
Documenta Math. 443

Essential Dimension of Separable Algebras
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Abstract. In this paper we fix a central simple F -algebra A of prime
power degree and consider separable algebras over extensions K/F ,
which embed in AK . We study the minimal number of independent
parameters, called essential dimension, needed to define these separa-
ble algebras. In case the index of A does not exceed a certain bound,
the task is equivalent to the problem of computing the essential di-
mension of the algebraic groups (PGLd)

m
⋊ Sm, which is extremely

difficult in general. In the other case, however, we manage to compute
the exact value of the essential dimension of the given class of sepa-
rable algebras, except in one case for A of index 2, which we study in
greater detail.
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1. Introduction

Central simple algebras over fields are at the core of non-commutative algebra.
Their history is rooted in the middle of the 19th century, when W. Hamilton
discovered the quaternions over the real numbers. In the early 20th century
J. Wedderburn gave a classification of finite dimensional semisimple algebras
by means of division rings and subsequently R. Brauer introduced the Brauer
group of a field, which lead to diverse research in algebra and number theory.
Moreover central simple algebras and the Brauer group arise naturally in Galois
cohomology and are therefore central for the theory of algebraic groups over
fields. We refer to [2, 1] for surveys on these topics, including discussion of open
problems.

1Partially supported by the Deutsche Forschungsgemeinschaft, GI 706/2-1
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Essential dimension is a more recent topic, introduced around 1995 by J. Buhler
and Z. Reichstein [4] and in full generality by A. Merkurjev [3]. The essential
dimension of a functor F : FieldsF → Sets from the category of field extensions
of a fixed base field F to the category of sets is defined as the least integer n,
such that every object a ∈ F(K) over a field extension K/F is defined over a
subextension K0/F of transcendence degree at most n. Here a ∈ F(K) is said
to be defined over K0 if it lies in the image of the map F(K0) → F(K) induced
by the inclusion K0 → K. The functors F we are mostly interested in take a
field extension K/F to the set of isomorphism classes of algebraic objects over
K of some kind. The essential dimension of F is then roughly the number of
independent paramters needed to define these objects.
The essential dimension of an algebraic group G over a field F is defined as the
essential dimension of the Galois cohomology functor

H1(−, G) : FieldsF → Sets, K 7→ H1(K,G).

It is denoted by ed(G) and measures the complexity of G-torsors up to iso-
morphism, and hence of isomorphism classes of certain objects such as central
simple algebras (for projective linear groups), quadratic forms (for orthogo-
nal groups), étale algebras (for symmetric groups) etc. See [21, 17] for recent
surveys on the topic.

Two of the motivating problems in essential dimension are the computation of
the essential dimension of the projective linear group PGLd and the symmetric
group Sn, since they provide insight to the structure of central simple algebras
(of degree d) and étale algebras (of dimension n), respectively. The first problem
goes back to C. Procesi [19], who asked for fields of definition of the universal
division algebra and discovered, in modern terms, that ed(PGLd) ≤ d2. This
upper bound has been improved after the introduction of essential dimension,
but it is still quadratic in d. See Remark 4.5 for details. A recent breakthrough
has been made by A. Merkurjev [16] for a lower bound on ed(PGLd). Namely,
if d = pa for some prime p different from char(F ), he showed that ed(PGLd) ≥
(a−1)pa+1. In fact he established this lower bound for the essential p-dimension
of PGLd, denoted edp(PGLd), which measures complexity of degree d central
simple algebras up to prime to p field extensions, and showed in particular
that edp(PGLp2) = p2 + 1 when char(F ) 6= p [15]. For exponent a ≥ 3 the
problem of computing edp(PGLpa) is still wide open. Moreover even the value
of ed(PGLp) is unknown for any prime p ≥ 5 and related to the long-standing
cyclicity-conjecture of degree p division algebras due to Albert.

