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Abstract. Canonical dimension of a smooth complete connected
variety is the minimal dimension of image of its rational endomor-
phism. The i-th canonical dimension of a non-degenerate quadratic
form is the canonical dimension of its i-th orthogonal grassmannian.
The maximum of a canonical dimension for quadratic forms of a fixed
dimension is known to be equal to the dimension of the corresponding
grassmannian. This article is about the minima of the canonical di-
mensions of an anisotropic quadratic form. We conjecture that they
equal the canonical dimensions of an excellent anisotropic quadratic
form of the same dimension and we prove it in a wide range of cases.
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1. Introduction

The canonical dimension cd(X) of a smooth complete connected algebraic va-
riety X over a field F is the minimum of dimension of the image of a rational
map X 99K X. This integer depends only on the class of field extensions L/F
with X(L) 6= ∅. We refer to [9] and [16] for interpretations and basic properties
of cd(X). We will also use a 2-local version cd2(X) of cd(X) called canonical
2-dimension.
All fields here are of characteristic 6= 2. (The questions we are discussing can
be raised in characteristic 2 as well, but all results we get are for characteristic
6= 2 mainly because their proofs need the Steenrod operations on Chow groups
modulo 2 which are not available in characteristic 2.)
Let ϕ be a non-degenerate quadratic form over a field F . (Our general reference
for quadratic forms is [3].) For any integer i lying in the interval [1, (dimϕ)/2],
the i-th canonical dimension cd[i](ϕ) is defined as the canonical dimension of
the orthogonal grassmannian of i-dimensional totally isotropic subspaces of ϕ
(i-grassmannian of ϕ for short). A little care should be given to the case of
i = (dimϕ)/2 because the corresponding i-grassmannian is not connected if
the discriminant of ϕ is trivial. However, the (two) connected components it
has are isomorphic to each other so that we can define the canonical dimension
by taking any of them.
For arbitrary i and a given field extension L/F , the i-grassmannian of ϕ has
an L-point if and only if the Witt index i0(ϕL) is at least i. Therefore, cd[i](ϕ)
is an invariant of the class of field extensions L/F satisfying i0(ϕL) ≥ i.
Similarly, the i-th canonical 2-dimension cd2[i](ϕ) is the canonical 2-dimension
of the i-grassmannian. Since in general, canonical 2-dimension is a lower bound
for canonical dimension, we have cd[i](ϕ) ≥ cd2[i](ϕ) for any i. This is known
to be equality for i = 1 (see Section 5) and no example when this inequality is
not an equality (for some i > 1) is known.
The study of canonical dimensions of quadratic forms naturally commences
with the question about the range of their possible values for anisotropic qua-
dratic forms of a fixed dimension (over all fields or over all field extensions of
a given field). It has been shown in [12] (see also [13]) that the evident upper
bound on cd[i](ϕ) and cd2[i](ϕ), given by the dimension of the i-grassmannian,
is sharp. Here is a formula for this dimension:
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i(i− 1)/2 + i(dimϕ− 2i).

The question on the sharp upper bound being therefore closed, the present
paper addresses the question about the sharp lower bound. Natural candidates
are canonical dimensions of excellent quadratic forms. We do not really have a
strong evidence supporting this, but we may, for instance, recall [3, Theorem
84.1] where the excellent forms appear in the answer to the question about the
minimal height of quadratic forms.
For any n ≥ 1 and any i ∈ [1, n/2], we write cd[i](n) (resp., cd2[i](n)) for the i-
th canonical (2-)dimension of an anisotropic excellent n-dimensional quadratic
form over some field. Note that cd[i](n) depends only on i, n and coincides
with cd2[i](n) (see Section 2).
The following conjecture therefore gives a complete answer to the question
about the sharp lower bound on canonical dimension and canonical 2-dimension
of anisotropic quadratic forms:

Conjecture 1.1. Let ϕ be an anisotropic quadratic form over a field F satis-
fying dimϕ > 2i for some i ≥ 1. Then cd2[i](ϕ) ≥ cd[i](dimϕ).

The reason of excluding the case 2i = dimϕ in the statement is that in this
case cd2[i](ϕ) = cd2[i − 1](ϕE) and cd[i](ϕ) = cd[i − 1](ϕE), where E/F is
the discriminant field extension of ϕ (E = F if the discriminant of ϕ is trivial)
and i ≥ 2. So, understanding of cd2[i](ϕ) and cd[i](ϕ) for i < (dimϕ)/2 would
provide their understanding for i = (dimϕ)/2 and, on the other hand, using
these relations it is easy to get counter-examples to the formula of Conjecture
1.1 with i = (dimϕ)/2 (see Section 9).
In this paper we prove Conjecture 1.1 for “small” values of i, namely, for i not
exceeding the 2-nd absolute Witt index of ϕ (see Theorem 6.1) as well as for
i ≤ 5 (see Theorems 7.1, 10.1 and 11.1). Finally, we prove Conjecture 1.1 with
arbitrary i for all quadratic forms of height ≤ 3 (see Theorem 8.2).
The proofs make use of a wide spectrum of modern results on quadratic forms
and Chow motives (the question seems to be a good testing ground for them).
However most of the results under use already became “classical” at least in
the sense that they have been exposed in a book (in [3] in most of the cases).
For instance, we are using only a part of Excellent Connections Theorem [20,
Theorem 1.3], called Outer, which was available already before the whole result
and is exposed in [3, Corollary 80.13].
The most recent (and certainly yet non-classical) tool is a kind of going down
principle for Chow motives due to Charles De Clercq [2], used in the proofs of
Theorem 3.2 and (in a slightly different situation) Theorem 8.2. Applications
of some particular cases of this principle exist already in the literature (see,
e.g., [4]). We are using it here (in the proof of Theorem 3.2) in a new situation
(still not in its full generality but in the biggest generality which may occur in
the case of projective homogeneous varieties). This principle generalizes [10,
Proposition 4.6], this older result is not sufficient for our purposes here.
Those methods can certainly be used to prove a bit more of Conjecture 1.1,
but it seems that something is missing for a complete solution.
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One could expect that the case of maximal i should be more accessible because
maximal orthogonal grassmannians are so well-understood (mainly due to re-
sults of [19] also exposed in [3, Chapter XVI]). Though in our approach we
have to go through all values of i in order to get to the maximal one.
This paper is an extended version of [6].
For more introduction see §12.

