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AN INTERPOLATION SERIES FOR CONTINUOUS FUNCTIONS

OF A p-ADIC VARIABLE

KURT MAHLER

SUMMARY. Let f(z) be a function on the set I of p-adic integers. The subset
J of the non-negative integers is dense on I, hence a continuous function f(x)
on [ is already determined by its values on J, thus also by the numbers

an = Z(D’“(Z)f(n —k) (30).

k>0

In this paper, Mahler proves that {a,} is a p-adic null sequence, and that

@) =% an(7)

n=0

for all x € I. Thus, f(x) can be approximated by polynomials. Mahler goes on
to study conditions on the a,, under which f(x) is differentiable at a point or
has a continuous derivative everywhere on I.
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An Interpolation Series for Continuous Functions

of a p-adic Variable.

Meinem Lehrer C. L. Siegel zu seinem 60. Geburtstag gewidmet.

By K. Mahler in Manchester.

The theory of analytic functions of a p-adic variable (i. e. of functions defined by
power series) is much simpler than that of complex analytic funktions and offers few
surprises. On the other hand, the behaviour of continuous functions of a p-adic variable is
quite distinct from that of real continuous functions, and many basic theorems of real
analysis have no p-adic analogues. Thus there is no simple analogue to the mean value

theorem of differential calculus, even for polynomials like (Z ; there exist infinitely many

linearly independent non-constant functions the derivative of which vanishes identically;
and if a series f(z) = ¥ f,(x) converges and the derived series g(z) = f,(z) converges
uniformly, g() still need not be the derivative of f(x); etec.

The main paper on the subject is that by J. Dieudonné, Sur les fonctions continues
p-adiques, Bull. Sci. Math. (2) 68 (1944), 79—95. I mention, in particular, his p-adic
analogue to Weierstrass’s theorem on the approximation of continuous functions by
polynomials, and his existence theorem for differential equations. Most of his paper deals
with the more general class of p-adic valued continuous functions on compact totally
discontinuous spaces and falls outside the subject of this note.

I had already become interested in the subject before I learned of his paper. Earlier
this year, J. F. Koksma (who then also did not know of Dieudonné’s work) suggested to
me that there should be a p-adic analogue to Weierstrass’s approximation theorem. The
solution which I obtained finally proved to be very different from that by Dieudonné.

There is no great loss of generality in restricting oneself to functions f(z) on the set
of all p-adic integers. The subset J of the non-negative integers is dense on I. Hence a
continuous function f(z) on [ is already determined by its values on J, hence also by the
numbers

= 3 (— 1)"(Z)f(n—- B (r=0,1,2..)

k=0
I prove that {a.} is a p-adic null sequence, and that
s z
f(w) - n2=:0 - (n)
for all z € 1. Thus f(z) can be approximated by means of polynomials.
I further study conditions for the a, under which f(z) is differentiable at a point,

or has a continuous derivative everywhere on I. Thus, by way of example, 2,'@ p'(x,) is
r=0 14
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continuous, but nowhere differentiable, on I (an entirely different example was given
by Dieudonné); and 3 p” (p’ x 1) has a continuous derivative for z &= — 1, but is not
r=0 -

differentiable at £ =— 1. Two problems on differentiation are stated which I have not
succeeded in solving; they seem well worth of further study. I conclude the paper with
a result on a special infinite system of linear equations.

1. Throughout this paper, p is a fixed prime; R is the field of all p-adic numbers;
|z |, is the p-adic value normed such that |p |, =1/p; I = {z; |z |, <1} is the ring
of all p-adic integers; and J is the subset of all non-negative rational integers. Thus J
lies everywhere dense in I.

Limits both of real and of p-adic numbers will occur, but it will in each case be clear
from the context which kind of limit is meant.

All functions f(z) will be defined for all z € I and have values in R. We shall mainly
be concerned with functions that are continuous at all points of /, or that have a con-
tinuous derivative on I.

2. With each function f(z) we associate the infinite sequence of coefficients
i n
=B (fo—h =012
E=0
and the formal interpolation series
% (1) — va(®
o) = Zan 7).
These coefficients a, are the successive differences at x =0 of the sequence
{£(0), f(1), f(2), ...}, and they may also be defined by the recursive formulae
f*(r) =f(n) (n=0,1,2,..1,

. in which f*(n) reduces to a finite sum.