The second problem is related to classical work of F. Klein, C. Hermite and
F. Joubert on simplifying minimal polynomials of generators of separable field
extensions (of degree n = 5 and 6) by means of Tschirnhaus-transformations,
and was the main inspiration of [4]. In our language Hermite and Joubert
showed that ed(S5) ≤ 2 and ed(S6) ≤ 3 (over a field F of characteristic zero),
and Klein proved that ed(S5) > 1, hence ed(S5) = 2. The gap between the best
lower bound (roughly n

2 ) and the best upper bound n− 3 on ed(Sn) for n ≥ 5
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is still quite large in general. See [7], where it is also proven that ed(S7) = 4 in
characteristic zero.

In this paper we study separable algebras B. A (finite-dimensional) algebra B
over a field is called separable, if it is semisimple (i.e., its Jacobson radical is
trivial) and remains semisimple over every field extension. This includes both
the case of central simple algebras and étale algebras. We restrict our attention
to those separable K-algebras which embed in AK = A⊗F K for a fixed central
simple F -algebra A. Here F is our base field and K/F a field extension. This
originates in my earlier paper [13], which covers the case where A is a division
algebra. The aim in this paper is to prove results for lower index of A.

Throughout A is a central simple algebra over a field F and B ⊆ A a
separable subalgebra. The type of B in A is defined as the multiset θB =
[(r1, d1), . . . , (rm, dm)] such that the algebra B and its centralizer C = CA(B)
have the form

Bsep ≃Md1
(Fsep)× · · · ×Mdm

(Fsep), Csep ≃Mr1(Fsep)× · · · ×Mrm(Fsep)

over a separable closure Fsep. Note that central simple and étale subalgebras
are those of type θB = [(d, r)] (with d = deg(B)) and θB = [(1, r1), . . . , (1, rm)]
(with m = dim(B)), respectively. We will assume throughout that the type θB
of B is constant, i.e. θB = [(d, r), . . . , (d, r)] (m-times) for some r, d,m ≥ 1.
This assumption is automatically satisfied if A is a division algebra. By [13,
Lemma 4.2(a)] the product drm is the degree of A.

Denote by Forms(B) : FieldsF → Sets the functor that takes a field extension
K/F to the set of isomorphism classes of K-algebras B′ which become isomor-

phic to B over a separable closure of K and by Forms
θ
A(B) the subfunctor of

Forms(B) formed by those isomorphism classes B′ of forms of B which admit

an embedding in A of type θB . We are interested in ed(Forms
θ
A(B)). By [13,

Lemma 4.6] we have a natural isomorphism

Forms
θ
A(B) ≃ H1(−, G),

of functors FieldsF → Sets, where G is the normalizer

G := NGL1(A)(GL1(B)).

Our main result is the following theorem, which shows an interesting dichotomy
between the case where the index of A exceeds the bound r

d and when it does
not. The case where A is a division algebra is [13, Theorem 4.10]. As there
we get examples of algebraic groups, where ed(G) is determined explicitly,
but ed(Galg) is unknown. Here we see that the mystery starts exactly once
ind(A) ≤ r

d .

Theorem 1.1. Let G = NGL1(A)(GL1(B)) with A central simple and B ⊆ A
a separable subalgebra of type θB = [(d, r), . . . , (d, r)] (m-times). Suppose that
deg(A) = drm is a power of a prime p and that d ≤ r, so that d|r. Then exatly
one of the following cases occurs:
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(a) ind(A) ≤ r
d : Then Forms

θ
A(B) = Forms(B) and the three functors

H1(−, G), Forms(B) and H1(−, (PGLd)
m

⋊ Sm) are naturally iso-
morphic. In particular

ed(G) = ed(Forms(B)) = ed((PGLd)
m
⋊ Sm).

(b) ind(A) > r
d : Then

ed(G) = ed(Forms
θ
A(B)) = deg(A) ind(A)− dim(G),

= drm ind(A)−m(r2 + d2 − 1).

except possibly when d = r > 1 and ind(A) = 2.

Note that the assumption r ≤ d is harmless. Indeed since

NGL1(A)(GL1(B)) ⊆ NGL1(A)(GL1(CA(B))) ⊆ NGL1(A)(GL1(CA(CA(B))))

and CA(CA(B)) = B by the double centralizer property of semisimple sub-
algebras [8, Theorem 4.10] we can always replace B by its centralizer (which
amounts to switching r and d) without changing ed(G).

