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Abstract. Given an equivariant oriented cohomology theory h, a
split reductive group G, a maximal torus T in G, and a parabolic
subgroup P containing T , we explain how the T -equivariant oriented
cohomology ring hT (G/P ) can be identified with the dual of a coal-
gebra defined using exclusively the root datum of (G,T ), a set of
simple roots defining P and the formal group law of h. In two pa-
pers [CZZ,CZZ2] we studied the properties of this dual and of some
related operators by algebraic and combinatorial methods, without
any reference to geometry. The present paper can be viewed as a
companion paper, that justifies all the definitions of the algebraic ob-
jects and operators by explaining how to match them to equivariant
oriented cohomology rings endowed with operators constructed using
push-forwards and pull-backs along geometric morphisms. Our main
tool is the pull-back to the T -fixed points of G/P which embeds the
cohomology ring in question into a direct product of a finite number
of copies of the T -equivariant oriented cohomology of a point.
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1. Introduction

Given an equivariant algebraic oriented cohomology theory h over a base field
k, a split reductive group G over k, a maximal torus T in G and a parabolic
subgroup P containing T , we explain how, as a ring, hT (G/P ) can naturally
be identified with an algebraic object D⋆

Ξ introduced in [CZZ2]. This D⋆
Ξ is the

dual of a coalgebra defined using exclusively the root datum of (G,T ), a set
of simple roots Ξ defining P and the formal group law F of h. In [CZZ2], we
studied the properties of this object and of some related operators by algebraic
and combinatorial methods, without any reference to geometry. The present
paper is a companion paper to [HMSZ, CZZ, CZZ2] that justifies the defini-
tions of D⋆

Ξ and of other related algebraic objects and operators by explaining
how to match them to equivariant cohomology rings endowed with operators
constructed using push-forwards and pull-backs along geometric morphisms.
The starting point of our approach are celebrated papers by Bernstein-Gelfand-
Gelfand and Demazure [BGG, D74] dedicated to (non-equivariant) Chow
groups and K-theory, which then were extended to the respective T -equivariant
setting by Arabia [Ar86, Ar89], Brion [Br97], Kostant, Kumar [KK86, KK90]
and others. While the equivariant case looks more difficult, its big advantage is
that the T -fixed points embedding injects hT (G/P ) into a very simple ring: a
direct product of a finite number of copies of hT (pt), where pt is Spec(k). This
important property was already apparent in [Q71, Thm. 4.4] in the topological
context (see also [CS74, AB84]). With this observation in hands, the study
of the multiplication of Schubert classes (one of the major goals of Schubert
calculus) turns into the study of the image of this injection, and then finding
a good description of classes of geometric interest in this image, i.e. classes of
Schubert varieties, or rather their Bott-Samelson desingularisations.
We would like to point out several places where the case of an oriented cohomol-
ogy theory with an arbitrary formal group law is significantly more complicated

Documenta Mathematica · Extra Volume Merkurjev (2015) 113–144



Equivariant Oriented Cohomology of Flag Varieties 115

than the two classical cases of the additive law (Chow groups) and the multi-
plicative one (K-theory). First of all, in these two classical cases, the formal
group law is given by very simple polynomials; it is easy to conceive that the
computations increase in complexity with other formal group laws given by
powers series with an infinite number of nonzero coefficients. Secondly, in both
of these classical cases, the (non-equivariant) cohomology ring of a point is Z,
which is a regular ring, while in general, this base ring can be arbitrary. In
the work of Kostant and Kumar, the fraction field of the T -equivariant coho-
mology ring of the point is used as a crucial tool, but we are forced to invert
fewer elements and use a more subtle localization process, for fear of killing
everything in some cases (see the definition of Q from S in section 5). Thirdly,
an important result by Bressler and Evens [BE90] shows that the additive and
the multiplicative formal group laws are the only formal group laws for which
the elements XIw and YIw (see after Def. 5.2) are independent of the choice
of a reduced decomposition Iw of w. Geometrically, this translates as the fact
that for Chow groups or K-theory, the class of a Bott-Samelson desingulariza-
tion corresponding to the reduced decomposition Iw only depends on w, and
actually is the class of the (possibly singular) Schubert variety corresponding
to w in Chow groups and the class of its structural sheaf in K-theory. This
combinatorial/geometric independence plays a crucial role in the arguments
dealing with Chow groups or K-theory: see [D73, Thm. 1] and how it is used
in [D74, §4]; see also [KK86, Prop. 4.2] and its corollary Prop. 4.3. For an arbi-
trary oriented cohomology theory, for example for algebraic cobordism, this is
simply not true: different desingularizations of the same Schubert variety give
different classes.
Let us mention some of the literature on cohomology theories that go beyond
Chow groups or K-theory. Using the Bernstein-Gelfand-Gelfand approach,
Bressler and Evens [BE90, BE92] described bases of the (non equivariant) topo-
logical complex cobordism ring using Bott-Samelson classes and depending on
choosing a reduced decomposition for each Weyl group element. These results
were extended later to the algebro-geometric setting independently in [HK]
and [CPZ]; in the latter, the approach is algebraic as in [D73, D74] and an ef-
ficient algorithm for multiplying Bott-Samelson classes [CPZ, §15] is provided.
In [HHH], Harada, Henriques and Holm prove the injectivity of the pull-back
to fixed points map and the characterization of its image in the topological
context of generalized cohomology theories, under an assumption that certain
characteristic classes are prime to each other. Our Theorem 9.2 gives the pre-
cise cases when this happens; as all of our statements and proofs, it only relies
on algebro-geometric methods, with no input from topology.
In [KiKr, Thm. 5.1], a Borel-style presentation of equivariant algebraic cobor-
dism is obtained after inverting the torsion index. The improvement of our The-
orem 10.2 is that it applies to any oriented cohomology theory, and that, even
over a field of characteristic zero, over which algebraic cobordism is the uni-
versal oriented cohomology theory, it gives a finer result than what one would
get by specializing from cobordism, as one can see in the case of K-theory for
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which the Borel-style presentation always holds in the simply connected case,
without inverting the torsion index.
The techniques developed in the present paper (together with [HMSZ], [CZZ]
and [CZZ2]) have been successfully applied to elliptic cohomology: see [LZ14],
where the Billey-Graham-Willems formulas for the localization of Schubert
classes at torus fixed points were extended to degenerate elliptic cohomology
case. In [ZZ14], the authors establish a residue interpretation of the formal
affine Hecke algebra HF (a deformation of DΞ), which coincides with the
residue construction of elliptic affine Hecke algebra of Ginzburg, Kapranov,
and Vasserot [GKV97] for an arbitrary elliptic formal group law. They also
constructed an isomorphism between HF and the equivariant oriented coho-
mology of the Steinberg variety.

Our main results (Theorems 8.11 and 9.1) identify the ring D
⋆
Ξ with the equi-

variant cohomology hT (G/P ), within the fixed points ring S⋆
W/WΞ

that is a

direct product of copies of hT (pt) and the image of the injective pull-back map
hT (G/P ) → hT (G/B) (B is a Borel subgroup) as the subring hT (G/B)WΞ of
fixed elements under the parabolic Weyl group WΞ corresponding to P . In
Theorem 10.2 we provide a Borel-style presentation hT (pt)⊗hT (pt)W hT (pt) ≃
hT (G/B) under certain conditions.
Other results are proved along the way: Theorem 9.2 gives an intrinsic char-
acterization of the above mentioned image in the Borel case. Diagram (8.3)
describes the push-forward map hT (G/P

′)→ hT (G/P ), induced by the projec-
tions G/P ′ → G/P for parabolic subgroups P ′ ⊆ P of G. Lemma 7.6 describes
the algebraic elements corresponding to Bott-Samelson classes, i.e. fundamen-
tal classes of desingularized Schubert varieties. Theorem 9.3 proves that the
pairing defined by product and push-forward to hT (pt) is non-degenerate.

The paper is organized as follows. First, we state the properties that we use
from equivariant oriented cohomology theories, in section 2. Then, in section
3, we describe hT (pt) as the formal group ring of [CPZ, Def. 2.4]. In section
4, we compute the case of hT (P

1) when the action of T on the projective line
P1 = (A2 \ {0})/Gm is induced by a linear action of T on A2. It enables
us to compute the pull-back of Bott-Samelson classes ζI to hT ((G/B)T ) in
Lemma 7.6. By localization, some of these classes generate hT (G/B) and this
lets us prove the Borel case of Theorem 8.11. The parabolic cases are then
obtained in the remaining sections, as well as the Borel-style presentation. In
the last section, we explain how equivariant groups under subgroups of T (and
in particular the trivial group which gives the non-equivariant case) can be
recovered out of the equivariant one.

2. Equivariant oriented cohomology theory

In the present section we recall the notion of an equivariant algebraic oriented
cohomology theory, essentially by compiling definitions and results of [Des09],
[EG98], [HM13], [KiKr], [Kr12], [LM07], [Pa09] and [To99]. We present it here
in a way convenient for future reference.
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Equivariant Oriented Cohomology of Flag Varieties 117

In this paper, k is always a fixed base field, and pt denotes Spec(k). By a
variety we mean a reduced separated scheme of finite type over k. Let G be a
smooth linear algebraic group over k, abbreviated as algebraic group. In this
paper we are mostly interested in the case G = T . Let G-Var be the category of
smooth quasi-projective varieties over k endowed with an action of G, and with
morphisms respecting this action (i.e. G-equivariant morphisms). The tangent
sheaf TX of any X ∈ G-Var is locally free and has a natural G-equivariant
structure. The same holds for the (co)normal sheaf of any equivariant regular
embedding of a closed subscheme.

An equivariant oriented cohomology theory over k is an additive contravariant
functor hG from the category G-Var to the category of commutative rings with
unit for any algebraic group G (for an equivariant morphism f , the map hG(f)
is denoted by f∗ and is called pull-back) together with

• a morphism f∗ : hG(X) → hG(Y ) of hG(Y )-modules (called push-forward)
for any projective morphism f : X → Y in G-Var (here hG(X) is an hG(Y )-
module through f∗). That is, we have the projection formula

(2.1) f∗(f
∗(y)x) = yf∗(x), x ∈ hG(X), y ∈ hG(Y ).

