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On some inequalities for polynomials

in several variables

Kurt Mahler

Summary. In the theory of transcendental numbers, frequent use is made of a
certain inequality which establishes a lower bound for the height of a product
of polynomials in terms of the heights of the factors. A particularly general
and accurate form of this inequality was proved by A. O. Gelfond. In this note,
Mahler gives a new proof for Gelfond’s formula and also shows a similar, but
simpler, inequality for the length of a product of polynomials.
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ON SOME INEQUALITIES FOR POLYNOMIALS IN SEVERAL
VARIABLES

K. MAHLER

In the theory of transcendental numbers, frequent use is made of a
certain inequality which establishes a lower bound for the height of a
product of polynomials in terms of the heights of the factors. A particu-
larly general and accurate form of this inequality was proved by A. 0.
Gelfond [1; 168-173]. In the present note I give a new proof for
Gelfond's formula and also show a similar, but simpler, inequality for
the length of a product of polynomials.

1. Let

f(zlt . . . ,«„)= S ... S aAl...ftB«i*1...zn*»

be any polynomial in n variables xx, ..., xn with arbitrary real or complex
coefficients. For shortness put

H(f)= max
h1<=0,l,...,m1

/»„=<), 1 mn

= S ... S ...J,

and

M(f)= U , ...,aO==0.

These expressions # ( / ) , .£(/) and ifcf(/) will be called the height, the
length and the measure of/; unless/is identically zero, they have positive
values. We note that, for N = 1, 2, ..., n, the integration over fa in
the definition of M(f) may always be omitted when/ does not actually
depend on the corresponding variable zjy. Furthermore,

if / is a constant.
Let kx, ..., ICN, for N = 1, 2, ..., n, run independently over the integers

= 0, 1, ..., mN,
and put

hn=0
- ^ i f N<n>
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342 K. MAHLER

It is then obvious that

f(zv ..., zj = S fki(z2, .... zn)z*i for tf = 1, (1)

and
my

/*!... * ^ (**> • • •> *•) = S /fcl... &JV («*+i, ..., zn) zj* for J V > 1 . (2)

2. In a recent note [3] I proved that if
m

F(z) = Y, Akz*
fc=0

is an arbitrary polynomial in a single variable, then

On combining this result with the identities (1) and (2), we deduce imme-
diately that

= 2, 3, . . . , » - l ) ,

These formulae evidently imply the basic inequality

) (72
2) - ( I ;

We thus obtain an upper bound for the absolute values of the coefficients
of a polynomial in terms of its measure.

3. It is now easy to establish both upper and lower bounds for the
height and the length of a polynomial in terms of its measure. We begin
with the formulae for the length, which are rather simpler.

On summing in (3) over all suffixes kv ..., kn, it follows that

L(f) < 2mi+m*+~+m«M(/). (4)

This inequality is best possible, with equality e.g. when

Also, trivially,
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for all real tx, ..., tn. Hence, in the other direction,

M(f)^L(f). (5)

Also this inequality is best possible since equality holds when / is a
monomial.

4. Slightly less good estimates connect the measure of/with its height.
It is easy to prove by induction for m that

? ) < 2 - i ifkj

Hence the basic inequality (3) implies that

H{f) < 2mi+m^-+mn-^f)M{f) (6)

where the symbol v(f) is to denote the number of variables zx, ..., zn
that occur in /a t least to the first degree. Equality can never hold in (6)
if any one of the degrees mx, ..., mn exceeds 1.

For an estimate in the opposite direction, we apply the well-known
inequality (Hardy-Littlewood-Polya [2 ; 137-138])

M{f)

Here, by the explicit expression for / and by Parseval's equation,

[dt,... \Xdtn\f{e*"\ . . . , e ^ n ) | 2 = 2 - S la*,...*,!8
Jo Jo fc!=o &n=o

so that
M(f) < { K + 1 ) - . (mB+l)}»ff(/). (7)

Here equality can hold only for constant polynomials.

5. From now on let / be written as a product

f(zlt ...,zn)=

of other polynomials in zlt ..., zn. Denote by mxx, ..., mln the degrees of
/, in zx, ..., zn, respectively, and by v(ft) the number of variables zx, ..., zn,
that occur in/, at least to the first degree. It is then obvious that

s s s

mx= £?%, ...,mn= Zmln, and v(f)^ S v{f{).
!=1 1=1 1=1

Also, from the definition of the measure in terms of logarithms,

M (/) = n
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Therefore, from (4),

II L{ft) < fl {2mn+-+m,nM(fl)} = 2mi+-+m»M{f),
l-l 1=1

whence, by (5), ,
n L(ft) < 2"h+™2+-+™» Lyy (I)

J=.i

The inequality in the opposite direction

n L(ft),

is nearly trivial.
In the same way, from (6),

ft # ( / , ) < n {2mn+-+mtn-»(fi)M(fl)}^2mi+-+mn-(f)M{f),
1=1 ?=1

whence, by (7),

II H{fx) < 2"»i+"»8+-+m»-"(/){(m1+l)... (mn+l)}*#(/). '{IT)
i=i

In the opposite direction it is nearly obvious that

While (I) seems to be new, (II) is essentially Gelfond's formula. He
has shown that on the right-hand side the basis 2 cannot be replaced by
a smaller number. Except in trivial cases, neither of the inequalities
(I) and (II) is best possible. It would therefore have great interest to
find the exact maxima of

L(f)-* A Lift) and #(/)-* II H(ft)
i=i ?=i

as functions of the degrees mlt ..., mn.
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