There is a big contrast between the two cases in Theorem 1.1. In case (a)
the computation of ed(G) = ed((PGLd)

m
⋊ Sm) = ed(Forms(B)) is very

hard in general. For instance when B is central simple (i.e., m = 1), we have
ed(G) = ed(PGLd) with d = deg(B), and in case B is étale (i.e., d = 1),
ed(G) = ed(Sm) where m = dim(B).
In contrast the above theorem gives the precise value of ed(G) in case (b) with
only a small exception. The exception occurs when d = r > 1 and ind(A) = 2,
i.e., when A ≃ Md/2(Q) for a non-split quaternion F -algebra Q and B and
the centralizer C = CA(B) become isomorphic to (Md(Fsep))

m over Fsep. Note
that we then automatically have p = 2, so r = d and m are 2-primary. This
special case will be treated separately. We will provide lower bounds and upper
bounds on ed(G). When m = 1 the set H1(K,G) then classifies central simple
K-algebras B′ of degree d, whose tensor product with a fixed quaternion algebra
over F is not division (see Example 4.1). In particular we will prove that ed(G)
is either 2 or 3 when r = d = 2 and m = 1 (see Corollary 4.6).

The rest of the paper is structured as follows. In section 2 we study represen-
tations of G = NGL1(A)(GL1(B)) with respect to generic freeness. This is used
in section 3 to prove that ed(G) does not exceed the value suggested in The-
orem 1.1(b). We will conclude the proof of the whole theorem in that section.
It remains to study the case excluded from Theorem 1.1, where A has index 2
and r = d > 1. This is finally done in section 4.

2. Results on the Canonical Representation

The group G = NGL1(A)(GL1(B)), as every subgroup of GL1(A), has a canon-
ical representation defined as follows:
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Definition 2.1. Let H be a subgroup of GL1(A) for a central simple alge-
bra A. Let D be a division F -algebra representing the Brauer class of A. Fix
an isomorphism A ⊗F Dop ≃ End(V ) for an F -vector space V . We call the
representation

H →֒ GL1(A) →֒ GL1(A⊗F D
op) ≃ GL(V )

the canonical representation of H, denoted ρHcan : H → GL(V ).

Clearly ρHcan is faithful of dimension deg(A) ind(A) and its equivalence class
does not depend on the chosen isomorphism A ⊗F Dop ≃ End(V ). Strictly
speaking ρHcan depends on the embedding of H in GL1(A). However it will
always be clear from the context, which embedding is meant.

Recall that a representation H → GL(W ) of an algebraic group H over F in
a F -vector space W is called generically free, if the affine space A(W ) contains
a non-empty H-invariant open subset U on which H acts freely, i.e., any u ∈
U(Falg) has trivial stabilizer in Halg := HFalg

. By stabilizer we will always
mean the scheme-theoretic stabilizer (whose group of R-rational points for any
commutative Falg-algebra R is the subgroup of H(R) = Halg(R) formed by
those h ∈ H(R) satisfying hu = u). Generic freeness of W can be tested over
a separable or algebraic closure. In fact if U ⊆ A(W )Falg

is an Halg-invariant
nonempty open subset with free Halg-action then the union of all Gal(Falg/F )-
translates of U descends to a nonempty H-invariant open subset with free
H-action, see [23, Prop. 11.2.8].
Every generically free representation is faithful, but the converse need not be
true. In particular, every generically free representation V of H has dimen-
sion dim(V ) ≥ dim(H) and when ed(H) > 0 this inequality is strict by [3,
Proposition 4.11].
The main result of this section is the following Theorem:

Theorem 2.2. Assume that d divides r. Then the canonical representation of
G = NGL1(A)(GL1(B)) is generically free if and only if the index of A satisfies

ind(A) ≥







2, if d = r = 1,m > 1,

3, if d = r > 1,

r, if d = m = 1
r
d + 1, if d < r and (d > 1 or m > 1).