• a natural transformation of functors resφ : hH → hG ◦Resφ (called restric-
tion) for any morphism of algebraic groups φ : G→ H (here Resφ : H -Var→
G-Var simply restricts the action of H to an action of G through φ)
• a natural transformation of functors cG : KG → h̃G (called the total equi-
variant characteristic class), where KG(X) is the K-group of G-equivariant
locally free sheaves over X and h̃G(X) is the multiplicative group of the
polynomial ring hG(X)[t] (the coefficient at ti is called the i-th equivariant
characteristic class in the theory h and is denoted by cGi )

that satisfy the following properties:

A 1 (Compatibility for push-forwards). The push-forwards respect composition
and commute with pull-backs for transversal squares (a transversal square is a
fiber product diagram with a nullity condition on Tor-sheaves, stated in [LM07,
Def. 1.1.1]; in particular, this condition holds for any fiber product with a flat
map).

A 2 (Compatibility for restriction). The restriction respects composition of
morphisms of groups and commutes with push-forwards.

A 3 (Localization). For any smooth closed subvariety i : Z → X in G-Var with
open complement u : U →֒ X, the sequence

hG(Z)
i∗−→ hG(X)

u∗

−→ hG(U)→ 0

is exact.

A 4 (Homotopy Invariance). Let p : X×An → X be a G-equivariant projection
with G acting linearly on An. Then the induced pull-back hG(X)→ hG(X×An)
is an isomorphism.
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A 5 (Normalization). For any regular embedding i : D ⊂ X of codimension 1
in G-Var we have cG1 (O(D)) = i∗(1) in hG(X), where O(D) is the line bundle
dual to the kernel of the map of G-equivariant sheaves O → OD.

A 6 (Torsors). Let p : X → Y be in G-Var and let H be a closed normal
subgroup of G acting trivially on Y such that p : X → Y is a H-torsor. Consider
the quotient map ı : G → G/H. Then the composite p∗ ◦ resı : hG/H(Y ) →
hG(X) is an isomorphism.
In particular, if H = G we obtain an isomorphism h{1}(Y ) ≃ hG(X) for a
G-torsor X over Y .

A 7. If G = {1} is trivial, then h{1} = h defines an algebraic oriented coho-
mology in the sense of [LM07, Def. 1.1.2] (except that h takes values in rings,
not in graded rings) with push-forwards and characteristic classes being as in
[LM07].

A 8 (Self-intersection formula). Let i : Y ⊂ X be a regular embedding of
codimension d in G-Var. Then the normal bundle to Y in X, denoted by
NY/X is naturally G-equivariant and there is an equality i∗i∗(1) = cGd (NY/X)
in hG(Y ).

A 9 (Quillen’s formula). If L1 and L2 are locally free sheaves of rank one, then

c1(L1 ⊗ L2) = c1(L1) +F c1(L2),

where F is the formal group law of h (here G = {1}).

As consequences of the projection formula (2.1), we have:

Lemma 2.1. Let p : X → Y be a morphism in G-Var, with a section s : Y → X.
Then for any u ∈ hG(Y ), one has

(a) s∗s∗(u · v) = u · s∗s∗(v) if s is projective.
(b) p∗(s∗(u)

n) = u ·s∗s∗(u)
n−1 for any n ≥ 1 if furthermore p is projective.

Proof. Part (a) follows from

s∗s∗(u·v) = s∗s∗
(

s∗p∗(u)·v
)

= s∗
(

p∗(u)·s∗(v)
)

= s∗p∗(u)·s∗s∗(v) = u·s∗s∗(v)

and part (b) from

p∗(s∗(u)
n) = p∗

(

s∗(u) ·s∗(u)
n−1

)

= p∗

(

s∗
(

u ·s∗(s∗(u)
n−1)

)

)

= u ·s∗s∗(u)
n−1.

�

This lemma applies in particular when p : X → pt is the structural morphism
of X and s is therefore a G-fixed point of X.

For any X ∈ G-Var consider the γ-filtration on hG(X), whose i-th term
γi hG(X) is the ideal of hG(X) generated by products of equivariant charac-
teristic classes of total degree at least i. In particular, a G-equivariant locally
free sheaf of rank n over pt is the same thing as an n-dimensional k-linear
representation of G, so γi hG(pt) is generated by characteristic classes of such
representations. This can lead to concrete computations when the representa-
tions of G are well described.

Documenta Mathematica · Extra Volume Merkurjev (2015) 113–144



Equivariant Oriented Cohomology of Flag Varieties 119

We introduce the following important notion

Definition 2.2. An equivariant oriented algebraic cohomology theory is called
Chern-complete over the point for G, if the ring hG(pt) is separated and com-
plete with respect to the topology induced by the γ-filtration.

Remark 2.3. Assume that the ring hG(pt) is separated for all G, and let
hG(pt)

∧ be its completion with respect to the γ-filtration. We can Chern-
complete the equivariant cohomology theory by tensoring with − ⊗hG(pt)

hG(pt)
∧. In this way, we obtain a completed version of the cohomology theory,

still satisfying the axioms. Note that this completion has no effect on the non-
equivariant groups, since in h(pt), the characteristic classes are automatically
nilpotent by [LM07, Lemma 1.1.3].

Here are three well-known examples of equivariant oriented cohomology theo-
ries.

Example 2.4. The equivariant Chow ring functor hG = CHG was constructed
by Edidin and Graham in [EG98], using an inverse limit process of Totaro
[To99]. In this case the formal group law is the additive one F (x, y) = x + y,
the base ring CH(pt) is Z, and the theory is Chern-complete over the point for
any group G by construction.

Example 2.5. Equivariant algebraic K-theory and, in particular, K0 was con-
structed by Thomason [Th87] (see also [Me05] for a good survey). The formal
group law is multiplicative F (x, y) = x + y − xy, the base ring K0(pt) is Z,
and the theory is not Chern complete: for example, (K0)Gm

(pt) ≃ Z[t, t−1]
with the γi generated by (1 − t)i. Observe that (K0)G(pt) consists of classes
of k-linear finite dimensional representations of G.

Example 2.6 (Algebraic cobordism). Equivariant algebraic cobordism was de-
fined by Deshpande [Des09], Malgón-López and Heller [HM13] and Krishna
[Kr12]. The formal group law is the universal one over Ω(pt) = L the Lazard
ring. The equivariant theory is Chern complete over the point for any group
G by construction.

By Totaro’s process one can construct many examples of equivariant theories,
such as equivariant connective K-theory, equivariant Morava K-theories, etc.
Moreover, in this way one automatically obtains Chern-complete theories.

3. Torus-equivariant cohomology of a point

From now on, T is always a split torus. In the present section we show that
the completed T -equivariant oriented cohomology ring of a point can be iden-
tified with the formal group algebra of the respective group of characters (see
Theorem 3.3).

Let Λ be the group of characters of T , which is therefore the Cartier dual of Λ.
Let X be a smooth variety over k endowed with a trivial T -action. Consider the
pull-back p∗ : hT (pt) → hT (X) induced by the structure map. Let γipt hT (X)
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denote the ideal in hT (X) generated by elements from the image of γi hT (pt)
under the pull-back. Since any representation of T decomposes as a direct
sum of one dimensional representations, γi hT (pt) is generated by products of
first characteristic classes cT1 (Lλ), λ ∈ Λ. Since characteristic classes commute
with pull-backs, γipt hT (X) is also generated by products of first characteristic
classes (of pull-backs p∗Lλ).

Let F be a one-dimensional commutative formal group law over a ring R. We
often write x +F y (formal addition) for the power series F (x, y) defining F .
Following [CPZ, §2] consider the formal group algebra R[[Λ]]F . It is an R-
algebra together with an augmentation map R[[Λ]]F → R with kernel denoted
by IF , and it is complete with respect to the IF -adic topology. Thus

R[[Λ]]F = lim
←−
i

R[[Λ]]F /I
i
F ,

and it is topologically generated by elements of the form xλ, λ ∈ Λ, which
satisfy xλ+µ = xλ +F xµ. By definition (see [CPZ, 2.8]) the algebra R[[Λ]]F
is universal among R-algebras with an augmentation ideal I and a morphism
of groups Λ → (I,+F ) that are complete with respect to the I-adic topology.
The choice of a basis of Λ defines an isomorphism

R[[Λ]]F ≃ R[[x1, . . . , xn]],

where n is the rank of Λ.

Set R = h(X). Then hT (X) is an R-algebra together with an augmentation
map hT (X)→ R via the restrictions induced by {1} → T → {1}. The assign-
ment λ ∈ Λ 7→ cT1 (Lλ) induces a group homomorphism Λ → (I,+F ), where
I is the augmentation ideal. Therefore, by the universal property of R[[Λ]]F ,
there is a morphism of R-algebras

φ : R[[Λ]]F /I
i
F → hT (X)/γipt hT (X).

We claim that

Lemma 3.1. The morphism φ is an isomorphism.

Proof. We proceed by induction on the rank n of Λ.
For n = 0, we have T = {1}, R = hT (X), IiF = γipt hT (X) = {0} and the map
φ turns into an identity on R.
For rank n > 0 we choose a basis {λ1, . . . , λn} of Λ. Let {L1, . . . , Ln} be
the respective one-dimensional representations of T . This gives isomorphisms
Λ ≃ Zn and T ≃ Gn

m and Gn
m acts on Li by multiplication by the i-th coordi-

nate. Let Gn
m act on Ai by multiplication by the last coordinate. Consider the

localization sequence (A3)

hGn
m
(X) −→ hGn

m
(X × Ai) −→ hGn

m
(X × (Ai \ {0})) −→ 0.

