed
sphere |X| < 8 is a subset of each of K®, K®,..., K<*\ Then the points

P1=(8,O5O,...,O), P2=(0,S,0,... ,0), ..., Pn=(0,0,0,. . . ,8)
on the coordinate axes and their images in 0 are elements of all bodies K^\
and therefore the derived points

±[PVl,PVt,...,PVp] where 1 < vx < v2 < ... < vp < n
belong to 2. But these derived points are exactly all the points on the
coordinate axes in RN of distance 8P from the origin, and their convex hull
is the generalized octahedron T consisting of all points S for which

Evidently T contains 0 as an inner point and is itself contained in K,
whence the assertion.

We note that the compound K == [l£W,Z<2),...,Zte>] obviously does not
depend on the order of K(1\ K(2\..., KS^, and that, in fact, this is the case
even when only a single one of these bodies is symmetrical in the origin.

3. Let X -> X' = Q.X, or in explicit form

H h 2 hkk ( > > > ),
k=l

be a non-singular aflfine transformation of Rn into itself. Thus the deter-
minant, CD say, of the transformation matrix Q. = (<ohk) does not vanish.
Such a transformation Q, changes every bounded, closed, symmetric, con-
vex body K in Rn into a body K' = QK of the same kind. If the letter V
is used to denote the volume of a body, clearly

V(K')= V(QK)= \o\V(K).
The transformation Q, of Rn generates in RN a likewise affine transforma-

tion, the #>th compound O(p) of Q,. This compound is defined as follows.
Let Z<«, X&\..., X<*) be any p points in Rn, and let

be the corresponding point in RN. On applying Q. simultaneously to all X{7T\
a second point
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ON COMPOUND CONVEX BODIES 361

in RN is obtained which may be denoted symbolically by

Here Q(p) again represents an affine transformation of the space RN into
itself. The matrix

Q(p) = (ujgj (H, K = 1, 2,..., N)
of this transformation has as its elements the N2 minors of order p of the
original matrix Q, = {o)hk), both indices H and K being arranged in the
same order as in § 1 when defining the order of the coordinates of S. It is
shown in determinant theory that the determinant of lQ(p),' a/p) say, is
given by ,

a>(p) = a J
p where P=[\p-lj

Hence the compound transformation Q(p) is likewise non-singular.
The transformation S -> H' = Q^a changes 2 and K into new sets

£ ' = Q,{p) 2 and K' = Q,^ K which may be expressed explicitly in the form
2 ' = <QZ<« QKW,..., CIKM) and K' = [OK®, QK®,..., QK^].

This is obvious in the case of E', and is for K' due to the fact that every
affine transformation changes the convex hull of a set into the convex hull
of the transformed set.

By the value of the determinant of Q^p\ it is again clear that the volumes
of the compound bodies K and K' = Q&) K are connected by the formula

F(K') = F(Q<P>K) = IHpF(K).

4. In this and the next sections we shall only be concerned with the
special case when the convex bodies i£(1), K^\..., K^ defining

are identical: #<« = K<® = ... = K®>= K,sa,y. We then write K = [Kf>\
and similarly K' = Q&»K = [QKf>\ The correspondence K -+ K = [Kf»
gives now a mapping of the set of all closed, bounded, symmetric, convex
bodies in Rn into the set of all analogous bodies in RN.

We begin with some remarks on spheres and ellipsoids. Let
On: \X\ < 1

be the unit sphere in Rn, and let

be its compound in RN. In general, Fjf) is not a sphere; it has, however,
interesting symmetry properties and may deserve a detailed study on its
own account.

Next let E be any bounded closed ellipsoid in Rn with centre at 0, and
let E = [EJp) be its pth compound. By the theory of such ellipsoids there
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362 K. MAHLER
exists an affine transformation X -> Q.X of Rn into itself, of determinant
a) =£ 0, such that E = Q.On; hence

V(E) = \u>\V(Gn).
Further also E = Cl^T^ and therefore

( n—l\I. The productp-l)
-p > 0

is therefore independent of the special ellipsoid E and a function only of
n and p.