In order to prove Theorem 2.2 we start with a couple of intermediate results.
We will need the notion of stabilizer in general position, abbreviated SGP.
An SGP for an action of an algebraic group H (over a field F ) on a geo-
metrically irreducible F -variety X is a subgroup S of H with the property
that there exists a non-empty open subscheme U of X such that all points
u ∈ U(Falg) have (scheme-theoretic) stabilizers conjugate to Salg = SFalg

. We
can always make such a subscheme U invariant under H as follows: Consider
U ′ :=

⋃

h∈H(Falg)
hUalg, which is a nonempty Halg-invariant open subscheme of

Xalg. By construction the stabilizer of every u ∈ U ′(Falg) is conjugate to Salg.
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Now U ′(Falg) is also invariant under the action of the absolute Galois group of
F . Therefore, by [23, Prop. 11.2.8] it descends to an H-invariant open subset
of X with the same properties as U .
Clearly a representation of H is generically free, if and only if it the trivial
subgroup of H is an SGP for that action. Moreover if H acts on X with kernel
N , then S is an SGP for the H-action on X if and only if S contains N and
S/N is an SGP for the (faithful) H/N -action on X.
The following lemma is well known for algebraically closed fields of character-
istic 0. We adapt the proof of [18, Proposition 8] to our more general situation,
when F is an arbitrary field.

Lemma 2.3. Let H act on two geometrically irreducible F -varieties X and Y .
Suppose that S1 is an SGP for the H-action on X and S2 is an SGP for the
S1-action on Y . Then S2 is an SGP for the H-action on X × Y .

Proof. First by replacing X with a suitable non-empty H-invariant open sub-
variety we may assume that every x ∈ X(Falg) has stabilizer conjugate to
(S1)alg in Halg. Let UY be a non-empty S1-invariant open subset of Y such

that all u ∈ UY (Falg) have stabilizer conjugate to (S2)alg in (S1)alg. Let

C = H · (XS1 × US2

Y ) denote the set-theoretical image of (XS1 × US2

Y ) in
X×Y under the action map H×(X×Y ) → X×Y . Endow the closure Z := C̄
with the reduced scheme structure and consider the morphism pX : Z → X of

schemes given by the composition Z →֒ X × Y
πX→ X. The fiber of pX over any

x ∈ X(Falg) has dimension equal to dimY . In fact if hx ∈ H(Falg) is such that

(Halg)x = hx(S1)algh
−1
x then p−1

X (x)(Falg) contains {x} × hxUY (Falg), as one
easily checks. Therefore by the fiber dimension theorem dimZ = dimX+dimY
and it follows that C is dense in X × Y . Since C is constructible (by Cheval-
ley’s Theorem) there exists a non-empty open subset U ⊂ X × Y contained
in C. The stabilizer of every u ∈ U(Falg) is conjugate to (S2)alg, since this is

obviously true for elements of (XS1 × US2

Y )(Falg). Therefore S2 is an SGP for
the H-action on X × Y . �

The following proposition will be the key step in order to establish the case of
Theorem 2.2, where m = 1.

Proposition 2.4. Let V be a vector space over a field F , whose dual we denote
by V ∗, and let

H = GL(V ∗)×GL(V ).

For any commutative F -algebra R and ϕ ∈ End(VR) denote by ϕ∗ ∈ End(V ∗
R)

the dual endomorphism (given by the formula (ϕ∗(f))(v) = f(ϕ(v)) for v ∈ VR,
f ∈ V ∗

R = HomR(VR, R)).

(a) The image S ≃ GL(V ) of the homomorphism

GL(V ) → H, ϕ 7→ ((ϕ∗)−1, ϕ)

is an SGP for the natural H-action on V ∗ ⊗F V .
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(b) Let E be a maximal étale subalgebra of End(V ). Then the image T ≃
GL1(E) of the homomorphism

GL1(E) → H, ϕ 7→ ((ϕ∗)−1, ϕ)

is an SGP for the natural H-action on (V ∗ ⊗F V )⊕2.
(c) Let Z(H) ≃ Gm × Gm denote the center of H. The image of the ho-

momorphism

Gm → Z(H) ⊆ H, λ 7→ (λ−1, λ)

is an SGP for the natural H-action on (V ∗ ⊗F V )⊕3.
(d) Suppose V = V1 ⊗F V2 and consider the subgroup

H ′ = GL(V ∗

1 )×GL(V )

of H = GL(V ∗)×GL(V ). Let t = dim(V2). Then the image S′ of the
homomorphism

GL(V1) → H ′, ϕ 7→ ((ϕ∗)−1, ϕ)

is an SGP for the natural H ′-action on (V ∗
1 ⊗F V )⊕t.