After identifying

hGn
m
(X)

∼
→ hGn

m
(X × Ai) and h

G
n−1
m

(X × Pi−1)
∼
→ hGn

m
(X × (Ai \ {0}))
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via (A8) and (A6), we obtain an exact sequence

hGn
m
(X)

c1(Ln)
i

−→ hGn
m
(X) −→ h

G
n−1
m

(X × Pi−1) −→ 0.

where the first map is obtained by applying self-intersection (A5) and homotopy
invariance (A4) properties.
By definition, all these maps are R-linear, and the action of Gn−1

m on X ×Pi−1

is the trivial one. Since the last map is given by pull-back maps and restrictions
(although not all in the same direction), and since equivariant characteristic
classes commute with these, one checks that it sends c1(Li) to c1(Li) for any
i ≤ n − 1 and c1(Ln) to c1(O(1)); this last case holds because O(1) on Pi−1

goes (by restriction and pull-back) to the equivariant line bundle on Ai \ {0}
with trivial underlying line bundle, but where Gn

m acts by λn on fibers.
By the projective bundle theorem, we have R′ := h(X × Pi−1) ≃ R[y]/yi with
c1(O(1)) = y. By induction, we obtain for any i an isomorphism

h
G

n−1
m

(X × Pi−1)/γipt ≃ R
′[[Λ′]]F /(I

′
F )

i,

where Λ′ = Zn−1 and I ′F is the augmentation ideal of R′[[Λ′]]F . Using the
isomorphisms R[[Λ]]F ≃ R[[x1, . . . , xn]] and R

′[[Λ′]]F ≃ R
′[[x1, . . . , xn−1]] induced

by the basis of Λ, we are reduced to checking that

R[[x1, . . . , xn]]/IiF −→ (R[y]/yi)[[x1, . . . , xn−1]]/J

xi 7−→

{

xi if i ≤ n− 1

y if i = n.

is an isomorphism, when J = (I ′F )
i + y · (I ′F )

i−1 + · · · + yi. The latter then
follows by definition. �

Remark 3.2. Similar statements can be found in [HM13, 3.2.1] or [Kr12, 6.7],
but we gave a full proof for the sake of completeness.

We obtain a natural map of R-algebras

hT (pt)→ lim
←−
i

hT (pt)/γ
i
hT (pt) ≃ lim

←−
i

R[[Λ]]F /I
i
F = R[[Λ]]F

and, therefore, by Lemma 3.1, we have:

Theorem 3.3. If h is (separated and) Chern-complete over the point for T ,
then the natural map hT (pt) → R[[Λ]]F is an isomorphism. It sends the char-
acteristic class cT1 (Lλ) ∈ hT (pt) to xλ ∈ R[[Λ]]F .

4. Equivariant cohomology of P1

In the present section we compute equivariant cohomology hT (P(V1⊕V2)) of a
projective line, where a split torus T acts on one-dimensional representations
V1 and V2 by means of characters λ1 and λ2.

Assumption 4.1. For the rest of the paper we assume that the equivariant
cohomology of the point hT (pt) is (separated and) complete for the γ-filtration
in the sense of Definition 2.2.
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Let X be a smooth T -variety. By section 3, the ring hT (X) can be considered
as a ring over S := R[[Λ]]F via the identification S ≃ hT (pt) of Theorem 3.3
and the pull-back map hT (pt) → hT (X). By convention, we’ll use the same
notation for an element u of S and the element u · 1 ∈ hT (X), where 1 is the
unit of hT (X). Thus, for example, xλ = cT1 (Lλ) in hT (X).

Given a morphism f : X → Y in T -Var, the pull-back map f∗ is a morphism
of rings over S and the push-forward map f∗ (when it exists) is a morphism of
S-modules by the projection formula.

Remark 4.2. Note that we are not claiming that S injects in hT (X) for all
X ∈ T -Var; it will nevertheless hold when X has a k-point that is fixed by T ,
as most of the schemes considered in this paper have.

We now concentrate on the following setting. Let λ1 and λ2 be characters of
T , and let V1 and V2 be the corresponding one dimensional representations of
T , i.e. t ∈ T acts on v ∈ Vi by t · v = λi(t)v. Thus, the projective space
P(V1 ⊕ V2) is endowed with a natural T -action, induced by the action of T on
the direct sum of representations V1⊕V2. Furthermore, the line bundle O(−1)
has a natural T -equivariant structure, that can be described in the following
way: The geometric points of the total space of O(−1) are pairs (W,w) where
W is a rank one sub-vector space of V1 ⊕ V2 and w ∈W . The torus T acts by
t · (W,w) = (t(W ), t(w)).
Two obvious embeddings Vi ⊆ V1 ⊕ V2 induce two T -fixed points closed em-
beddings σ1, σ2 : pt →֒ P(V1 ⊕ V2). The open complement to σ1 is an affine
space isomorphic to V1 ⊗ V

∨
2 , with T -action by the character λ1 − λ2. We set

α := λ2−λ1. By homotopy invariance (A4) applied to the pull-back induced by

the structural morphism of V1, we have hT (pt)
∼
→ hT (V1) with inverse given by

the pull-back σ∗
2 (which actually lands in V1). The exact localization sequence

(A3) can therefore be rewritten as

hT (pt)
(σ1)∗

// hT (P(V1 ⊕ V2))
σ∗

2 // hT (pt) // 0

Using the structural map p : P(V1 ⊕ V2) → pt, we get a splitting p∗ of σ∗
2 and

a retract p∗ of (σ1)∗. Thus, the exact sequence is in fact injective on the left,
and we can decompose hT (P(V1 ⊕ V2)) using mutually inverse isomorphisms

(4.1) hT (pt)⊕ hT (pt)
((σ1)∗, p∗−(σ1)∗p∗p

∗)
// hT (P(V1 ⊕ V2))

(

p∗
σ∗

2

)

oo

Lemma 4.3. (a) As T -equivariant bundles, we have σ∗
i (O(−1)) = Vi.

(b) We have (σ1)∗(1) = c1
(

O(1)⊗p∗(V2)
)

and (σ2)∗(1) = c1(O(1)⊗p
∗(V1))

in hT

(

P(V1 ⊕ V2)
)

.
(c) For any u ∈ hT (pt), we have σ∗

1(σ1)∗(u) = xαu, σ
∗
2(σ2)∗(u) = x−αu

and σ∗
1(σ2)∗(u) = σ∗

2(σ1)∗(u) = 0.
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Proof. The first part is easily checked on the geometric points of total spaces
and is left to the reader. The second part follows from (A5), given the exact
sequence of T -equivariant sheaves

0→ O(−1)⊗ p∗(V2)
∨ → O → Oσ1

→ 0,

where Oσ1
is the structural sheaf of the closed subscheme given by σ1. Again

this exact sequence is easy to check and we leave it to the reader. In the third
part, the last equality holds by transverse base change through the empty
scheme, while the first two follow from Lemma 2.1 and

σ∗
1(σ1)∗(1) = σ∗

1c1
(

O(1)⊗ p∗(V2)
)

=

= c1

(

σ∗
1

(

O(1)⊗ p∗(V2)
)

)

= c1
(

V ∨
1 ⊗ V2) = xλ2−λ1

.

or a symmetric computation for σ∗
2(σ2)∗(1). �

Lemma 4.4. If xα is not a zero divisor in S, then the push-forward

p∗ : hT (P(V1 ⊕ V2))→ hT (pt) satisfies p∗(1) =
1
xα

+ 1
x−α

.

(Observe that p∗(1) ∈ S by [CPZ, 3.12], where it is denoted by eα.)

Proof. By Lemma 4.3, we have

xα = c1(p
∗(V2 ⊗ V

∨
1 )) = c1(O(1)⊗ p

∗(V2)⊗ (O(1)⊗ p∗(V1))
∨)

= c1
(

O(1)⊗ p∗(V2)
)

−F c1
(

O(1)⊗ p∗(V1)
)

= (σ1)∗(1)−F (σ2)∗(1).

By transverse base change, we have (σ1)∗(1) · (σ2)∗(1) = 0, and therefore

(σ1)∗(1)−F (σ2)∗(1) = (σ1)∗(1) +
(

−F (σ2)∗(1)
)

.

Since xα is not a zero divisor in S, it suffices to prove that

xα · p∗(1) = 1 + xα

x−α
,

where xα

x−α
∈ S× is the power series −F (x)

x applied to x = x−α. Now,

xαp∗(1) = p∗(xα) = p∗
(

(σ1)∗(1) + (−F (σ2)∗(1))
)

= 1 + p∗(−F (σ2)∗(1)) = 1 + xα

x−α
.

where the last equality follows from Lemma 2.1, part (b). �

Let σ = σ1 ⊔ σ2 : pt ⊔ pt→ P(V1 ⊕ V2) be the inclusion of both T -fixed points.

Lemma 4.5. If xα is not a zero divisor in S, the pull-back σ∗ is injective, and

imσ∗ = {(u, v) ∈ hT (pt)⊕ hT (pt) | x−αu+ xαv ∈ xαx−α · hT (pt)}.

Proof. Since hT (pt⊔pt) = hT (pt)⊕hT (pt) identifies σ
∗ with (σ∗

1 , σ
∗
2), it suffices

to check that the composition

hT (pt)⊕ hT (pt)
((σ1)∗, p∗−(σ1)∗p∗p

∗)

≃
// hT (P(V1 ⊕ V2))

(

σ∗

1
σ∗

2

)

// hT (pt)⊕ hT (pt)
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is injective. Indeed, it is given by the matrix
(

σ∗
1(σ1)∗ σ∗

1p
∗
− σ∗

1(σ1)∗p∗p
∗

σ∗
2(σ1)∗ σ∗

2p
∗
− σ∗

2(σ1)∗p∗p
∗

)

=

(

xα 1− xα · p∗(1)
0 1

)

=

(

xα −
xα
x−α

0 1

)

where in the first equality, we have used p ◦ σi = id, Lemma 4.3 part (c), to
get the 1’s and the 0, and then the projection formula p∗p

∗(u) = u · p∗(1) and
Lemma 2.1 to get σ∗

1(σ1)∗p∗p
∗(u) = xαp∗(1) · u. The last equality holds by

Lemma 4.4.
Finally, the image of this matrix is of the expected form. �

Let S[ 1
xα

] be the localization of S at the multiplicative subset generated by xα.

Since xα

x−α
is invertible, there is a canonical isomorphism S[ 1

xα
] ≃ S[ 1

x−α
]. We

consider the S[ 1
xα

]-linear operator

A : S[ 1
xα

]⊕ S[ 1
xα

] −→ S[ 1
xα

] given by (u, v) 7→ u
xα

+ v
x−α

.

Note that by the previous lemma, it sends the image of σ∗ to S inside S[ 1
xα

].

Lemma 4.6. If xα is not a zero divisor in S, the following diagram commutes.

hT

(

P(V1 ⊕ V2)
)

p∗

��

σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xα
]⊕ S[ 1

xα
]

A

��

hT (pt) S
≃oo ⊆ S[ 1

xα
]

Proof. It suffices to check the equality of the two maps after precomposition
by the isomorphism hT (pt) ⊕ hT (pt) → hT

(

P(V1 ⊕ V2)
)

given in (4.1). Using
the matrix already computed in the proof of Lemma 4.5, one obtains that the
upper right composition sends (u, v) to u. The lower left composition sends
(u, v) to

p∗
(

(σ1)∗(u) + p∗(v)− (σ1)∗p∗p
∗(v)

)

= u+ p∗p
∗(v)− p∗p

∗(v) = u. �

5. Algebraic and combinatorial objects

Let us now introduce the main algebraic objects D
⋆, D

⋆
Ξ, S

⋆
W and S⋆

W/WΞ

that play the role of algebraic replacements for some equivariant cohomology
groups in the remaining of this paper. These objects were discussed in detail
in [CZZ] and [CZZ2], and we only give a brief overview here. Their geometric
interpretation will be explained in the next sections.

