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Abstract. A result by Vishik states that given two anisotropic
quadratic forms of the same dimension over a field of characteristic
not 2, the Chow motives of the two associated projective quadrics
are isomorphic iff both forms have the same Witt indices over all
field extensions, in which case the two forms are called motivically
equivalent. Izhboldin has shown that if the dimension is odd, then
motivic equivalence implies similarity of the forms. This also holds for
even dimension ≤ 6, but Izhboldin also showed that this generally fails
in all even dimensions ≥ 8 except possibly in dimension 12. The aim of
this paper is to show that motivic equivalence does imply similarity for
fields over which quadratic forms can be classified by their classical
invariants provided that in the case of formally real such fields the
space of orderings has some nice properties. Examples show that
some of the required properties for the field cannot be weakened.

2010 Mathematics Subject Classification: Primary: 11E04; Sec-
ondary: 11E81, 12D15, 14C15
Keywords and Phrases: quadratic form, quadric, function field of a
quadric, generic splitting, similarity, motivic equivalence, formally real
field, effective diagonalization

Documenta Mathematica · Extra Volume Merkurjev (2015) 265–275



266 Detlev W. Hoffmann

1. Introduction

Throughout this note, we will consider only fields of characteristic not 2. By a
form over F we will mean a finite dimensional nondegenerate quadratic form
over F , and by a quadric over F a smooth projective quadric Xϕ = {ϕ = 0}
for some form ϕ over F .
An important theme in the theory of quadratic forms is the study of forms
in terms of geometric properties of their associated quadrics. Suppose, for
example, that for two given forms ϕ and ψ over F one has that the motives
M(Xϕ) and M(Xψ) are isomorphic in the category of Chow motives, in which

case we call ϕ and ψ motivically equivalent and we write ϕ
mot∼ ψ. Does this

already imply that the quadrics are isomorphic as projective varieties ? The
converse is of course trivially true. It is well known that the quadrics Xϕ and
Xψ are isomorphic iff ϕ and ψ are similar (see, e.g. [18, Th. 2.2]), i.e. there

exists c ∈ F× = F \{0} with ϕ ∼= cψ in which case we write ϕ
sim∼ ψ. The above

question then reads as follows: Let ϕ and ψ be forms of the same dimension

over F . Does ϕ
mot∼ ψ imply ϕ

sim∼ ψ ?
In fact, Izhboldin has shown that the answer is yes if dimϕ is odd ([14, Cor. 2.9])
or even and at most 6 ([14, Prop. 3.1]), and that there are counterexamples in
every even dimension ≥ 8 except possibly 12 over suitably chosen fields ([15,
Th. 0.1]). To our knowledge, it seems to be still open if such counterexamples
exist in dimension 12.
The purpose of the present note is to give criteria for fields that guarantee
that motivic equivalence implies similarity in all dimensions. We show that it
holds for fields over which forms of a given dimension can be classified by their
classical invariants determinant, Clifford invariant and signatures provided that
in the case of formally real fields the space of orderings satisfies a certain
property called effective diagonalization ED (which will be defined below). We
show furthermore that there are counterexamples once the condition ED is only
slightly weakened.
Rather than working with motives of quadrics, we will use an alternative crite-
rion for motivic equivalence due to Vishik [24, Th. 1.4.1] (see also Vishik [25,
Th. 4.18] or Karpenko [16, § 5]). If we denote the Witt index of a form ϕ by
iW (ϕ), this important criterion reads as follows.

Vishik’s Criterion 1.1. Let ϕ and ψ be forms over F with dimϕ = dimψ.

Then ϕ
mot∼ ψ if and only if iW (ϕE) = iW (ψE) for every field extension E/F .