5. We can now prove the first main result.
THEOREM 1. There exist two positive constants cx and c2 with cx < c2 and

depending only on n and p , with the following property.
If K is any closed bounded symmetric convex body in Rn, and if K =

is its p-th compound in RN, then
Ci < V(K)V(K)~P < c2, where J° =

Proof. Let E be the ellipsoid with centre at 0 which is circumscribed to
K and of smallest volume. A theorem due to John (4) states that there
exists a second ellipsoid n~^E obtained from E by the similarity transfor-
mation X -> n~*X which is inscribed in K. Thus

n-^E c K c E;
hence V{n~*E) = w~*»F(^) < F(Z) < F(^). (1)
Let now K = [JTp> and E = [JS](P> be the compounds of K and # . Then
also [n-^E]^ = ti-*p E,
because the jpth corapoiind of the affine transformation X ->• w~*X is given
by S -> (w~*)p H, as follows at once from the definition of Q.W. Further

F(w-*» E) = (n-**)* F(E) = (n-*n)p F(E).
Next, it is evident from the definition that KX^K% implies that also
[iy( p ) S [K2f>\ Therefore

n-iv E c K c E,
whence F(w-*» E) = (w-*»)^ F(E) < F(K) < F(E). (2)

On combining now (1) and (2), it follows that
(n-in)P V(£)V(E)-p < V(K)V(K)-p

Here, by the last section,
V(E)V(E)-P = V(T

is a number depending only on n and p, and so the assertion holds with
the constants

Cl = n-inp F(rg»>)F(C?n)-p and c2 =
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ON COMPOUND CONVEX BODIES 363
It would be of interest to find the best possible values for c± and c2, and

to decide for which bodies these bounds are attained.
In the second part of this paper, I deal with the question of how far

Theorem 1 can be extended to general compounds [K(1\ K(2\...,

6. For the applications to the geometry of numbers it is useful to deter-
mine the distance function of a compound body.

It is well known that every closed, bounded, symmetric, convex body K
in Rn has a distance function F(X) such that K consists exactly of all points
X for which F(X) < 1. Here a distance function is a real-valued function
F(X) = F(x1,x2,...,xn) of X in Rn with the following properties.
(a) F{X)>0 ifX^O; F(O) = 0,
(b) F(tX) = \t\F(X) for real t,
(c) F(X+Y) < F(X)+F(Y).
Similar distance functions, but with H as the variable, naturally exist for
the convex bodies in RN.

Let now again Kw, K®,..., K®* be p bounded, closed, symmetric, convex
bodies in Rn, and let K = [Z<«,Z<2>,.. •»#<*»] be their compound in RN.
Further denote by F^\X), for -n = 1, 2,..., p, the distance function of K(n\
and by O(S) the distance function of K. Our problem is to express ®(E)
in terms of F^(X), F&\X),..., F^(X). We shall solve this problem in the
next sections.

7. Every point S in RN can be written in many ways as a finite sum

where the X^ are suitable points in Rn, and r can be arbitrary. For the
unit points on the coordinate axes in RN certainly admit such a representa-
tion, even as a sum of one single term. The*same is therefore true for all
points on these axes and so, by vector addition, for all points H in i?^.

Denote, as usual, by \X\ the length of X = (x1,x2,...,xp),

and similarly by |S| the length of E =
|S| =

Every coordinate of the point

is a minor of the corresponding pxn matrix. There exists then a positive
constant c3 depending only on n and p such that
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364 K. MAHLER
Hence the representation (1) of H implies that

|S| < c 3 i \X<»\\XW\...\Xp\. (2)

Thus, if S ^ 0, then not all points X^ can be too near to the origin.

8. We define now a function T(H) as the lower bound

Y(S) = inf J F ) ( lW)P( I j ? J ) . . . ^ (Z^) (1)
P=I

extended over all finite decompositions

i (2)
P=I

of S, F^(X) having the same meaning as in § 6.
The function ^(S) is properly defined in this way because S always

admits at least one decomposition. It is obvious that ^(S) is always
non-negative, and that ^¥(0) = 0 since

We next show that T(H) > 0 if H =£ 0. By a classical property of convex
distance functions, a positive constant yx can be chosen such that

FW{X) > y i |X | for aU X (n = I, 2,..., p). (3)

By the last section, the decomposition (2) of S implies that

p = l
while,-by (3),

It follows therefore that always
T ( S ) > y 2 | S | , where y2 = yf/c3, (4)

whence the assertion.
Furthermore, if H admits any decomposition (2), then t E has the derived

decomposition r
tE= 2

P=I

and vice versa; hence ^F(^S) = |i|T(H) (5)
since F^(tX^) = \t\FW(X™).

Finally, T(S) satisfies the triangle inequahty
Y(S+H) < T(H)+T(H). (6)
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ON COMPOUND CONVEX BODIES 365

For let e > 0 be arbitrarily small; then two decompositions

2 [ J J ^ ] and H = £
p = l a = l

of S and H can be chosen such that

and T(H) > £
£ 7 = 1

Since now

p = l

we find that T(S+H) <
whence the assertion when e tends to zero.