Let Σ →֒ Λ∨, α 7→ α∨ be a root datum in the sense of [SGA3, Exp. XXI, §1.1].
Thus, Λ is a lattice and Σ is a non-empty finite subset of Λ, called the set of
roots. The rank of the root datum is the dimension of Q ⊗Z Λ, and elements
in Σ are called roots. The root lattice Λr is the subgroup of Λ generated by
elements in Σ, and the weight lattice is defined as

Λw = {ω ∈ Q⊗Z Λ | α∨(ω) ∈ Z for all α ∈ Σ}.
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We have Λr ⊆ Λ ⊆ Λw. We always assume that the root datum is semisimple
(the ranks of Λ, Λr, Λw are equal and no root is twice any other root). The
root datum is called simply connected (resp. adjoint) if Λ = Λw (resp. Λ = Λr)
and if it is furthermore irreducible of rank n, we use the notation Dsc

n (resp.
Dad

n ) for its Dynkin type, with D among A, B, C, D, G, F , E.

The Weyl group W of the root datum is the subgroup of AutZ(Λ) generated
by simple reflections

sα(λ) = λ− α∨(λ)α, λ ∈ Λ.

Fixing a set of simple roots Π = {α1, ..., αn} induces a partition Σ = Σ+ ∪Σ−,
where Σ+ is the set of positive roots and Σ− = −Σ+ is the set of negative
roots. The Weyl group W is actually generated by si := sαi

, i = 1, ..., n.

Let F be a one-dimensional commutative formal group law over a commutative
ring R. Let S = R[[Λ]]F . From now on we always assume that

Assumption 5.1. The algebra S is Σ-regular, that is, xα is regular in S for all
α ∈ Σ (see [CZZ, Def. 4.4]).

This holds if 2 is regular in R, or if the root datum does not contain an irre-
ducible component of type Csc

k [CZZ, Rem. 4.5].

The action ofW on Λ induces an action ofW on S, and let SW be the R-algebra
defined as S ⊗R R[W ] as an R-module, and with product given by

qδwq
′δw′ = qw(q′)δww′ , q, q′ ∈ S, w,w′ ∈W.

Let Q = S[ 1
xα
|α ∈ Σ] and QW = Q ⊗S SW , with ring structure given by the

same formula with q, q′ ∈ Q. Then {δw}w∈W is an S-basis of SW and a Q-basis
of QW . There is an action of QW on Q, restricting to an action of SW on S,
and given by

qδw · q
′ = qw(q′), q, q′ ∈ Q, w ∈W.

For each α ∈ Σ, we define κα = 1
xα

+ 1
x−α
∈ S.

Definition 5.2. For any α ∈ Σ, let

Xα = 1
xα
− 1

xα
δsα , Yα = κα −Xα = 1

x−α
+ 1

xα
δsα ,

in QW , respectively called a formal Demazure element and a formal push-pull
element.

For each sequence (i1, ..., ik) with 1 ≤ ij ≤ n, we define XI = Xαi1
· · ·Xαik

and YI = Yαi1
· · ·Yαik

.

Definition 5.3. Let D be the R-subalgebra of QW generated by elements
from S and the elements Xα, α ∈ Σ.

Since δsi = 1 − xαi
Xαi

, we have SW ⊆ D. By [CZZ, Prop. 7.7], D is a free
S-module and for any choice of reduced decompositions Iw for every element
w ∈W the family {XIw}w∈W is an S-basis of D.
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There is a coproduct structure on the Q-module QW defined by

QW → QW ⊗Q QW , qδw 7→ qδw ⊗ δw,

with counit QW → Q, qδw 7→ q. Here QW ⊗Q QW is the tensor product of left
Q-modules. By the same formula, one can define a coproduct structure on the
S-module SW . The coproduct on QW induces a coproduct structure on D as
a left S-module.

On duals S⋆
W = HomS(SW , S), D⋆ = HomS(D, S) and Q∗

W = HomQ(QW , Q)
(notice the different stars ⋆ for S-duality and ∗ for Q-duality), the respective
coproducts induce products. In S⋆

W or Q∗
W , this product is given by the simple

formula

fvfw = δKr
v,wfv

on the dual basis {fv}w∈W to {δw}w∈W , with δKr
v,w the Kronecker delta. The

multiplicative identity is 1 =
∑

v∈W fv. Let η be the inclusion SW ⊆ D.
It induces an S-algebra map η⋆ : D⋆ → S⋆

W , which happens to be injective
[CZZ2, Lemma 10.2]. Furthermore, after localization, ηQ : QW → Q⊗S D

⋆ is
an isomorphism and by freeness, we have Q ⊗S D

⋆ ≃ HomQ(Q ⊗S D, Q) and
thus Q⊗S D

⋆ ≃ Q∗
W , as left Q-rings.

There is a Q-linear action of the R-algebra QW on Q∗
W given by

(z • f)(z′) = f(z′z), z, z′ ∈ QW , f ∈ Q∗
W .

as well as S-linear actions of SW on S⋆
W and of D on D

⋆, given by the same
formula. With this action, it is proved in [CZZ2, Theorem 10.13] that D⋆ is a
free D-module of rank 1 and any w ∈ W gives a one-element basis {xΠ • fw}
of it, where xΠ =

∏

α∈Σ− xα.
The map cS : S → D

⋆ sending s to s • 1 is called the algebraic (equivariant)
characteristic map, and it is of special importance (see section 10).

We now turn to the setting related to parabolic subgroups. Let Ξ ⊆ Π be a
subset and let WΞ be the subgroup of W generated by the si with αi ∈ Ξ. Let
ΣΞ = {α ∈ Σ|sα ∈ WΞ}, and define Σ+

Ξ = Σ+ ∩ ΣΞ and Σ−
Ξ = Σ− ∩ ΣΞ. For

Ξ′ ⊆ Ξ ⊆ Π, let Σ+
Ξ/Ξ′

= Σ+
Ξ\Σ

+
Ξ′ and Σ−

Ξ/Ξ′
= Σ−

Ξ\Σ
−
Ξ′ . In S, we set

xΞ/Ξ′ =
∏

α∈Σ−

Ξ/Ξ′

xα and xΞ = xΞ/∅.

Let SW/WΞ
be the free S-module with basis {δw̄}w̄∈W/WΞ

and let QW/WΞ
=

Q⊗S SW/WΞ
be its localization.

As on QW , one can define a coproduct structure on QW/WΞ
and SW/WΞ

, by
the same diagonal formula. Let

S⋆
W/WΞ

= HomS(SW/WΞ
, S) and Q∗

W/WΞ
= HomQ(QW/WΞ

, Q)

be the respective dual rings of the corings SW/WΞ
and QW/WΞ

. On the ba-
sis {fv̄}v̄∈W/WΞ

dual to the basis {δw̄}w̄∈W/WΞ
, the unit element is 1Ξ =

∑

v̄∈W/WΞ
fv̄, both in S⋆

W/WΞ
and in Q∗

W/WΞ
.
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Assume Ξ′ ⊆ Ξ. Let w̄ ∈W/WΞ′ and let ŵ denote its class inW/WΞ. Consider
the projection and the sum over orbits

pΞ/Ξ′ : SW/WΞ′
→ SW/WΞ

δw̄ 7→ δŵ

and dΞ/Ξ′ : SW/WΞ
→ SW/WΞ′

δŵ 7→
∑

v̄∈W/WΞ′

v̂=ŵ

δv̄

with S-dual maps

p⋆Ξ/Ξ′ : S⋆
W/WΞ

→ S⋆
W/WΞ′

fŵ 7→
∑

v̄∈W/WΞ′

v̂=ŵ

fv̄

and d⋆Ξ/Ξ′ : S⋆
W/WΞ′

→ S⋆
W/WΞ

fw̄ 7→ fŵ

.

Note that pΞ/Ξ′ respects coproducts, so p⋆Ξ/Ξ′ is a ring map while d⋆Ξ/Ξ′ isn’t.

We set pΞ = pΞ/∅. Let DΞ denote the image of D via pΞ. The coproduct
structure on QW/WΞ

induces an S-linear coproduct structure on DΞ, so its
S-dual D⋆

Ξ has a ring structure.
In summary, we have the following diagram followed by its dualization

SW/WΞ′

� � ηΞ′

//

pΞ/Ξ′

����

DΞ′

� � //

pΞ/Ξ′

����

QW/WΞ′

pΞ/Ξ′

����

SW/WΞ

� � ηΞ
// DΞ

� � // QW/WΞ

D
⋆
Ξ′

� �
η⋆
Ξ′

// S⋆
W/WΞ′

� � // Q∗
W/WΞ′

D
⋆
Ξ

?�

p⋆
Ξ/Ξ′

OO

� � η⋆
Ξ // S⋆

W/WΞ

?�

p⋆
Ξ/Ξ′

OO

� � // Q∗
W/WΞ

?�

p⋆
Ξ/Ξ′

OO

in which all horizontal maps become isomorphisms after tensoring by Q on the
left. It will receive a geometric interpretation as Diagram (8.2). Moreover,
by [CZZ2, Lemma 11.7], the image of p⋆Ξ in D

⋆ (or S⋆
W , Q∗

W ) is the subset of
WΞ-invariant elements.

There is no ‘•’-action of SW/WΞ
on S⋆

W/WΞ
because SW/WΞ

is not a ring. But

since xΠ/Ξ ∈ S
WΞ , the element xΠ/Ξ • f is well-defined for any f ∈ S⋆

W/WΞ
and

actually belongs to D
⋆
Ξ inside S⋆

W/WΞ
, by [CZZ2, Lemma 15.3]. This defines a

map D
⋆
Ξ → SW/WΞ

, interpreted geometrically in Diagram (8.1).

For a given set of representatives of WΞ/WΞ′ we define the push-pull element
by

YΞ/Ξ′ =
∑

w∈WΞ/Ξ′

δw
1

xΞ/Ξ′

∈ QW .