3. Lemma 1. The series f*(z) = X an (z) converges for all x € I if and only if

n=0

lim a, = 0.

n—>a

Proof. (a) The condition is necessary because e. g. the series

1) = 3 (—1)a,

n=0 .

does not converge unless its terms F a, tend to zero.

(b) Assume that lim a, = 0. For every z ¢ I select a y ¢ J such that

Py g
conl T

Then (ni/_ k) is a positive integer, hence

[(nik)‘éi (k=0,1,2,...,n).

k

- (x-y
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where 2, denotes a p-adic integer; therefore also

] _ |
(x y)fg1 (k =0,1,2, ... n).
k »
The identity

implies then that

and so

z

) < |an|p—~0 as n— oo,
3

giving the convergence of f*(x).
This proof shows, moreover, that f*(z) converges uniformly for z ¢ I, hence that

its sum is a continuous function because the terms are polynomials and therefore con-
tinuous.

Lemma 2. Let lim a, =0. Then f*(2) =f(z) if z € I.

Proof. Both f(z) and f*(z) are continuous on I, and they are equal when z ¢ J.
Since J is dense in I, every z € I is the limit of a sequence {y,} of elements of J. Then

1*(yn) =1F(yn) (n=1,2,3,...),
and so, by continuity,

f*(x) = lim f*(yn) = lim f(yn) = f(2).

4. Theorem 1. Let f(x) be continuous on I. Then
lim a, = 0, and therefore f(z) = X a, (z) if xel.
n—>ow n=0

Proof. As a continuous function on a compact set, f(z) is both bounded and uniformly
continuous on I. As we may, if necessary, multiply f(z) by a power of p, there is no
restriction in assuming that .
[f(@) [, =1 if wel.

Further, if s is any positive integer, there is a second positive integer ¢ = ¢(s) such that
|[H@)—f@) [p=p~if z,yel, |[z—yl,<p~"

In the remainder of the proof z and y may be restricted to the set J. For every
z € J there is a unique integer g(z) € J satisfying

[{(@) —g(@) [, =p~*, 0 <g(x) S pr—1.
This function g(z) on J is periodic,
g(z) =¢(y) if x,y € J, 2 = y(mod p*).
For the congruence is equivalent to |z —y |, < p~*, and so
lg(2) — &) |s = | (8(a) — f(2)) + (F(@) — 1) + ({() —&(@) |o
< max (| g(z) — f(2) Im | f(2) — £(9) |s |f(y) —gly .p) =p

whence g(z) = g(y) because distinct values of this function are, by definition, incongruent
(mod p?).

Journal fiir Mathewatik, Bd. 199, Heft 1/2. 4

DOCUMENTA MATHEMATICA - EXTRA VOLUME MAHLER SELECTA (2019) 599-614



603

CONTINUOUS FUNCTIONS OF A p-ADIC VARIABLE

Mahler, An Interpolation Series for Conlinuous Functions of a p-adic Variable.

26
In analogy to a, define now
b= 20 (e —k  (=0,1,2..)
=0
(n=0,1,2,...).

so that b, is a rational integer. Evidently
|@n—ba|p = p—*

Next let o be a fixed primitive p’-th root of unity; thus
P ptif m =0 (mod p?),
0 if m £=0 (mod p%).

S om =
n=0
Further put

pt-1
Am_.:p»tzw—mng(n) (m:0y1727"‘7pt_1)'

n=0
LS

pt-1 P
P

t-1
o™ Mg (r) = p~* Zg(r) A
r=0 m=—

wm (n—-r) — g (n)

=

Then, conversely,

Iy

pt-1 Pt'l
2 j’mwmn — p—t 2
m=0 m=0 r=
., pt— 1. Here g(n) is periodic in » with the period p?, and so is the sum

ifrn =0,1,2,..
on the left-hand side. Hence
pt-1 -
g(n) =23 Anow™ for all ne J,
m=0
pt—l pt—l n n
> lmwm(n~k) =3 lmz (— 1)1; (k) PRl
k=0

n
m=0

whence
n
k

by =3 (—1)*

k=0

)m=0

(

and finally

pt-1
bo= 3 Am(w™—1)" for all n¢ J.
m=0

Let now K be the cyclotomic field generated by w, and let o be the ring of all alge-

braic integers in K. Not only w, but also the quotients
(m=0,1,2,...,pt—1)

%ﬁ}i;: 0™ 4 m=2 4 o+ 1
and the products

pt-1
Pilm =3 o-"g(n) (m=0,1,2,...,p*—1)

n=0

are elements of 0. The expression for b, implies therefore that
ptw—1)"baco if ned.

