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1. Introduction

Let G0 be an adjoint Chevalley group of type D4 over a field F . Since the
automorphism group of the Dynkin diagram of type D4 is isomorphic to the
symmetric group S3, there is a split exact sequence of algebraic groups

(1) 1 //G0
Int

//Aut(G0)
π

//S3
//1.

Thus, Aut(G0) ∼= G0 ⋊ S3; in particular G0 admits outer automorphisms of
order 3, which we call trialitarian automorphisms. Adjoint algebraic groups of
type D4 over F are classified by the Galois cohomology set H1(F,G0⋊S3) and
the map induced by π in cohomology

π∗ : H
1(F,G0 ⋊S3) → H1(F,S3)

associates to any group G of type D4 the isomorphism class of a cubic étale
F -algebra L. The group G is said to be of type 1

D4 if L is split, of type 2
D4 if

L ∼= F×∆ for some quadratic separable field extension ∆/F , of type 3
D4 if L is

a cyclic field extension of F and of type 6
D4 if L is a non-cyclic field extension.

An easy argument given in Proposition 4.2 below shows that groups of type
2
D4 and 6

D4 do not admit trialitarian automorphisms defined over the base
field. Trialitarian automorphisms of groups of type 1

D4 were classified in [3],
and by a different method in [2]: the adjoint groups of type 1

D4 that admit
trialitarian automorphisms are the groups of proper projective similitudes of
3-fold Pfister quadratic spaces; their trialitarian automorphisms are shown in
[3, Th. 5.8] to be in one-to-one correspondence with the symmetric composi-
tion structures on the quadratic space. In the present paper, we determine
the simple groups of type 3

D4 that admit trialitarian automorphisms, and we
classify those automorphisms up to conjugation.
Our main tool is the notion of a trialitarian algebra, as introduced in [9, Ch. X].
Since these algebras are only defined in characteristic different from 2, we as-
sume throughout (unless specifically mentioned) that the characteristic of the
base field F is different from 2. In view of [9, Th. (44.8)], every adjoint simple
group G of type D4 can be represented as the automorphism group of a triali-
tarian algebra T = (E,L, σ, α). In the datum defining T , L is the cubic étale
F -algebra given by the map π∗ above, E is a central simple L-algebra with
orthogonal involution σ, known as the Allen invariant of G (see [1]), and α
is an isomorphism relating (E, σ) with its Clifford algebra C(E, σ) (we refer
to [9, §43] for details). We show in Proposition 4.2 that if G admits an outer
automorphism of order 3 modulo inner automorphisms, then L is either split
(i.e., isomorphic to F × F × F ), or it is a cyclic field extension of F (so G is
of type 1

D4 or 3
D4), and the Allen invariant E of G is a split central simple

L-algebra. This implies that T has the special form T = EndΓ for some cyclic
composition Γ. We further show in Theorem 4.3 that if G carries a trialitarian
automorphism, then the cyclic composition Γ is induced, which means that it is
built from some symmetric composition over F , and we establish a one-to-one
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correspondence between trialitarian automorphisms of G up to conjugation and
isomorphism classes of symmetric compositions over F from which Γ is built.
Note that we only consider outer automorphisms of order 3, hence we do not
investigate the weaker property considered by Garibaldi in [6], about the ex-
istence of outer automorphisms whose third power is inner. Nevertheless, our
Theorem 4.3 has bearing on it, in view of a result recently announced by
Garibaldi and Petersson [7], establishing the existence of outer automorphisms
whose third power is inner for any group of type 3

D4 with trivial Allen invari-
ant. If Γ is a cyclic composition that is not induced (examples are given in
Remark 2.1), the group of automorphisms of EndΓ does not admit trialitar-
ian automorphisms, but the Garibaldi–Petersson result shows that it has outer
automorphisms whose third power is inner.
The notions of symmetric and cyclic compositions are recalled in §2. Triali-
tarian algebras are discussed in §3, which contains the most substantial part
of the argument: we determine the trialitarian algebras that have semilinear
automorphisms of order 3 (Theorem 3.1) and we classify these automorphisms
up to conjugation (Theorem 3.5). The group-theoretic results follow easily
in §4 by using the correspondence between groups of type D4 and trialitarian
algebras.
Notation is generally as in the Book of Involutions [9], which is our main refer-
ence. For an algebraic structure S defined over a field F , we let Aut(S) denote
the group of automorphisms of S, and write Aut(S) for the corresponding
group scheme over F .
We gratefully thank Vladimir Chernousov, Alberto Elduque, and Sasha
Merkurjev for their help during the preparation of this paper. We are also
grateful to Skip Garibaldi for his comments on a preliminary version of the
paper, and to an anonymous referee for their careful reading.

2. Cyclic and symmetric compositions

Cyclic compositions were introduced by Springer in his 1963 Göttingen lecture
notes ([11], [12]) to get new descriptions of Albert algebras. We recall their
definition from [12]1 and [9, §36.B], restricting to the case of dimension 8.
Let F be an arbitrary field (of any characteristic). A cyclic composition (of
dimension 8) over F is a 5-tuple Γ = (V, L,Q, ρ, ∗) consisting of

• a cubic étale F -algebra L;
• a free L-module V of rank 8;
• a quadratic form Q : V → L with nondegenerate polar bilinear form
bQ;

• an F -automorphism ρ of L of order 3;
• an F -bilinear map ∗ : V ×V → V with the following properties: for all
x, y, z ∈ V and λ ∈ L,

(xλ) ∗ y = (x ∗ y)ρ(λ), x ∗ (yλ) = (x ∗ y)ρ2(λ),

1A cyclic composition is called a normal twisted composition in [11] and [12].
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Q(x ∗ y) = ρ
(
Q(x)

)
· ρ2

(
Q(y)

)
,

bQ(x ∗ y, z) = ρ
(
bQ(y ∗ z, x)

)
= ρ2

(
bQ(z ∗ x, y)

)
.

These properties imply the following (see [9, §36.B] or [12, Lemma 4.1.3]): for
all x, y ∈ V ,

(2) (x ∗ y) ∗ x = yρ2
(
Q(x)

)
and x ∗ (y ∗ x) = yρ

(
Q(x)

)
.

Since the cubic étale F -algebra L has an automorphism of order 3, L is ei-
ther a cyclic cubic field extension of F , and ρ is a generator of the Galois
group, or we may identify L with F × F ×F and assume ρ permutes the com-
ponents cyclically. We will almost exclusively restrict to the case where L is a
field; see however Remark 2.3 below.