Acknowledgements. This work has been initiated during my stay at the
Fields Institute for Research in Mathematical Sciences in Spring 2013. I thank
the Fields Institute for hospitality and perfect working conditions.

2. Excellent forms

Here we recall some standard facts about excellent forms needed to complete
the statement of Conjecture 1.1. Proofs (along with a definition) can be found,
e.g., in [3, §28].
Every positive integer n is uniquely representable in the form of an alternating
sum of 2-powers:

n = 2p0 − 2p1 + 2p2 − · · ·+ (−1)r−12pr−1 + (−1)r2pr

for some integers r ≥ 0 and p0, p1, . . . , pr satisfying p0 > p1 > · · · > pr−1 >
pr + 1 > 0.
For any integer i ∈ [1, n/2], we define an integer cd[i](n) as

cd[i](n) := 2ps−1−1 − 1,

where s is the minimal positive integer with

n− 2i ≥ 2ps − 2ps+1 + · · ·+ (−1)r−s2pr .

Note that cd[i](n) ≥ cd[i+1](n) (for any i, n such that both sides are defined).

Lemma 2.1. For any field k and any positive integer n, there exists an n-
dimensional anisotropic quadratic form ϕ over an appropriate extension field
F/k such that

cd[i](ϕ) = cd2[i](ϕ) = cd[i](n)

for any i ∈ [1, n/2].

Proof. One may take as F a field extension of k generated by p0 algebraically
independent elements. (For k ⊂ R one may simply take F = R.) Then there
exists an anisotropic p0-fold Pfister form over F and therefore an anisotropic
excellent quadratic form ϕ of dimension n. (For F = R, the unique up to
isomorphism anisotropic n-dimensional quadratic form is excellent.) We claim
that canonical dimensions of such ϕ are as required. Indeed, for i ∈ [1, n/2]
let s be the defined above integer. Then by [3, Theorem 28.3], there exists
a ps−1-fold Pfister form ρ over F such that for any field extension L/F the
condition i0(ϕL) ≥ i is equivalent to isotropy of ρL. It follows that cd2[i](ϕ) =
cd[i](ϕ) = 2ps−1−1 − 1. �
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3. Upper motives

By motives we always mean the Chow motives with coefficients in F2 := Z/2Z;
we use related terminology and notation as in [3, Chapter XII]. In particular,
M(X) is the motive of a variety X; the motive M(SpecF ) and all its shifts
M(SpecF )(i), i ∈ Z, are called Tate motives. If M is a motive over F , M̄ is
the corresponding motive over an algebraic closure of F .
Let ϕ be a non-degenerate quadratic form over a field F . For an integer i with
0 ≤ i < dimϕ/2, let Xi = Xi(ϕ) be the i-grassmannian of ϕ. In particular, X0

is the point and X := X1 is the projective quadric of ϕ.
According to the general notion of upper motive, introduced in [14] and [11], the
upper motive U(Xi) of the variety Xi is the unique summand in the complete
motivic decomposition of X with the property that Ū(Xi) contains a Tate
summand with no shift (i.e., with the shift 0). According to the general criterion
of isomorphism for upper motives, U(Xi) ≃ U(Xj) if and only if

i0(ϕL) ≥ i ⇐⇒ i0(ϕL) ≥ j

for any extension field L/F . This means that i and j are in the same semi-open
interval (jr−1, jr] for some r ≥ 0, where jr is the r-th absolute Witt index of ϕ
and j−1 := −∞.
According to the general [11, Theorem 1.1], applied to quadrics, any summand
of the complete motivic decomposition of X is a shift of U(Xi) for some i or –
in the case of even-dimensional ϕ with non-trivial discriminant – U(SpecE),
where E/F is the quadratic discriminant field extension. Shifts of U((Xi)E),
which may a priori appear by [11, Theorem 1.1], aren’t possible because for
any j 6= (dimX)/2 the motive M̄(X) contains at most one Tate summand with
the shift j while Ū((Xi)E) contains two Tate summands without shift and two
Tate summands with the shift dimU((Xi)E).
A more precise information can be derived from [18, §4] (see also [3, §73]):
if a shift of U(Xi) for some i ∈ (jr−1, jr] with r ≥ 1 really appears in the
decomposition (note that this is always the case for r = 1), then it appears
precisely ir := jr−jr−1 times and the shifting numbers are jr−1, jr−1+1, . . . , jr−
1. A shift of U(SpecE) appears if and only if ϕE is hyperbolic in which case it
appears only once and with the shifting number (dimX)/2. Note that U(Xi)
for i ≤ j0 is just the motive of a point (= the Tate summand with no shift),
it appears precisely 2j0 times and the shifting numbers are 0, . . . , j0 − 1 and
dimX, . . . , dimX − (j0 − 1).
Given any i and setting Y := Xi, one can answer the question, whether a shift
of U(Y ) does appear, in terms of canonical dimension. First of all we have

Theorem 3.1 ([9, Theorem 5.1]). cd2(Y ) = dimU(Y ).

The following result is new. It provides a criterion of appearance of U(Y ) and
is proved with a help of the going down principle of [2].

Theorem 3.2. Assume that i ∈ (jr−1, jr] for some r ≥ 1 and set T := Xjr−1
,

Y := Xi. A shift of U(Y ) appears in the complete motivic decomposition of X
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if and only if

cd2(Y ) = cd2(YF (T )).

Remark 3.3 (cf. §5). cd2(YF (T )) = dimϕ− 2jr−1 − ir − 1.

Remark 3.4. Note that cd2(Y ) ≥ cd2(YF (T )) in general, [16].

Remark 3.5. As already mentioned, for i = j1, the i1 shifts of U(Xi) appear
always.

Remark 3.6. Sufficient criteria of appearance given in [18, Theorems 4.15 and
4.17] are easily derived from Theorem 3.2.

Proof of Theorem 3.2. By Theorem 3.1, we may replace cd2(Y ) with dimU(Y )
as well as cd2(YF (T )) with dimU(YF (T )) in the statement.
If a shift of U(Y ) does appear, then dimU(Y ) = dimU(YF (T )) by [18, §4]
(see also [3, §73]). This proves one (“easy”) direction of Theorem 3.2. Let us
concentrate on the opposite direction.
Note that a shift of U(YF (T )) is a summand in M(XF (T )) (see Remark 3.5).
If dimU(Y ) = dimU(YF (T )), then we conclude by [2, Theorem 1.1] that the
same shift of U(Y ) is a summand in M(X). �

4. Some tools

In this section we recall some results which appear most frequently in the proofs
below.