The formulae (4), (5), and (6), together with Y(0) = 0, mean that W(E)
is a convex distance function.

9. It will now be proved that T(S) is in fact the distance function of
K == [K®, K®,..., #&»], i.e. that T(S) = O(H). This proof consists of two
parts; for it has to be shown that, if E is any point of K, then ^(H) ^ 1,
and that the converse of this statement is also true.

(i) Let S be an arbitrary point of K'. Since K is the convex hull of the
set 2, there exist (see (2), p. 9) r = N-\-1 points of 2, the points Hl5 H2,..., Hr
say, such that S is an inner or boundary point of the simplex with vertices
at the points Sp. Thus S can be written as

- — Zlp -P»P=I
where tx, t2,..., tr are real numbers such that

k >°> h> 0, ..., tr ̂  0, 2tp= 1.
P=I

By the definition of S, each point Sp can be expressed in the form
Sp

where I^eZW, I ® e F ' ..., X™ e
and therefore

Put now Zp
x) = tpX$\ so that F®{Xp>) < tp.

Then S = £
P=I

a n d £><1>(Z<1>)^T<2)(ZJ, 2>) . . .2? I<P>(Z^)) < £ tp = 1,

whence ^(S) ^ 1 by the definition of this function.
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366 K. MAHLER

(ii) To prove also the converse, assume first that the point S satisfies
the stronger inequality Y(E) < 1, and choose a positive number e such
that also T(S)-f-€ < 1. Further select a decomposition

i
p = l

of H for which

There is no loss of generality in assuming that none of the points X^ lies
at the origin. The numbers

are thus all positive, and each point Xp
n) is of the form

X^ = r^X^ where' F*\X™) = 1.
Put now tp = Tp T<2>...T<*» (p = 1, 2,..., r),

so tha t tp is likewise positive. Then

i (1)

and here 2 ^ = 2 F(1\XpV)FV\Xp»)...FW(Xprt) < 1.
P=I p=i

Further I»>eF) ^ J
and therefore [X™, Xp

2\..., Xp
v)] e 2. Since also 0 e 2, it follows then from

(1) that S belongs to the convex hull of S, i.e. to K.
This proof assumed that T(S) < 1. But K is a closed set, and T(3) is

a distance function, hence is continuous. Therefore the less strong assump-
tion that Y(S) < 1 still implies that S belongs to K. This concludes the
proof.

From now on we use the notation O(S) for the distance function of K.
It is implicit in the last proof that O(S) may also be defined by

N+l
O(S) = min 2 FW{Xp»)FV>{XpV)...F<x>\Xprt),

P=I

where the minimum is now extended only over decompositions
JV+l.

p=i

of S into r = iV-f-1 terms. By means of Weierstrass's theorem one shows
easily that the minimum is attained. But as we make no use of this result,
the proof may be omitted.
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ON COMPOUND CONVEX BODIES 367
10. The results so far obtained will be applied to the geometry of num-

bers. We begin by defining compound lattices.
Let L be any ^-dimensional lattice in Rn, say of basis Zx, Z2,..., Zn and

of determinant d(L) = \{Z1,Z2,...,ZV}\. Here the symbol {Z1}Z2,...,Zn}
denotes the determinant of the n base points. The general point of L is
then of the form X = u1Z1+u2Z2-{-...+unZn where ux, u2,..., un run
over all integers.

Assume Xw, X<2\..., X(p> describe separately all the points of L. The
compound points S = [X(1), X(2),..., X&)] form a certain point set II situated
on the Grassmann manifold Sl(n,p) in RN which, in general, is not itself a
lattice. However, a unique iV-dimensional lattice A in RN may be derived
from II as the set consisting of all finite sums

where the points Hp run separately over the elements of II. We call A the
pth compound of L.

We must show that the compound so defined is in fact a lattice, and
begin with a special case. Let LQ be the lattice of all points in Rn with
integral coordinates; this lattice has the basis

Z1 = (l,0,...,0), Z2 = (0,l,...,0), ..., 3 n =(0 ,0 , . . . , l )
and the determinant d(LQ) = 1. It is obvious that its compound lattice,
Ao say, contains only points with integral coordinates. In fact, Ao is
identical with the lattice of all points in RN with integral coordinates.
For the N compound points [ZVl, ZVi,..., ZVp], where

1 < "i < v2 < ... < vp < n,
form exactly all the N distinct unit points on the coordinate axes in RN,
i.e. the points with one coordinate equal to 1 and the others equal to 0.
Also the negative unit points can be written in a similar form as compounds
of the Z's. Thev assertion is thus a consequence of the obvious fact that
every point with integral coordinates may be expressed as a sum of finitely
many positive and negative unit points. .