It is well-known that the two principal ideals (p) and (w —1) in o satisfy the

relation
(p) = (@ — 1y 70"

which expresses (p) as the power of a prime ideal. Put
N=[np~“(p—1)7]

where, as usual, [a] is the integral part of a. Then p* is a divisor of (w — 1)*. The rational
numbers p ~¥b, are therefore algebraic integers and so are rational integers. Hence
|ba |p = P77,
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whence
|bafs =p=*if n = p*=2(p —1) (s + 1), = ny say,
because N = s + t if n = n,.
On combining this with the earlier inequality for a, — b, we obtain the result that
| an |p=](@n—bn) + bu |p < max (| an—"bn |p, |ba ) < p~* if n=n,.

Here s may be arbitrarily large, and n, depends only on s because ¢ is a function of s.
Therefore

lim a, =0,
n—>oo

giving the assertion.

5. Lemma 3. Let f(z) be continuous on I, and let x, y € 1. Then all series

— . Y) _
an(y) = 3 n (k) (n=0,1,2,...

converge, and further

lim ay(y) = 0, /(@ + 1) = Z ) 7)-

AN
-

Proof. The convergence of a,(y) follows from lim a,,; = 0, since i(%)
k—>o |

?
Next {a.(y)} forms a null sequence because

[an(y) |p = max |@nx|p—0 as n— oo,
k=0,1,2,...

x4ty 2 m(x Y
m ( ) _miamngo (ﬂ) (m_n)
y

® /oy © _ ® © ¥\ o z
20 2o (a2 = 2 () Zow () = 200 ()
Here the reordering of the terms is allowed since we are dealing with p-adic series, and
since {a,} is a null sequence.

Finally
flz+y) =

m

6. We next establish necessary and sufficient conditions, in terms of the coefficients
a,, for the existence of a derivative of f(z). The proof will be based on the following
Tauberian theorem.

Theorem 2. Let {a,} be a p-adic null sequence. If the p-adic limit
?a, (z—1
A= lim _"( )
|z]p—0 né:l n \n—1
extended over all elements x == 0 of J exists, then
D lm® =0 i) i=s (o st
0 fim =05 ) 2= 3 (T = Z -

The proof of the assertion (i) is rather long and involved and is indirect. It will
be carried out in several steps.

7. As a first step assume that A exists, but that
Qn

lim'sup

n—>0

= o0,
r

4.
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There are then infinitely many integers n,, n,, ng, . . . such that
0<n <n,<mg <+--,
a, =0 for r=1,2,3,...,

. a
lim| " = oo.
r—>m n, P

Since, by hypothesis,

o

lim |a, |, = lim | a,
n—o 0

=0,
. .
necessarily
lim | n, |, = 0.
The sequence {n.} may be replaced by any infinite subsequence. Hence there is
no loss of generality in further assuming that
Ay an,.

R

nl forn=1,2,...,n—1 r=1273,...).

? nr
In the limit defining 2 we may allow z to tend to zero over the sequence {r,}; thus
. Ya, (ne—1\ . @, "V a, (n,—1
petm 3 () B ()

Here, by the construction of n,,

lay (n,—1\ n, .
b (n~1)‘,<"ﬂ,1, n=1,2.. . n—1)
and therefore
| @n, |
Alp=1im |—=| = oo,
| lp ’_m) n oy

contrary to hypothesis. )

8. As a second step, assume that A exists and that {%‘ is a bounded sequence, but
not a null sequence. As we may multiply the coefficients a, by a fixed power of p and
may further change finitely many of these coefficients arbitrarily, without affecting the
assertion, there is no loss of generality in assuming that

lan ], <1, 2 <1 (0=1,2,3,...),
e
im sup | 2| —
hrnxiiup! 7 b 1.
The existence of the limit 4 now implies that there is a positive integer s such that
| zﬂ x—~1_§<1_. < p-s
2Rl s o<ish s
and this inequality remains valid if s is increased. We satisfy the condition for = by
putting .
z = p*(¢é + 1) where &¢ J.