Let Γ′ = (V ′, L′, Q′, ρ′, ∗′) be also a cyclic composition over F . An isotopy2

Γ → Γ′ is defined to be a pair (ν, f) where ν : (L, ρ)
∼
→ (L′, ρ′) is an isomorphism

of F -algebras with automorphisms (i.e., ν ◦ ρ = ρ′ ◦ ν) and f : V
∼
→ V ′ is a

ν-semilinear isomorphism for which there exists µ ∈ L× such that

Q′
(
f(x)

)
= ν

(
ρ(µ)ρ2(µ) ·Q(x)

)
and f(x) ∗′ f(y) = f(x ∗ y)ν(µ)

for x, y ∈ V . The scalar µ is called the multiplier of the isotopy. Isotopies with
multiplier 1 are isomorphisms. When the map ν is clear from the context, we
write simply f for the pair (ν, f), and refer to f as a ν-semilinear isotopy.

Examples of cyclic compositions can be obtained by scalar extension from sym-
metric compositions over F , as we now show. Recall from [9, §34] that a
symmetric composition (of dimension 8) over F is a triple Σ = (S, n, ⋆) where
(S, n) is an 8-dimensional F -quadratic space (with nondegenerate polar bilinear
form bn) and ⋆ : S × S → S is a bilinear map such that for all x, y, z ∈ S

n(x ⋆ y) = n(x)n(y) and bn(x ⋆ y, z) = bn(x, y ⋆ z).

If Σ′ = (S′, n′, ⋆′) is also a symmetric composition over F , an isotopy Σ → Σ′

is a linear map f : S → S′ for which there exists λ ∈ F× (called the multiplier)
such that

n′
(
f(x)

)
= λ2n(x) and f(x) ⋆′ f(y) = f(x ⋆ y)λ for x, y ∈ S.

Note that if f : Σ → Σ′ is an isotopy with multiplier λ, then λ−1f : Σ → Σ′ is
an isomorphism. Thus, symmetric compositions are isotopic if and only if they
are isomorphic. For an explicit example of a symmetric composition, take a
Cayley (octonion) algebra (C, ·) with norm n and conjugation map . Letting

x ⋆ y = x · y for x, y ∈ C yields a symmetric composition C̃ = (C, n, ⋆), which
is called a para-Cayley composition (see [9, §34.A]).
Given a symmetric composition Σ = (S, n, ⋆) and a cubic étale F -algebra L
with an automorphism ρ of order 3, we define a cyclic composition Σ ⊗ (L, ρ)
as follows:

Σ⊗ (L, ρ) = (S ⊗F L,L, nL, ρ, ∗)

2The term used in [9, p. 490] is similarity.
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where nL is the scalar extension of n to L and ∗ is defined by extending ⋆
linearly to S ⊗F L and then setting

x ∗ y = (IdS ⊗ρ)(x) ⋆ (IdS ⊗ρ
2)(y) for x, y ∈ S ⊗F L.

(See [9, (36.11)].) Clearly, every isotopy f : Σ → Σ′ of symmetric compositions
extends to an isotopy of cyclic compositions (IdL, f) : Σ⊗ (L, ρ) → Σ′ ⊗ (L, ρ).
Observe for later use that the map ρ̂ = IdS ⊗ρ ∈ EndF (S ⊗F L) defines a
ρ-semilinear automorphism

(3) ρ̂ : Σ⊗ (L, ρ)
∼
→ Σ⊗ (L, ρ)

such that ρ̂3 = Id.
We call a cyclic composition that is isotopic to Σ⊗ (L, ρ) for some symmetric
composition Σ induced. Cyclic compositions induced from para-Cayley sym-
metric compositions are called reduced in [12].

Remark 2.1. Induced cyclic compositions are not necessarily reduced. This
can be shown by using the following cohomological argument. We assume for
simplicity that the field F contains a primitive cube root of unity ω. There is a
cohomological invariant g3(Γ) ∈ H3(F,Z/3Z) attached to any cyclic composi-
tion Γ. The cyclic composition Γ is reduced if and only if g3(Γ) = 0 (we refer to
[12, §8.3] or [9, §40] for details). We construct an induced cyclic composition Γ
with g3(Γ) 6= 0. Let a, b ∈ F× and let A(a, b) be the F -algebra with generators
α, β and relations α3 = a, β3 = b, βα = ωαβ. The algebra A(a, b) is central
simple of dimension 9 and the space A0 of elements of A(a, b) of reduced trace
zero admits the structure of a symmetric composition Σ(a, b) = (A0, n, ⋆) (see
[9, (34.19)]). Such symmetric compositions are called Okubo symmetric compo-
sitions. From the Elduque–Myung classification of symmetric compositions [5,
p. 2487] (see also [9, (34.37)]), it follows that symmetric compositions are either
para-Cayley or Okubo. Let L = F (γ) with γ3 = c ∈ F× be a cubic cyclic field
extension of F , and let ρ be the F -automorphism of L such that γ 7→ ωγ. We
may then consider the induced cyclic composition Γ(a, b, c) = Σ(a, b) ⊗ (L, ρ).
Its cohomological invariant g3

(
Γ(a, b, c)

)
can be computed by the construc-

tion in [12, §8.3]: Using ω, we identify the group µ3 of cube roots of unity
in F with Z/3Z, and for any u ∈ F× we write [u] for the cohomology class
in H1(F,Z/3Z) corresponding to the cube class uF×3 under the isomorphism
F×/F×3 ∼= H1(F, µ3) arising from the Kummer exact sequence (see [9, p. 413]).
Then g3

(
Γ(a, b, c)

)
is the cup-product [a] ∪ [b] ∪ [c] ∈ H3(F,Z/3Z). Thus any

cyclic composition Γ(a, b, c) with [a] ∪ [b] ∪ [c] 6= 0 is induced but not reduced.
Another cohomological argument can be used to show that there exist cyclic
compositions that are not induced. We still assume that F contains a primitive
cube root of unity ω. There is a further cohomological invariant of cyclic
compositions f3(Γ) ∈ H3(F,Z/2Z) which is zero for any cyclic composition
induced by an Okubo symmetric composition3 and is given by the class in

H3(F,Z/2Z) of the 3-fold Pfister form which is the norm of C̃ if Γ is induced

3The fact that F contains a primitive cubic root of unity is relevant for this claim.
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from the para-Cayley C̃ (see for example [9, §40]). Thus a cyclic composition Γ
with f3(Γ) 6= 0 and g3(Γ) 6= 0 is not induced. Such examples can be given with
the help of the Tits process used for constructing Albert algebras (see [9, §39
and §40]). However, for example, cyclic compositions over finite fields, p-adic
fields or algebraic number fields are reduced, see [12, p. 108].