4a. Outer excellent connections. The following statement is a part of
[20, Theorem 1.3]. It is also proved in [3, Corollary 80.13].

Theorem 4.1 (Outer Excellent Connections). Let X be the quadric of an
anisotropic quadratic form of dimension 2n +m with n ≥ 1 and m ∈ [1, 2n].
Let M be a summand of the complete motivic decomposition of X. If M̄ con-
tains a Tate summand with a shift i < m, then it also contains a Tate summand
with the shift 2n − 1 + i = dimX − (m− 1) + i.

Using Theorem 4.1, we will be able to see that no shift of U(Y ) is a summand of
M(X) for certain concrete X and Y as in Theorem 3.2. The latter theorem will
then tell us that cd2(Y ) > cd2(YF (T )) (see Remark 3.4). Afterwards, we usually
get even a sharper lower bound on cd2(Y ) using the motivic decomposition
described right below.

4b. A motivic decomposition. Let ϕ be a non-degenerate quadratic form
over F of dimension n and let Y be the i0-grassmannian of ϕ. A variety is
called anisotropic if all its closed points are of even degree.

Lemma 4.2 ([7, Theorem 15.8 and Corollary 15.14] or [1]). The motive of Y
decomposes in a sum of shifts of motives of some anisotropic varieties plus

i0
⊕

i=0

M(Γi)
(

i(i− 1)/2 + i(n− 2i0)
)

,
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where Γi is the i-grassmannian of an i0-dimensional vector space (Γ0 and Γi0

are points, Γ1 and Γi0−1 – projective spaces).

Corollary 4.3. The motive of Y does not contain any Tate summand with a
positive shift strictly below n− 2i0.

Proof. By preceding Lemma, the motive of Y decomposes in a sum of shifts
of motives of certain varieties. Those summands of this motivic decomposition
which are motives of isotropic varieties2 (and therefore can contain Tate sum-
mands while the motives of anisotropic varieties cannot, see, e.g., [14, Lemma
2.21]) come with shifts i(i − 1)/2 + i(n − 2i0), i ≥ 0. For i = 0 the shifting
number is 0 and the corresponding variety is just the point. For i ≥ 1 the
shifting numbers are at least n− 2i0. �

4c. Maximal orthogonal grassmannian. Let ϕ be a non-degenerate qua-
dratic form of dimension 2n+1 and let Y = Xn(ϕ) be the maximal orthogonal

grassmannian of ϕ. Let ei ∈ Chi(Ȳ ), i = 0, 1, . . . , e2n−1+1, be the standard
generators of the modulo 2 Chow ring Ch(Ȳ ) defined as in [3, §86]. We say
that ei is rational if it is in the image of the change of field homomorphism
Chi(Y ) → Chi(Ȳ ); otherwise is irrational. We recall [3, Theorem 90.3] stating
that cd2(Y ) is equal to the sum of all j such that ej is irrational.

4d. Values of first Witt index. By [3, Proposition 79.4 and Remark 79.5],
the first Witt index i1 of an anisotropic quadratic form of dimension d ≥ 2
satisfies the relations

i1 ≡ d (mod 2r) and 1 ≤ i1 ≤ 2r

for some integer r ≥ 0 with 2r < d.

4e. Dimensions of forms in In. By [3, Proposition 82.1], dimension d of
an anisotropic quadratic form in In (the n-th power of the fundamental ideal
in the Witt ring of the base field), where n ≥ 1, is either ≥ 2n+1 or equals
2n+1 − 2i with 1 ≤ i ≤ n + 1. Actually, apart from the old Arason-Pfister
Hauptsatz (saying that d 6∈ (0, 2n)), we are only using the statement about
the “first hole”, saying that d is outside of the open interval (2n, 2n + 2n−1)
and proved earlier ([18, Theorem 6.4]).

5. Level 1

We explain here that Conjecture 1.1 is actually already known in “level 1”,
that is, for i not exceeding the first Witt index of ϕ.
It is well-known that cd[1](ϕ) = cd2[1](ϕ) ≥ cd[1](dimϕ) for any anisotropic ϕ.
This is a consequence of the formula cd[1](ϕ) = cd2[1](ϕ) = dimϕ− i1(ϕ)− 1
([3, Theorem 90.2]) and the fact that the first Witt index of an excellent form is
maximal among the first Witt indexes of quadratic forms of a given dimension
([5, Corollary 1]).

2A variety is isotropic here if it has a closed point of odd degree.
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As an immediate consequence, we get the following, formally more general
statement – (a bit more than) the “level 1” case of Conjecture 1.1:

Proposition 5.1. Let ϕ be an anisotropic quadratic form over F of height
≥ 1. For any i ≤ i1(ϕ) one has cd[i](ϕ) = cd2[i](ϕ) ≥ cd[i](dimϕ).

Proof. cd[i](ϕ) = cd2[i](ϕ) = cd2[1](ϕ) ≥ cd[1](dimϕ) ≥ cd[i](dimϕ). �

6. Level 2

In this Section we prove (a bit more than) the “level 2” case of Conjecture 1.1:

Theorem 6.1. Let ϕ be an anisotropic quadratic form over F of height ≥ 2.
For any positive integer i ≤ i1(ϕ) + i2(ϕ) one has cd2[i](ϕ) ≥ cd[i](dimϕ).

Corollary 6.2. Let ϕ be an anisotropic quadratic form over F of dimension
dimϕ ≥ 4. Then cd2[2](ϕ) ≥ cd[2](dimϕ). �

Corollary 6.3. Let ϕ be an anisotropic quadratic form over F of height ≤ 2.
Then cd2[i](ϕ) ≥ cd[i](dimϕ) for any i ∈ [1, (dimϕ)/2]. �

Proof of Theorem 6.1. We write i1 for i1(ϕ) and i2 for i2(ϕ). By Proposition
5.1, we may assume that i ∈ (i1, i1 + i2].
Let us write dimϕ = 2n+m with n ≥ 1 and m ∈ [1, 2n]. In the case of i1 = m
we have

cd2[i](ϕ) ≥ cd2[i−m](ϕ1) ≥ cd[i−m](dimϕ1) = cd[i](dimϕ),

where ϕ1 is the 1-st anisotropic kernel of ϕ, [3, §25]. The first inequality here
is a particular case of the general principle saying that cd2(TL) ≤ cd2(T ) for a
variety T over F and a field extension L/F , [16]. The second inequality holds
by Proposition 5.1.
Below we are assuming that i1 < m and we have to show that cd2[i](ϕ) ≥ 2n−1.
In the case of i1 < m/2 we have

cd2[i](ϕ) ≥ cd2[1](ϕ1) ≥ cd[1](2n +m− 2i1(ϕ)) = 2n − 1.

