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1 Introduction

Let F be a number field of degree d, with ring of integers OF and discriminant
DF . We denote by Kn(OF ) the n-th K-theory group of OF , which was defined
by Quillen and showed by him to be finitely generated. The rank of Kn(OF )
has been computed by Borel in [4]. In this article we consider the problem of
finding an upper bound – in terms of n, d and DF – for the order of the torsion
part Kn(OF )tors. Such general bounds have been obtained by Soulé in [11].
Our Theorem 1.1 below sharpens Soulé’s results.

As in Soulé’s paper, our inequalities hold “up to small torsion”. To state this
precisely, for a finite abelian group A let us write cardℓ(A) for the order of
A/B, where B ⊂ A is the subgroup generated by elements of order ≤ ℓ.

1First and third authors partially supported by SNSF, Project number 200020-121647
2Second author supported by SNSF, Project number PZ00P2-148100
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Theorem 1.1. Let F 6= Q be a number field of degree d and with discriminant
DF . Then for any n ≥ 2 we have

log cardℓ Kn(OF )tors ≤ (2n+1)71n4d3 ·d293n5d5 · |DF |528n5d4
,

where ℓ = max(d+1,2n+2).

To improve the readability, we have not tried to state here the best possible
bounds that one could get with the method we use. We refer to the PhD
thesis of the third author [7, Theorem 4.3] – in which the result was originally
obtained – for slightly better estimates. However, it does not change the fact
that the upper bounds are huge, and – although explicit – certainly unusable
for practical computation. We shall insist here on the qualitative aspect of our
result, which could be stated as follows.

Corollary 1.2. There exist α and β, both polynomials in n and d, such that
for any number field F of degree d ≥ 2 we have

log cardℓ Kn(OF )tors ≤ (nd)α|DF |β ,

where ℓ = max(d+1,2n+2) and n ≥ 2.

Compared to [11], our result improves the bound by an exponential factor:
the previous bound for logcardℓKn(OF ) was at least exp(α|DF |1/2), for some
polynomial α = α(n,d) (see Proposition 4 in loc. cit. for the precise statement).
The strategy is the following. The group Kn(OF ) can be related – via the
Hurewicz map – to the integral homology Hn(GL(OF )), and an upper bound
(up to small torsion) for the order of Kn(OF ) can then be obtained through
the study of the integral homology of GLN (OF ), with N = 2n + 1 (cf. Sec-
tion 3). The proof of Theorem 1.1 follows the method of Soulé, which uses
Ash’s well-rounded retract (cf. Section 2) to study these homology groups.
This reduces the problem to finding good estimates concerning the geometry of
hermitian lattices. Our approach to these estimates differs from that of Soulé
(cf. Section 4), leading to the improved bounds in Theorem 1.1.
For F =Q our method does not bring any improvement, so that [11, Prop. 4 iv)]
is still the best available general bound for Kn(Z). We refer to [6, Theorem 1.3]
for a different approach to the same problem for K2, which gives better result
than Corollary 1.2 in the case of totally imaginary fields. Note that all these
results remain very far from the general bound conjectured by Soulé in [11,
Sect. 5.1], which should take the following form for some constant C(n,d):

log cardKn(OF )tors ≤ C(n,d) log |DF |. (1.1)
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2 Hermitian metrics and the well-rounded retract

2.1 Notation

We keep the notation of the introduction. Let us denote by (r1, r2) the signature
of the number field F . Let us write FR = R⊗Q F . If Σ denotes the set of field
embeddings σ : F → C, then FR can be identified with the subspace (CΣ)+ ⊂
CΣ invariant under the involution (xσ) 7→ (xσ), where a denotes the complex
conjugation. This also provides an isomorphism FR

∼= Rr1 ×Cr2 .

For x ∈ FR, written as x = (xσ)σ∈Σ, we denote by x = (xσ) the result of the
complex conjugation applied component-wise. We denote by Tr the trace map
from FR to R, defined by Tr(x) =

∑
σ∈Σ xσ. We will also use the absolute value

of the norm map: N (x) =
∏

σ∈Σ |xσ|.
We fix a free OF -lattice L of finite rank N ≥ 1. Let V = F ⊗OF

L and VR =
R⊗Q V , so that VR can be seen as a (left) FR-module. Let Γ be the group
GL(L) of automorphism of L. By fixing a basis of L, we have the identification
Γ = GLN (OF ). Then Γ is a discrete subgroup of the reductive Lie group
GL(VR) = GLN (FR). We shall denote the latter by G, and we will let it act on
VR on the left (and similarly for Γ on L).

