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SUMMARY. Let ||z|| denote the distance of the real number x to the nearest
integer. In this paper, Mahler proves that, if v and v are coprime integers
satisfying u > v > 2 and € > 0 is an arbitrarily small positive number, the

inequality
u n
I5)

is satisfied by at most a finite number of positive integer solutions n. He uses
this result to show that, except for a finite number of values k,

(k) = 2 - {(g)‘“J 2

where g(k) is the function in Waring’s problem.
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1. About twenty years ago, in a note of the same title [2], T obtained
the following result.

THEOREM 1. Let w and v be relatively prime integers satisfying

‘u>v>>2 and let € be an arbitrarily small positive number. Swuppose the

inequality
‘ (%)n— (nearest integer) | << e~ (1)

18 satisfied by an infinite sequence of positive integers ny, ny, .... Then

. n
hr,ri, sup T'“:l = 0,
The proof of this theorem was based on a method of Th. Schneider [6]
as extended by myself [3]; see also a recent paper of Schneider [7].
It may be of interest to note that the new method of K. F. Roth [5]
for studying the rational approximations to algebraic numbers enables
one to replace Theorem 1 by the following much stronger result.

TrEoREM 2. Let u, v and € be asin Theorem 1. Then the inequality (1)
is satisfied by at most a finite number of positive integers n.

This result has a curious application in connection with the value of
the number g(k) in Waring’s Problem. This number is now known for
k > 6, as a result of the work of several mathematicians (see Hardy and
Wright [1], 337), but the formula for g(k) depends on whether B is less
than or greater than 2¥— A4, where

4 _—_[(—z-)k] B—3k_2k4.

In the former caée, we have g(k) = 2¥4-4—2, in the latter case there is
a different result. It follows from Theorem 2 that the latter case can
oceur for at most a finite number of values of k; for if B > 2¥— A we have

- (3) < he(3)

and thus (1) holds with u=3, v=2, e=logt, n==F.
It follows that, except possibly for a finite number of values of k, we have

a=24[(2)]->
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2. Roth’s theorem states that if # is an irrational algebraic number,
and if y > 2, there are at most finitely many rational numbers p/q (g > 0)
satisfying the inequality

’0—£{<-1—.
q q

The proof actually remains valid if ¢ is rational, provided only rational
numbers p/g distinct from & are considered, though of course the result
is then trivial.

The method of my- paper [3], by which I formerly generalized
Schneider’s result, can be used to prove an analogous extension of Roth’s
result, and this has been carried through by Ridout [4]. He proves:

THEOREM 3. Let & be any algebraic number other than 0; let

Py, ..., P, Q,, ..., Q be finite sets of distinct primes; and let o, B, y, ¢ be
real numbers satisfying

0<a<l, 0KBKL, y>atph, ¢>0. (2)

Let p, q be restricted to be integers of the form
p=p*Ph...Ph, q=q%@% ... Qk,
where hy, ..., by ky, ..., &y are non-negative integers and p*, g* are integers
satisfying
0<|p*|<ep?, 0<g* <ol (3)

There exists a positive number C depending on &, «, B, y, ¢ and the primes
P, ..., @, ..., such that, for all p and q of the above form, we have

‘z‘}——l;-|>~q0—y probided ﬁ——;—%O. (4)

3. We can now easily deduce Theorem 2 from Theorem 3, and even
obtain a slightly more general result.

Let & be any positive algebraic number, and let #, v, ¢ be as in
Theorem 1. Put
log v

A ~logu’

so that v=w"and 0 <A< 1. Let Py, ..., P, be the distinct prime factors
of v and @, ..., @, those of u. Take
w=1-2, B=0, c= (20)+1,
y = 1—A+}e(logu)t > atp.
Apply Theorem 3 with
p=p*v*, ¢=wr (¢*=1),

where p* denotes the integer nearest to J(w/v)». This is permissible
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because v™ is a product of powers of Py, ..., P, and " is a product of powers
of @y, ..., @. If n is sufficiently large, we have

0 < p* < 20(ufv)® = 29 vV
whence 0 < p* < oplr,

so that (3) is satisfied. Further, ﬂ(u/v)" obviously cannot be an integer
if n is sufficiently large. Hence (4) implies that

|} (ufv)r—p*| > (ufv)" Cu—r" = C exp (—Len).
Thus for all but a finite number of values of n we have
| (ufv)r—p*| > e~en, (5)

Theorem 2 is the case & =1.

The conclusion would no longer hold if u/v were replaced by a suitable
algebraic number, e.g. by 4(144/5), and & were again taken to be 1. It
would be of some interest to know which algebraic numbers have the
same property as u/v in Theorem 2.
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