Examples 2.2. (i) Let F = Fq be the field with q elements, where q is odd
and q ≡ 1 mod 3. Thus F contains a primitive cube root of unity and we are
in the situation of Remark 2.1. Let L = Fq3 be the (unique, cyclic) cubic field
extension of F , and let ρ be the Frobenius automorphism of L/F . Because
H3(F,Z/3Z) = 0, every cyclic composition over F is reduced; moreover every
3-fold Pfister form is hyperbolic, hence every Cayley algebra is split. There-
fore, up to isomorphism there is a unique cyclic composition over F with cubic

algebra (L, ρ), namely Γ = C̃ ⊗ (L, ρ) where C̃ is the split para-Cayley sym-
metric composition. If Σ denotes the Okubo symmetric composition on 3 × 3
matrices of trace zero with entries in F , we thus have Γ ∼= Σ ⊗ (L, ρ), which
means that Γ is also induced by Σ. By the Elduque–Myung classification of
symmetric compositions, every symmetric composition over F is isomorphic

either to the Okubo composition Σ or to the split para-Cayley composition C̃.
Therefore, Γ is induced by exactly two symmetric compositions over F up to
isomorphism.

(ii) Assume that F contains a primitive cube root of unity and that F carries
an anisotropic 3-fold Pfister form n. Let C be the non-split Cayley algebra

with norm n and let C̃ be the associated para-Cayley algebra. For any cubic

cyclic field extension (L, ρ) the norm nL of the cyclic composition C̃ ⊗ (L, ρ)
is anisotropic. Thus it follows from the Elduque–Myung classification that any

symmetric composition Σ such that Σ⊗ (L, ρ) is isotopic to C̃⊗ (L, ρ) must be

isomorphic to C̃.

(iii) Finally, we observe that the cyclic compositions of type Γ(a, b, c), described
in Remark 2.1, have invariant g3 equal to zero if c = a. Since the f3-invariant
is also zero, they are all isotopic to the cyclic composition induced by the
split para-Cayley algebra. Thus we can get (over suitable fields) examples
of many mutually non-isomorphic symmetric compositions Σ(a, b) that induce
isomorphic cyclic compositions Γ(a, b, c).

Of course, besides this construction of cyclic compositions by induction from
symmetric compositions, we can also extend scalars of a cyclic composition: if
Γ = (V, L,Q, ρ, ∗) is a cyclic composition over F and K is any field extension
of F , then ΓK = (V ⊗F K,L ⊗F K,QK , ρ ⊗ IdK , ∗K) is a cyclic composition
over K.

Remark 2.3. Let Γ = (V, L,Q, ρ, ∗) be an arbitrary cyclic composition over F
with L a field. Write θ for ρ2. We have an isomorphism of L-algebras

ν : L⊗F L
∼
→ L× L× L given by ℓ1 ⊗ ℓ2 7→ (ℓ1ℓ2, ρ(ℓ1)ℓ2, θ(ℓ1)ℓ2).
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Therefore, the extended cyclic composition ΓL over L has a split cubic étale
algebra. To give an explicit description of ΓL, note first that under the iso-
morphism ν the automorphism ρ⊗ IdL is identified with the map ρ̃ defined by
ρ̃(ℓ1, ℓ2, ℓ3) = (ℓ2, ℓ3, ℓ1). Consider the twisted L-vector spaces ρV , θV defined
by

ρV = {ρx | x ∈ V }, θV = {θx | x ∈ V }

with the operations

ρ(x+y) = ρx+ρy, θ(x+y) = θx+θy, and ρ(xλ) = (ρx)ρ(λ), θ(xλ) = (θx)θ(λ)

for x, y ∈ V and λ ∈ L. Define quadratic forms ρQ : ρV → L and θQ : θV → L
by

ρQ(ρx) = ρ
(
Q(x)

)
and θQ(θx) = θ

(
Q(x)

)
for x ∈ V ,

and L-bilinear maps

∗Id :
ρV × θV → V, ∗ρ :

θV × V → ρV, ∗θ : V × ρV → θV

by

ρx ∗Id
θy = x ∗ y, θx ∗ρ y = ρ(x ∗ y), x ∗θ

ρy = θ(x ∗ y) for x, y ∈ V .

We may then consider the quadratic form

Q× ρQ× θQ : V × ρV × θV → L× L× L

and the product ⋄ : (V × ρV × θV )× (V × ρV × θV ) → (V × ρV × θV ) defined
by

(x, ρx, θx) ⋄ (y, ρy, θy) = (ρx ∗Id
θy, θx ∗ρ y, x ∗θ

ρy).

Straightforward calculations show that the F -vector space isomorphism
f : V ⊗F L→ V × ρV × θV given by

f(x⊗ ℓ) = (xℓ, (ρx)ℓ, (θx)ℓ) for x ∈ V and ℓ ∈ L

defines with ν an isomorphism of cyclic compositions

ΓL
∼
→ (V × ρV × θV, L× L× L, Q× ρQ× θQ, ρ̃, ⋄).

3. Trialitarian algebras

In this section, we assume that the characteristic of the base field F is different
from 2. Trialitarian algebras are defined in [9, §43] as 4-tuples T = (E,L, σ, α)
where L is a cubic étale F -algebra, (E, σ) is a central simple L-algebra of
degree 8 with an orthogonal involution, and α is an isomorphism from the
Clifford algebra C(E, σ) to a certain twisted scalar extension of E. We just
recall in detail the special case of trialitarian algebras of the form EndΓ for Γ a
cyclic composition, because this is the main case for the purposes of this paper.
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Let Γ = (V, L,Q, ρ, ∗) be a cyclic composition (of dimension 8) over F , with L a
field, and let θ = ρ2. Let also σQ denote the orthogonal involution on EndL V
adjoint to Q. We will use the product ∗ to see that the Clifford algebra C(V,Q)
is split and the even Clifford algebra C0(V,Q) decomposes into a direct prod-
uct of two split central simple L-algebras of degree 8. Using the notation of
Remark 2.3, to any x ∈ V we associate L-linear maps

ℓx :
ρV → θV and rx :

θV → ρV

defined by

ℓx(
ρy) = x ∗θ

ρy = θ(x ∗ y) and rx(
θz) = θz ∗ρ x = ρ(z ∗ x)

for y, z ∈ V . From (2) it follows that for x ∈ V the L-linear map

α∗(x) =
(

0 rx
ℓx 0

)
: ρV ⊕ θV → ρV ⊕ θV given by (ρy, θz) 7→

(
rx(

θz), ℓx(
ρy)

)

satisfies α∗(x)
2 = Q(x) Id. Therefore, there is an induced L-algebra homomor-

phism

(4) α∗ : C(V,Q) → EndL(
ρV ⊕ θV ).