2.2 Hermitian metrics

Let h : VR × VR → FR be a hermitian form on VR, that is, h = (hσ)σ∈Σ is FR-
linear in the first variable and h(y,x) = h(x,y). The pair (L,h) is called a
hermitian lattice. When x = y, we also write h(x) = h(x,x). Note that h(x)
has only real components, and we say that h is positive definite if hσ(x,x) > 0
for any nonzero x ∈ VR and all σ ∈ Σ.

Let X be the (topological) space of positive definite hermitian forms on VR.
The group G = GL(VR) acts transitively on X in the following way: the element
γ ∈ G maps the form h ∈ X to

(γ ·h)(x,y) = h(γ−1x,γ−1y). (2.1)

The space X can be identified with the set of positive definite symmetric N ×N
matrices with coefficients in FR. Using this identification, it is not difficult to
see that X is contractible.

To each h ∈ X we associate the real quadratic form qh on VR (seen as a real
vector space) defined for x ∈ VR by:

qh(x) = Tr(h(x)). (2.2)

Such a quadratic form qh : VR → R for h ∈ X will be called a hermitian metric.
Given h, we will denote by || · ||h the norm on VR induced by qh.
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2.3 Ash’s well-rounded retract

For h ∈ X we set m(L,h) ∈ R>0 to be the minimum of qh(x) over the nonzero
x ∈ L ⊂ V , and define

M(L,h) = {x ∈ L | qh(x) = m(L,h)} . (2.3)

Definition 2.1. We say that h ∈ X (or (L,h)) is well rounded if m(L,h) = 1
and M(L,h) generates V (as a vector space over F ).

Let W̃ ⊂ X be the subspace of well-rounded hermitian forms. Note that the
action defined by (2.1) restricts to an action of Γ = GLN (OF ) on W̃ . In [2, p.

466–467], Ash defined a CW-complex structure on W̃ that has the following

properties: two points h and h′ of W̃ belong to the interior of the same cell
C(h) = C(h′) if and only if M(L,h) = M(L,h′), and C(h′) ⊂ C(h) if and only
if M(L,h′) ⊃ M(L,h). Moreover, we have that M(L,γ · h) = γM(L,h). Then

the action of Γ on W̃ is compatible with the cell structure: an element γ ∈ Γ
maps the cell C(h) to C(γ ·h).

Theorem 2.2 (Ash). W̃ is a deformation retract of X on which Γ acts with

finite stabilizer Γσ for each cell σ of W̃ . The quotient Γ\W̃ is compact, of
dimension dim(X)−N .

Proof. The proof of this statement follows from the argument of Ash given in
the proof of the main theorem of [2], page 462. More precisely, the argument

to prove that W̃ is a deformation retract of X is the same as Ash uses for
W = W̃/Γ, in [2, §3 (i)]. The compactness of Γ\W̃ is proved in §3 (ii) of loc.
cit., and the dimension is computed on page 466.

Let C• be the complex of cellular chains on Γ\W̃ . We can decompose it as
C• = C+

• ∪ C−
• , where Γ preserves (resp. does not preserve) the orientation

of each σ ∈ C+
• (resp. σ ∈ C−

• ). It then follows from the spectral sequence
described in [5, VII (7.10)] that up to prime divisors of the finite stabilizers Γσ,
the homology of C+

• computes H•(Γ). In particular, one has the following (cf.
[11, Lemma 9]). See Section 1 for the definition of cardℓ.

Corollary 2.3. Let ℓ = 1+max(d,N). Then for any n we have:

cardℓ Hn(Γ)tors = cardℓ Hn(C+
• )tors,

where Hn(·)tors denotes the torsion part of the integral homology.