Let us remark that while Vishik formulated his criterion in terms of integral
Chow motives, it still holds for Chow motives with Z/2Z coefficients, see [8].
The proofs of our results will concern mainly formally real fields (in the sequel
we will call such fields real for short). For nonreal fields, the results are still
valid but can often be shown in a much quicker and simpler fashion. The real
case will involve various arguments concerning the space of orderings XF of a
real field and the signatures sgnP (ϕ) of a form ϕ over F with respect to an
ordering P ∈ XF .
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Motivic Equivalence and Similarity of Quadratic Forms 267

Consider the Witt ring WF and the torsion ideal WtF (we have WF = WtF
iff F in nonreal). By Pfister’s local-global principle (see, e.g., [20, Ch. VIII,
Th. 3.2]), a form ϕ is torsion iff sgnP (ϕ) = 0 for all P ∈ XF . We call a form
totally indefinite if | sgnP (ϕ)| < dimϕ for all P ∈ XF . Also, we will use the
fact that the Witt ring only contains 2-primary torsion.
Let IF be the fundamental ideal in WF generated by even-dimensional forms
in F and let InF = (IF )n. We define Int F = InF ∩ WtF . A real field F
is said to satisfy effective diagonalization (ED) if any form ϕ over F has a
diagonalization 〈a1, . . . , an〉 such that for all 1 ≤ i < n and for all P ∈ XF one
has ai <P 0 =⇒ ai+1 <P 0 (see [26] or [23]). Recall that the u-invariant and
the Hasse number ũ are defined as follows:

u(F ) = sup{dimϕ |ϕ is anisotropic and ϕ ∈WtF}
ũ(F ) = sup{dimϕ |ϕ is anisotropic and totally indefinite}

For nonreal F , we thus have u(F ) = ũ(F ). It is also well known that these
invariants cannot take the values 3, 5, 7 (see [5, Ths. F–G] for the more involved
case ũ for real fields).
Our main result reads as follows.

Main Theorem 1.2. Let F be an ED-field and let ϕ, ψ be anisotropic forms

over F of the same dimension. If ϕ
mot∼ ψ then there exists x ∈ F× such that

ϕ ⊥ −xψ ∈ I3t F .

Corollary 1.3. Let F be an ED-field with I3t F = 0 and let ϕ, ψ be anisotropic

forms over F of the same dimension. Then ϕ
mot∼ ψ if and only if ϕ

sim∼ ψ.

Recall that fields with I3t F = 0 are exactly those fields over which quadratic
forms can be classified by their classical invariants dimension, (signed) deter-
minant, Clifford invariant and signatures, see [4].
Now fields with finite ũ are always ED (see, e.g., [7, Th. 2.5]). By the Arason-
Pfister Hauptsatz (see, e.g., [20, Ch. X, 5.1]) we thus get

Corollary 1.4. Let F be a field with ũ(F ) ≤ 6 and let ϕ, ψ be anisotropic

forms over F of the same dimension. Then ϕ
mot∼ ψ if and only if ϕ

sim∼ ψ.

This corollary applies to global fields for which ũ = 4 (this follows from the
well known Hasse-Minkowski theorem) and fields of transcendence degree one
over a real closed field for which ũ = 2 (see, e.g., [5, Th. I]). However, for each
k ∈ {2n |n ∈ N} ∪ {∞} there exist ED-fields F (in fact, fields F with a unique
ordering) with ũ(F ) = k and I3t F = 0 (see [13, Th. 2.7] or [11, Th. 3.1]) to
which Corollary 1.3 can still be applied.
In § 2, we investigate how determinants and Clifford invariants behave under
motivic equivalence. The third section does the same for signatures and there
we also prove the main theorem by putting all this together. In § 4, we give a
few examples that show that under weakening some of the imposed conditions,
one cannot expect any longer that motivic equivalence implies similarity.
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2. Comparing determinants and Clifford invariants

We will freely use without reference various basic facts from the algebraic theory
of quadratic forms in characteristic 6= 2. All such facts and any unexplained
terminology can be found in the books [20] or [3]. If ϕ is a form defined on an
F -vector space V , we put DF (ϕ) = {ϕ(x) |x ∈ V }∩F×. We use the convention
〈〈a1, . . . , an〉〉 to denote the n-fold Pfister form 〈1,−a1〉⊗ . . .⊗〈1,−an〉. A form
ϕ over a field F is called a Pfister neighbor if there exists a Pfister form π over
F and some a ∈ F× such that aϕ is a subform of π (i.e. there exists another
form ψ over F with aϕ ⊥ ψ ∼= π) and 2 dimϕ > dimπ. Since such a Pfister
form π is known to be either anisotropic or hyperbolic, it follows that a Pfister
neighbor ϕ of π is anisotropic iff π is anisotropic. We call two forms ϕ and ψ
over F half-neighbors if there exist an integer n ≥ 0, a, b ∈ F× and an (n+1)-
fold Pfister form π such that dimϕ = dimψ = 2n and aϕ ⊥ −bψ ∼= π. Now
in this situation, if E is any field extension of F over which ϕ or ψ is isotropic

then πE is hyperbolic and thus aϕE ∼= bψE and it readily follows that ϕ
mot∼ ψ.