Below we are assuming that m/2 ≤ i1 < m. It follows by §4d that i1 = m/2
(in particular, m is ≥ 2 and even). This implies that i2 ≤ 2n−1.
If i1 + i2 < m, then i1 + i2 ≤ m − i1 by [17, Theorem 1.2] which is impossible
with i1 = m/2. Therefore i1 + i2 ≥ m and it follows by Theorem 4.1 that
U(Y )(i1) is not a direct summand of the motive of X, where X is the quadric
of ϕ and Y is the (j2 = i1 + i2)-th grassmannian of ϕ.
Since cd2[i](ϕ) = cd2(Y ), all we need to show is cd2(Y ) ≥ 2n − 1.
First of all we have cd2(Y ) > cd2(YF (X)) by Theorem 3.2 and Remark 3.4.
Now we claim that the complete decomposition of M(YF (X)) does not contain
a summand U(YF (X))(j) with j inside of the open interval

(0, 2n +m− 2(i1 + i2)).

Indeed, if U(YF (X))(j) with some j is there, then M(YF (Y )) contains a Tate
summand with the shift j. By Corollary 4.3 we necessarily have j = 0 or
j ≥ 2n +m− 2(i1 + i2), and the claim is proved.

Documenta Mathematica · Extra Volume Merkurjev (2015) 367–385



Canonical Dimensions of Quadratic Forms 375

By [9, Proposition 5.2], the complete decomposition of U(Y )F (X) ends with
a summand U(YF (X))(j) with some j ≥ 0. (We say “ends” meaning that
dimU(Y )F (X) = dimU(YF (X)) + j.) By the first claim, j 6= 0. It follows by
the second claim that j ≥ 2n +m− 2(i1 + i2). Thus

cd2(Y ) = dimU(Y ) = dimU(Y )F (X) = dimU(YF (X))+j = cd2[1](ϕ1)+j =

(2n +m− i1 − 1) + j ≥ (2n +m− i1 − 1) + (2n +m− 2(i1 + i2)) =

2n+1 + 2m− 3i1 − 2i2 − 1 = 2n+1 +m/2− 2i2 − 1 ≥ 2n.

The last inequality here holds because i2 ≤ 2n−1 and m ≥ 2 (see above). The
very first equality holds by Theorem 3.1. �

7. Third canonical dimension

Theorem 7.1. For any positive integer i ≤ 3 and any anisotropic quadratic
form ϕ of dimension ≥ 2i, one has cd2[i](ϕ) ≥ cd[i](dimϕ).

Proposition 7.2. In order to prove Theorem 7.1, one only needs to show that
cd2[3](ϕ) ≥ 2n−1 for ϕ satisfying dimϕ = 2n+3 (n ≥ 2) and i1(ϕ) = i2(ϕ) = 1.

Proof. We are reduced to the case of i = 3 and of ϕ of height ≥ 3 with
i1(ϕ) = i2(ϕ) = 1 by Theorem 6.1.
So, we assume that dimϕ ≥ 6. Having written dimϕ = 2n+m withm ∈ [1, 2n]
(where n ≥ 2), we get

cd2[3](ϕ) ≥ cd2[2](ϕ1) ≥ cd[2](2n +m− 2) =










2n − 1 = cd[3](dimϕ) provided that m ≥ 4;

2n−1 − 1 ≥ cd[3](dimϕ) for m = 1, 2 and

2n−1 − 1 < 2n − 1 = cd[3](dimϕ) for m = 3.

So, the only problematic value of m is 3. �

Proof of Theorem 7.1. We are showing that cd2[i](ϕ) ≥ 2n − 1 for ϕ as in
Proposition 7.2. Let X be the quadric of ϕ, T the 2-grassmannian of ϕ, and
Y its (2 + i3)-grassmannian, where i3 = i3(ϕ) is the third Witt index of ϕ. We
have to show that cd2(Y ) ≥ 2n − 1.
We claim that cd2(Y ) > cd2(YF (T )). We get the claim as a consequence of
Theorem 3.2 because by Theorem 4.1, U(Y )(2) is not a summand of M(X).
By §4b, the complete motivic decomposition of M(YF (Y )) does not contain a
Tate summand with a positive shift strictly below

dimϕ− 4− 2i3 = 2n − 1− 2i3.

Since cd2(YF (T )) = dimϕ− 4− i3 − 1 = 2n − 2− i3, it follows that

cd2(Y ) ≥ (2n − 2− i3) + (2n − 1− 2i3).

Therefore cd2(Y ) ≥ 2n − 1 provided that 3i3 ≤ 2n − 2.
The integer i3 is the first Witt index i1(ϕ2) of the anisotropic quadratic form
ϕ2 (the 2-nd anisotropic kernel of ϕ) of dimension 2n − 1. It follows by §4d
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that i3 = 2n−1 − 1 or i3 ≤ 2n−2 − 1. In the second case we are done and we are
considering the first case below.
The equality i3 = 2n−1 − 1 we are assuming now means that ϕ is a (2n + 3)-
dimensional anisotropic quadratic form of height 3 with the splitting pattern
(i1, i2, i3) = (1, 1, 2n−1 − 1). This is actually possible only for n = 2 and n = 3
(see [18, §7.2] for n ≤ 4), but we will not use this fact because our argument
will work for arbitrary n.
Note that the variety Y is now the maximal grassmannian of ϕ. Therefore
cd2(Y ) can be computed as in §4c in terms of the generators ei ∈ Chi(Ȳ ),
i = 0, 1, . . . , e2n−1+1.
Note that ϕ2 is a (2n − 1)-dimensional form of height 1. So, ϕ2 is similar to a
1-codimensional subform of an anisotropic n-fold Pfister form. It follows by [3,
Example 88.10] that e2n−1−1 is irrational.
As can be easily deduced from [3, Corollary 88.6], the homomorphism Ch(Y ) →
Ch(YF (T )) is surjective in codimensions ≤ 2n−1−1. Consequently, if both e2n−1

and e2n−1+1 are rational, then cd2(YF (T )) = cd2(Y ) contradicting the proved
above claim. So, at least one of these two standard generators is irrational and
it follows that cd2(Y ) ≥ (2n−1 − 1) + 2n−1 = 2n − 1. �

8. Height 3

We prove (a bit more than) Conjecture 1.1 for all forms ϕ of height ≤ 3 in this
Section.
We recall the classification of splitting patterns of quadratic forms of height 2
first (for reader’s convenience, we include a proof):

Theorem 8.1 ([21, Theorem 2]). Let ϕ be a non-zero anisotropic quadratic
form of height ≤ 2 over a field of characteristic 6= 2 with a non-excellent split-
ting pattern. Then

(1) either dimϕ = 2n+1 and i1(ϕ) = 2n−1 = i2(ϕ) for some n > 0 or
(2) dimϕ = 2n + 2n−1, i1(ϕ) = 2n−2, and i2(ϕ) = 2n−1 for some n > 1.