We set YΞ = YΞ/∅. If Ξ = {αi}, then YΞ = Yαi
. By [CZZ2, Lemma 10.12],

YΞ ∈ D.

Let

AΞ/Ξ′ : (Q∗
W )WΞ′ → (Q∗

W )WΞ

f 7→ YΞ/Ξ′ • f
and AΞ/Ξ′ : Q∗

W/WΞ′

→ Q∗
W/WΞ

f 7→ d⋆Ξ/Ξ′(
1

xΞ/Ξ′

• f)

and respectively call them push-pull operator and push-forward operator. The
operator AΞ/Ξ′ is actually independent of the choice of representatives [CZZ2,
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Lem. 6.5]. We have AΞ/Ξ′((D⋆)WΞ′ ) = (D⋆)WΞ by [CZZ2, Cor. 14.6] and AΞ/Ξ′

induces a mapAΞ/Ξ′ : D⋆
Ξ′ → D

⋆
Ξ by [CZZ2, Lemma 15.1]. These two operators

are related by the commutative diagram on the left below, becoming the one
on the right after tensoring by Q.

D
⋆
Ξ′

p⋆
Ξ′

≃
//

AΞ/Ξ′

��

(D⋆)WΞ′

AΞ/Ξ′

��

D
⋆
Ξ

p⋆
Ξ

≃
// (D⋆)WΞ

Q∗
W/WΞ′

p⋆
Ξ′

≃
//

AΞ/Ξ′

��

(Q∗
W )WΞ′

AΞ/Ξ′

��

Q∗
W/WΞ

p⋆
Ξ

≃
// (Q∗

W )WΞ

Again, when Ξ′ = ∅, we set AΞ = AΞ/∅ and AΞ = AΞ/∅.

6. Fixed points of the torus action

We now consider a split semi-simple algebraic group G over k containing T as
a maximal torus, with character group Λ. Let W be the Weyl group associated
to (G,T ), with roots Σ ⊆ Λ. We choose a Borel subgroup B of G containing T .
It defines a set Π of simple roots in W . Given a subset Ξ ⊆ Π, the subgroup
generated by B and representatives in G(k) of reflections with respect to roots
in Ξ is a parabolic subgroup, denoted by PΞ. The map sending Ξ to PΞ is a
bijection between subsets of Π and parabolic subgroups of G containing B. Let
WΞ be the subgroup of W generated by reflections with respect to roots in Ξ.
We will abuse the notation by also writing W (or WΞ, etc.) when referring to
the constant finite algebraic group over pt whose set of points over any field is
W .

For any parabolic subgroup P , the quotient variety G/P is projective and
we consider it in T -Var by letting T act on G by multiplication on the left.
After identifying W ≃ NG(T )/T , the Bruhat decomposition says that G/P =
⊔

w∈WΞ BwPΞ/PΞ, where the union is taken over the set WΞ of minimal left
coset-representatives ofW/WΞ. It induces a bijection between k-points ofG/PΞ

that are fixed by T and the set WΞ (or W/WΞ). In particular, fixed k-points
of G/B are in bijection with elements of W .

Let (G/PΞ)
T =

⊔

w̄∈W/WΞ
ptw̄ denote the closed subvariety of T -fixed k-points,

then by additivity there is an S = hT (pt)-algebra isomorphism

ΘΞ : hT ((G/PΞ)
T )

≃
−→

∏

w̄∈W/WΞ

hT (ptw̄) =
∏

w̄∈W/WΞ

S ∼= S⋆
W/WΞ

.

If Π = ∅, we denote Θ : hT ((G/B)T ) = hT (W )→ S⋆
W .

Let ıΞ : (G/PΞ)
T →֒ G/PΞ denote the (closed) embedding of the T -fixed locus,

and let ıw̄Ξ : ptw̄ →֒ G/PΞ denote the embedding corresponding to w̄. Given
Ξ′ ⊆ Ξ ⊆ Π, we define projections

πΞ/Ξ′ : G/PΞ′ → G/PΞ and ρΞ/Ξ′ : W/WΞ′ →W/WΞ
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(here we viewW/WΞ as a variety that is a disjoint union of copies of pt indexed
by cosets). If Ξ = {α} consists of a single simple root α, we omit the brackets
in the indices, i.e. we abbreviate W{α} as Wα, P{α} as Pα, etc. If Ξ′ = ∅, we
omit the ∅ in the notation, i.e. πΞ/∅ = πΞ, ρΞ/∅ = ρΞ, etc. By definition, we
have

(6.1) ΘΞ ◦ (ρΞ/Ξ′)∗ = d⋆Ξ/Ξ′ ◦ΘΞ′ and ΘΞ′ ◦ (ρΞ/Ξ′)∗ = p⋆Ξ/Ξ′ ◦ΘΞ.

The following lemma is easy and well-known. We include a proof for the sake
of completeness.

Lemma 6.1. Let w ∈ W be a representative of w̄ ∈ W/WΞ. The pull-pack
(ıw̄Ξ )

∗TG/PΞ
of the tangent bundle TG/PΞ

of G/PΞ is the representation of T

(the T -equivariant bundle over a point) with weights {w(α) | α ∈ Σ−
Π/Ξ}. (This

set is indeed independent of the choice of a representative w, e.g. by [CZZ2,
Lemma 5.1].)

Proof. Consider the exact sequence of T -representations at the neutral element
e ∈ G

0→ TPΞ,e → TG,e → TG/PΞ,e → 0

(it is exact by local triviality of the right PΞ-torsorG→ G/PΞ). By definition of
the root system associated to (G,T ), the roots Σ are the characters of TG,e. By
definition of the parabolic subgroup PΞ, the characters of TPΞ,e are Σ+ ⊔ Σ−

Ξ .
This proves the lemma when w = e. For an arbitrary w, we consider the
diagram

pte
ıeΞ //

ıēΞ ""❊
❊❊

❊❊
❊❊

❊
G

w· //

��

G

��

G/PΞ
w· // G/PΞ

which is T -equivariant if T acts by multiplication on the left on the right column
and through conjugation by w−1 and then by multiplication on the left on the
left column. Since ıw̄Ξ is the bottom composite from pte to G/PΞ, the fiber of
TG/PΞ

at w̄ is isomorphic to its fiber at e, but for every character α, the action

of T is now by t(v) = α(w̄−1tw̄) ·v = α(w−1(t)) ·v = w(α)(t) ·v, in other words
by the character w(α). �

Proposition 6.2. We have (ıw̄Ξ )
∗(ıw̄

′

Ξ )∗(1) = 0 if w̄ 6= w̄′ ∈W/WΞ and

(ıw̄Ξ )
∗(ıw̄Ξ )∗(1) =

∏

α∈Σ−

Π/Ξ

xw(α) = w(xΠ/Ξ).

Proof. The case w̄ 6= w̄′ holds by transverse base change through the empty
scheme. Since the normal bundle to a point in G/PΞ is the tangent bundle
of G/PΞ pulled back to that point, and since any T -representation splits into
one-dimensional ones, the case w̄ = w̄′ follows from (A8) using Lemma 6.1 to
identify the characters. �
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Remark 6.3. Note that in the Borel case, the inclusion of an individual fixed
point is local complete intersection as any other morphism between smooth
varieties, but not “global” complete intersection, in the sense that it is not the
zero locus of transverse sections of a globally defined vector bundle. Otherwise,
for Chow groups, such a point would be in the image of the characteristic map
as a product of first characteristic classes, and it isn’t for types for which the
simply connected torsion index isn’t 1. Locally, on an open excluding other
fixed points, it becomes such a product, as the previous proposition shows.

Corollary 6.4. We have ΘΞ(ıΞ)
∗(ıΞ)∗(1) = xΠ/Ξ • 1Ξ.

Proof. Since ıΞ =
⊔

w̄∈W/WΞ
ıw̄Ξ , we have

ΘΞ(ıΞ)
∗(ıΞ)∗(1) = ΘΞ

(

∑

v̄, w̄∈W/WΞ

(ıv̄Ξ)
∗(ıw̄Ξ )∗(1)

)

= ΘΞ

(

∑

w̄∈W/WΞ

w
(

xΠ/Ξ

)

1ptw̄

)

=
∑

w̄∈W/WΞ

w
(

xΠ/Ξ

)

fw̄ = xΠ/Ξ • 1Ξ. �

7. Bott-Samelson classes

In the present section we describe the Bott-Samelson classes in the T -
equivariant cohomology of G/PΞ.

Let Ξ ⊆ Π as before. For each w̄ ∈ W/WΞ consider the B-orbit BwPΞ/PΞ of
the point in G/PΞ corresponding to w̄. It is isomorphic to the affine space Al(v)

where v ∈ WΞ is the representative of w̄ of minimal length l(v). Its closure

BwPΞ/PΞ is called the Schubert variety at w̄ with respect to Ξ and is denoted
by XΞ

w̄ . If Ξ = ∅, we write Xw for X ∅
w. Moreover, by Bruhat decomposition

the closed complement of BwPΞ/PΞ is the union of Schubert varieties XΞ
ū with

ū < w̄ for the Bruhat order on W/WΞ. For any w ∈ W , the projection map
G/B → G/PΞ induces a projective map Xw → X

Ξ
w . Moreover, if w ∈WΞ, then

the projection Xw → X
Ξ
w is (projective and) birational.

The variety XΞ
w̄ is not smooth in general, but it admits nice desingularizations,

that we now recall, following [D74]. Given a sequence of simple reflections
I = (s1, . . . , sl) corresponding to simple roots (α1, . . . , αl), the Bott-Samelson
desingularization of XI is defined as

X̂I = Pα1
×B Pα2

×B · · · ×B Pαl
/B

where ×B means the quotient by the action of B given on points by b ·
(x, y) = (xb−1, by). By definition, the multiplication of all factors induces

a map qI : X̂I → G/B which factors through a map µI : X̂I → Xw(I) where
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w(I) = s1 · · · sl. It is easy to see that if I ′ = (s1, . . . , sl−1), the diagram

(7.1) X̂I
qI

//

p′

��

G/B

παl

��

X̂I′

παl
◦qI′

// G/Pαl

is cartesian, when p′ is projection on the first l − 1 factors. By induction
on l, the variety X̂I is smooth projective and the morphism µI is projective.
When furthermore I is a reduced decomposition of w(I), meaning that it is of
minimal length among the sequences J such that w(J) = w(I), the map µI

is birational (still by Bruhat decomposition). We can compose this map with

the projection to get a map X̂w → XΞ
w̄ and thus when w ∈ WΞ, we obtain a

(projective birational) desingularization X̂w → XΞ
w̄ . It shows that, G/PΞ has a

cellular decomposition with desingularizations, as considered just before [CPZ,
Thm. 8.8], with cells indexed by elements of W/WΞ.