This homomorphism is injective because C(V,Q) is a simple algebra, hence it is
an isomorphism by dimension count. It restricts to an L-algebra isomorphism

α∗0 : C0(V,Q)
∼
→ EndL(

ρV )× EndL(
θV ),

see [9, (36.16)]. Note that we may identify EndL(
ρV ) with the twisted algebra

ρ(EndL V ) (where multiplication is defined by ρf1 ·
ρf2 = ρ(f1 ◦ f2)) as follows:

for f ∈ EndL V , we identify ρf with the map ρV → ρV such that ρf(ρx) =
ρ(f(x)) for x ∈ V . On the other hand, let σQ be the orthogonal involution
on EndL V adjoint to Q. The algebra C0(V,Q) is canonically isomorphic to
the Clifford algebra C(EndL V, σQ) (see [9, (8.8)]), hence it depends only on
EndL V and σQ. We may regard α∗0 as an isomorphism of L-algebras

α∗0 : C(EndL V, σQ)
∼
→ ρ(EndL V )× θ(EndL V ).

Thus, α∗0 depends only on EndL V and σQ. The trialitarian algebra EndΓ is
the 4-tuple

EndΓ = (EndL V, L, σQ, α∗0).

An isomorphism of trialitarian algebras EndΓ
∼
→ EndΓ′, for Γ′ =

(V ′, L′, Q′, ρ′, ∗′) a cyclic composition, is defined to be an isomorphism of F -

algebras with involution ϕ : (EndL V, σQ)
∼
→ (EndL′ V ′, σQ′) subject to the

following conditions:

(i) the restriction of ϕ to the center of EndL V is an isomorphism

ϕ|L : (L, ρ)
∼
→ (L′, ρ′), and
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(ii) the following diagram (where θ′ = ρ′
2
) commutes:

C(EndL V, σQ)
α∗0

//

C(ϕ)

��

ρ(EndL V )× θ(EndL V )

ρϕ×θϕ
��

C(EndL′ V ′, σQ′)
α

∗
′0

// ρ
′

(EndL′ V ′)× θ′(EndL′ V ′)

For example, it is straightforward to check that every isotopy (ν, f) : Γ → Γ′

induces an isomorphism EndΓ → EndΓ′ mapping g ∈ EndL V to f ◦ g ◦ f−1 ∈
EndL′ V ′. As part of the proof of the main theorem below, we show that every
isomorphism EndΓ

∼
→ EndΓ′ is induced by an isotopy; see Lemma 3.4. (A

cohomological proof that the trialitarian algebras EndΓ, EndΓ′ are isomorphic
if and only if the cyclic compositions Γ, Γ′ are isotopic is given in [9, (44.16)].)

We show that the trialitarian algebra EndΓ admits a ρ-semilinear automor-
phism of order 3 if and only if Γ is induced. More precisely:

Theorem 3.1. Let Γ = (V, L,Q, ρ, ∗) be a cyclic composition over F , with L a
field.

(i) If Σ is a symmetric composition over F and f : Σ ⊗ (L, ρ) → Γ is an
L-linear isotopy, then the automorphism τ(Σ,f) = Int(f ◦ ρ̂◦f−1)|EndL V

of EndΓ, where ρ̂ is defined in (3), is such that τ3(Σ,f) = Id and

τ(Σ,f)|L= ρ. The automorphism τ(Σ,f) only depends, up to conjuga-
tion in AutF (EndΓ), on the isomorphism class of Σ.

(ii) If EndΓ carries an F -automorphism τ such that τ |L = ρ and τ3 = Id,
then Γ is induced. More precisely, there exists a symmetric composition
Σ over F and an L-linear isotopy f : Σ ⊗ (L, ρ) → Γ such that τ =
τ(Σ,f).

Proof. (i) It is clear that τ3(Σ,f) = Id and τ(Σ,f)|L= ρ. For the last claim, note

that if g : Σ⊗ (L, ρ) → Γ is another L-linear isotopy, then f ◦ g−1 is an isotopy
of Γ, hence Int(f ◦ g−1) is an automorphism of EndΓ, and

τ(Σ,f) = Int(f ◦ g−1) ◦ τ(Σ,g) ◦ Int(f ◦ g−1)−1.

The proof of claim (ii) relies on three lemmas. Until the end of this section, we
fix a cyclic composition Γ = (V, L,Q, ρ, ∗), with L a field. We start with some
general observations on ρ-semilinear automorphisms of EndL V . For this, we
consider the inclusions

L →֒ EndL V →֒ EndF V.

The field L is the center of EndL V , hence every automorphism of EndL V
restricts to an automorphism of L.

Lemma 3.2. Let ν ∈ {IdL, ρ, θ} be an arbitrary element in the Galois group
Gal(L/F ). For every F -linear automorphism ϕ of EndL V such that ϕ|L = ν,
there exists an invertible transformation u ∈ EndF V such that ϕ(f) = u◦f◦u−1

for all f ∈ EndL V . The map u is uniquely determined up to a factor in L×;
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it is ν-semilinear, i.e., u(xλ) = u(x)ν(λ) for all x ∈ V and λ ∈ L. Moreover,
if ϕ ◦ σQ = σQ ◦ ϕ, then there exists µ ∈ L× such that

Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
for all x ∈ V .

Proof. The existence of u is a consequence of the Skolem–Noether theorem,
since EndL V is a simple subalgebra of the simple algebra EndF V : the au-
tomorphism ϕ extends to an inner automorphism Int(u) of EndF V for some
invertible u ∈ EndF V . Uniqueness of u up to a factor in L× is clear because L
is the centralizer of EndL V in EndF V , and the ν-semilinearity of u follows
from the equation ϕ(f) = u ◦ f ◦ u−1 applied with f the scalar multiplication
by an element in L.
Now, suppose ϕ commutes with σQ, hence for all f ∈ EndL V

(5) u ◦ σQ(f) ◦ u
−1 = σQ(u ◦ f ◦ u−1).

Let Tr∗(Q) denote the transfer of Q along the trace map TrL/F , so

Tr∗(Q) : V → F is the quadratic form defined by Tr∗(Q)(x) = TrL/F
(
Q(x)

)
.