Next, since {a,} is a null sequence, evidently

lim % = 0.

n—>o

»*tn
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Therefore, on increasing s, if necessary, there is also no loss of generality in further
assuming that
Qg 1.
|—| =—=if p*tn, n=p*.
n L P !

Hence, by | (z_i) I <1, the inequality for A implies that
- p

o1l (x—1 ? g, (t—1 | 1.

an Gn <t = .

Z (T 20T sp e nees
?*ln

9. We introduce now a simple congruence for binomial coefficients (]13) where M

is a positive and N a non-negative integer. Let
M=go+g@p+ - +&p, N=ho+hp+ -+ hp

be the representations of M and N, respectively, to the basis p; here the digits g; and ;
assume only the values 0,1, ..., p—1. It is easily proved that

(¥)= () ()~ () emor

We apply this formula to (::i) where z = p*(& + 1) and & € J, and either

n < p*—1, or n = p* and p* | n. In the second case n may be written as
n = p3(v + 1), where ve J.
Then z — 1 has the representation
t—1={p—D+@—Dp+--+@E—Dp}+gp +gunup*+ - +gp;
and n — 1 has in the first case the representation
n—A={ho+hp+ -+ h p}+0-p 4+ 0-pHf et 0-p,

and in the second case the representation
n—1l={p—1)+@—Dp+-+@—1p7}+ hp'+ hesyp*** + -+ + hep.
Here g, 8417« -+ 85 Ry Ray oy sy} Bsy Beyy, - - -, By ave again certain digits 0, 4, . . ., p—1.

From the congruence above it follows at once that for n < p*—1

G =)0 () = o omer e mod p,

and for n = p*(» + 1)

()= (B) () () = ) cmot o

for in the second case & and » allow the representations
=g + g™ + -+ gy v =hp' + haypt 4 hep

Sincei%—""—1 < 1, we thus obtain the formulae
1 V4

s
? 1a"
n

z—1) #'1 a,
2z (n__i)—"i‘Jl 2(n) ==+ e(2)
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and
°oa, (x—1\ & (&
2500 =z ) e
‘|n

Here the sign

K(m) = (— hethtorth,
depends only on n and not on z. Further we have put

n e

=% if n=ps(v+1),
and we denote by o(z) and o(x) two p-adic functions of x such that

‘ 1 § 1
IQ(CE) |p :“;7 IQ‘(iL‘) l» 2'17'

10. The estimate for A takes now the form
p’ 1

1.
‘ +e(x)+2a,(5)+a<x)—a <Zitges
P
or
5
Etxv = p+ 7(é).
»=0
Here u denotes the new constant
=5 o,
p=4t— 2 zm-
and 7(£) is a p-adic function of & such that
1
I ©(£) Ip g_-
Hence, on putting successively & = 0, 1 2 ., we obtain the infinite system of

equations
o= u+7(0), wotay=p+7(l), do+ 20+ = u+7(2),
o+ 30+ 3yt ag=pu+7(3),...
and deduce at once that

<dity=—123. ...
P

l"‘” 'r

On the other hand, it was assumed that

an

<1if p*+n, n=ps,
P

=1.

?

lim sup | —

n—o

Hence there are infinitely many suffixes n for which

Pt ln and

Ay
Dy
"‘L

and so there exist also infinitely many suffixes » satisfying
l Gy lp: 1
contrary to what has just been proved.

Thus the hypothesis at the beginning of § 8 likewise leads to a contradiction. This
proves the assertion (i) of Theorem 2.
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11. Instead of the assertion (ii) of Theorem 2 we prove now a slightly stronger
result.

Lemma 4. Let {a_':} be a p-adic null sequence. Then the limit
. ® an [x—1

extended over all x € I exists and is equal to

©

a.