Thus, a good way to construct examples of nonsimilar motivically equivalent
forms is to find nonsimilar half-neighbors, see § 4. The function field F (ϕ) of a
form ϕ is defined to be the function field of the associated quadric F (Xϕ) (we
put F (ϕ) = F if dimϕ = 1 or ϕ a hyperbolic plane).
In the sequel, we state some definitions and facts concerning generic splitting
of quadratic forms. We refer to Knebusch’s original paper [17] on that topic
for details.
Let ϕ be a form over F . The generic splitting tower of ϕ is constructed
inductively as follows. Let F = F0 and ϕ0 = ϕan be its anisotropic part
over F . Suppose that for i ≥ 0 we have constructed the field extension
Fi/F . Consider the anisotropic form ϕi ∼= (ϕFi

)an. If dimϕi ≥ 2 we put
Fi+1 = Fi(ϕi) and ϕi+1

∼= (ϕFi+1
)an. Note that if dimϕi ≥ 2, we have

2iW (ϕFi
) = dimϕ− dimϕi < 2iW (ϕFi+1

) or, equivalently, dimϕi > dimϕi+1.
The smallest h such that dimϕh ≤ 1 is called the height of ϕ. The generic
splitting tower of ϕ is then given by

F = F0 ⊂ F1 ⊂ . . . ⊂ Fh−1 ⊂ Fh .

Fh−1 is called the leading field of ϕ. It is known that

Sa(ϕ) := {iW (ϕE) |E/F field extension} = {iW (ϕFi
) | 0 ≤ i ≤ h} .

We call Sa(ϕ) the absolute splitting pattern of ϕ. In the literature, it has often
proved to be of advantage to consider instead the relative splitting pattern
Sr(ϕ) defined as follows. If Sa(ϕ) = {iℓ = iW (ϕFℓ

) | 0 ≤ ℓ ≤ h}, then put
jm = im − im−1, 1 ≤ m ≤ h, the increase of the Witt index at the m-th step
in the splitting tower. Then Sr(ϕ) = (j1, . . . , jh) as an ordered sequence, but
we won’t need this here.
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The degree deg(ϕ) is defined as follows. If the dimension of ϕ is odd, then
deg(ϕ) = 0. If ϕ is hyperbolic one defines deg(ϕ) = ∞. So suppose ϕ is
not hyperbolic and dimϕ is even. Then the anisotropic form ϕh−1 over Fh−1

becomes hyperbolic over its own function field Fh = Fh−1(ϕh−1) and is thus
similar to an n-fold Pfister form for some n ≥ 1. We then define deg(ϕ) = n.
Now the above implies that if ϕ is not hyperbolic then

2deg(ϕ) = min{dim(ϕE)an |E/F is a field extension with ϕE not hyperbolic} ,

and it follows that if dim(ϕE)an = 2deg(ϕ), then (ϕE)an is similar to an n-fold
Pfister form over E. An important and deep theorem which we will also use
states that InF = {ϕ ∈WF | degϕ ≥ n}, see [22, Th. 4.3].
While part (i) of the following lemma is rather trivial, part (ii) is a bit less so and
seems to be due to Izhboldin (see [16, Remark 2.7]) but to our knowledge a proof
was not yet in the literature, so we included one for the reader’s convenience.

Lemma 2.1. Let ϕ and ψ be anisotropic forms over F with ϕ
mot∼ ψ. Then

(i) deg(ϕ) = deg(ψ);
(ii) For every a ∈ F× we have deg(ϕ ⊥ −aψ) > deg(ϕ).