It is now easy to show that also in the general case the compound set A
is a lattice. There exists to the given lattice L in Rn an affine transforma-
tion X -» X' = Q.X such that L = Q.L0; let a> be its determinant. Then
d(L) = \u)\d(L0) and therefore

co = ±d(L).
Now Q generates in RN the compound affine transformation
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368 K. MAHLER
of determinant co^ = cop = ±d{L)p. This transformation Q(p) evidently
changes the special compound lattice Ao corresponding to LQ into the
compound A corresponding to L. But then A is likewise a lattice because
the image of every lattice under any non-singular affine transformation is
again a lattice. Further d{A) = |a>(p)|d(A0), and so A has the determinant

d(A) = d{L)p.
The construction of the pth compound just given associates with every

lattice L in Rn a unique lattice A in RN. We note that, on the other hand,
if 2 < p < n—2, not every lattice A in RN can be obtained as the pth.
compound of some lattice L in Rn. For the lattice A may be chosen such
that the N2 coordinates of its JV base points are algebraically independent
real numbers. Then no point of A distinct from 0 lies on the Grassmann
manifold ft (n, p) because this manifold is defined by homogeneous quadratic
equations with rational coefficients. But, by the definition, a compound
lattice is always generated by its points on St(n,p).

11. Let K be again a bounded, closed, symmetric, convex body in Rn,
and let K = [K]^ be its pth. compound body in jRiV. There is some interest
in comparing the number-geometrical properties of K with those of K.
A few such properties will now be considered.

One basic functional in the geometry of numbers is the lattice determinant
A(K) of a body K; it is defined as the lower bound of the determinants d(L)
of all i£-admissible lattices L. Here L is said to be iT-admissible if none
of its points distinct from 0 is an inner point of K. The lattice determinant
A(K) is defined in an analogous way; note that in its case the lower bound
is extended over all K-admissible lattices, not only the compound ones.

Minkowski's classical theorem on convex bodies is equivalent to the
inequality 2nk{K) > V{K).
Another well-known theorem of his, which was first proved by E. Hlawka,
states that «,

V(K) > 2£(»)A(Z) U(n) = 2 l~A.
Similar inequalities

2ArA(K) > F(K) > 2£(JV)A(K)
hold, of course, for the compound body. Therefore Theorem 1 at once
leads to the following result.

THEOREM 2. There exist two positive constants c4 and c5, with c4 < c5 and
depending only on n and p, with the following property.

If K is any closed, bounded, symmetric, convex body in Rn, and if K = [KJv)

is its p-th compound in RN, then
(n~l

5, where P= p—l
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ON COMPOUND CONVEX BODIES 369
Remark. One can define a second functional

A*(K) = infd(A),
where now the lower bound extends only over those K-admissible lattices A
in RN that are ptYi compounds of lattices L in Rn. Then it may be proved
that A(K) and A*(K) satisfy the inequality

A(K)<A*(K)^c6A(K),
where c6 > 0 again depends only on n and p. Hence Theorem 2 remains
valid, but with different constants, if in it A(K) is replaced by A*(K).

12. Let K and K = [K]^ have the same meaning as before; let F(X)
and O(S) be the distance functions of K and K, respectively, and let L be
a lattice in Rn and A its ptih compound in RN.

A well-known general theorem of Minkowski deals with the successive
minima of K in L. These minima are defined as follows.

There exists a point Xx ^ O in L such that F(XX) = mx = mx(K, L) is
a minimum; m1 is called the first minimwm of K in L. Next let 2 ^ k ^ n,
and assume that the points Xx, X2,..., Xk_1 in L and the corresponding
successive minima

F(Xh) = mh = mh(K, L) (h = 1, 2,..., k-1)
have already been defined. Then there exists a point Xk in L linearly
independent of Xlt X2,..., Xk_x for which F(Xk) = mk = mk(K,L) is as
small as possible; mk is called the k-th minimum oiK in L. Thus the n lattice
points Xv X2,..., Xn are linearly independent, and the successive minima
satisfy the inequalities

0 < mx < m2 < ... < mn < oo.
These minima also satisfy the following property. IfYx, F2,..., Yn are any n
independent points of L ordered such that

Fft) < F(Y2) <.... < F(Yn),
then F(Jx)~^mx, F(Y2) > m2, ..., F(Yn) > mn.