Proof. By [3, Theorem 84.1], the height of ϕ is at least the height of an
anisotropic excellent form of dimension dimϕ. Moreover, for odd dimϕ this
is an equality by [3, Remark 84.6]. It follows that either dimϕ = 2n for some
n ≥ 0, or dimϕ = 2m − 2n−1 for some m > n > 1, or dimϕ = 2m − 2n + 1 for
some m > n > 1. To finish, it suffices to look at the possible values of i1(ϕ)
satisfying the condition of §4d together with the condition that dimϕ− 2i1(ϕ)
is 2r or 2r+1 − 1 for some r ≥ 1. The latter condition comes from the classical
[15, Theorem 5.8] giving the list of possible dimensions of height 1 anisotropic
quadratic forms. �

Theorem 8.2. Let ϕ be an anisotropic quadratic form over F of height ≤ 3.
For any positive integer i ≤ (dimϕ)/2 one has cd2[i](ϕ) ≥ cd[i](dimϕ). In
particular, Conjecture 1.1 holds for all ϕ of height ≤ 3.

Proof. By Theorem 6.1, we only need to consider ϕ of precisely height 3. Let
n := v2(dimϕ).
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Even-dimensional ϕ. We assume that n ≥ 1 here. We have to show that

cd2[m](ϕ) ≥ 2n−1 − 1,

where m = (dimϕ)/2.
If 2n−1| i1, then 2n| dimϕ1 and we are done. Otherwise, by §4d, i1 = 2r for
some 0 ≤ r ≤ n − 2. Since ϕ1 is of height 2, it follows by Theorem 8.1 that
dimϕ = 2n.
If r = n−2 then i1 = 2n−2 and i2 = i3 = 2n−3. It follows by [3, Corollary 83.4]
that dimϕ− i1 is a 2-power which is false. Therefore r ≤ n−3 and we have i2 =
2n−1−2r+1, i3 = 2r; or r = n−3 and i2 = 2n−3, i3 = 2n−2. In the first case, it
follows by [18, Theorem 7.7] as well as by [3, Theorem 83.3] that U(YF (X))(i1+
i2) is a summand ofM(XF (X)), where X is the projective quadric and Y them-
grassmannian of ϕ. On the other hand, U(Y )(i1+i2) is not a summand ofM(X)
by Theorem 4.1. It follows by [2, Theorem 1.1] that cd2(YF (X)) < cd2(Y ).

Therefore the standard generator of maximal codimension e2n−1−1 ∈ Ch(Ȳ ) is
irrational and it follows that cd2(Y ) ≥ 2n−1 − 1. So, cd2[m](ϕ) ≥ 2n−1 − 1 as
required.
In the second case, we simply have

cd2(Y ) = cd2[2
n−3 + 1](ϕ1) ≥ cd[2n−3 + 1](2n−1 + 2n−2) = 2n−1 − 1.

Odd-dimensional ϕ. Here we assume that n = 0. By [3, Theorem 84.1
and Remark 84.6], the height of an anisotropic excellent quadratic form of
dimension dimϕ is 1 or 3. In the first case we have dimϕ = 2n − 1 for some
n ≥ 2 and we need to show that cd2[2

n−1 − 1](ϕ) ≥ 2n−1 − 1.
By §4d, i1 = 2r−1 for some 1 ≤ r ≤ n−1. Moreover, r ≤ n−2 because height
of ϕ is 3. It follows that dimϕ1 = 2n−2r+1+1. Since ϕ1 is of height 2, it has an
excellent splitting pattern by Theorem 8.1 so that we have i2 = 2n−1−2r+1+1
and i3 = 2r − 1.
Note that n ≥ 3 at this stage. If n = 3 then we are done by Theorem 7.1.
Assuming that n ≥ 4, we claim that U(YF (X))(i1 + i2) is a summand of
M(XF (X)), where X is the quadric and Y the maximal grassmannian of ϕ.
For r ≤ n− 3, this is a consequence of the inequality i2 > i3 and [18, Theorem
7.7]. For the remaining case of r = n − 2 we have i2 = 1 and the above argu-
ment does not work. However, Theorem 4.1 ensures that the first shell of ϕ is
connected with the third one. Since i1 = 2r − 1 > i2 = 1, the first shell is not
connected with the second one, and the claim follows.
Using the claim, we finish the proof of the current case the way we did it above
for even-dimensional ϕ.
It remains to consider the case when the height of an anisotropic excellent
quadratic form of dimension dimϕ is 3. This means that dimϕ = 2n0 − 2n1 +
2n2 − 1 for some integers n0 > n1 > n2 ≥ 2.
The first Witt index i1 should satisfy §4d and in the same time be such that
the height of the integer3 dimϕ1 = dimϕ − 2i1 is 2. It follows that dimϕ1 =

3As in [3, §84], by the height of a positive integer we mean the height of an anisotropic
excellent quadratic form of dimension equal this integer.
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2n1 − 2n2 + 1 or dimϕ1 = 2n0 − 2n1 + 1. In both cases we have

cd2[m](ϕ) ≥ cd2[m1](ϕ1) ≥ cd[m1](dimϕ1) ≥ cd[m](dimϕ),

where m := (dimϕ− 1)/2 and m1 := (dimϕ1 − 1)/2. �

9. “Counter-example” with maximal grassmannian

Surprisingly, we didn’t exclude i = (dimϕ)/2 in any case of Conjecture 1.1
proved so far. So, let us produce a “counter-example” to the case i = (dimϕ)/2
of Conjecture 1.1. By Theorem 7.1, i should be at least 4 and therefore dimϕ
should be at least 8. We produce it in dimension 8.
Let us find a field F and quadratic forms q and ψ such that q is 4-dimensional of
discriminant a, qF (

√
a) is anisotropic, ψ is 4-dimensional and divisible by 〈〈a〉〉,

and, finally, ϕ := q⊥ψ is anisotropic. For instance, taking F := k(a, b, c, d, e)
with any field k and variables a, b, c, d, e, we can take ψ = 〈〈a, b〉〉 and q =
〈c, d, e, acde〉. Then

cd[4](ϕ) = cd2[4](ϕ) = cd[2](qF (
√
a)) = 1 < 3 = cd[4](dimϕ).