3 Bounding torsion homology and K-theory

3.1 The Hurewicz map

For any n > 1 we consider the n-th Quillen K-group Kn(OF ) =
πn(B GL(OF )+) (“plus construction”). The Hurewicz map relating ho-
motopy groups to homology provides a map Kn(OF ) → Hn(GL(OF )+) =
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Hn(GL(OF )). We know (see for instance [1, Theorem 1.5]) that its kernel
does not contain elements of order p for p > n+1

2 . Moreover, by a stability
result of van der Kallen and Maazen (cf. [12, Theorem 4.11]) the homology
of GL(OF ) = lim−→GLN (OF ) is equal to the homology of GLN (OF ) for any
N ≥ 2n + 1. Let then N = 2n + 1, and consider Γ = GLN (OF ). We deduce
from Corollary 2.3 that for ℓ = max(d+1,2n+2) we have:

cardℓ Kn(OF )tors ≤ cardℓ Hn(C+
• )tors. (3.1)

3.2 Gabber’s lemma

The abstract result that allows to obtain a bound for the right hand side of
(3.1) is the following lemma. It was discovered by Gabber, and first appeared
in Soulé [10, Lemma 1]. See Sauer [9, Lemma 3.2] for a more elementary proof.

Lemma 3.1 (Gabber). Let A = Za with the standard basis (ei)i=1,...,a and
B = Zb, so that B ⊗R is equipped with the standard Euclidean norm ‖ · ‖.
Let φ : A → B be a Z-linear map and let α ∈ R such that ‖φ(ei)‖ ≤ α for each
i = 1, . . . ,a. If we denote by Q the cokernel of φ, then

|Qtors| ≤ αmin(a,b) .

Corollary 3.2. Suppose that the cellular complex Γ\W̃ has at most αk faces
for any k ≥ 0, and that any k-cell has at most β codimension 1 faces. Then

Hk(C+
• )tors ≤ β

1
2 min(αk+1,αk).

Proof. For a cell c ∈ C+
k+1, its image by the boundary map ∂ is a sum of at most

β k-cells, so that ||∂c|| ≤ √
β. Thus, by Lemma 3.1 coker(∂)tors is bounded by

β
1
2 min(αk+1,αk) and a fortiori so is Hk(C+

• )tors.

3.3 Counting the cells

Suppose that the finite subset Φ ⊂ L has the following property:

for any well-rounded pair (L,h), there exists γ ∈ Γ = GLN (OF ) such
that γM(L,h) ⊂ Φ.

In other words, Φ contains a representative of every element of Γ\W̃ . Since
C(h) has codimension j, where N + j is the cardinality of M(L,h), it follows

immediately that the number of cells of codimension j in Γ\W̃ is bounded by

the binomial coefficient
(card(Φ)

N+j

)
. For large card(Φ) we lose little by bound-

ing this binomial coefficient by card(Φ)N+j . Recall that Γ\W̃ has dimension
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dim(X)−N , so that for a k-cell of codimension j we have N +j = dim(X)−k.
For the dimension of X we have (where (r1, r2) is the signature of F ):

dim(X) = r1
N(N +1)

2
+ r2N2 (3.2)

≤ d
N(N +1)

2
. (3.3)

Thus, for the number of k-cells in Γ\W̃ we can use the following upper bound:

αk = card(Φ)d·
N(N+1)

2 −k (3.4)

By a similar counting argument, Soulé shows in [11, proof of Prop. 3] that
there are at most β = card(Φ)N+1 faces of codimension 1 in any given cell (not

necessarily top dimensional) on Γ\W̃ .

3.4 Bounds for K-theory in terms of Φ

Let ℓ = max(d + 1,2n + 2). By Corollary 3.2 and (3.1) we have that

cardℓ Kn(OF )tors is bounded by β
1
2 αn+1 , where αn+1 and β can be chosen as

in Section 3.3 (with N = 2n+1). This gives (using now logarithmic notation):

logcardℓ Kn(OF )tors ≤ (n+1) log(card(Φ))card(Φ)e(d,n), (3.5)

where Φ ⊂ L has the property defined in Section 3.3, and

e(d,n) = d(2n2 +3n+1)−n−1. (3.6)

This reduces the problem to finding such a set Φ ⊂ L of size as small as possible.
In [11] Soulé constructed a suitable set Φ using the geometry of numbers. In
what follows, we will exhibit a smaller Φ by using better estimates on hermitian
lattices.