Remark 7.1. The flag varieties, the Schubert varieties, their Bott-Samelson
desingularizations and the various morphisms between them that we have just
introduced are all B-equivariant when B acts on the left, and therefore are
T -equivariant.

Definition 7.2. Let qΞI = πΞ ◦ qI , let ζΞI be the push-forward (qΞI )∗(1) in

hT (G/PΞ), and let ζI = ζ∅I in hT (G/B).

Note that by definition, we have (πΞ)∗(ζI) = ζΞI .

Lemma 7.3. For any choice of reduced sequences {Iw}w∈WΞ , the classes ζΞIw
generate hT (G/PΞ) as an S-module.

Proof. The proof of [CPZ, Theorem 8.8] goes through when h is replaced by
hT , since all morphisms involved are T -equivariant; it only uses homotopy
invariance and localization. �

Let V0 (resp. Vα) be the 1-dimensional representation of T corresponding to
the 0 (resp. α) character. Let σ0 and σα be the inclusions of T -fixed points
corresponding to V0 and Vα in P(V0 ⊕ Vα) as in the setting of Section 4.
Consider the projection πα : G/B → G/Pα. Given an element w ∈ W , with
image w̄ in W/Wα and any lifting w′ of w in G, the fiber over the fixed point
ıw̄α : ptw̄ → G/Pα is w′Pα/B.

Lemma 7.4. There is a T -equivariant isomorphism w′Pα/B ≃ P(V0⊕V−w(α)),
such that the closed fixed point ıw : ptw → w′Pα/B →֒ G/B (resp. ıwsα) is sent
to σ0 : pt→ P(V0 ⊕ V−w(α)) (resp. to σ−w(α)).

Proof. Multiplication on the left by w′ defines an isomorphism Pα/B →
w′Pα/B and it is T -equivariant if T acts by multiplication on the left on
w′Pα/B and through conjugation by (w′)−1 and then by multiplication on
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the left on Pα/B. Thus, we can reduce to the case where w′ = e: the general
case follows by replacing the character α by w(α).
First, let us observe that PGL2 acts on the projective space P1 by projective
transformations, i.e.

(

t b
c d

)

[x : y] = [tx+ by : cx+ dy]

with its Borel subgroup BPGL2 of upper triangular matrices fixing the point [1 :
0], which therefore gives an identification PGL2/BPGL2

≃ P1. So, its maximal
torus Gm of matrices such that b = c = 0 and d = 1 acts by t[x : y] = [tx : y] =
[x : t−1y]. Thus, as a Gm-variety, this P1 is actually P(V1⊕V0) ≃ P(V0⊕V−1).
The adjoint semi-simple quotient of Pα is of rank one, so it is isomorphic to
PGL2. The maximal torus T maps to a maximal torus Gm and the Borel B to
a Borel in this PGL2. Up to modification of the isomorphism by a conjugation,
we can assume that this Borel of PGL2 is indeed BPGL2

as above. The map
T → Gm is ±α (the sign depends on how the maximal torus of PGL2 is
identified with Gm). Since Pα/B ≃ PGL2/BPGL2

, we are done by the PGL2

case. �

Recall the notation from section 5.

Lemma 7.5. The following diagram commutes.

hT (G/B)

π∗

α(πα)∗

��

ı∗ // hT (W )
Θ

≃
// S⋆

W
⊆ Q∗

W

Aα

��

hT (G/B)
ı∗ // hT (W )

Θ

≃
// S⋆

W
⊆ Q∗

W

Proof. In view of Lemma 7.4, the strategy is to reduce to the case of Lemma
4.6 by restricting to the fiber over one fixed point of G/Pα at a time.
We decompose Q∗

W =
⊕

w∈Wα(Q · fw ⊕Q · fwsα) and note that Aα preserves
this decomposition since

Aα(fw) =
1

x−w(α)
(fw + fwsα), Aα(fwsα) =

1

xw(α)
(fw + fwsα)

and Aα is Q-linear. It therefore suffices to check the commutativity of the
diagram after extending both rows on the right by a projection Q∗

W → Q ·
fw ⊕ Q · fwsα , for all w ∈ Wα. But then, the composite horizontal maps
hT (G/B)→ Q · fw ⊕Q · fwsα factor as

hT (G/B)→ hT (PαwB/B)→ hT (pt)⊕ hT (pt)≃

≃ S ⊕ S ⊆ S[ 1
xw(α)

]⊕ S[ 1
xw(α)

] ⊆ Q⊕Q.
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Using proper base change on the diagram

G/B

πα

��

w′Pα/B

��

? _oo

G/Pα pt? _
ıw̄αoo

and identifying w′Pα/B with P(V0⊕V−w(α)) by Lemma 7.4, we are reduced to
proving the commutativity of

hT

(

P(V0 ⊕ V−w(α))
)

p∗p∗

��

σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xw(α)
]⊕ S[ 1

xw(α)
]

Aα

��

hT

(

P(V0 ⊕ V−w(α))
) σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xw(α)
]⊕ S[ 1

xw(α)
]

which immediately reduces to the diagram of Lemma 7.5 followed by an obvious
commutative diagram involving pull-backs

hT

(

P(V0 ⊕ V−w(α))
) σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xw(α)
]⊕ S[ 1

xw(α)
]

hT (pt)

p∗

OO

∆

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

S
≃oo ⊆

∆

OO

S[ 1
xw(α)

]

∆

OO

in which ∆ is the diagonal morphism. �

Lemma 7.6. For any sequence I = (i1, . . . , il), the Bott-Samelson class ζI ∈
hT (G/B) maps to

Θ ◦ ı∗(ζI) = AIrev

(

xΠ · fe
)

in S⋆
W .

Proof. By induction using diagram (7.1), we have

ζI = π∗
αil

(παil
)∗ ◦ · · · ◦ π

∗
αi1

(παi1
)∗ ◦ (ı

e)∗(1).

Since Θı∗(ıe)∗(1) = xΠ · fe by Proposition 6.2, the conclusion follows from
Lemma 7.5. �

8. Pull-back to T -fixed points

In the present section we describe the T -equivariant cohomology of an arbitrary
split flag variety G/PΞ via the pull-back map to the cohomology of T -fixed
points.

First, consider the complete flag variety G/B.

Proposition 8.1. For any choice of reduced decompositions (Iw)w∈W , the fam-
ily (ζIw)w∈W form a basis of hT (G/B) over S = hT (pt).
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Proof. By Lemma 7.6, the element ζIw pulls-back to AIrev

(

xΠ · fe
)

in S⋆
W and

these are linearly independent over S by [CZZ2, Theorem 12.4]. They generate
hT (G/B) by Lemma 7.3. �

Theorem 8.2. The pull-back map to fixed points ı∗ : hT (G/B) → hT (W )
is injective, and the isomorphism Θ : hT (W ) ≃ S⋆

W , identifies its image to
D

⋆ ⊆ S⋆
W .

Proof. This follows from Lemma 8.1 and the fact that the AIrev

(

xΠ · fe
)

form
a basis of D⋆ as a submodule of S⋆

W , still by [CZZ2, Theorem 12.4]. �

Remark 8.3. We do not know a direct geometric proof that hT (G/B) injects
into hT ((G/B)T ), which is of course well known for Chow groups or K-theory.
To prove injectivity for Chow groups, one usually argues along the following
lines:

(a) the composition ı∗ ◦ ı∗ becomes an isomorphism over Q (see Prop. 6.2);
(b) CHT (G/B) is a free CHT (pt)-module of rank |W | and so is

CHT ((G/B)T ).
(c) the pull-back Q ⊗S CHT (G/B) → Q ⊗S CHT ((G/B)T ) is an isomor-

phism as any surjection of free modules of the same rank over a noe-
therian ring (Q is a localization of CHT (pt) = Z[[x1, . . . , xn]]).

However, in the general case, localization arguments only give generating fam-
ilies so the freeness part of (b) does not follow, and in (c), Q is not noetherian
(e.g. the Lazard ring is not noetherian), so we need to look more carefully into
the structure of the image as a submodule of hT ((G/B)T ). This is done in the
algebraic world: the Bott-Samelson classes considered are linearly independent
when pulled to S⋆

W and the map D
⋆ → S⋆

W is indeed an injection by [CZZ2,
Lemma 10.2].

Corollary 8.4. The pull-back map ı∗ : hT (G/B) → hT (W ) becomes an iso-
morphism after localization at the multiplicative subset generated by all xα
where α is a root.