In the last chapter of his Geometrie der Zahlen, Minkowski proved the
fundamental inequalities

2n(n\)~xd{L) < mxm2...mnV{K) < 2nd(L) (1)
which contain his theorem V(K) ^ 2nA(K) as an obvious consequence.

Naturally these results have their analogues with respect to the com-
pound body K and the compound lattice A. There exist N linearly inde-
pendent points Ex, S2,..., Hjy in A generating the successive minima

* ( S K ) = /*K = /*K(K, A) (K = 1, 2,..., N)
5388.3-5 B ]-,
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370 K. MAHLER
of K in A, and these satisfy the inequalities

2"(W)-i d(A) < w2...nN F(K) < 2^(A). (2)
Also if Y\x, H2,..., Hjy are N linearly independent points of A arranged so

then <&("!)> K, $ ( H 2 ) ^ 2 , .», ®(HN)>HN. (3)

13. Our next aim will be to find relations connecting the two sets of
minima mk(K, L) and /xK(K, A). This work will be based on the inequahty

Cl < V(K)V(K)~P < c2 (1)
of Theorem 1 and on the equation

d(A) = d(L)p (2)
which connects the determinants of L and A.

From this equation, and from the two formulae (1) and (2) of the last
section, it follows immediately that

Therefore, by (1), there exist two positive constants c7 and c8 depending
only on n and p and such that c7 < c8 and

c7(m1rn2...mn)p < /zliLt2.../xiV < c8(m1rn2...mn)p. (3)
We have thus obtained an inequaKty in which the only variables occurring
are the successive minima of the two bodies. As will be proved, this single
inequality can be replaced by a set of inequalities, one for each of the JU,'S.

14. Form the N products

where vv v2,..., vp run over all sets of p indices such that
n.l < vx < vz < ... < vv

We arrange these products in order of increasing size and rename them
then Mlt J/2,..., MN; thus

0 < Mx ^ M2 < ... < MN < oo.
I t is easily seen that

M1M2...MN={mxmz...mn)p. (1)
Next we associate with each product MK = MVlVaVp the point

HK = H*v2...v, = [Xvi>Xi>i>--->XVp] (2)

which evidently belongs to A. Then H*, H*,..., H^ are linearly independent.
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ON COMPOUND CONVEX BODIES 371
First, since Xlt X2,..., Xn are by hypothesis linearly independent, every
point X in Rn is of t^ie form X = t1X1+t<iXi+...+tnXn with real coeffi-
cients tk. Secondly, every point E on the Grassmann manifold Sl(n,p) is
the compound S = [X^,X^2\...,X^] ofp suitable points X®, X™,..., X<**
in Rn, and so can be written in the form

S = T1Hf+TaHj+...+TiVHj (3)
with real coefficients TK. Finally, as we saw in § 7, every point in RN may
be expressed as a linear form with real coefficients in finitely many points
on €l(n,p) and is thus also an expression (3). But this means that

generate RN and are therefore linearly independent.
It was proved in § 9 that

<D(S) = inf 2 F(Xp)F(XW)...F(XW),

where the lower bound extends over all finite decompositions

Hence the special decomposition (2) of H -̂ gives the inequality
<D(H*-) < F(XVl)F(XJ...F(XVp) = mVlmVi...mVp = MK. (4)

Denote now by Hlt H2,..., H^ the points H*, H*,..., H^ rearranged in such
a way that

Then also O(HK) < MK (K = 1, 2,..., N). (5)
For the numbers MK were ordered according to increasing size; by (4), none
of the first K values ^(Hf), <D(H£),..., O(H£) can then exceed MK.

15. The results desired now follow quickly. On combining the inequali-
ties (5) of the last section with the inequalities (3) in § 12, we find that

/*K < O(HK) < MK (R= 1, 2,..., N). (1)
On the other hand, by the formulae (3) in § 13 and (1) in § 14,

fHto—PN > c1(m1m2...mn)p = c7M1M2...MN,
whence

tMK ^ c,MxMz..MN n M^ = c,MK (K = 1, 2,..., N). (2)
H

H
The two inequalities (1) and (2) contain the second main result of this
paper.
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THEOBEM 3. There exists a positive constant c7 depending only on n and p,
as follows. »

Let Kbea closed, bounded, symmetric, convex body in Rn, and let K = [K]^
be its p-th compound body in RN; let L be an n-dimensional lattice in Rn> and
let A be its p-th compound in RN; and let

mk = mr(K, L) (k = 1, 2,..., n)

and nK = /xK(K, A) (K = 1, 2,..., N)

be the successive minima of K in L, and of K in A, respectively. Let the N
products

MK = MVlV^Vp = mVimV2...mVp (1 < vx < v2 < ... < Vp < n)

be numbered in the order of increasing size. Then

c,MK < iuK < itfK (K = 1, 2,.., N).