— — {)yn-1 20
| h= 21
Proof. Let s be any given positive integer. There exists a positive integer N such
|
that‘a—r: < p—*if n > N, hence
| Ip

=p*

n=N+1 lndgr o \n—1),=

3 (i < prand| 3 ﬂ(x“i)
i»

here both series converge as their terms tend to zero.

Yo, (x—1
2 — 1
n=1 I \R—
is a polynomial in z, hence is a continuous function, and so

N, g1\ Ya (—1\_ ¥ 3
lim 3 (") - g8 T )~ F et

s—0ne1 B \n—1 n=1 I n=1

The finite sum

Therefore a positive integer ¢ = ¢(s) exists such that

‘ {an r—1 il . a, |
2 (T )z

n=1 n n n=1

Spif |z, < p-t.
?

On combining these estimates, we find that

® g (x—1 ° | .
2 ( )*2‘(—« 1)"—1%lp§ pif |z, <p-t.

n=1 7 n—1 n=1 |
Since s may be arbitrarily large and ¢ depends only on s, the assertion follows at once.

xr
n

12. Theorem 3. Let f(z) = 3 a,,(
n=0
in Lemma 3. The function f(z) is differentiable at a point y € I if, and only if,

)be continuous on I, and let a,(y) be defined as

lim 2@ _ ¢
n

n—>0

L]

and then

) = o s Ga(®)
f@) =312V

n=1

Proof. By Lemma 3, {a.(y)} is a null sequence, and
fa+ 9 =2a0)(]).
n=0

Therefore

z < n] S n n—1

f(:c—l-y;——f(y):i L“;a"(y)(x) zgﬂyl(x—i)

The assertion follows therefore immediately from the definition of the derivative and

from Theorem 2 and Lemma 4. -
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13. Theorem 4. Let f(z) = X ay (z) be continuous on I. If the derivative f' (z) exists
n=0
and is continuous for all x ¢ I, then

(i) all series a, =3 (— 1! q%cﬂ (n=0,1,2,...) converge;
F=1
(ii) the sequence {a,} is a null sequence; and
(i) @ =2a ()i el
n=0 n
Proof. Assume, first, that f'(y) exists for all y € J: By Theorem 3, the sequence

)= (47 0)

is a null sequence. As this holds for each y = 0, 1, 2, .. ., the simpler sequences

{q1+“ G24n  Q34n }
b

1 ' 2 3
are likewise null sequences when n = 0,1, 2,... . The series a, therefore all converge,
and f'(y) is given by

o =20 20— gq () tyel.

n=0
Hence the formal interpolation series
o) = Za (7).
which for z ¢ J reduces to a finite sum, satisfies the equations
(@) =f'(2) if zeJ.
Secondly, let f'(x) exist and be continuous for all z € /. By Theorem 1, f'(z) can
then be developed into a convergent interpolation series, and this must be exactly the

series f**(x) because f**(x) coincides with f' (z) for x € J. Therefore, again by Theorem 1,
the assertions (ii) and (iii) follow at once.

14. By way of example, let us consider two special functions. First, let

f(l') — g.pr (:’) = z";a” (’xl) where Ay = {p’ if n= p"

s Py 0 otherwise.
Hence

z z . x

p'2n
and so, in particular, -

U ST P R R PR
p. '='P pr_pu + p px+1 ‘px + p ps+2 _.‘pg + + 0‘3('”)7
where

ia.(x)lpg% (s=0,1,2,...).

a,(z)

_Therefore l~~ n—} is not a null sequence, and so, by Theorem 3, f'(z) does not exist.