Moreover if t > 1, the image of the homomorphism

Gm → Z(H ′) ⊆ H ′, λ 7→ (λ−1, λ)

is an SGP for the natural H ′-action on (V ∗
1 ⊗F V )⊕(t+1).

Proof. (a) We use the canonical identification of V ∗⊗F V with the underly-
ing F -vector space of the F -algebra EndF (V

∗), where a pure tensor f⊗v
corresponds to the endomorphism of V ∗ defined by f ′ 7→ f ′(v)f . The
H-action on (the affine space associated with) V ∗ ⊗F V = EndF (V

∗)
is then given by the formula

(ψ,ϕ) · ρ = ψρϕ∗.

Let U = GL(V ∗) ⊆ A(End(V ∗)), which is a non-empty andH-invariant
open subset. The stabilizer of ρ ∈ U(Falg) in Halg is given by the image
of the homomorphism

GL(V )alg → Halg, ϕ 7→ (ρ(ϕ∗)−1ρ−1, ϕ)

which is a conjugate of Salg over Falg. This shows the claim.
(b) Let S be the subgroup of H from part (a). By Lemma 2.3 it suf-

fices to show that T is an SGP for the S-action on V ∗ ⊗F V . Let
U ⊆ A(V ∗ ⊗F V ) = A(End(V ∗)) be as in part (a). Identify (V ∗)∗

with V in the usual way, so that ψ∗ ∈ End(V ) for ψ ∈ End(V ∗). For
any ρ ∈ U(Falg) the stabilizer of ρ in Salg is the image of the central-
izer CGL(V )

alg
(ρ∗) under the homomorphism GL(V )alg → Salg, ϕ 7→

((ϕ∗)−1, ϕ). When ρ∗ is semisimple regular CGL(V )
alg
(ρ∗) is a maximal

torus of GL(V )alg. Now the claim follows from the well known facts

that all maximal tori of GL(V )alg are conjugate and the semisimple

regular elements in A(End(V ∗)) form a non-empty open subset.
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(c) By part (b) T ≃ GL1(E) is an SGP for the H-action on two copies of
V ∗ ⊗F V . The kernel of the T -action on V ∗ ⊗F V is the image of Gm

in H and coincides with the SGP for this action, since T is a torus, see
e.g. [12, Proposition 3.7(A)]. Now the claim follows with Lemma 2.3.

(d) Note that (V ∗
1 ⊗F V )⊕t is H-equivariantly isomorphic to

V ∗
1 ⊗F V

∗
2 ⊗F V ≃ V ∗ ⊗F V . Define the open subset U ⊆ A(V ∗ ⊗F V )

like in part (a). Then every ρ ∈ U(Falg) has stabilizer in (H ′)alg given
by the image of the homomorphism

GL(V1)alg → (H ′)alg, α 7→ ((α∗)−1, ρ∗α(ρ∗)−1)

which is conjugate to (S′)alg over Falg. This shows the first claim.

As an S′-representation V ∗
1 ⊗F V is isomorphic to the t-fold direct

sum of W = End(V ∗
1 ) where S

′ acts through the formula

((ϕ∗)−1, ϕ) · ρ = (ϕ∗)−1ρϕ∗.

As in the proof of part (b) and (c) the S′-action on W has SGP iso-
morphic to GL1(E

′) for a maximal étale subalgebra E′ of GL(V1) and
the S′-action on W⊕2 and, since t > 1, also on W⊕t ≃ V ∗

1 ⊗F V , has as
SGP the kernel of this action, which is the image of Gm in H ′ by the
given homomorphism. Now the claim follows from Lemma 2.3.