4 Hermitian lattices and bounded bases

The goal of this section is to construct in any well-rounded lattice (L,h) a basis
whose vectors have bounded length, with respect to the norm induced by h.
The method in an adaptation of the idea used by Soulé in [11] (see Section 4.3
below), in which we incorporate the results from [3], corresponding to the rank
one case.

4.1 Geometry of ideal lattices

Let I ⊂ FR be a nonzero OF -submodule of the form I = xa, where x ∈ FR and a

is a fractional ideal of F . We define the norm of I by the rule N (I) = N (x)N (a).
Let q0 be the standard (positive definite) hermitian metric on FR, i.e., for
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x ∈ FR: q(x) = Tr(xx) . The pair (I,q0) is an ideal lattice (over F ) in the sense
of [3, Def. 2.2]. Its determinant is given by (see [3, Cor. 2.4]):

det(I,q0) = N (I)2 |DF |. (4.1)

Let us denote by || · || the norm on FR induced by the hermitian metric q0.
Estimates for the geometry of ideal lattices have been studied in [3]. For our
particular case (I,q0), Proposition 4.2 in loc. cit. takes the following form.

Proposition 4.1. Let F of degree d, with discriminant DF , and consider the
ideal lattice (I,q0). Then for any x ∈ FR there exists y ∈ I such that ||x−y|| ≤ R,
where

R =

√
d

2
|DF |1/dN (I)1/d.

4.2 Three consequences

From Proposition 4.1 we deduce the three following lemmas.

Lemma 4.2. Given x = (xσ) ∈ FR, there exists a ∈ OF such that
∑

σ∈Σ

|xσ −σ(a)| ≤ C2,

where

C2 =
d

2
|DF |1/d. (4.2)

Proof. First note the general inequality (
∑d

i=1 bi)
2 ≤ d ·∑d

i=1 b2
i , which follows

from applying the summation
∑

i,j on both sides of

2bibj ≤ b2
i + b2

j .

This implies that for a = y ∈ I as in Proposition 4.1 with I = OF , we have

∑

σ∈Σ

|xσ −σ(a)| ≤
√

d ·
∑

σ∈Σ

|xσ −σ(a)|2

=
√

d ||x−a||

≤ d

2
|DF |1/d.

Lemma 4.3. Given x = (xσ) ∈ FR, there exists a ∈ OF such that

sup
σ∈Σ

|σ(a)xσ| ≤ C3 N (x)1/d,

where

C3 =
√

d · |DF |1/d. (4.3)
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Proof. We can suppose that x 6= 0. We consider the ideal lattice (I,q0) with
I = xOF . For R as in Proposition 4.1, we have that FR = I + BR(0), where
BR(0) is the closed ball of radius R with respect to || · ||. In particular, the
smallest (nonzero) vector xa ∈ I = xOF has length ≤ 2R. That is, there exists
a ∈ OF such that

sup
σ∈Σ

|σ(a)xσ| ≤ ||xa||

≤ 2R;

and the result follows.

Lemma 4.4. Let a be an ideal of OF . Then there exists a set R ⊂ OF of
representatives of OF /a such that for any x ∈ R we have

∑

σ∈Σ

|σ(x)| ≤ C2 N (a)1/d.

Proof. Let us consider the ideal lattice (I,q) = (a, q0), and let R be as in Propo-
sition 4.1. Then for any x ∈ OF ⊂ FR, there exists y ∈ I such that ||x−y|| ≤ R.
But x−y ≡ x (I), so that the closed ball BR(0) contains a representative of each
class of OF /a. The inequality is then obtained as in the proof of Lemma 4.2.

4.3 Existence of bounded bases

Lemma 4.5 (Soulé). Let L = L1 ⊕·· ·⊕LN be a decomposition of the hermitian
lattice (L,h) into rank one lattices, and suppose that each Li contains a vector
fi with |Li/OF fi| ≤ k and ||fi||h ≤ kλ, for some k,λ > 1. Then L has a basis
e1, . . . ,eN such that

||ei||h ≤ λ(1+C2)t+1 k(d+1)(4N−1),

where t = ⌊log2(N)⌋+1.

Proof. The statement and its proof is essentially contained in the proof of [11,
Prop. 1]. The main difference is that our constant C2 is now smaller than C2

in loc. cit. We can follow verbatim the same proof with the new C2 except for
the use of Lemma 6 (needed in Lemma 7) of loc. cit., which must be replaced
by Lemma 4.4. Accordingly, the factor (1 + C2

r+3
4 ) (where r = d) is replaced

by 1+C2.