10. Fourth canonical dimension

Theorem 10.1. Conjecture 1.1 holds for i = 4.

Proposition 10.2. It suffices to prove Theorem 10.1 only for ϕ of dimension
2n + 4 (n ≥ 3), of height at least 4, and of Witt indexes satisfying either
i1 = i2 = i3 = 1; or i1 = 1, i2 = 2; or i1 = 2, i2 = 1. More precisely, it suffices
to prove that cd2[4](ϕ) ≥ 2n − 1 for such ϕ.

Proof. Note that Conjecture 1.1 for i = 4 is only about quadratic forms ϕ of
dimension ≥ 9. We may assume that i1 ≤ 2 (Theorem 6.1) and that the height
of ϕ is at least 4 (Theorem 8.2). Moreover, we may assume that i1+ i2+ i3 = 3
or i1 + i2 = 3 (Theorem 7.1). Therefore, we have either i1 = i2 = i3 = 1; or
i1 = 1, i2 = 2; or i1 = 2, i2 = 1.
Let us write dimϕ = 2n + m with n ≥ 3 and 1 ≤ m ≤ 2n. Assuming that
i1 = 1, we have

cd2[4](ϕ) ≥ cd[3](2n +m− 2) = 2n − 1 = cd[4](dimϕ)

for m ≥ 5. On the other hand,

cd2[4](ϕ) ≥ cd[3](2n +m− 2) = 2n−1 − 1 = cd[4](dimϕ)

for m ≤ 3. So, the only problematic value of m is 4.
Assuming that i1 = 2, we have

cd2[4](ϕ) ≥ cd[2](2n +m− 4) = 2n − 1 = cd[4](dimϕ)

for m ≥ 6. On the other hand,

cd2[4](ϕ) ≥ cd[2](2n +m− 4) = 2n−1 − 1 = cd[4](dimϕ)

for m ≤ 3. Moreover, since i1 = 2, m is necessarily even (§4d). So, the only
problematic value of m is again 4. �
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Proof of Theorem 10.1. Let ϕ be a quadratic form as in Proposition 10.2. Let
r be the integer ∈ {3, 4} such that i1+ · · ·+ ir−1 = 3 (more concretely, r := 3 if
i1+i2 = 3, r := 4 if i1+i2+i3 = 3). LetX be the quadric, T the 3-grassmannian,
and Y the (3 + ir)-grassmannian of ϕ. Since cd2[4](ϕ) = cd2(Y ), it suffices to
prove that cd2(Y ) ≥ 2n − 1.
By Theorem 4.1, the motive U(Y )(3) is not a summand of M(X). It follows
by Theorem 3.2 that cd2(Y ) > cd2(YF (T )).
Now, using §4b in the standard way, we get that

cd2(Y ) ≥ cd2(YF (T )) + (dimϕ− 2(i1 + · · ·+ ir)) =

(2n − 3− ir) + (2n − 2− 2ir) = 2n+1 − 5− 3ir.

So, the inequality cd2(Y ) ≥ 2n − 1 holds if 2n+1 − 5 − 3ir ≥ 2n − 1, or,
equivalently, if

(10.3) 2n ≥ 3ir + 4.

Since the integer ir is the first Witt index of the quadratic form ϕr−1 of dimen-
sion dimϕr−1 = dimϕ − 6 = 2n − 2, we have ir = 2n−1 − 2 or ir ≤ 2n−2 − 2
or ir = 1 (the last case is not included in the previous one if n = 3). The
inequality (10.3) does not hold only in the case of ir = 2n−1 − 2 which we
consider now.
Recall that now our anisotropic quadratic form ϕ is of dimension 2n+4 (n ≥ 3)
and has the splitting pattern

either (1, 1, 1, 2n−1 − 2, 1), or (1, 2, 2n−1 − 2, 1), or (2, 1, 2n−1 − 2, 1).

Let d ∈ F× represents the discriminant of ϕ. We evidently have ϕ
F (

√
d) ∈ In.

It follows that the Clifford algebra C(ϕ) is Brauer-equivalent to a quaternion
algebra (c, d) with some c ∈ F×. Let ψ := ϕ⊥c 〈〈d〉〉. Then disc(ψ) is trivial and
it follows by [3, Lemma 14.2] that the Clifford invariant of ψ is trivial as well,
so that ψ ∈ I3. Let us show that ψ ∈ In. We know this already for n = 3. To
show this for n ≥ 4, it suffices to show that ψL is hyperbolic for any extension
field L/F such that dim(ψL)an ≤ 2n−1. Since dimψ = 2n + 6, the condition
on L ensures that i0(ψL) ≥ 2n−2+3. Since ϕ is a subform in ψ of codimension
2, i0(ϕL) ≥ 2n−2 + 1 which is ≥ 4 because n ≥ 4. It follows that i0(ϕL) ≥ 4
and therefore ≥ 2n−1+1 so that dim(ϕL)an ≤ 2 and dim(ψL)an ≤ 4. Since the
discriminant and the Clifford invariant of ψL are trivial, it follows that ψL is
hyperbolic.
We have shown that ψ ∈ In. On the other hand, 2n +2 ≤ dimψan ≤ 2n +6 so
that for n ≥ 4 we get a contradiction with §4e.
We proved that none of the above splitting patterns of ϕ is possible in the case
of n ≥ 4. It remains to consider the case of n = 3, that is, of dimϕ = 12.
The splitting patterns of 12-dimensional anisotropic quadratic forms have been
classified in [18, §7.3]. In particular, it has been shown there that only the first
of our three splitting patterns is possible. For ϕ of this possible splitting pattern
(1, 1, 1, 2, 1), the above procedure provides us with an anisotropic quadratic
form ψ′ := ψan ∈ I3 of dimension 14 or 12 such that for any extension field
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L/F the condition i0(ϕL) ≥ 4 holds if and only if i0(ψ
′
L) ≥ 4 is hyperbolic. It

follows that cd2[4](ϕ) = cd2[4](ψ
′). Since the height of ψ′ is ≤ 3, it follows by

Theorem 8.2 that cd2[4](ψ
′) ≥ cd[4](dimψ′) = 7 = 2n − 1. �

11. Fifth canonical dimension

Theorem 11.1. Conjecture 1.1 holds for i = 5.