�

The next lemma will allow a reduction to the case m = 1 in Theorem 2.2 when
d 6= 1.

Lemma 2.5. (a) Let m ≥ 1. A representation of an algebraic group H on
a vector space V of dimension dim(V ) > dim(H) is generically free if
and only if the associated representation of the wreath product Hm

⋊Sm

on V ⊕m is generically free.
(b) Suppose A is split and d 6= 1. Then for any t ≥ 1 generic freeness of

(ρGcan)
⊕t depends only on r and d, not on m.

Proof. (a) If Hm
⋊ Sm acts generically freely on V ⊕m then so does the

subgroup Hm. Let

U ⊆ A(V ⊕m) = A(V )× · · · × A(V )
︸ ︷︷ ︸

m times

be a non-empty Hm-invariant open subset where Hm acts freely. Then
the projection π1(U) ⊆ A(V ) is non-empty open and H-invariant with
free H-action. Hence H acts generically freely on V .

Conversely suppose that H acts generically freely on V . Let U0 ⊆
A(V ) a friendly open subset, i.e., anH-invariant non-empty open subset
such that there exists an H-torsor π : U0 → Y for some irreducible F -
scheme Y (which we will fix). Existence of U0 is granted by a Theorem
of P. Gabriel, see [3, Theorem 4.7] or [22, Exposé V, Théoréme 10.3.1].
Since dim(U0) = dim(V ) > dim(H) we have dim(Y ) > 0. Hence the
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open subset Y (m) of Y m where the m coordinates are different, is non-
empty open with free natural Sm-action on it. Now the inverse image of
Y (m) in Um

0 under the morphism πm : Um
0 → Y m is Hm

⋊Sm-invariant,
nonempty and open with Hm

⋊ Sm acting freely on it.
(b) Since the property of being generically free can be checked over an

algebraic closure Falg and (ρGcan)Falg
= ρ

Galg

can we may assume without
loss of generality that F is algebraically closed. Let

H = (GL(V1)×GL(V2))/Gm,

where V1 and V2 are vector spaces of dimension dim(V1) = d, dim(V2) =
r and Gm is embedded in the center of GL(V1) × GL(V2) through
λ 7→ (λ, λ−1). Then

G ≃ Hm
⋊ Sm.

In particular for m = 1 the two groups H and G are isomorphic. More-
over, in general, ρGcan is given by the obvious homomorphism

G→ GL((V1 ⊗F V2)
⊕m).

In order to establish the claim, it suffices to show that the representation
of H on V := (V1 ⊗F V2)

⊕t is generically free if and only if the asso-
ciated representation (ρGcan)

⊕t of G on V ⊕m is generically free. When
dim(V ) > dim(H) the claim follows from part (a). On the other hand
when dim(V ) ≤ dim(H) or equivalently dim(V ⊕m) ≤ dimG the two
representations of G and H, respectively, are both not generically free,
since otherwise the respective group would have essential dimension 0.
This is both excluded by the assumption d 6= 1, since B ≃ Md(F )

m

and Md(F ) have nontrivial forms over some field extension K/F which
embed in A ⊗F K ≃ Mdrm(K). Correspondingly there is a non-trivial
G-torsor (resp. H-torsor) over K. This torsor cannot be defined over
any subfield of transcendence degree 0 over F , since F is algebraically
closed.

�

The following lemma tells us how ρHcan looks over Fsep, for any subgroup H of
GL1(A).

Lemma 2.6. Over Fsep the representation ρHcan decomposes as a direct sum of
ind(A) copies of the canonical representation of Hsep = HFsep

.

Proof. Fix isomorphisms Asep
∼
→ End(V ), (Dop)sep

∼
→ End(W ) with Fsep-

vector spaces V and W . Let w1, . . . , wa be a basis of W , with a = dim(W ) =
ind(A). Then (ρHcan)Fsep

is equivalent to the composition Hsep →֒ GL(V ) →֒

GL(V ⊗Fsep
W ), whilst ρ

Hsep

can is equivalent to the inclusion Hsep →֒ GL(V ).
Since the subspaces V ⊗Fsep

Fsepwi of V ⊗Fsep
W are GL(V )-invariant and

GL(V )-equivariantly (and therefore Hsep-equivariantly) isomorphic to V , the
claim follows. �

Documenta Mathematica · Extra Volume Merkurjev (2015) 443–459



452 Roland Lötscher

We are now ready to prove our main result from this section.

