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AN INEQUALITY FOR THE DISCRIMINANT OF A POLYNOMIAL

KURT MAHLER

SUMMARY. In this paper, Mahler provides inequalities relating length (the sum
of the absolute values of the coefficients), Mahler measure, discriminant and
minimal distance between zeros of a polynomial. In particular, he gives an
upper bound on the absolute value of the discriminant and a lower bound for
the minimal distance between zeros.
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Let

-1

m
£(x) = agx™ + ;x4 e+ ag = ag I (x - ay) (m> 2)
h=1

be an arbitrary polynomial with real or complex coefficients; put
m
L) = |ag|+ |ag|+ -+ |am|, M@ = |ag| II max(1, |ay]).
h=1
Then, as I proved in [2],
(1) 27 L) < M(f) < L(f).
Here I shall establish and apply an upper estimate for the discriminant D(f) of f(x)
in terms of either L(f) or M(f). This estimate is best-possible, and slightly better
than one by R. Giiting [1].

1. The main tool in the proof of the inequality is Hadamard’s theorem on deter-
minants, which may be stated as follows.

LEMMA 1. If the elements of the determinant

aj]  *** aln

ave arbitvary complex numbers, then
n n .
2 2
la]* < jl;Il hZ:l lahjl ),

and equality holds if and only if

n

20 apjdy =0 for 1<j<k<m.

h=1

Here ap; denotes the complex conjugate of ay .
Received January 6, 1964.
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2. Let a,, -+, oy, the zeros of f, be numbered so that
@) ler]> Jaz]> > Jam|> 1> |apa]> |ema]> > @ml.

Here M may have any one of the values 0, 1, ---, m. Further, put

(@nh - o),

with the convention that

P =1 in the excluded case where m =1.

Written as a Vandermonde determinant,

1 1 vee 1
o) ap et Qm
2 2 2
Pp=|% 2 %m
m-1 m-1 m-1

We denote by r and s any two suffices satisfying the conditions

1<r<s<m, a,#oag,
and we use the notation
Q= (o) ay - aM)_(m_l)P.
Thus, in particular, Q = P if M = 0.
By its definition, Q may be written as the determinant

~(m-1) ~(m-1)
aj @1 1 1
-(m-2) -(m-2)
0‘1( @M M+l Tt @y
Q =
-1 -1 m-2 m-2
@y e O M1 %m
m-1 m-1
1 1 M+l %m

633

Since the absolute value of no element of this new determinant exceeds 1, it follows

from Lemma 1 that

(3) lQ] < m™/2,

Here egquality can only hold if both
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ley|=Jaz|==lapn|=1
and
m-~1
L ofd@ =0 for 1<h<j<m.
k=0
It follows then that the m quotients
oy a2 %m
Cr T TY
are equal to the m distinct mth roots of unity, and f is of the form

f(x) = ag X" +a_,, where |ag]=|a,|> 0.
2] am

3. An upper bound for |Q/(ozr - as)l is obtained by a method very similar to
that just applied to |Q].

In the Vandermonde determinant for P, subtract the sth column from the rth
column, so that the new rth column consists of the elements

2

r

2 m-2 m-2 m-1 m-1

0,0, ~ag, - Qg, o, O - Og > Oy

all of which are multiples of o, - @g. For brevity, write
af - g

h-1 h-2 - -
90 = 0, qh=m=ar +abl2a 4+ a.0l? p ol for h> 1.

The quotient P/(ar - as) can now be written as a determinant in which the rth col-
umn consists of the elements .
dg9> 915 ***» A -2 A -1 »

while the other m - 1 columns are the same as in the original determinant for P.
On dividing the 1st, 2nd, ---, Mth column of the new determinant again by the factors

m-1 am—l am-l

al > 2 > > M ’

respectively, we obtain a determinant with the value Q/(a, - ag). Except for its rth
column, this determinant is identical with that for Q; but its rth column consists of
the elements

~(m-1) ~(m-1)

- -1 - -1 .
9o %» > A1 %y IAEIL o) ar(m ) ’ qm—lOlr(rn ) if r_<_ M,

and of the elements

Q05915 "> Ay 2> 9 -1 if r> M.

Since
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>1 for r < M,
<1 for r > M,

the absolute values of the consecutive elements of the rth column of the determinant
do not exceed the values

0,1, m-2,m-1,
respectively. Therefore, by Lemma 1,
[Q/(ozr - ots)l2 < m™-1 {0Z +1% 4 o4 (m - 2)2 + (m - 1)2} .

Since

3

m
3

OZ+12+---+(m-2)Z+(m—l)2=w<

the final result takes the form

Q

! 1 (m+2)/2
Ay -Qg )

< —=
ﬁm

This inequality is nearly best-possible. For choose for @}, -, @m all the
distinct mth roots of unity. The minimum of Iotr - as| is then attained, for example,
if

(4)

27i/m
a,.=1 and ag=e / y

and so it has the value
.o
ay - ozs| = Zsma.

In this special case we further have
2
|P| = @] = m™2.
It follows then that

m/2 m(m+2)/2
~ 27

Q

0, - g

m

as m — «©,

2sin —
m
This shows that the inequality (4) cannot be improved except perhaps that the con-
stant factor 1/V3 may be replaced by a smaller number. It would be of some inter-
est to determine the least possible constant factor.
4. The discriminant D(f) of f is defined by the formula
D(f) = ad™-2p2,

On the other hand, by (2),
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M(f) = |agay az -y,
so that evidently

)-(Zm-Z) _

®) | Des) | e Q.

Hence, from (3) and its corollary we immediately obtain the following result.
THEOREM 1. For all polynomials f of degree m > 2,

D] < m™ M()>™-2,
with equality if and only if £ has the form
£x) =agx™ + ay,, where |ag|= |am|> 0.
COROLLARY. The inequality (1) thevefore implies that
D] < m™ L(f)2™-2,
because L(f) = 2M(f) for the extremal polynomial.
5. Next, denote by

Af) = min |ah-aj
1<h<j<m

the shortest distance between any two zeros of f. We assume that
D(f) # 0,
so that also-
N> 0.
Choose for r and s a pair of suffices such that

af) = |la, -« 1<r<s<m.

S|7

261

On combining the inequality (4) with the identity (5) and applying Theorem 1, we ob-

tain the following result.
THEOREM 2. For all polyromials £ of degree m > 2,

a0 > 3= ™2/2 |p /2 ey~
COROLLARY. If follows thevefore from (1) that
A > V3m /2 |pg /2 L=tnD)

This is slightly better than the corresponding formula by Giiting.

Assume in particular that f has rational integral coefficients and that therefore,

since D(f) # 0,
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IDM®H)| > 1.
It follows then at once that
A® > VEm A 2y tmeD)

hence that every nonreal zero of f has an imaginary part of absolute value greater
than

374 m-(m+2)/2 L(f)-(rn-l) )
For another application, put
gt = a<r<m),
so that f'(a,) = g,(@,.). Then
D(f) = D(g) f'(@,)%, M) = M(g,)max(1, |, |).

Hence, by Theorem 1,

2m-4 -(2m-4)

ID(g,)| < (m - ™! M) max (1, |, |)

It follows then easily that

-{m-2) m-2

@) | > m - 172 pe| 2 Mg max (1, fe, )™,
hence also that

@) 2 - 772 |p /2 L),
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