Proof. After localization at this subset, the inclusion D
⋆ ⊆ S⋆

W becomes an
isomorphism (see [CZZ2, Lemma 10.2]). �

Lemma 8.5. The following diagram commutes

hT (W )

≃ Θ

��

ı∗ // hT (G/B)
� � ı∗ //

≃ Θ

��

hT (W )

≃ Θ

��

S⋆
W

xΠ•(−)
// D

⋆ �
� η∗

// S⋆
W

Proof. This follows from Corollary 6.4 and Theorem 8.2. �

We now consider an arbitrary flag variety G/PΞ.
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Lemma 8.6. The following diagram commutes.

hT (G/B)

(πΞ)∗

��

ı∗ // hT (W )
Θ

≃
// S⋆

W ⊆ Q∗
W

AΞ

��

hT (G/PΞ)
ı∗Ξ // hT (W/WΞ)

ΘΞ

≃
// S⋆

W/WΞ
⊆ Q∗

W/WΞ

Proof. After tensoring the whole diagram with Q over S, the morphism ı∗

becomes an isomorphism by Corollary 8.4. The family
(

(ıw)∗(1)
)

w∈W
is a

Q-basis of Q ⊗S hT (G/B), since by Proposition 6.2, Θ ◦ ı∗ ◦ (ıw)∗(1) is fw
multiplied by an element that is invertible (in Q). It therefore suffices to check
the equality of both compositions in the diagram when applied to all (ıw)∗(1)
with w ∈W :

AΞ ◦Θ ◦ ı
∗ ◦ (ıw)∗(1) = AΞ(w(xΠ)fw) = w(xΠ)AΞ(fw)

(∗)
=

(∗)
= w(xΠ/Ξ)fw̄ = ΘΞ(ıΞ)

∗(ıw̄Ξ )∗(1) = ΘΞ(ıΞ)
∗(πΞ)∗(ı

w)∗(1)

where equality (∗) follows from the definition of AΞ. �

Corollary 8.7. The following diagram commutes.

hT (G/B)

(πΞ)
∗(πΞ)∗

��

ı∗ // hT (W )
Θ

≃
// S⋆

W
⊆ Q∗

W

AΞ

��

hT (G/B)
ı∗ // hT (W )

Θ

≃
// S⋆

W
⊆ Q∗

W

Proof. Using equation (6.1), one easily checks the commutativity of diagram
involving pull-backs

hT (G/B)
ı∗ // hT (W )

Θ

≃
// S⋆

W
⊆ Q∗

W

hT (G/PΞ)

π∗

Ξ

OO

ı∗ // hT (W/WΞ)
ΘΞ

≃
// S⋆

W/WΞ
⊆ Q∗

W/WΞ

p⋆
Ξ

OO

where p⋆Ξ is the sum over orbits: p⋆Ξ(fw̄) =
∑

v̄=w̄ fv. The result follows from
the combination of this diagram and the one of Lemma 8.6. �

Lemma 8.8. For any sequence I = (i1, . . . , il), the Bott-Samelson class ζΞI ∈
hT (G/PΞ) maps to

Θ ◦ (ıΞ)
∗(ζΞI ) = AΞ ◦AIrev

(

xΠfe
)

in S⋆
W .

Proof. We have

Θ(ıΞ)
∗(ζΞIw) = Θ(ıΞ)

∗(πΞ)∗(ζIw) = AΞ ◦Θ ◦ ı
∗(ζIw) = AΞ ◦AIrev

w

(

xΠfe
)

using Lemma 8.6 and Lemma 7.6 for the last two equalities. �
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Proposition 8.9. For any choice of reduced decompositions (Iw)w∈WΞ for
elements minimal in their WΞ-cosets, the classes ζΞIw form an S-basis of
hT (G/PΞ).

Proof. By Lemma 7.3, the classes ζΞIw generate hT (G/PΞ) as an S-module. We
have

Θı∗(πΞ)
∗(ζΞIw) = Θı∗(πΞ)

∗(πΞ)∗(ζIw) = AΞΘı
∗(ζIw) = AΞAIrev

w

(

xΠfe
)

and these elements are linearly independent by [CZZ2, Theorem 14.3]. �

Let Ξ′ ⊆ Ξ ⊆ Π.

Corollary 8.10. The push-forward map (πΞ/Ξ′)∗ : hT (G/PΞ′) → hT (G/PΞ)
is surjective and the pull-back map (πΞ/Ξ′)∗ : hT (G/PΞ) → hT (G/PΞ′) is in-
jective.

Proof. Surjectivity is obvious from the fact that ζIw maps to the basis element
ζΞIw̄ for any w ∈ WΞ and injectivity can be seen in the proof of Proposition

8.9: the elements ζΞIw̄ stay independent when pulled back all the way to hT (W )
through hT (G/B). �

Theorem 8.11. The pull-back map ı∗Ξ : hT (G/PΞ) → hT (W/WΞ) is injective

and the isomorphism ΘΞ : hT (W/WΞ)
∼
→ S⋆

W/WΞ
identifies its image to D

⋆
Ξ ⊆

S⋆
W/WΞ

.

Proof. As seen in the proof of Corollary 8.10, pulling back further to hT (W )
is injective, so injectivity of ı∗Ξ is clear. By Lemma 8.8, for any w ∈ WΞ, the
Bott-Samelson class ζΞIw is sent to AΞAIrev

w

(

xΠ/Ξfe
)

. These elements form a
basis of D⋆

Ξ by [CZZ2, Theorem 14.3 and Lemma 15.1]. �

Corollary 8.12. The pull-back map ı∗Ξ : hT (G/PΞ) → hT (W/WΞ) becomes
an isomorphism after localization at the multiplicative subset generated by all
xα where α is a root.

Proof. After localization at this subset, the inclusion D
⋆
Ξ ⊆ S⋆

W/WΞ
becomes

an isomorphism (see [CZZ2, Lemma 11.5]). �

As for G/B, we have the following commutative diagram

(8.1)

hT (W/WΞ)
(ıΞ)∗

//

≃ ΘΞ

��

hT (G/PΞ)
� � (ıΞ)

∗

//

≃ ΘΞ

��

hT (W/WΞ)

≃ ΘΞ

��

S⋆
W/WΞ

xΠ/Ξ•(−)
// D

⋆
Ξ
� � η∗

Ξ // S⋆
W/WΞ
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Lemma 8.13. The following diagram commutes.

hT (G/PΞ′)

(πΞ/Ξ′ )∗

��

(ıΞ′ )∗
// hT (W/WΞ′)

ΘΞ′

≃
// S⋆

W/WΞ′

⊆ Q∗
W/WΞ′

AΞ/Ξ′

��

hT (G/PΞ)
(ıΞ)

∗

// hT (W/WΞ)
ΘΞ

≃
// S⋆

W/WΞ
⊆ Q∗

W/WΞ

Proof. By the surjectivity claim in Corollary 8.10, we can precompose the di-
agram by πΞ′ . Since AΞ = AΞ/Ξ′ ◦ AΞ′ , the result follows from Lemma 8.6
applied first to Ξ′ and then to Ξ. �

Summarizing, we have the following commutative diagrams describing the cor-
respondence between the cohomology rings and their algebraic counterparts:

(8.2)

hT (W/WΞ′)
≃

ΘΞ′

// S⋆
W/WΞ′

hT (G/PΞ′)
≃

ΘΞ′

//

*



ı∗
Ξ′

77♣♣♣♣♣♣♣♣♣♣♣♣

D
⋆
Ξ′

-


;;✇✇✇✇✇✇✇✇

hT (W/WΞ) ≃

ΘΞ //
?�

(ρΞ/Ξ′ )∗

OO

S⋆
W/WΞ

?�

(pΞ/Ξ′ )⋆

OO

hT (G/PΞ) ≃

ΘΞ //
?�

(πΞ/Ξ′ )∗

OO

*



ı∗Ξ

77♣♣♣♣♣♣♣♣♣♣♣♣

D
⋆
Ξ

?�

OO

-


;;✇✇✇✇✇✇✇✇

For push-forwards, instead, the morphism AΞ/Ξ′ : Q∗
W/WΞ′

→ Q∗
W/WΞ

induces

a map AΞ/Ξ′ : D⋆
Ξ′ → D

⋆
Ξ by [CZZ2, Lemma 15.1], and we have:

(8.3)

hT (W/WΞ′)
≃

ΘΞ′

// S⋆
W/WΞ′

� � // Q∗
W/WΞ′

AΞ/Ξ′

����

hT (G/PΞ′)

(πΞ/Ξ′ )∗

����

≃

ΘΞ′

//

*



ı∗
Ξ′

88♣♣♣♣♣♣♣♣♣♣♣

D
⋆
Ξ′

-


<<①①①①①①①①

AΞ/Ξ′

����

hT (W/WΞ) ≃

ΘΞ // S⋆
W/WΞ

� � // Q∗
W/WΞ

hT (G/PΞ) ≃

ΘΞ //

*



ı∗Ξ

88♣♣♣♣♣♣♣♣♣♣♣

D
⋆
Ξ

-


;;①①①①①①①①

Notice that on this diagram, there is no map from hT (W/WΞ′) to hT (W/WΞ),
nor from S⋆

W/WΞ′

to S⋆
W/WΞ

because the operator AΞ/Ξ′ is not defined at that

level.
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By (8.1) and the identity xΠ/Ξ′ = xΠ/ΞxΞ/Ξ′ , we finally have the following.
(8.4)

hT (W/WΞ′)

(ıΞ′ )∗

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

(ρΞ/Ξ′ )∗

����

≃

ΘΞ′

// S⋆
W/WΞ′

xΠ/Ξ′•

||①①
①①
①①
①①

(dΞ/Ξ′ )⋆

����

// Q∗
W/WΞ′

(dΞ/Ξ′ )⋆

����

hT (G/PΞ′)
≃

ΘΞ′

//

(πΞ/Ξ′ )∗

����

D
⋆
Ξ′

AΞ/Ξ′

����

hT (W/WΞ) ≃

ΘΞ //

(ıΞ)∗

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

S⋆
W/WΞ

xΠ/Ξ′•
{{①①
①①
①①
①①

// Q∗
W/WΞ

hT (G/PΞ) ≃

ΘΞ // D
⋆
Ξ

9. Invariant subrings and push-forward pairings

We now describe how the Weyl group W , as an abstract group, acts on
hT (G/B), and how WΞ-invariant elements of this action are related to
hT (G/PΞ).

Since the projection G/T → G/B is an affine bundle, by homotopy invari-

ance the induced pull-back hT (G/B)
∼
→ hT (G/T ) is an isomorphism. The

Weyl group action is easier to describe geometrically on hT (G/T ). Since
W ≃ NG(T )/T , multiplication on the right by w ∈W defines a right action of
W on G/T , by T -equivariant morphisms. Action by induced pull-backs, there-
fore, defines a left action ofW on hT (G/T ). Similarly, a right action ofW on the
T -fixed points (G/T )T =W induces a left action ofW on hT (W ), and the pull-
back hT (G/T ) → hT (W ) is W -equivariant. Identifying hT (G/T ) ≃ hT (G/B),
we obtain the Weyl group action on hT (G/B) with ı∗ : hT (G/B) → hT (W )
being W -equivariant.

One easily checks on S-basis elements fw that through Θ, this W -action on
hT (W ) corresponds to the W -action on S⋆

W by the Hecke action w(z) = δw • z,
as described in [CZZ2, §4] (by definition, we have δw • fv = fvw−1).

Theorem 9.1. The image of the injective pull-back map hT (G/PΞ) →
hT (G/B) is hT (G/B)WΞ .