Thus while f(z) evidently is continuous, it is nowhere differentiable on 7.
L %3
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In his paper, Dieudonné constructed already a function of the same kind by an
entirely different method. Let x = go + g1 p + gop* 4+ * - - be the p-adic development
of z € I; the digits go, gy, g, - - - assume only the values 0, 1, . . ., p — 1. Then the function
f(z) defined by

f@) =g +gp+ap+--
is continuous but non-differentiable on I provided that p = 3.
15. As a second example take

_mr T M“ x _p'ifn=p’-—1,
f(z) —ré;l’ (pr_ 1) =2 an (n) where a, “"{0 otherwise,

n=0
so that
w@ = 30 (, 5y
pTzn+1 pr—n—1
First let x = — 1. Evidently
—1
w—0= 3 ¥, )= 3
2 p—n— r
p'zntl p'2n+1
and therefore
ar(=1) _ oo P
4 Ky 1—p°
Hence {ﬂ' %Fll} is not a null sequence, and f'(— 1) does not exist.
Assume next that x &= —1. Then a"’(lﬂ— may be written as

a(z) 1 rPP—n ( z+1 )
n x+1p,§+1p n pr—n)’
Here the summation extends over all suffixes r = s + 1 where s is the integer defined

by p* < n < pst1. Now it is obvious that

p’fn; =1ifr=s+41,
I n ir
and ( ;i i i) is a p-adic integer. Therefore it follows from the series that
\ Can(z) | . pTeHD 1

no b= gl SaleFi)

and hence alr(bf)—

} is a null sequence; thus f'(z) exists. It is not difficult to show that

f'(z) is in fact continuous if z = —1.
One can also easily verify that all series a, converge, but that {a}} ist not a null
sequence.
16. I have not succeeded in solving the following problems which deserve further
study?).
Problem A. Let {a,} be a null sequence, so that f(z) = X an (z) is continuous on I.
n=0

Further assume that, (i) all series
’ g a
@, = Z (— 1)t (n=0,1,2...)
E=1
1) 1. W. 8. Cassels has just shown, by means of a very beautiful counter-example, that both problems A

and B have negative answers. The problem of finding necessary and sufficient conditions, in terms of the a,, for
the continuity of /(%) remains therefore still open. (16 November, 1956)

Journal for Mathematik. Bd. 190, Heft 1/2. 6
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converge, and (ii) {a,} is a null sequence. Does this kypothesis imply that |’ (z) exists and is
continuous on I?

Problem B. Let {a,} satisfy the same hypothesis as in Problem A. Is it true that then

limn|a,|,=0?

n—»w

If this limit is zero, then the conditions (i) and (ii) are satisfied, and f(z)= X a, (ﬁ)
n=0
has a continuous derivative on I, as is proved without difficulty.
17. I conclude this paper with an application of a theorem by Dieudonné and
Theorem 4 to a special infinite system of linear equations.

In his paper, Dieudonné established a general existence theorem for differential
equations in the p-adic field. The simplest case of this theorem states:

If g(x) ts continuous on I, then for every e > 0 there exists a function f(x) continuous
and continuously differentiable on I which is such that f'(z) = g(z) and |f(z) |, < & for
all zel.

For write again z as a p-adic series z = gy + g;p + g,p? + - - - and put

Tn=got+ &P+t gnap"
Further let s be any fixed positive integer. The sequence of functions

n—1

fn(®) = 2 (i — xi) g(x) + (2 — Zu) g(20) n=ss+1,s+2,...)

k=s
can then be shown to tend to a limit function f(x) with the required properties, provided s
exceeds a certain bound which depends only on ¢ and the given function g(z).
With the help of this theorem, we show the

Theorem 5. Let {a,} be any null sequence, and let € be an arbitrary positive constant.
There exists a second null sequence {a,} such that

z(—i)k—l%:g, lanlp<e  (n=0,1,2,...).

k=1
z
n
Dieudonné satisfying f'(z) = g(x) and |f(z) |, <efor z ¢ I. This function can itself

Proof. The function g(z) = Za;( ) is continuous on /. Let f(z) be the function of
n=0

be expanded into an interpolation series f(z) = 3 a, (z) with coefficients a, that likewise
n=0

form a null sequence. Since
tn =3 (— 1 () in— ),
k=0

these coefficients satisfy the inequalities | a, |, < e. Since further f(z) has the continuous
derivative g(z), it follows from Theorem 4 that the coefficients a, also satisfy the linear
equations of Theorem 5.

The result so proved suggests that theré may be an interesting general theory of
infinite systems of linear equations in infinitely many p-adic unknowns.

Eingegangen 6. Dezember 1956,
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A correction to the paper

An interpolation Series for continuous functions
of a p-adic variable.
By K. Mahler in Manchester.