16. In order to connect the last theorem with a known result, we shall
study the special case when 2? = n—1, hence N = n and P = n— 1, a little
more in detail.

In this particular case, both K and K = [Kf1-^ lie in Rn. There is a
further convex body in Rn that now becomes of importance, the body
denoted by K-1 which is polar-reciprocal to K with respect to the unit
sphere Gn. This body K.-1 consists of those points Y in Rn for which

| Z 7 | < 1 for all X e K.
Here XY = x1y1-{-x2y2-\-...-\-xnyn denotes the inner product of the points
X = (x1,xi,...,xn) and Y = {yliyi,...,yn).

Assume, in particular, that K coincides with the unit sphere On. The
same is then also true for K-1 because the hyperplanes XY = ± 1 in
F-space have the distance 1/|X| ^ 1 from 0, and so K~x is the intersection
of the half-spaces XY < 1 where \X\ = 1.

Next, the compound body K = [KJn~v now likewise becomes the unit
sphere Gn. For the distance function O(H) of K is in this case given by

<D(S) = inf 2
P=I

where the lower bound extends again over all decompositions

of 3 . Here the compound point [Jf^X^,...,^*1-1)] in Rn has as its co-
ordinates the distinct minors of order n—1 of the (n— 1) X n matrix formed
by the coordinates of the points X{1), X(2),..., X^-u. We may assume that
these minors have once for all been numbered and given appropriate signs
in such a way that the inner product X. [X(1), X(2),..., X^-1)] becomes equal
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ON COMPOUND CONVEX BODIES 373
to the determinant {Z,Z<«,Z<a>,...,Z<n-1>}> identicaUy in the arbitrary
point X. The decomposition of S implies therefore that

and here

by Hadamard's determinant theorem. Therefore

whence O(S) > J |Z<1>||Z<2>|...|Z<71-1>| > |S|.
P=I

Hence K: O(S) < 1 is contained in Gn: |S | ^ 1. To prove that also 6rnc= K,
it suffices to show that every point S with |S | = 1 belongs to K. We can
select n— 1 points Z(1), Z<2),..., Z*"-1* on the unit sphere |Z | = 1 which are
orthogonal to S and also in pairs to one another, and for which, moreover,
the determinant {H,ZW,Z<a>,...,Z<n-1i} has the value + 1 . The compound
point [Z<1>,Z<a>,...,Z<n-1>], = H say, belongs then to K, and it is identical
with S because H is likewise orthogonal to all points Z(1), Z(2),..., Z( n - 1 ) and
has the property that

EH = {S,Z<»,Z<2>,...,Z<»-1>} = + 1 .
17. There is still a simple connexion between K = [KJ"--^ and K~x when

K is now an arbitrary bounded, closed, symmetric, convex body in Rn.
Before proving this, let us first consider the effect of an affine trans-
formation X -> X' = CIX applied to K on the two corresponding bodies
K and K~x. Denote again by co ^ 0 the determinant of Q; let further
X, Z<«, Z<2>,..., Z<B-« be n arbitrary points in Rn. From the definition of
the compound transformation Q^1-^,

Next, from the multiplication law for determinants,
{QX, QZ<« QX®,..., QZ^-D} = o> {X, Z<

It follows then from the relation between the compound and the deter-
minant given in the last section that

In this identity, [Z(1), Z(2),..., Z(n-1)] can be made to coincide with any given
point Y in Rn. Hence

identically in X and Y.

On compound convex bodies. I 587

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 571–593



374 K. MAHLER

Therefore, as Q, transforms K into the body Q.K, and as K =
simultaneously becomes D^n~^K, the polar-reciprocal body K~x is at the
same time changed into the new body co" 1 ^*"^" 1 .

18. The desired connexion between K = [Kf1-^ and K~x is now easily
found. Just as in the proof of Theorem 1, let E be the ellipsoid of smallest
volume circumscribed to K so that again

n~*E c K s E. (1)
Let further X -> X' = Q.X denote the affine transformation which changes
the unit sphere Gn into E = Q.Gn; it may be assumed, without loss of
generality, that the determinant to of Q is positive. The compound body
E = [$](»-« is then equal to E = Q<n-^Gn since [Gn}n-» = Gn. Hence

n-i(n-DQin-l)Qn g K C tf»-«0w, (2)

in the same way as in the proof of Theorem 1.
An analogous relation holds for K-1. It is obvious from the definition

of the polar-reciprocal body that
{tK)-1 = t-iR-1 for t > 0, and Zf1 3 K^1 if Kx c K2.