Proof. In Diagram (8.2), the upper square is W -equviariant. Since ı∗ is both
W -equivariant and injective, we are reduced to showing that p⋆Ξ identifies
S⋆
W/WΞ

to (S⋆
W )WΞ , which follows from [CZZ2, Lemma 11.7]. �

The following theorem generalizes [Br97, Proposition 6.5.(i)]. According to the
irreducible Dynkin types of the group, regularity assumptions on elements of
the base ring R (or weaker assumptions on elements in R[[x]]) are needed. They
are carefully summarized in [CZZ2, Lemma 2.7], but as a first approximation,
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regularity in R of 2, 3 and divisors of |Λw/Λr| cover all types, except the Csc
n

case, in which one needs 2 to be invertible.4

Theorem 9.2. Under the regularity assumptions of [CZZ2, Lemma 2.7], the
image of the injective pull-back ı∗ : hT (G/B) → hT (W ) ∼= S⋆

W is the set of
element

∑

w∈W qwfw such that xα|(qw − qsαw) for all roots α.

Proof. If follows from [CZZ2, Theorem 10.7]. �

We now describe the pairing given by multiplication and then push-forward to
the point, that we call the push-forward pairing. Let

hT (G/PΞ)⊗S hT (G/PΞ)
〈−,−〉Ξ
−→ S

ξ ⊗ ξ′ 7−→ 〈ξ, ξ′〉Ξ = (πΠ/Ξ)∗(ξ · ξ
′)

It is clearly S-bilinear and symmetric. Through the isomorphism Θ, this pairing
corresponds to

〈ξ, ξ′〉Ξ = AΠ/Ξ(ΘΞ(ξ) ·ΘΞ(ξ
′))

by Diagram (8.3).

Theorem 9.3. The push-forward pairing hT (G/PΞ)⊗S hT (G/PΞ)→ hT (pt) ≃
S, sending (ξ, ξ′) to 〈ξ, ξ′〉Ξ is non-degenerate.

Proof. This follows from [CZZ2, Theorem 15.6]. �

Remark 9.4. Note that in [CZZ2, Theorem 15.5], we describe a basis that is
dual to the basis of Bott-Samelson classes for the push-forward pairing on G/B.
That dual basis can be very useful for algorithmic computations. However, it is
given in combinatorial terms, and we do not have a geometric interpretation of
its elements. When the formal group law is additive, this problem disappears
since the basis is auto-dual (up to a permutation), see [D74, Prop. 1, p. 69],
but for general formal group laws, this is not the case.

10. Borel-style presentation

The geometric (equivariant) characteristic map cg : hT (pt) → hT (G/B) is
defined as the composition

hT (pt)
∼
→ hT×G(G)

∼
← hG(G/T )→ hT (G/T )

∼
← hT (G/B)

where the first two maps are isomorphisms from Axiom (A6), the third is the
restriction to the subgroup T of G and the fourth is the pull-back map, an
isomorphism by Axiom (A4) of homotopy invariance. In hT×G(G), the action
of T × G on G is by (t, g) · g′ = gg′t−1, and the other non-trivial actions
are by multiplication on the left. Note that cg is R = h(pt)-linear, although

4Regarding these assumptions, there is a slight omission in the statement of [Br97, Propo-
sition 6.5.(i)]. One needs to add that no root is divisible in the lattice for the statement to

hold integrally. Otherwise, for example, the product of all roots divided by 2 gives a counter-
example in the Csc

2 case.
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not hT (pt)-linear. By restricting further to h(G/B), one obtains the non-
equivariant characteristic map c : hT (pt) → h(G/B). Recall the algebraic
characteristic map cS : S → D

⋆, sending s→ s • 1, defined in section 5.

Lemma 10.1. The algebraic and geometric characteristic maps coincide with
each other, up to the identifications S ≃ hT (pt) of Theorem 3.3 and Θ :
hT (G/B) ≃ D

⋆ of Theorem 8.2.

Proof. It suffices to show the equality after embedding in S⋆
W ≃ hT (W ), which

decomposes as copies of S. In other words, it suffices to compare, for every
w ∈ W , a map φw from S to itself, and a map ψw from hT (pt) to itself.
Both are continuous R-algebra maps, ψw for the topology induced by the γ-
filtration and φw for the IF -adic topology, which correspond to each other
through S ≃ hT (pt). Since S is (topologically) generated by elements xλ,
corresponding to first characteristic classes of line bundles cT1 (Lλ) in hT (pt),
it suffices to compare φw(xλ) and ψw(c

T
1 (LΛ)). By definition of cS , we have

φ(xλ) = xw(λ). Since cg is defined using only pull-back and restriction maps,
both commuting with taking characteristic classes, it suffices to verify that
when h = K, the Grothendieck group, we have ψw([Lλ]) = [Lw(λ)]. This is
easily checked by using total spaces of bundles, and the formalism of points.
For this purpose, let us consider the following equivariant bundles:

• Mλ, the T × G-equivariant line bundle over G, whose total space is
Lλ ×G mapping by the second projection to G, and with action given
on points by (t, g) · (v, g′) = (λ(t)v, gg′t−1);
• Nλ, the G-equivariant line bundle over G/T , whose total space is G×T

Lλ, the quotient of G×Lλ by the relation (gt, v) = (g, λ(t)v), mapping
to G/T by the first projection, and with G action by g ·(g′, v) = (gg′, v);
• M ′

λ, the T × G-equivariant line bundle over G, whose total space is
G×G/T G×

T Lλ, mapping to G by the first projection, with action of

T ×G given by (t, g) · (g1, g2, v) = (gg1t
−1, gg2, v).

It is clear that Lλ restricts to T ×G and pulls-back over G to Mλ. Similarly,
Nλ restricts and pulls-back to M ′

λ. But Mλ maps isomorphically to M ′
λ by the

map (v, g) 7→ (g, g, v). Therefore, [Lλ] maps to [Nλ] by the map KT (pt)
∼
→

KT×G(G)
∼
← KG(G/T ). Furthermore, Nλ restricts and pulls-back as a T -

equivariant bundle to the fixed point w in G/T (or G/B) as wT ×T Lλ with
T -action on the left, isomorphic to Lw(λ). This completes the proof. �

Let t be the torsion index of the root datum, as defined in [D73, §5]. See also
[CPZ, 5.1] for a table giving the values of its prime divisors for each simply
connected type. For other types, one just needs to add the prime divisors
of |Λw/Λ| by [D73, §5, Prop. 6]. Together with the previous lemma, [CZZ,
Thm. 11.4] immediately implies a Borel-style presentation of hT (G/B). Let
π : G/B → pt be the structural map.

Theorem 10.2. If 2t is regular in R, then the map hT (pt)⊗hT (pt)W hT (pt)→
hT (G/B) sending a ⊗ b to π∗(a)cg(b) is an hT (pt)-linear ring isomorphism if
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and only if the (non-equivariant) characteristic map c : hT (pt) → h(G/B) is
surjective.

In particular, it will hold for K-theory, since the characteristic map is always
surjective for K-theory. It will also hold for any cohomology theory if t is in-
vertible in R, as [CPZ, Cor. 13.9] shows that the non-equivariant characteristic
map is then surjective.
As mentioned in the introduction, this presentation was obtained in [KiKr] for
algebraic cobordism, with the torsion index inverted, and by using comparisons
with complex cobordism.

11. Subgroups of T

Let H be a subgroup of T given by the embedding h : H →֒ T . For example H
could be the trivial group, a finite multiplicative group or a subtorus of T . For
any X ∈ T -Var, and thus in H -Var by restriction, there is a restriction ring
map resh : hT (X)→ hH(X), in particular if X = pt, which induces a canonical
morphism hH(pt)⊗hT (pt)hT (X)→ hH(X) of rings over hH(pt), sending a⊗b to
a·resh(b). This “change of coefficients” morphism is compatible with pull-backs
and push-forwards.

Lemma 11.1. The morphism hH(pt) ⊗hT (pt) hT (X) → hH(X) is an isomor-
phism when X = G/PΞ or X =W/WΞ.

Proof. The case of X = W/WΞ is obvious, since as as scheme, it is simply
a disjoint union of copies of pt. If X = G/PΞ, the left-hand side is free,
with a basis of Bott-Samelson classes. So is the right-hand side: it is still
generated as an hH(pt)-module by the corresponding Bott-Samelson classes
because the proof of Lemma 7.3 works for H as well as for T . Thus, the
change of coefficients is surjective. The push-forward pairing is perfect and
commutes to the restriction map from T toH, so these classes stay independent
in hH(G/PΞ) (they have a dual family). Thus, the change of coefficients is
injective. �

This shows that Diagram (8.2) for H is obtained by change of coefficients,
as well as Diagram (8.3) and Diagram (8.4) except their rightmost columns
involving Q. Theorem 9.3 on the bilinear pairing stays valid for H instead
of T .
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2002.

[LZ14] C. Lenart and K. Zainoulline, Towards generalized cohomology Schu-
bert calculus via formal root polynomials, preprint arXiv:1408.5952,
2014.

[LM07] M. Levine and F. Morel, Algebraic cobordism, Springer Monographs
in Mathematics, Springer-Verlag, Berlin, 2007.

[Me05] A. S. Merkurjev, Equivariant K-theory, in Handbook of K-theory,
925–954, Springer-Verlag, Berlin, 2005.

[Pa09] I. Panin, Oriented cohomology theories of algebraic varieties. II (Af-
ter I. Panin and A. Smirnov), Homology, Homotopy Appl., 11, 349–
405, 2009.

[Q71] D. Quillen. The spectrum of an equivariant cohomology ring. I, II,
Ann. of Math. (2), 94, 549–572; ibid. (2) 94 573–602, 1971.

[To99] B. Totaro, The Chow ring of a classifying space, Algebraic K-theory
(Seattle, WA, 1997), Proc. Sympos. Pure Math., 67, 249–281, 1999.

Documenta Mathematica · Extra Volume Merkurjev (2015) 113–144

http://arxiv.org/abs/1408.5952


144 Baptiste Calmès, Kirill Zainoulline, Changlong Zhong

[Th87] R. W. Thomason, Algebraic K-theory of group scheme actions, in
Algebraic topology and algebraic K-theory (Princeton, N.J., 1983),
Ann. of Math. Stud. 113, 539–563, 1987.

[ZZ14] G. Zhao and C. Zhong, Geometric representations of the formal
affine Hecke algebra, preprint arXiv:1406.1283, 2014.

[Zh13] C. Zhong, On the formal affine Hecke algebra, to appear in J. Inst.
Math. Jussieu, http://dx.doi.org/10.1017/S1474748014000188.

Baptiste Calmès
Université d’Artois
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