The adjoint involution σTr∗(Q) coincides on EndL V with σQ, hence from (5)
it follows that σTr∗(Q)(u)u centralizes EndL V . Therefore, σTr∗(Q)(u)u = µ for

some µ ∈ L×. We then have bTr∗(Q)

(
u(x), u(y)

)
= bTr∗(Q)(x, yµ) for all x,

y ∈ V , which means that

(6) TrL/F
(
bQ(u(x), u(y))

)
= TrL/F

(
µbQ(x, y)

)
.

Now, observe that since u is ν-semilinear, the map c : V × V → L defined by
c(x, y) = ν−1

(
bQ(u(x), u(y))

)
is L-bilinear. From (6), it follows that c − µbQ

is a bilinear map on V that takes its values in the kernel of the trace map. But
the value domain of an L-bilinear form is either L or {0}, and the trace map
is not the zero map. Therefore, c− µbQ = 0, which means that

ν−1
(
bQ(u(x), u(y))

)
= µbQ(x, y) for all x, y ∈ V ,

hence Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
for all x ∈ V . �

Note that the arguments in the preceding proof apply to any quadratic space
(V,Q) over L. By contrast, the next lemma uses the full cyclic composition
structure: Let again ν ∈ {IdL, ρ, θ}. Given an invertible element u ∈ EndF V
and µ ∈ L× such that for all x ∈ V and λ ∈ L

u(xλ) = u(x)ν(λ) and Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
,

we define an L-linear map βu :
νV → EndL(

ρV ⊕ θV ) by

βu(
νx) =

(
0 ν(µ)−1ru(x)

ℓu(x) 0

)
∈ EndL(

ρV ⊕ θV ) for x ∈ V .

Then from (2) we get βu(x)
2 = ν

(
Q(x)

)
= νQ(νx). Therefore, the map βu

extends to an L-algebra homomorphism

βu : C(
νV, νQ) → EndL(

ρV ⊕ θV ).
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Just like α∗ in (4), the homomorphism βu is an isomorphism. We also have
an isomorphism of F -algebras C(ν ·) : C(V,Q) → C(νV, νQ) induced by the F -
linear map x 7→ νx for x ∈ V , so we may consider the F -automorphism ψu of
EndL(

ρV ⊕ θV ) that makes the following diagram commute:

C(V,Q)
α∗

//

C(ν ·)

��

EndL(
ρV ⊕ θV )

ψu

��

C(νV, νQ)
βu

// EndL(
ρV ⊕ θV )

(7)

Lemma 3.3. The F -algebra automorphism ψu restricts to an F -algebra auto-
morphism ψu0 of EndL(

ρV )× EndL(
θV ). The restriction of ψu0 to the center

L×L is either ν× ν or (ν× ν) ◦ ε where ε is the switch map (ℓ1, ℓ2) 7→ (ℓ2, ℓ1).
Moreover, if ψu0|L×L = ν×ν, then there exist invertible ν-semilinear transfor-
mations u1, u2 ∈ EndF V such that

ψu(f) =
( ρu1 0

0 θu2

)
◦ f ◦

( ρu−1
1 0

0 θu−1
2

)
for all f ∈ EndL(

ρV ⊕ θV ).

For any pair (u1, u2) satisfying this condition, we have

u2(x∗y) = u(x)∗u1(y) and u1(x∗y) =
(
u2(x)∗u(y)

)
θν(µ)−1 for all x, y ∈ V .

Proof. The maps α∗ and βu are isomorphisms of graded L-algebras for the
usual (Z/2Z)-gradings of C(V,Q) and C(νV, νQ), and for the “checker-board”
grading of EndL(

ρV ⊕ θV ) defined by

EndL(
ρV ⊕ θV )0 = EndL(

ρV )× EndL(
θV )

and

EndL(
ρV ⊕ θV )1 =

(
0 HomL(

θV, ρV )
HomL(

ρV, θV ) 0

)
.

Therefore, ψu also preserves the grading, and it restricts to an automorphism
ψu0 of the degree 0 component. Because the map C(ν ·) is ν-semilinear, the
map ψu also is ν-semilinear, hence its restriction to the center of the degree 0
component is either ν × ν or (ν × ν) ◦ ε.
Suppose ψu0|L×L = ν×ν. By Lemma 3.2 (applied with ρV ⊕ θV instead of V ),
there exists an invertible ν-semilinear transformation v ∈ EndF (

ρV ⊕ θV ) such
that ψu(f) = v ◦ f ◦ v−1 for all f ∈ EndF (

ρV ⊕ θV ). Since ψu0 fixes
(
IdρV 0
0 0

)
,

the element v centralizes
(
IdρV 0
0 0

)
, hence v =

( ρu1 0

0 θu2

)
for some invertible u1,

u2 ∈ EndF V . The transformations u1 and u2 are ν-semilinear because v is
ν-semilinear. From the commutativity of (7) we have v ◦α∗(x) = βu(

νx) ◦ v =
α∗

(
u(x)

)
◦ v for all x ∈ V . By the definition of α∗, it follows that

u1(z ∗x) = θν−1(µ)
(
u2(z) ∗u(x)

)
and u2(x ∗ y) = u(x) ∗u1(y) for all y, z ∈ V .

�

Lemma 3.4. Let ν ∈ {IdL, ρ, θ}. For every F -linear automorphism ϕ of EndΓ
such that ϕ|L = ν, there exists an invertible transformation u ∈ EndF V ,
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uniquely determined up to a factor in L×, such that ϕ(f) = u ◦ f ◦ u−1 for all
f ∈ EndL V . Every such u is a ν-semilinear isotopy Γ → Γ.

Proof. The existence of u, its uniqueness up to a factor in L×, and its ν-
semilinearity, were established in Lemma 3.2. It only remains to show that u
is an isotopy.
Since ϕ is an automorphism of EndΓ, it commutes with σQ, hence Lemma 3.2
yields µ ∈ L× such that Q

(
u(x)

)
= ν(µ ·Q(x)

)
for all x ∈ V . We may therefore

consider the maps βu and ψu of Lemma 3.3. Now, recall from [9, (8.8)] that
C0(V,Q) = C(EndL V, σQ) by identifying x · y for x, y ∈ V with the image in
C(EndL V, σQ) of the linear transformation x ⊗ y defined by z 7→ x · bQ(y, z)
for z ∈ V . We have

ϕ(x⊗ y) = u ◦ (x⊗ y) ◦ u−1 : z 7→ u
(
x · bQ(y, u

−1(z))
)

for x, y, z ∈ V .