Dr. M. A. Maurice of Amsterdam has drawn my attention to a serious error in the
proof of Theorem 2 of my paper in vol. 199 (1958), p. 23—34, of this journal. It is stated
on p. 29 that one may assume, without loss of generality, that there is a positive integer s
such that

Qn

n|»

gi if p*tn and n = ps.

This statement, unfortunately, is false and invalidates the proof.

I have not succeeded in altering this proof so as to make it correct. Therefore I
shall give here a new proof based on entirely different ideas.

The assertion to be proved is as follows.
Theorem 2. Let {a,} be a p-adic null sequence. If the limit
. Zoanfz—1
A= lim X ——( )
|zl,>0n=1 n\n—1

extended over all elements x = 0 of J exists, then:

(i) lim 2 —o0,

and
.. _ a (—1Y) _ 2  gyn—1Gn
g 2= 2R () =

The difficulty lies in the proof of (i). Once this relation has been obtained, the second
assertion (ii) follows immediately from the Lemma 4, p. 31, of my paper.

The new proof of (i) runs as follows:
Put

=3 ()

Since {a,} is a null sequence, f(z) is a continuous function of z € I; moreover,

f(0) = 0.
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Therefore, when 2z = 0 lies in J,

f(i;—_f@=%’ﬂ=zxﬂ(§) =2§&(::1)‘

n=1% n=17
The hypothesis of Theorem 2 is therefore equivalent to

(1) lim
|z],—>0 r |2zlp—>0 z
z+0 z+0
2€J z€EJ

We first prove that this limit formula implies the stronger equation

|E|‘,—>0 ]elp—»O ’
£+0 £+0
el fel

and so means that f(z) is differentiable at z = 0 and has the derivative
f(0) = 4.

The formula (1) holds if and only if, given any positive integer s, there exists a
second positive integer ¢ such that

We prove (2) by showing that then also

pgp—s if z€J, 0<|z|, =p~t.

(@ |28

<p- if £€I, 0<|E],<p
»

For let £ be an arbitrary element of I satisfying
0<|él,=p.
If f(£§) = 0, (4) certainly holds; hence we assume that
f(&) *0.

By the hypothesis, f(z) is continuous at x = £. Therefore a positive integer u
exists such that

|f(’7)_f(5)]p<]f(5)|p it ne€l, |n—¢&|,<p™
and hence also
[f) e =11&)]p if n€l, | n—E&, =p~.

Since & is a p-adic integer, we can now determine a positive integer x such that
| a— ]y < min(ps, £
Then z satisfies both the equations
[f@)]p =), and [z], =][§]s

and furthermore
0<|z[p=p~
It follows then that

?

1@ =)
& z

=p
14

and so the assertion (4) is a direct consequence of (3). —
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From now on we may assume that
1(0) =0 and f'(0) = 4,

because the hypothesis of Theorem 2 implies these two formulae. Define a function

g(z) by
0 if z=0,
= _ €l.
8(2) ——f(”)x o w0, ©

As the quotient of two continuous functions g(z) is certainly continuous for all z % 0;
but it is also continuous when z = 0 because

lim g(z) = lim (i(fl—l) =1—1=0=g(0).

]z|’,—>0 ]zlp—>0

Hence g(r) is continuous everywhere on /. But then, by Theorem 1 of my paper, it can
be written as an interpolation series

g@ = 2 u ;)

where {b,} is again a p-adic null sequence.
Now, identically in =z,

f(x) = Az 4 zg(z) = l(f) + 2 bpx (x),
“la) = emn G e G) = o2 )+ )

z d z z
f(z) = A (1) +”‘=§‘0b,. {(n +1) (n 1 1) +n (n)}
On the other hand, also

and here

so that

(=) =”§lan (z) )

and the interpolation series for f(z) is unique. Hence, on equating the coefficients of
identical binomial coefficients, it follows that

ay = A+bo+ by; ay=2(b, 4 ba); a3 =3(by+ by);....
Generally, for n = 2,
Ay = n(bn—l + bn)-
But then

lim
n—>wo

Ln
n

=1im | by_y + bap = 0,
7n—>w

4
whence the assertion (i).

Eingegangen 27. September 1960.
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