Proposition 11.2. It suffices to prove Theorem 11.1 only for ϕ of height at
least 4 and with i1 + · · ·+ ir = 4 for some r, having one of the following types:

(1) dimϕ = 2n + 5 (n ≥ 3) and i1 = 1;
(2) dimϕ = 2n + 6 (n ≥ 3) and i1 = 2;
(3) dimϕ = 2n + 7 (n ≥ 3) and i1 = 3.

More precisely, it suffices to prove that cd2[4](ϕ) ≥ 2n − 1 for above ϕ.

Proof. Note that Conjecture 1.1 for i = 5 is only about quadratic forms ϕ of
dimension ≥ 11. We may assume that i1 ≤ 3 (Theorem 6.1) and that the height
of ϕ is at least 4 (Theorem 8.2). Also we may assume that i1 + · · ·+ ir = 4 for
some r (Theorem 10.1).
Let us write dimϕ = 2n +m with n ≥ 3 and 1 ≤ m ≤ 2n.
Assuming that i1 = 1, we have

cd2[5](ϕ) ≥ cd[4](2n +m− 2) = 2n − 1 = cd[5](dimϕ)

for m ≥ 6. On the other hand,

cd2[5](ϕ) ≥ cd[4](2n +m− 2) = 2n−1 − 1 = cd[5](dimϕ)

for m ≤ 4. So, the only problematic value of m is 5.
Assuming that i1 = 2, we have

cd2[5](ϕ) ≥ cd[3](2n +m− 4) = 2n − 1 = cd[5](dimϕ)

for m ≥ 7. On the other hand,

cd2[5](ϕ) ≥ cd[3](2n +m− 4) = 2n−1 − 1 = cd[5](dimϕ)

for m ≤ 4. Moreover, since i1 = 2, m is necessarily even (§4d). So, the only
problematic value of m is 6.
Finally, assuming that i1 = 3, we have

cd2[5](ϕ) ≥ cd[2](2n +m− 6) = 2n − 1 = cd[5](dimϕ)

for m ≥ 8. On the other hand,

cd2[5](ϕ) ≥ cd[2](2n +m− 6) = 2n−1 − 1 = cd[5](dimϕ)

for m ≤ 4. Moreover, since i1 = 3, m is necessarily odd (§4d). So, the only
problematic values of m are 5 and 7. Since 3 cannot be the first Witt index of
an anisotropic quadratic form of dimension 2n + 5 (§4d again), the value 5 is
not possible for m. �
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Proof of Theorem 11.1. Let ϕ be a quadratic form as in Proposition 11.2. Let
r be the integer such that i1 + · · · + ir−1 = 4. Let X be the quadric, T the 4-
grassmannian, and Y the (4+ir)-grassmannian of ϕ. Since cd2[5](ϕ) = cd2(Y ),
it suffices to prove that cd2(Y ) ≥ 2n − 1.
By Theorem 4.1, the motive U(Y )(4) is not a summand of M(X). It follows
by Theorem 3.2 that cd2(Y ) > cd2(YF (T )).
Now, using §4b in the standard way, we get that

cd2(Y ) ≥ cd2(YF (T )) + (dimϕ− 2(i1 + · · ·+ ir)) ≥

(2n +m− 9− ir) + (2n +m− 8− 2ir) = 2n+1 + 2m− 17− 3ir.

So, the inequality cd2(Y ) ≥ 2n − 1 holds if 2n+1 + 2m− 17− 3ir ≥ 2n − 1, or,
equivalently, if

(11.3) 2n ≥ 3ir + 16− 2m.

Since the integer ir is the first Witt index of the quadratic form ϕr−1 of dimen-
sion 2n +m− 8, we have ir = 2n−1 +m− 8 or ir ≤ 2n−2 +m− 8. For n = 3
and m = 6, there is an additional case of ir = 1. The inequality 11.3 does not
hold only in the case of ir = 2n−1 +m− 8 which we consider now.
Let us start with the case of m = 5. So, ϕ is of dimension 2n + 5 and has the
splitting pattern (. . . , 2n−1 − 3, 1).
First we consider the case of n = 3. In this case we have cd2(YF (T )) = 3,
cd2(Y ) ≥ 6, and §4b tells us that in the complete decomposition of M(YF (Y ))
there is only one Tate summand with the shift 3. On the other hand, if
cd2(Y ) = 6, then U(Y )F (T ) contains summands U(YF (T )) and U(YF (T ))(3)
so that there are two Tate summands with the shift 3 in the complete decom-
position of M(YF (Y )). It follows that cd2(Y ) ≥ 7 and we are done in the case
of n = 3 and m = 5.
In the case of n ≥ 4 and m = 5, the splitting pattern of ϕ is impossible.
Indeed, the anisotropic part of a (2n +6)-dimensional quadratic form of trivial
discriminant containing ϕ is in In and has dimension 2n + 6 or 2n + 4.
We go ahead to the case m = 7. Now ϕ is of dimension 2n + 7 and has the
splitting pattern (3, 1, 2n−1 − 1). This is only possible for n = 3, but anyway,
the height of ϕ is 3 so that we don’t need to do anything more here.
The remaining value of m is 6 so that dimϕ = 2n + 6 now. The splitting
pattern of ϕ is either (2, 1, 1, 2n−1 − 2, 1) or (2, 2, 2n−1 − 2, 1). Adding to ϕ an
appropriate binary quadratic form of discriminant disc(ϕ), we get a (2n + 8)-
dimensional quadratic form ψ lying in I3 and therefore in In. The anisotropic
part of ψ has dimension 2n +8, 2n +6 or 2n +4 and it follows that n is 3 or 4.
Note that for any field extension L/F , the condition i0(ϕL) ≥ 5 is equivalent
to i0(ψL) ≥ 5 so that cd2[5](ϕ) = cd2[5](ψ).
If n = 4, then ψ is anisotropic (of dimension 24) and of height 2. Therefore we
have cd2[5](ψ) ≥ cd[5](24) = 15 and the case is closed.
If n = 3, then the anisotropic part ψ′ of ψ has dimension 12, 14, or 16. If
dimψ′ = 12, then cd2[5](ψ) = cd2[3](ψ

′) ≥ cd[3](12) = 7. If dimψ′ = 14,
then cd2[5](ψ) = cd2[4](ψ

′) ≥ cd[4](14) = 7. Finally, if dimψ′ = 16, i.e., if ψ
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is anisotropic, then either the height of ψ is ≤ 3 or i1(ψ) = 1. If the height
is ≤ 3, then cd2[5](ψ) ≥ cd[5](16) = 7. If the first Witt index is 1, then
cd2[5](ψ) ≥ cd2[4](ψ1) ≥ cd[4](14) = 7. �

Corollary 11.4. Conjecture 1.1 holds in full for ϕ of dimension ≤ 13.