Since u is ν-semilinear and Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
for all x ∈ V , it follows that

u
(
x · bQ(y, u

−1(z))
)
= u(x) · ν

(
bQ(y, u

−1(z))
)
= u(x) · ν(µ)−1bQ(u(y), z).

Therefore, ϕ(x ⊗ y) = u(x) ⊗ u(y)ν(µ)−1 for x, y ∈ V , hence the following
diagram (where βu and C(ν ·) are as in (7)) is commutative:

C0(V,Q)
C(ν ·)|C0(V,Q)

//

C(ϕ)

��

C0(
νV, νQ)

βu|C0(νV,νQ)

��

C0(V,Q)
α∗0

// EndL(
ρV )× EndL(

θV )

On the other hand, the following diagram is commutative because ϕ is an
automorphism of EndΓ:

C0(V,Q)
α∗0

//

C(ϕ)

��

EndL(
ρV )× EndL(

θV )

ρϕ×θϕ

��

C0(V,Q)
α∗0

// EndL(
ρV )× EndL(

θV )

Therefore, βu|C0(νV,νQ) ◦ C(
ν ·)|C0(V,Q) = (ρϕ × θϕ) ◦ α∗0. By comparing with

(7), we see that ψu0 = ρϕ× θϕ, hence ψu0|L×L = ν×ν. Lemma 3.3 then yields
ν-semilinear transformations u1, u2 ∈ EndF V such that

ψu(f) =
( ρu1 0

0 θu2

)
◦ f ◦

( ρu−1
1 0

0 θu−1
2

)
for all f ∈ EndL(

ρV ⊕ θV ),

hence ψu0 = Int(ρu1)×Int(θu2). But we have ψu0 = ρϕ×θϕ = Int(ρu)×Int(θu).
Therefore, multiplying (u1, u2) by a scalar in L×, we may assume u = u1 and
u2 = uζ for some ζ ∈ L×. Lemma 3.3 then gives

u(x ∗ y)ζ = u(x) ∗u(y) and u(x ∗ y) =
(
(ζu(x)) ∗u(y)

)
θν(µ)−1 for all x, y ∈ V .

The second equation implies that u(x ∗ y) =
(
u(x) ∗ u(y)

)
ρ(ζ)θν(µ)−1. By

comparing with the first equation, we get ρ(ζ)θν(µ)−1 = ζ−1, hence ν(µ) =
ρ(ζ)θ(ζ). Therefore, (ν, u) is an isotopy Γ → Γ with multiplier ν−1(ζ). �
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We start with the proof of claim (ii) of Theorem 3.1. Suppose τ is an F -
automorphism of EndΓ such that τ |L = ρ and τ3 = Id. By Lemma 3.4,
we may find an invertible ρ-semilinear transformation t ∈ EndF V such that
τ(f) = t ◦ f ◦ t−1 for all f ∈ EndL V , and every such t is an isotopy of Γ.
Since τ3 = Id, it follows that t3 lies in the centralizer of EndL V in EndF V ,
which is L. Let t3 = ξ ∈ L×. We have ρ(ξ) = tξt−1 = ξ, hence ξ ∈ F×. The
F -subalgebra of EndF V generated by L and t is a crossed product (L, ρ, ξ); its
centralizer is the F -subalgebra (EndL V )τ fixed under τ , and we have

EndF V ∼= (L, ρ, ξ)⊗F (EndL V )τ .

Now, deg(L, ρ, ξ) = 3 and deg(EndL V )τ = 8, hence (L, ρ, ξ) is split. Therefore
ξ = NL/F (η) for some η ∈ L×. Substituting η−1t for t, we get t3 = IdV , and t

is still a ρ-linear isotopy of Γ. Let µ ∈ L× be the corresponding multiplier, so
that for all x, y ∈ V

(8) Q
(
t(x)

)
= ρ

(
ρ(µ)θ(µ)Q(x)

)
and t(x) ∗ t(y) = t(x ∗ y)ρ(µ).

From the second equation we deduce that t3(x) ∗ t3(y) = t3(x ∗ y)NL/F (µ) for

all x, y ∈ V , hence NL/F (µ) = 1 because t3 = IdV . By Hilbert’s Theorem 90,

we may find ζ ∈ L× such that µ = ζθ(ζ)−1. Define Q′ = ρ(ζ)θ(ζ)Q and let
x ∗′ y = (x ∗ y)ζ for x, y ∈ V . Then IdV is an isotopy Γ → Γ′ = (V, L,Q′, ρ, ∗′)
with multiplier ζ, and (8) implies that

Q′
(
t(x)

)
= ρ

(
Q′(x)

)
and t(x) ∗′ t(y) = t(x ∗′ y) for all x, y ∈ V .

Now, observe that because t is ρ-semilinear and t3 = IdV , the Galois group of
L/F acts by semilinear automorphisms on V , hence we have a Galois descent
(see [9, (18.1)]): the fixed point set S = {x ∈ V | t(x) = x} is an F -vector
space such that V = S ⊗F L. Moreover, since Q′

(
t(x)

)
= ρ

(
Q′(x)

)
for all

x ∈ V , the restriction of Q′ to S is a quadratic form n : S → F , and we have
Q′ = nL. Also, because t(x ∗′ y) = t(x) ∗′ t(y) for all x, y ∈ V , the product ∗′

restricts to a product ⋆ on S, and Σ = (S, n, ⋆) is a symmetric composition
because Γ′ is a cyclic composition. The canonical map f : S⊗F L→ V yields an
isomorphism of cyclic compositions f : Σ ⊗ (L, ρ)

∼
→ Γ′, hence also an isotopy

f : Σ ⊗ (L, ρ) → Γ. We have t = f ◦ ρ̂ ◦ f−1, hence τ is conjugation by
f ◦ ρ̂ ◦ f−1. �

Theorem 3.5. The assignment Σ 7→ τ(Σ,f) induces a bijection between the
isomorphism classes of symmetric compositions Σ for which there exists an
L-linear isotopy f : Σ ⊗ (L, ρ) → Γ and conjugacy classes in AutF (EndΓ) of
automorphisms τ of EndΓ such that τ3 = Id and τ |L = ρ.