Proof. Part (i) follows immediately from the definition of degree and Vishik’s
criterion for motivic equivalence.
Let now deg(ϕ) = deg(ψ) = n. Part (ii) is trivial for n = 0, so assume n ≥ 1.
If ϕ ⊥ −aψ is hyperbolic there is nothing to show. So assume τ ∼= (ϕ ⊥
−aψ)an 6= 0. By the degree characterization of InF , we have τ ∈ InF and
hence deg(τ) ≥ n. Suppose deg(τ) = n. Let E/F be the leading field of ϕ. By
what was said preceding the lemma, (ϕE)an and (ψE)an are anisotropic n-fold
Pfister forms which are clearly motivically equivalent and thus similar (this
follows readily from, e.g., [20, Ch. X, Cor. 4.9]). Hence, there exist an n-fold
Pfister form π over E and x, y ∈ E× such that in WE, ϕE = xπ, ψE = yπ.
Thus, τE = 〈x,−ay〉⊗π ∈ In+1E and therefore deg(τ) = n < n+1 ≤ deg(τE).
But this implies deg(ϕ) ≤ n− 2 by [1, Satz 19], a contradiction. �

The signed determinant of a form ϕ over F will be denoted by d(ϕ). For
a diagonalization ϕ ∼= 〈a1, . . . , an〉 we have d(ϕ) = (−1)n(n−1)/2

∏n
i=1 ai ∈

F×/F×2 and the map ϕ 7→ d(ϕ) induces an isomorphism IF/I2F → F×/F×2.
The Clifford invariant c(ϕ) of ϕ is defined as follows. The Clifford algebra
C(ϕ) is a central simple algebra over F if dimϕ is even, and its even part
C0(ϕ) is central simple if dimϕ is odd. In both cases, these algebras are
Brauer-equivalent to a tensor product of quaternion algebras and thus their
classes lie in the 2-torsion part Br2(F ) of the Brauer group of F . One defines

c(ϕ) =

{
[C(ϕ)] ∈ Br2(F ) if dimϕ even
[C0(ϕ)] ∈ Br2(F ) if dimϕ odd

By Merkurjev’s theorem [21], c induces an isomorphism I2F/I3F → Br2(F ).
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Corollary 2.2. Let ϕ and ψ be forms over F of even dimension dimϕ =
dimψ. Let d = d(ϕ) ∈ F×/F×2 and K = F if d = 1 and K = F (

√
d) if d 6= 1.

If ϕ
mot∼ ψ then d = d(ϕ) = d(ψ) and c(ϕK) = c(ψK).

Proof. We have ϕ,ψ ∈ IF and also ϕ ⊥ −ψ ∈ I2F and thus ϕ ≡ ψ mod I2F

since ϕ
mot∼ ψ and by Lemma 2.1. The above isomorphism IF/I2F ∼= F×/F×2

immediately implies d(ϕ) = d(ψ).
Now over K we then have ϕK , ψK ∈ I2K since d(ϕK) = d(ψK) = 1. This time,
Lemma 2.1 yields ϕK ≡ ψK mod I3K and by invoking Merkurjev’s theorem
we readily get c(ϕK) = c(ψK). �

Corollary 2.3. Let ϕ and ψ be forms over F of even dimension dimϕ =

dimψ. Let d = d(ϕ) ∈ F×/F×2 and suppose that ϕ
mot∼ ψ.

(i) There exists a ∈ F× such that ϕ ⊥ −ψ ≡ 〈〈a, d〉〉 mod I3F .
(ii) With a as in (i), if b ∈ F×, then ϕ ⊥ −bψ ≡ 〈〈ab, d〉〉 mod I3F .

In particular, with a as before, we have ϕ ⊥ −aψ ∈ I3F .

Proof. (i) If d = 1 then Corollary 2.2 together with Merkurjev’s theorem implies
ϕ,ψ ∈ I2F and ϕ ⊥ −ψ ≡ 0 mod I3F . The result follows since 〈〈a, d〉〉 =
〈〈a, 1〉〉 = 0 in WF for any a ∈ F×.
If d 6= 1, we still have ϕ ⊥ −ψ ∈ I2F since d(ψ) = d and this time for