To obtain a bounded basis for (L,h) we need to find elements fi that satisfy
the condition of Lemma 4.5. This is done in the following proposition.

Proposition 4.6. Let (L,h) be a free hermitian lattice over OF of rank N ,
with F 6= Q. We suppose that there exist e1, . . . ,eN ∈ L that span V = F ⊗OF

L
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and such that ||ei||h ≤ 1 for i = 1, . . . ,N . Then there exists a decomposition
L = L1 ⊕·· ·⊕LN and elements fi ∈ Li such that:

|Li/fiOF | ≤ C1Cd
3 ;

||fi||h ≤ iC1C2Cd
3 ,

where C1 = |DF |1/2, and C2 (resp. C3) is defined in (4.2) (resp. (4.3)).

Proof. The proof proceeds by induction, and follows the line of argument of
[11, proof of Lemma 5]. Let N = 1. By Lemma 1 in loc. cit., there exists x ∈ L
such that |L/OF x| ≤ C1 = |DF |1/2. Let us write x = α · e1 for α ∈ F ×, where
by assumption ||e1||h ≤ 1. By Lemma 4.3 applied to α ∈ FR, there exists a ∈ OF

such supσ |σ(aα)| ≤ C3|N(α)|1/d. In particular,

|N(aα)| ≤
(

sup
σ∈Σ

|σ(aα)|
)d

≤ Cd
3 |N(α)|,

so that |N(a)| ≤ Cd
3 . We set f1 = a ·x. Then

|L/OF f1| = |N(a)| · |L/OF x|
≤ Cd

3 C1.

For the norm we have:

||f1||2h = Tr(h(f1,f1))

=
∑

σ∈Σ

|σ(α)|2 hσ(e1,e1)

≤
(

sup
σ∈Σ

|σ(α)|
)2

||e1||2h

≤ C2
3 · |N(α)|2/d.

Moreover, |L/OF x| = |N(α)| · |L/OF e1|, so that |N(α)| ≤ C1. This shows that

||f1||h ≤ C3C
1/d
1 and thus concludes the proof for N = 1.

The induction step is done exactly as in loc. cit., adapting the constants when
necessary (C1 to be replaced by C1Cd

3 ), to obtain the desired fi ∈ Li, i.e., with
(using F 6= Q in the last inequality, so that C2 ≥ 1):

||fi||h ≤ (i−1)C1Cd
3 C2 +C3C

1/d
1

≤ iC1C2Cd
3 .

We finally obtain the result about the existence of bounded bases. The as-
sumption N ≥ 5 is only here in order to simplify the statement.
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Proposition 4.7. Let (L,h) be a free hermitian lattice over OF of rank N ≥ 5,
with F 6= Q, and such that the subset {x ∈ L | ||x||h ≤ 1} spans V = F ⊗OF

L.
Then there exists a basis e1, . . . ,eN of L such that ||ei||h ≤ B for every i =
1, . . . ,N , where

B =
4N2

2N
d5Nd2 |DF |6N(d+1).

Proof. By Proposition 4.6 we can apply Lemma 4.5 with

k = C1Cd
3 ;

λ = N C2.

This shows the existence of a basis e1, . . . ,eN with

||ei||h ≤ N C2(1+C2)⌊log2(N)⌋+2(C1Cd
3 )(d+1)(4N−1).

Since C2 ≥ 1, we have (1 + C2)n ≤ 2nCn
2 . Moreover, for N ≥ 5 we have

⌊log2(N)⌋+3 ≤ N . We deduce:

||ei||h ≤ 4N2 CN
2 (C1Cd

3 )(d+1)(4N−1)

= αdβ |DF |γ ,

with (using N ≥ 5 and d ≥ 2):

α = 4
N2

2N
;

β = N +
d

2
(d+1)(4N −1)

≤ 5Nd2 ;

γ =
N

d
+

3

2
(d+1)(4N −1)

≤ 6(d+1)N.

This finishes the proof.

5 Improved estimates for K-groups

5.1 A Bounded set Φ

The construction of a bounded set Φ ⊂ L will follow from this proposition.