Proof. We already know by Theorem 3.1 that the map induced by Σ 7→ τ(Σ,f)
is onto. Therefore, it suffices to show that if the automorphisms τ(Σ,f) and
τ(Σ′,f ′) associated to symmetric compositions Σ and Σ′ are conjugate, then

Σ and Σ′ are isomorphic. Assume τ(Σ′,f ′) = ϕ ◦ τ(Σ,f) ◦ ϕ
−1 for some ϕ ∈

AutF (EndΓ), and let t = f ◦ ρ̂ ◦ f−1, t′ = f ′ ◦ ρ̂ ◦ f ′
−1

∈ EndΓ be the
ρ-semilinear transformations such that τ(Σ,f) = Int(t)|EndL V and τ(Σ′,f ′) =
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Int(t′)|EndL V . By Lemma 3.4 we may find an isotopy (ν, u) : Γ → Γ such
that ϕ = Int(u)|EndL V . The equation τ(Σ′,f ′) = ϕ ◦ τ(Σ,f) ◦ ϕ

−1 then yields

Int(t′)|EndL V = Int(u ◦ t ◦ u−1)|EndL V , hence there exists ξ ∈ L× such that

u ◦ t ◦ u−1 = ξt′. Because t3 = t′
3
= IdV , we have NL/F (ξ) = 1, hence

Hilbert’s Theorem 90 yields η ∈ L× such that ξ = ρ(η)η−1. Then η−1u : Γ → Γ
is a ν-semilinear isotopy such that (η−1u) ◦ t ◦ (η−1u)−1 = t′, and we have a
commutative diagram

Σ⊗ (L, ρ)

ρ̂

��

f ′−1◦(η−1u)◦f
// Σ′ ⊗ (L, ρ)

ρ̂

��

Σ⊗ (L, ρ)
f ′−1◦(η−1u)◦f

// Σ′ ⊗ (L, ρ)

The restriction of f ′
−1

◦(η−1u)◦f to Σ is an isotopy of symmetric compositions

Σ → Σ′; a scalar multiple of this map is an isomorphism Σ
∼
→ Σ′. �

4. Trialitarian automorphisms of groups of type D4

Let F be a field of characteristic different from 2. By [9, (44.8)], for every
adjoint simple group G of type D4 over F there is a trialitarian algebra T =
(E,L, σ, α) such that G is isomorphic to AutL(T ).

Proposition 4.1. The natural map Φ : AutF (T ) → Aut(G) induced by con-
jugation is an isomorphism of group schemes.

Proof. The group G is the connected component of AutF (T ) by construction.
By [4, Exp. XXIV, Th. 1.3], the group Aut(G) is a smooth algebraic group
scheme, and the conjugation homomorphism Φ is a homomorphism of algebraic
groups. Since G is adjoint semisimple the restriction of Φ to the connected
component is an injective homomorphism G → Aut(G), hence by [9, (22.2)]
the differential dΦ is injective. On the other hand, since the correspondence
between trialitarian algebras and adjoint simple groups of type D4 is actually
shown in [9, (44.8)] to be an equivalence of groupoids, over an algebraic closure
Falg the map Φalg : AutF (T )(Falg) → Aut(G)(Falg) is an isomorphism. By [9,
(22.5)] it follows that Φ is an isomorphism of group schemes. �

We thus have a commutative diagram with exact rows:

1 // AutL(T ) // AutF (T ) //

Φ

��

AutF (L) // 1

1 // G // Aut(G)
π

// (S3)L // 1

(9)

where (S3)L is a (non-constant) twisted form of the symmetric group S3. Here
AutF (L) is the group scheme given by AutF (L)(R) = AutR-alg(L ⊗F R) for
any commutative F -algebra R. Thus, the type of the group G is related as
follows to the type of L and to AutF (L):
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(i) type 1
D4: L ∼= F × F × F and AutF (L)(F ) ∼= S3;

(ii) type 2
D4: L ∼= F × ∆ (with ∆ a quadratic field extension of F ) and

AutF (L)(F ) ∼= S2;
(iii) type 3

D4: L a cyclic cubic field extension of F and AutF (L)(F ) ∼=
Z/3Z;

(iv) type 6
D4: L a non-cyclic cubic field extension of F and AutF (L)(F ) =

1.

Proposition 4.2. Let G be an adjoint simple group of type D4 over F . If
Aut(G)(F ) contains an outer automorphism ϕ such that ϕ3 is inner, then G
is of type 1

D4 or 3
D4, and in the trialitarian algebra T = (E,L, σ, α) such that

G ∼= AutL(T ), the central simple L-algebra E is split.

Proof. The exactness of the bottom row of (9) implies the exactness of

(10) 1 //G(F ) //Aut(G)(F )
π

//(S3)L(F )

Since the image π(ϕ) ∈ (S3)L(F ) has order 3, AutF (L)(F ) must be isomorphic
to S3 or to Z/3Z and hence the cases 2

D4 and 6
D4 can be ruled out from the

characterization of the various types above. Therefore the type of G is 1
D4 or

3
D4. If G is of type 1

D4, then the algebra E is split by [6, Example 17] or by
[2, Theorem 13.1]. If G is of type 3

D4, then after scalar extension to L the
group GL has type 1

D4, so E ⊗F L is split. Therefore, the Brauer class of E
has 3-torsion since it is split by a cubic extension. But it also has 2-torsion
since E carries an orthogonal involution, hence E is split. �

For the rest of this section, we focus on trialitarian automorphisms (i.e., outer
automorphisms of order 3) of groups of type 3

D4. Let G be an adjoint simple
group of type 3

D4 over F , and let L be its associated cyclic cubic field extension
of F . Thus,

(S3)L(F ) = Gal(L/F ) ∼= Z/3Z.

If G carries a trialitarian automorphism ϕ defined over F , then the map
π : Aut(G)(F ) → Gal(L/F ) is a split surjection, hence Aut(G)(F ) ∼= G(F )⋊
(Z/3Z). Therefore, it is easy to see that for any other trialitarian automorphism
ϕ′ of G defined over F , the elements ϕ and ϕ′ are conjugate in Aut(G)(F ) if
and only if there exists g ∈ G(F ) such that ϕ′ = Int(g) ◦ ϕ ◦ Int(g)−1. When
this occurs, we have π(ϕ) = π(ϕ′).

Theorem 4.3. (i) Let G be an adjoint simple group of type 3
D4 over F .

The group G carries a trialitarian automorphism defined over F if and
only if the trialitarian algebra T = (E,L, σ, α) (unique up to isomor-
phism) such that G ∼= AutL(T ) has the form T ∼= EndΓ for some
induced cyclic composition Γ.

(ii) Let G = AutL(EndΓ) for some induced cyclic composition Γ. Every
trialitarian automorphism ϕ of G has the form ϕ = Int(τ) for some
uniquely determined F -automorphism τ of EndΓ such that τ3 = Id
and τ |L = π(ϕ). For a given nontrivial ρ ∈ Gal(L/F ), the assignment
Σ 7→ Int(τ(Σ,f)) defines a bijection between the isomorphism classes
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of symmetric compositions for which there exists an L-linear isotopy
f : Σ⊗ (L, ρ) → Γ and conjugacy classes in Aut(G)(F ) of trialitarian
automorphisms ϕ of G such that π(ϕ) = ρ.