K = F (
√
d) that (ϕ ⊥ −ψ)K ∈ I3K. Hence, the central simple F -algebra

C(ϕ ⊥ −ψ) splits over the quadratic extension K, so its index is at most 2 and
it is well known that then there exists a quaternion algebra (a, d)F for some
a ∈ F× such that C(ϕ ⊥ −ψ) ∼ (a, d)F in Br2(F ). Hence, it follows again
readily from Merkurjev’s theorem and the fact that c(〈〈a, d〉〉) = [(a, d)F ] that
we have ϕ ⊥ −ψ ≡ 〈〈a, d〉〉 mod I3F .
(ii) We have ϕ ⊥ −ψ,ψ ⊥ −bψ ∈ I2F and −ψ ⊥ ψ = 0 ∈ WF . Furthermore,
by denoting the class of a quaternion algebra by its own symbol and using well
known rules for manipulating Clifford invariants (see, e.g., [20, p. 118]), we get

c(ϕ ⊥ −bψ) = c(ϕ ⊥ −ψ ⊥ ψ ⊥ −bψ)
= c(ϕ ⊥ −ψ)c(ψ ⊥ −bψ)
= (a, d)F c(ψ)c(−dbψ)
= (a, d)F c(ψ)c(ψ)(−db, d)F
= (ab, d)F .

We conclude as in (i) that now ϕ ⊥ −bψ ≡ 〈〈ab, d〉〉 mod I3F . �

3. Comparing signatures and proof of the Main Theorem

The following lemma compares signatures of motivically equivalent forms.

Lemma 3.1. Let ϕ and ψ be forms of the same dimension over a real field F .

If ϕ
mot∼ ψ then | sgnP (ϕ)| = | sgnP (ψ)| for all P ∈ XF .

Proof. We first note that if γ is any form of dimension ≥ 2 over any real
field K and if Q ∈ XK , then for L = K(γ) we have that Q extends to an
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ordering Q′ ∈ XL iff γ is indefinite at Q, i.e. dim γ > | sgnQ(γ)| (see, e.g. [6,
Th. 3.5]). In this case, we clearly have sgnQ(γ) = sgnQ′(γL) which implies
dim(γL)an ≥ | sgnQ′(γL)| = | sgnQ(γ)|.
Applied to ϕ, ψ and P ∈ XF , it now follows readily that there exists an
extension E/F with E in the generic splitting tower of ϕ such that P extends
to P ′ ∈ XE and

dim(ϕE)an = | sgnP ′(ϕE)| = | sgnP (ϕ)| .
By motivic equivalence, we have dim(ϕE)an = dim(ψE)an and hence

| sgnP (ϕ)| = dim(ψE)an ≥ | sgnP ′ ψE | = | sgnP ψ| .
By symmetry, we also have | sgnP ψ| ≥ | sgnP (ϕ)|. �

Remark 3.2. The above proof also shows that 1
2 (dimϕ− | sgnP (ϕ)|) ∈ Sa(ϕ),

a fact that was already noticed in [9, Prop. 2.2].

We need a few properties regarding spaces of orderings of real fields. For more
details regarding the following, we refer to [19], [7], [23]. Recall that the space
of orderings XF is a topological space whose topology has as sub-basis the so-
called Harrison sets H(a) = {P ∈ XF | a >P 0} for a ∈ F×. These are clopen
sets, and F has the strong approximation property SAP if each clopen set is a
Harrison set. F has the property S1 if every binary torsion form represents a
totally positive element. SAP and S1 together are equivalent to ED, see [23,
Th. 2].

Lemma 3.3. Let F be a real SAP field and let ϕ and ψ be forms over F

of the same dimension with ϕ
mot∼ ψ. Then there exist a, b ∈ F× such that

sgnP (aϕ) = sgnP (bψ) ≥ 0 for all P ∈ XF .

Proof. Let U = {P ∈ XF | sgnP (ϕ) < 0}. Then U ⊂ XF is clopen and SAP
implies that there exists a ∈ F× with U = H(−a). Then sgnP (aϕ) ≥ 0 for all
P ∈ XF . Similarly, there exists b ∈ F× with sgnP (bψ) ≥ 0 for all P ∈ XF .

Since aϕ
mot∼ ϕ

mot∼ ψ
mot∼ bψ, we have sgnP (aϕ) = sgnP (bψ) for all P ∈ XF by

Lemma 3.1. �

Let
∑

×
F 2 denote the set of nonzero sums of squares in F . If F is nonreal,

then it is well known that F× =
∑

×
F 2.