Now 1? = ClOn and therefore, by the last section,

because G'"1 = (?n. Hence
to-i^n-uo^ c K-1 c riiw-1^^-1)^, (3)

whence, on combining (2) and (3),
n-^uiK-1 c K c toZ-1. (4)

In this inequahty, a> has the value
co = V(E)V(On)-\

and so, by (1), satisfies the inequahty
F(Z)F(On)~1 < a> < n ^ F ^ F C ^ ) - 1 .

Finally on substituting these estimates for a> in (4), we find that
n-^Vi^ViGJ^K-1 c K c T I ^ F C Z J F C ^ ) - ^ - 1 ,

and obtain the following result.
THEOREM 4. There exist two positive constants c9 and c10 with c9 < c10

depending only on n, with the following property.
Let K be a closed, bounded, symmetric, convex body in Rn; let K~x be its

polar-reciprocal body; and let K = [KJ71-^ be its (n—l)th compound body.
Then -1 c K c d0V(K)K-\

Remark. One can prove similar relations connecting the bodies
and [Kf1-^ when p = 2, 3,..., w— 1.
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19. We next introduce the reciprocal of a lattice. Let again L be any
w-dimensional lattice in Rn, of basis Zv Z2,..., Zn, say. Then L~x is defined
as the set of those points Y in Rn for which

XY is an integer for all X e L.
One shows without difficulty that L~x is likewise a lattice, viz. the lattice
of basis Z'x, Z'2,..., Z'n, where these points are defined by the equations

{lfA7t' (M=1>2 n)-
I t is also easily seen that

) = {d(L)}~\
Again the (n— l)th compound lattice A = [LJn-x) of L lies in Rn and

has the determinant
d(A) = {d{L)Y = {d{L)Y~\

We show now that L~x and A are similar lattices.
In the special case when L coincides with the lattice Lo of all points with

integral coordinates, it is evident that also L~x = Lo and A = Lo. Let
now X -» X' = Q.X be the affine transformation which changes Lo into
L = Q.L0; Q. is of determinant co = d(L). Then also

A = [ClL0}n-» = Wn-VL0 and L~x = {d(L)}-lC**-»L0,
the second equation following from the formulae given in § 17. Hence

L-x = {d(L)}~xA = {d(L)}-x[LJn-x\

20. The following result can now be deduced from Theorems 3 and 4.
THEOREM 5. There exist two positive constants c n and c12 with c n < c12

depending only on n, with the following property.
Let K be a closed, bounded, symmetric, convex body in Rn, and let K~x be

its polar-reciprocal body; let L be an n-dimensional lattice, and let L~x be its
reciprocal lattice; finally let

mk = mk{K, L) and m'k = mk{K-x, L~x) {k = 1, 2,..., n)
be the n successive minima of K in L, and of K~x in L~x, respectively. Then

c n < mkmn_k+1 < c12 (k = 1, 2,..., n).
Proof. By definition, m'k is the smallest positive number such that mk K~x

contains k linearly independent points of L~x; and similarly fxk = ^(K, A),
where K = [KJn-x) and A = [LJn-x), is the smallest positive number such

that fxk K contains k linearly independent points of A, and so - ^ - K contains
d(L)

k linearly independent points of {d(L)}~xA = L~x. Now, by Theorem 4,
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It follows therefore that
7(1) ^ , / V(K)

n _ _ .

t h a t i s , * ' m f c ^ J f c ^ \>mk (^ = 1,2,...572,). (1)
c10 V \ A / C9 " \ A ^

In the present case p = n— 1, the numbers i / K of Theorem 3 take the
form

because this numbering implies that
M1 ̂  J ^ < ... < ik^,

as it should be. Theorem 3 states now that

c7Mk < ixk < Mk (k= 1, 2,..., n),

so that, in the present case,

c1mxmi...mn < ftfcmn_fc+1 < w1ma...wn (* = 1, 2,..., »).