Proof of Theorem 2.2. In view of Lemma 2.6 it suffices to show that the least

integer t ≥ 1 such that the t-fold direct sum of ρ
Gsep

can is generically free, is given
by the lower bound on the index in the statement of the theorem.

(a) Case d = r = 1,m > 1: Here B is a maximal étale subalgebra of A
of dimension deg(A) = m > 1. The canonical representation of Gsep

is given by the natural action of (Gm)m ⋊ Sm on V = Fm. Let U ⊆
A(V ) = A

m denote the open subset where all coordinates are non-zero.
The group Gsep operates transitively on U . Therefore the stabilizer of
any u ∈ U(Falg) is conjugate to the stabilizer of (1, . . . , 1) in Gsep, which
is Sm. Therefore Sm is an SGP for the canonical representation of Gsep.
Moreover Sm acts freely on the Sm-invariant open subset of U , where
all coordinates are different. Thus the canonical representation of Gsep

is not generically free, but two copies of it are, by Lemma 2.3.
(b) Case d = r > 1: We must show that two copies of the canonical rep-

resentation of Gsep are not generically free, but three copies are. By
Lemma 2.5, since d > 1, we may assume that m = 1. Let V be an
Fsep-vector space of dimension d = r. Identify Bsep with End(V ∗)
and its centralizer in Asep with End(V ). This identifies Gsep with
(GL(V ∗) × GL(V ))/Gm, where Gm is embedded in the center of
GL(V ∗) × GL(V ) via λ 7→ (λ−1, λ). Its canonical representation is
given by the natural action on V ∗⊗F V . By Proposition 2.4(b) the sum
of two copies of this representation has an SGP in general position of
the form G

d
m/Gm, hence it is not generically free. Moreover Proposi-

tion 2.4(c) shows that the sum of three copies of that representation is
generically free.

(c) Case d = m = 1: Here G = GL1(A) with A of degree drm = r. By
dimension reasons we need at least r copies of the canonical represen-
tation of Gsep (whose dimension is r) in order to get a generically free
representation. On the other hand r copies are clearly enough.

(d) Case d < r and (d > 1 or m > 1):
First assume d > 1. This case is similar to case (b). We must show

that r
d + 1 copies of the canonical representation of Gsep are generi-

cally free, but r
d copies are not. By Lemma 2.5 we may assume that

m = 1. Let V1 and V2 be Fsep-vector spaces of dimension d and r
d ,

respectively, and set V = V1 ⊗Fsep
V2, which is of dimension r. Identify

Bsep with End(V ∗
1 ) and its centralizer in Asep with End(V ), so that

Gsep = (GL(V ∗
1 ) ×GL(V ))/Gm. Its canonical representation is given

by the natural action on V ∗
1 ⊗Fsep

V . By Proposition 2.4(c) exactly
dim(V2)+1 = r

d +1 copies of this representation are needed in order to
get a generically free representation. This establishes the claim in case
d > 1.

Now assume d = 1 < r and m > 1. Here B is étale of dimen-
sion m with 1 < m < rm = deg(A). Let V denote an r-dimensional
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Fsep-vector space. Then Gsep ≃ (GL(V ))m ⋊ Sm and its canoni-
cal representation is given by the natural action on V ⊕m. We have
dimG = r2m = r · dim(V ⊕m). Since Gsep is not connected it has
ed(Gsep) > 0, see [11, Lemma 10.1], hence we need at least r+1 copies of
V ⊕m in order to get a generically free representation. On the other hand
the connected component G0

sep ≃ (GL(V ))m acts generically freely on

r copies of V ⊕m and Sm acts generically freely on V ⊕m, which implies
that Gsep acts generically freely on r+1 copies of V ⊕m. This concludes
the proof.