Proposition 5.1. Let (L,h) be a free well-rounded OF -lattice of rank N ≥ 5,
with F 6= Q. Let e1, . . . ,eN and B be defined as in Proposition 4.7, and for
x ∈ M(L,h) write x =

∑
i xiei, with xi ∈ OF . Then for every i = 1, . . . ,N we

have:
∑

σ∈Σ

|σ(xi)|2 ≤ T,
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where

T = NNdd
3
2 Nd+1B2(Nd−1)|DF |2N .

Proof. Let x ∈ M(L,h), i.e., h(x) = 1. For each σ ∈ Σ let us consider the matrix
Hσ = (hσ(ei,ej)). Then the first argument in [11, proof of Prop. 2], based on
the Hadamard inequality for positive definite matrix, shows that

|σ(xi)|2 ≤ det(Hσ)−1hσ(x)
∏

j 6=i

hσ(ej).

Since hσ(ej) ≤ ||ej ||2h ≤ B2, and similarly hσ(x) ≤ 1, we obtain:

∑

σ∈Σ

|σ(xi)|2 ≤ B2(N−1)
∑

σ∈Σ

det(Hσ)−1. (5.1)

For
∑

σ det(Hσ)−1 we can write, using the Hadamard inequality:

∑

σ∈Σ

det(Hσ)−1 =
∑

σ∈Σ


 ∏

σ′ 6=σ

det(Hσ′)
∏

σ′∈Σ

det(Hσ′)−1




≤


∑

σ∈Σ

∏

σ′ 6=σ

N∏

j=1

hσ′(ej)


 ·
(
∏

σ∈Σ

det(Hσ)−1

)

≤ d ·B2N(d−1)
∏

σ∈Σ

det(Hσ)−1. (5.2)

According to Icaza [8, Theorem 1], there exists z ∈ L such that
∏

σ∈Σ

det(Hσ)−1 ≤ γN N (h(z))−N , (5.3)

where (cf. [11, Equ. (21)]):

γ ≤ Nd|DF |.

By applying Lemma 4.3 to h(z) ∈ FR, we find a ∈ OF such that hσ(az) =
σ(a)hσ(z) ≤ C3N (h(z))1/d for every σ ∈ Σ. Since (L,h) is well rounded, this
implies:

dC3 N (h(z))1/d ≥ h(az) ≥ 1, (5.4)

so that N (h(z))−1 ≤ ddCd
3 = d

3
2 d|DF |. Using this with (5.1), (5.2) and (5.3),

this concludes the proof.

Corollary 5.2. Let L be a free OF -lattice of rank N ≥ 5, with F 6= Q. Then
there exists a subset Φ ⊂ L with the property given in Section 3.3 and such that

card(Φ) ≤ N3N2d2 ·d5N3d4 · |DF |9N3d3
.
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Proof. Let f1, . . . ,fN be any basis of L, and set, for T as in Proposition 5.1:

Φ =

{
N∑

i=1

xifi

∣∣∣ xi ∈ OF with
∑

σ∈Σ

|σ(xi)|2 ≤ T

}
.

According to [11, Lemma 8], the number of elements xi ∈ OF with∑
σ∈Σ |σ(xi)|2 ≤ T is at most T d/22d+3, so that card(Φ) is bounded above

by T Nd/22N(d+3). Expanding the constants T and B as in the statements of
Propositions 5.1 and 4.7, we obtain the stated upper bound for card(Φ).
Let h be a well-rounded hermitian metric on L. We can apply Proposition 5.1
to write every x ∈ M(L,h) as x =

∑
xiei for a bounded basis e1, . . . ,eN of L.

The proposition implies that the transformation γ ∈ Γ = GLN (OF ) that sends
the basis (ei) to (fi) is such that γ ·x ∈ Φ. This means that Φ has the property
defined in Section 3.3.

5.2 Upper bounds for Kn(OF )

We finally come to the bounds for the K-groups of OF , as stated in Theo-
rem 1.1. Let ℓ = max(d+1,2n+2). From Equation (3.5) we obtain

log cardℓ Kn(OF )tors ≤ card(Φ)e(d,n)+n+1,

and note that for n ≥ 2 we have e(d,n) + n + 1 ≤ 15
4 n2d. Theorem 1.1 now

follows directly from Corollary 5.2, applied with N = 2n+1 ≤ 5
2n.
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