Proof. Suppose first that ϕ is a trialitarian automorphism of G, and let G =
AutL(T ) for some trialitarian algebra T = (E,L, σ, α). Proposition 4.2 shows
that the central simple L-algebra E is split, hence by [9, (44.16), (36.12)],
we have T = EndΓ for some cyclic composition Γ = (V, L,Q, ρ, ∗) over F .
Substituting ϕ2 for ϕ if necessary, we may assume π(ϕ) = ρ. The preimage

of ϕ under the isomorphism ΦF : AutF (T )(F )
∼
→ Aut(G)(F ) (from (9)) is an

F -automorphism τ of T such that ϕ = Int(τ), τ3 = Id, and τ |L = ρ. Since ΦF
is a bijection, τ is uniquely determined by ϕ. By Theorem 3.1(ii), the existence
of τ implies that the cyclic composition Γ is induced.
Conversely, if Γ is induced, then by Theorem 3.1(i), the trialitarian algebra
EndΓ carries automorphisms τ such that τ3 = Id and τ |L 6= IdL. For any
such τ , conjugation by τ is a trialitarian automorphism of G.
The last statement in (ii) readily follows from Theorem 3.5 because trialitarian
automorphisms Int(τ), Int(τ ′) are conjugate in Aut(G)(F ) if and only if τ , τ ′

are conjugate in AutF (EndΓ). �

The following proposition shows that the algebraic subgroup of fixed points un-
der a trialitarian automorphism of the form Int(τ(Σ,f)) is isomorphic toAut(Σ),
hence in characteristic different from 2 and 3 it is a simple adjoint group of
type G2 or A2, in view of the classification of symmetric compositions (see [3,
§9]).

Proposition 4.4. Let G = AutL

(
End(Σ⊗ (L, ρ))

)
for some symmetric com-

position Σ = (S, n, ⋆) over F and some cyclic cubic field extension L/F with
nontrivial automorphism ρ. The subgroup of G fixed under the trialitarian
automorphism Int(ρ̂) is canonically isomorphic to Aut(Σ).

Proof (Sketch). Mimicking the construction of the map α∗ in (4), we may use
the product ⋆ to construct an F -algebra isomorphism

α⋆ : C(S, n)
∼
→ EndF (S ⊕ S)

such that α⋆(x)(y, z) = (z ⋆x, x ⋆ y) for x, y, z ∈ S. This isomorphism restricts
to an isomorphism

α⋆0 : C0(S, n)
∼
→ (EndF S)× (EndF S).

Let Aut(EndΣ) be the group scheme whose rational points are the F -algebra
automorphisms ϕ of (EndF S, σn) that make the following diagram commute:

C(EndF S, σn)
α⋆0

//

C(ϕ)

��

(EndF S)× (EndF S)

ϕ×ϕ

��

C(EndF S, σn)
α⋆0

// (EndF S)× (EndF S)
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Arguing as in Lemma 3.4, one proves that every such automorphism has the
form Int(u) for some isotopy u of Σ. But if u is an isotopy of Σ with multiplier µ,
then µ−1u is an automorphism of Σ. Therefore, mapping every automorphism u
of Σ to Int(u) yields an isomorphism Aut(Σ)

∼
→ Aut(EndΣ). The extension

of scalars from F to L yields an isomorphism

PGL(S)
∼
→ RL/F

(
PGL(S ⊗F L)

)Int(ρ̂)
,

which carries the subgroup Aut(EndΣ) to GInt(ρ̂). �

To conclude, we briefly mention without proof the analogue of Theorem 4.3 for
simply connected groups, which we could have considered instead of adjoint
groups. (Among simple algebraic groups of type D4, only adjoint and simply
connected groups may admit trialitarian automorphisms.)

Theorem 4.5. (i) For any cyclic composition Γ = (V, L,Q, ρ, ∗) over F ,
with L a field, the group AutL(Γ) is simple simply connected of type
3
D4, and there is an exact sequence of algebraic groups

1 //µ
2
2

//AutL(Γ)
Int

//AutL(EndΓ) //1.

(ii) A simple simply connected group of type 3
D4 admits trialitarian auto-

morphisms defined over F if and only if it is isomorphic to the automor-
phism group of an induced symmetric composition Γ = (V, L,Q, ρ, ∗),
with L a field. Conjugacy classes of trialitarian automorphisms of
AutL(Γ) defined over F are in bijection with isomorphism classes of
symmetric compositions Σ for which there is an isotopy Σ⊗(L, ρ) → Γ.

Theorems 4.3 and 4.5 apply in particular to show that over a finite field of
characteristic different from 2 and 3, every simple adjoint or simply connected
group of type 3

D4 admits trialitarian automorphisms. This follows because the
Allen invariant is trivial and cyclic compositions are reduced, see [12, §4.8].
Note that the property holds without restriction on the characteristic (needed
for the arguments in [12, §4.8]), and is a particular case of a more general result:
every simple adjoint or simply connected linear algebraic group over a finite
field is quasi-split by a theorem of Lang [10, Prop. 6.1], and therefore Aut(G)
is a semidirect product, see [4, Exp. XXIV, 3.10] or [9, (31.4)].4

Examples 4.6. (i) Let F = Fq be the field with q elements, where q is odd
and q ≡ 1 mod 3. As observed in Example 2.2(i), every symmetric composi-
tion over F is isomorphic either to the Okubo composition Σ or to the split

para-Cayley composition C̃, and (up to isomorphism) there is a unique cyclic

composition Γ ∼= C̃ ⊗ (L, ρ) ∼= Σ⊗ (L, ρ) with cubic algebra (L, ρ). Therefore,
the simply connected group AutL(Γ) and the adjoint group AutL(EndΓ) have
exactly two conjugacy classes of trialitarian automorphisms defined over F . See
also [8, (9.1)].

4We are indebted to Skip Garibaldi for this observation.
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(ii) Example 2.2(ii) describes a cyclic composition induced by a unique (up to
isomorphism) symmetric composition. Its automorphism group is a group of
type 3

D4 admitting a unique conjugacy class of trialitarian automorphisms.

(iii) In contrast to (i) and (ii) we get from Example 2.2(iii) examples of groups
of type 3

D4 with many conjugacy classes of trialitarian automorphisms.
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