We replace here fxk by its lower and upper estimates from (1) and obtain
the inequalities

C7C9 ^7£A ^ mkmn-k+X ^ c10

where, by Minkowski's theorem (1) in § 12,

2 «1w,. . .« l tF(jq
w! ̂  d{L) ^ '

Therefore, finally,
2n(n\)-1c7c9 ^ mftmn_fc+1 < 2%0 (k = 1, 2,..., n),

whence the assertion.
Theorem 5 is not new. After an earlier result by M. Riesz (7), I proved

(6) that ! ^ mkmn_k+1 ^ [n\f (k = 1, 2,..., »).
Here the upper bound can be further improved by means of recent results
in the geometry of numbers, e.g. to

where Gn is the unit sphere in Bn and A(On) is its lattice determinant, just
as before. In the present paper the detailed proof of Theorem 5 has been
given for the sole purpose of showing that this theorem is a consequence
of the more general theory of compound bodies.
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21. My original work on Theorem 5 arose from the wish to generalize the

so-called transfer principle of A. Khintchine (5) in the theory of Diophantine
approximations. We shall now deduce from Theorem 3 a very general transfer
principle which contains most of the previous results as special cases.

We choose for the convex body K in Theorem 3 the cube

of distance function
F(X) = maxd^l, |aa|,..., \xn\).

The corresponding compound convex body K = [K]^ in RN is somewhat
complicated in the case of general p, and it is not quite simple to find its
distance function O(H). Fortunately, there is no need to give the exact
expression of <D(H), and a rather crude inequality will suffice.

Let W(~\ -

denote the distance function of the cube Q: Y(E) < 1 in RN. There
evidently exist two positive constants c13 and c14 with c13 < c14 and depend-
ing only on n and p such that the cube cf̂ 1 Q: T(H) ^ c{^ is contained in K,
while K is contained in the cube cf̂ 1 Q: T(S) < cf̂ 1; this follows from 0
being an inner point of K, and K being bounded. Hence

c13Y(H) < O(S) < c14T(S) for all E e RN, (1)
giving the wanted estimate for O(H).

Let now L be any lattice in Rn of determinant d(L) = 1, and let
A = [LJpy> be its ^>th compound in RN; then also d(A) = 1. The points
X = (x1,z2,...,xn) of L have the coordinates

xh = 2 aAfc% (A = 1, 2,..., w),

where Mj, U2,..., un run over all integers; the coefficient matrix (ahk) may
be assumed to have the determinant + 1 . Similarly, the points

3 = (£i,£a»-••>£#)
of A are given by

f g t (H = 1, 2,..., tf),
where also vlt v2,...,vN assume all integral values, and where the coefficient
matrix ( a ^ ) is likewise of determinant + 1 , and has as its elements the
minors of order p of the original matrix (ahk), arranged in the order that
was fixed in § 1.

As before, let mk = mk(K,L) and /iK = ^K(K,A) be the successive
minima of K in L, and of K in A, respectively; also let the products 3tK be
defined as in Theorem 3 so that

c7MK < /JLK < MK (K = 1, 2,..., N). (2)

On compound convex bodies. I 591

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 571–593



378 K. MAHLER
Minkowski's inequality (1) in § 12 takes the form

(nl)-1 < w 1 m 2 . . . w n < 1, (3)

because in the present case V(K) = 2n and d(L) = 1.
Since m1 < ra2 < ... ^ mn, Mx = mxm2...mv is the smallest of the N

products JfK- The minimum value of Mx is attained when all minima mk,
where 1 < k ^ p , have the same value, and then Mx = raf. On the other
hand, by (3), ,

Mi< .

and here the right-hand side becomes a maximum when the denominator
is a minimum. This is obviously the case when ra2 = ra3 = ... = mn, and
then (3) gives m, = m3= ... = mn^ (n! m,)-**-*,
whence Mx = {mp+1mp+2...mn)-1

We have thus proved that

and therefore, by (2), also

c7ra? < fxx

The number ^ is the minimum value of O(S) for the points S ^ 0 of A.
Now, by (1), the quotient 1F(H)/O(S) lies between two positive constants
that depend only on n and^p. Hence, with a slight change of notation, the
following theorem has been proved.

THEOREM 6. There exist two positive constants c15 and c16 depending only
on n and p , with the following property.

Let (ahk) be a real square matrix of order n and determinant 4-1, and let
(a<£k) oe ite P'th compound matrix, which is formed by the minors of order p
of the first matrix. Put

F(X)= max (I J ahkxk\) and O(S) = max (I f a

and denote by m and fx the minimum of F(X) and that of O(S) at all points
X = (xvx2,...,xn) T£ OandE — (ix,^,—,^) ^ 0 with integral coordinates,
respectively. Then

vMn-V and

Theorem 6 contains most of the older transfer principles as special cases,
and it allows similar applications, e.g. to inhomogeneous Diophantine
approximations. It is further possible to deduce from it a still more general
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result involving, in addition to the real linear forms, linear forms with
coefficients in one or more ̂ -adic fields.
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