Lemma 3.4. Let F be a real S1 field and let ϕ and ψ be forms over F of the

same dimension with ϕ
mot∼ ψ and sgnP (ϕ) = sgnP (ψ) for all P ∈ XF . Then

there exists s ∈ ∑
×
F 2 with ϕ ⊥ −sψ ∈ I3t F .

Proof. Note first that the signatures don’t change by scaling with an s ∈
∑

×
F 2. Hence ϕ ⊥ −sψ has total signature zero for any such s and thus

ϕ ⊥ −sψ ∈WtF .
On the other hand, by Corollary 2.3, there exists a ∈ F× with ϕ ⊥ −ψ ≡
〈〈a, d〉〉 mod I3F where d = d(ϕ) = d(ψ) ∈ F×/F×2. Now if P ∈ XF and if π
is an n-fold Pfister form over F , then sgnP (π) ∈ {0, 2n}, hence, for τ ∈ InF
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we have sgnP (τ) ≡ 0 mod 2n. Now comparing signatures mod 8 immediately
yields that 〈〈a, d〉〉 ∼= 〈1,−a,−d, ad〉 has total signature zero and is therefore
torsion.
Consider the n-fold Pfister form σn ∼= 2n×〈1〉. For n large enough, the (n+2)-
fold Pfister form σn ⊗ 〈1,−a,−d, ad〉 will now be hyperbolic, so its Pfister
neighbor σn ⊗ 〈1,−d〉 ⊥ 〈−a〉 will be isotropic. It follows readily that there

exist u, v ∈ DF (σn) ⊆ ∑
×
F 2 with 〈u,−a,−dv〉 isotropic, so in particular,

au ∈ DF (〈1,−duv〉). Since uv ∈ ∑
×
F 2, we can apply the characterization of

S1 in [12, Lemma 2.2(iii)] to find t ∈ ∑
×
F 2 such that aut ∈ DF (〈1,−d〉). But

then s := ut ∈ ∑
×
F 2 and 〈1,−as,−d〉 is isotropic. Therefore the Pfister form

〈〈as, d〉〉 is hyperbolic, i.e. 〈〈as, d〉〉 = 0 in WF .
By the above and Corollary 2.3, we now have ϕ ⊥ −sψ ∈ WtF ∩ I3F = I3t F
as desired. �

Proof of Main Theorem 1.2. Let F be an ED-field and let ϕ, ψ be anisotropic

forms over F of the same dimension n with ϕ
mot∼ ψ. We have to show that

there exists x ∈ F× such that ϕ ⊥ −xψ ∈ I3t F .

The theorem is trivial for odd n by Izhboldin’s result because it implies ϕ
sim∼ ψ.

So we may assume that n is even.
If F is nonreal (in which case I3t F = I3F and ED is an empty condition), the
result follows already from Corollary 2.3 with x = b = a.
So suppose that F is real. Now ED is equivalent to SAP plus S1. Because of
SAP, we may assume by Lemma 3.3 that, possibly after scaling, sgnP (ϕ) =
sgnP (ψ) for all P ∈ XF . Since we also have S1, we can apply Lemma 3.4 to
conclude. �

4. Examples

The following two examples show that in Corollary 1.3 the condition I3t F = 0
does not suffice for motivic equivalence to imply similarity once the condition
ED is only slightly weakened.

Example 4.1. Let F = R((x))((y)) be the iterated power series field in two
variables x, y over the reals. It is well known that S = {±1,±x,±y,±xy} is
a set of representatives of F×/F×2. Let τn ∼= n × 〈1〉 (where we allow the
0-dimensional form τ0). Then Springer’s theorem implies that up to isometry
the anisotropic forms over F are exactly the forms of type

ǫ1τn1
⊥ ǫ2xτn2

⊥ ǫ3yτn3
⊥ ǫ4xyτn4

with ǫi ∈ {±1} and ni ≥ 0, and that the isometry type is uniquely determined
by the four pairs (ǫi, ni) (see, e.g., [20, Ch. VI, Cor. 1.6, Prop 1.9]).
Since u(R) = 0, it also follows from the above that u(F ) = 0, in particular
WtF = I3t F = 0. Now consider the anisotropic forms