Proof. We only need to consider cd2[6](ϕ) for a 13-dimensional ϕ. But
cd[6](13) = 1 so that the statement to prove is trivial. �

Remark 11.5. To prove Conjecture 1.1 for 14-dimensional ϕ, one “only” needs
to check that cd2[6](ϕ) ≥ 7.

12. Final comments

The material of this section has been added on the suggestion of the editors.
The following proposition justifies appearance of excellent forms in the state-
ment of Conjecture 1.1. It also answers a question raised by H. Bermudez dur-
ing my talk at the International Conference on the Algebraic and Arithmetic
Theory of Quadratic Forms (Puerto Natales, Patagonia, Chile) in December
2013.

Proposition 12.1. Let ϕ be an anisotropic quadratic form over F such that
for any integer i with 1 ≤ i < (dimϕ)/2, the i-th canonical dimension of ϕ is
minimal among the i-th canonical dimensions of anisotropic quadratic forms
(over field extensions of F ) of dimension dimϕ.
Then

(1) the higher Witt indexes of ϕ are excellent , i.e., ϕ has the same height
and the same higher Witt indexes as any anisotropic excellent quadratic
form of the same dimension;

(2) cd[i](ϕ) = cd[i](dimϕ), i.e. Conjecture 1.1 holds for quadratic forms
of dimension dimϕ;

(3) the quadric of ϕ has excellent motivic decomposition type;
(4) assuming an open [8, Conjecture 1.8], ϕ is excellent.

The statement of (3) will be explained in the proof. Since we do not know if
such ϕ exists (in arbitrary dimension), (2) does not prove Conjecture 1.1. If
the i-th canonical dimension cd[i](ϕ) of a given anisotropic quadratic form ϕ
is minimal for some value of i, it is not necessarily minimal for other values of
i. For instance, for any r ≥ 2 and any positive m < 2r−1, we may find a field
F and an m-dimensional quadratic form ψ over F such that the even Clifford
algebra of ψ is a division algebra and ψ is a subform of an anisotropic r-fold
Pfister form π. Then the i-th canonical dimension cd[i](ϕ) of the complement ϕ
of ψ in π is minimal for i = 1, . . . , j1(ϕ). For the remaining values of i however,
cd[i](ϕ) coincides with cd[i − j1(ϕ)](ψ) which is equal to dimXi−j1(ϕ)(ψ) by
[13]. In particular, cd[i](ϕ) is not minimal in general because cd[i](dimϕ) =
cd[i− j1(ϕ)](dimψ).
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Proof of Proposition 12.1. We write jr for jr(ϕ). Since cd[1](ϕ) is minimal, the
first Witt index of ϕ is excellent and (2) holds for i up to j1 by the results listed
in §5.
If we already know for some r ≥ 1 that the first r − 1 higher Witt indexes of
ϕ are excellent and (2) holds for i up to jr−1, the inequality cd[jr−1 + 1](ϕ) ≥
cd[1](ϕr−1) (which is an equality for ϕ replaced by an anisotropic excellent
form of the same dimension) tells us that jr = j1(ϕr−1) is excellent and (2)
holds for i up to jr.
We proved (1) and (2) at this point. As a byproduct, we see that the above
inequality is in fact an equality, which means by Theorem 3.2 that a shift (and
therefore precisely jr− jr−1 shifts) of U(Xjr ) appear(s) in the complete motivic
decomposition of the quadric. Having this for every r and counting the ranks of
the motives over an algebraic closure, we see that each undecomposable sum-
mand of the motive of the quadric is binary, i.e. becomes over an algebraic
closure a sum of two Tate motives. More precisely, every indecomposable sum-
mand looks over an algebraic closure precisely the same as the corresponding
summand in the complete motivic decomposition of an anisotropic excellent
quadric of the same dimension. This is what (3) means.
Finally, [8, Conjecture 1.8] produces Pfister forms out of the binary motives
and allows one to show that ϕ is excellent. In more details, since U(X1) is
binary, [8, Conjecture 1.8] implies that ϕ is a neighbor of a Pfister form π. By
similar reason, the complement of ϕ in π is also a Pfister neighbor. Continuing
this way, we eventually see that ϕ is excellent. �

Example 12.2. To visualize the statement of Conjecture 1.1, it is probably
a good idea to draw the graph of the function i 7→ cd[i](n) for some concrete
value of n. For n = 60 = 26 − 22, the function is constantly 31 = 26−1 − 1 on
the interval [1, 28] and takes the value 1 = 22−1 − 1 at 29. As for arbitrary n,
it is piecewise constant (with values given by some powers of 2 minus 1) and
decreasing. Conjecture 1.1 claims that for any 60-dimensional anisotropic ϕ,
the graph of the function i 7→ cd[i](ϕ) is over the graph just described. We know
that it is under the parabola i 7→ dimXi(ϕ) = i(i−1)/2+i(60−2i). In contrast
with the above lower bound, this piece of the parabola (constituting the upper
bound for cd[i](ϕ)) is not monotone: it increases until 19 and decreases after
20.

One may view Conjecture 1.1 as an analogue of the Outer Excellent Connec-
tion Theorem for quadrics, where the quadrics are replaced by higher orthog-
onal grassmannian. Note that according to Theorem 3.1, Conjecture 1.1 is a
statement about the structure of the Chow motives of higher orthogonal grass-
mannians. As such, it clearly affects our understanding of their Chow groups.
Finally, orthogonal grassmannians constitute a special and important case of a
flag variety under a semisimple algebraic group; Conjecture 1.1 is to consider
in this general context.
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