ϕ ∼= 〈1, 1, 1, x, x, x, y, y〉 and ψ ∼= 〈1, x, y, y, xy, xy, xy, xy〉 .
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We have ϕ ⊥ ψ ∼= 〈〈−1,−1,−x,−y〉〉, so ϕ and ψ are half-neighbors and thus

ϕ
mot∼ ψ. However, one also readily sees that there is no s ∈ S with sϕ ∼= ψ,

hence ϕ 6sim∼ ψ.
Of course, it is also well known that F lacks the property SAP and thus ED as,
for example, the totally indefinite form 〈1, x, y,−xy〉 is not weakly isotropic.
We can be more precise. Recall that the reduced stability index st(F ) of a field
F can be characterized as the least n such that In+1F = 2InF modWtF , and
that SAP is equivalent to st(F ) ≤ 1 (see [2]).
For F = R((x))((y)), we trivially have property S1 since WtF = 0, and one also
readily sees that st(F ) = 2.
Now Corollary 1.3 applies to fields with I3t F = 0, S1 and st(F ) ≤ 1, but the
above shows that generally, it cannot be extended to fields satisfying I3t F = 0,
S1 and st(F ) = 2. �

In [7], the property S1 has been generalized as follows. A field F is said to have
property Sn for n ≥ 1 if for every n-fold Pfister form π ∼= 〈1〉 ⊥ π′ over F and

every a ∈ ∑
×
F 2 there exists an m ≥ 1 with

DF (〈1,−a〉) ∩DF (〈1, . . . , 1
︸ ︷︷ ︸

m

〉 ⊗ π′) 6= ∅ .

Example 4.2. It is not difficult to construct real fields K with |K×/K×2| = 4
and where the square classes are represented by {±1,±2} (see, e.g., [20, Re-
mark II.5.3]). Clearly, K is uniquely ordered and u(K) = ũ(K) = 2. Consider
F = K((t)). Then u(F ) = 4, so in particular I3t F = 0, F has two orderings (see,
e.g., [20, Prop. VIII.4.11]) and thus is SAP. Furthermore, one readily checks
that F has property S2.
Now consider the anisotropic forms

ϕ ∼= 〈1, 1, 1, 1, 1, 1〉 ⊥ t〈1, 2〉 and ψ ∼= 〈1, 1〉 ⊥ t〈1, 1, 1, 1, 1, 2〉 .
Since 〈1, 1〉 ∼= 〈2, 2〉 we have ϕ ⊥ ψ ∼= 〈〈−1,−1,−1,−t〉〉. So ϕ and ψ are half-

neighbors and hence ϕ
mot∼ ψ. On the other hand, since 2 /∈ F×2, it follows

readily that ϕ 6sim∼ ψ.
Hence, in general, Corollary 1.3 cannot be extended to fields satisfying I3t F = 0,
S2 and SAP (i.e. st(F ) ≤ 1). �

Note that the two forms in the previous example also provide motivically equiv-
alent nonsimilar forms over Q((t)), a field that also satisfies S2 and SAP. How-
ever, this would give a weaker counterexample in the sense that I4tQ((t)) = 0
but I3tQ((t)) 6= 0 as can be readily seen.

Example 4.3. If F is nonreal and u(F ) < 2n+1, then (n+ 1)-fold Pfister forms
will always be hyperbolic over F and thus half-neighbors of dimension 2n will
always be similar. However, in [10, Cor. 3.6], it was shown that for any n ≥ 3
there exist nonreal fields F with u(F ) = 2n+1 over which one can find nonsim-
ilar half-neighbors of dimension 2n. In fact, one can take any nonreal field E
with u(E) = 4 and take F = E((x1)) . . . ((xn−1)). As a consequence, there exist
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nonreal fields F with u(F ) = 16 and motivically equivalent nonsimilar forms
of dimension 8. �

It should be noted that to our knowledge, all constructions of nonsimilar mo-
tivically equivalent forms over nonreal fields (e.g. in [15]) require the existence
of anisotropic 4-fold Pfister forms, so for these fields one would have I4F 6= 0
and in particular u(F ) ≥ 16. Thus, also in view of the above examples, we ask
the following.

Question 4.4. Are there fields F with u(F ) < 16 which in the real case also
satisfy ED, such that there exist nonsimilar motivically equivalent forms over
F ?
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