�

3. Proof of Theorem 1.1

The purpose of this section consists in proving the results on ed(G) as formu-
lated in our main theorem.

Proof of Theorem 1.1. (a) The inequality ind(A) ≤ r
d implies that r is di-

visible by d ind(A), since indA, r and d are powers of p. In this case nat-
ural isomorphism between the functors of H1(−, G) and Forms(B) was
established in [13, Remark 4.8]. In fact when r is divisible by d ind(A)
every form B′ of B over a field extension K/F can be embedded in
A⊗F K with type [(d, r), . . . , (d, r)].

Now for every F -form B′ of B the functors Forms(B) and
Forms(B′) are equivalent as functors to the category of sets. The split
form of B over F is Md(F )

m and its automorphism group scheme is
(PGLd)

m
⋊Sm. This shows that Forms(B) is naturally isomorphic to

the Galois cohomology functor H1(−, (PGLd)
m
⋊ Sm).

(b) Assume ind(A) > r
d . For any algebraic group H over F we have the

standard inequality

ed(H) ≤ dim(ρ)− dim(H)

for any generically free representation ρ of H, see [3, Proposition 4.11].
The canonical representation of the group G = NGL1(A)(GL1(B)) has
dimension deg(A) ind(A). Therefore Theorem 2.2 yields the inequality

(1) ed(G) ≤ deg(A) ind(A)− dim(G)

in case

ind(A) ≥







2, if d = r = 1,m > 1,

3, if d = r > 1,

r, if d = m = 1
r
d + 1, if d < r and (d > 1 or m > 1).

Combining this with the assumption ind(A) > r
d shows that inequality

(1) is always satisfied, except possibly when d = r > 1 and ind(A) = 2.
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Now we show the converse to inequality (1). We follow the approach
given in [13]. Let AutF (A,B) denote the group scheme of automor-
phisms of B-preserving automorphisms of A. We have an exact sequence

1 → Gm → G
Int
→ AutF (A,B) → 1,

where Int : G = NGL1(A)(GL1(B)) → AutF (A,B) takes, for every

commutative F -algebra R, the element g ∈ G(R) ⊆ (A ⊗F R)× to
the inner automorphism of A ⊗F R given by conjugation by g. The
connection map

H1(K,AutF (A,B)) → H2(K,Gm) = Br(K)

sends the isomorphism class of aK-form (A′, B′) of (A,B) to the Brauer
class [A′]− [A⊗F K] = [A′⊗F A

op]. Write deg(A) = ps. By [13, Lemma
2.3] there exists a field extension K/F and a central simple K-algebra
A′ of the form A′ = D1⊗K · · ·⊗KDs for division K-algebras D1, . . . , Ds

of degree p, such that

ind(A′ ⊗F A
op) = ps ind(A) = deg(A) ind(A).

Write d = pa, r = pb, m = pc, so that a+ b+ c = s. Choose a maximal
étale K-subalgebra Li of Da+i for i ∈ {1, . . . , c}. Then

B′ := D1 ⊗K · · · ⊗K Da ⊗K L1 ⊗K · · · ⊗K Lc

is a separable K-subalgebra of A′ of type [(d, r), . . . , (d, r)] (like B in
A). This implies that (A′, B′) is a K-form of (A,B) by [13, Lemma
4.2(d)]. Therefore the maximal index of a Brauer class contained in the
image of a connection map H1(K,AutF (A,B)) → Br(K) for a field
extension K/F is precisely deg(A) ind(A). Now the inequality

ed(G) ≥ deg(A) ind(A)− dim(G)

follows from [5, Corollary 4.2].
�

Remark 3.1. Theorem 1.1 holds with essential dimension replaced by essential
p-dimension. For definition of edp(G) see [14] or [21]. In fact part (a) follows
from the description of the Galois cohomology functor H1(−, G) like for es-
sential dimension. Moreover we always have edp(G) ≤ ed(G) and the lower
bounds given in part (b) are actually lower bounds on edp(G). This follows
from the p-incompressibility of Severi-Brauer varieties of division algebras of
p-power degree [9, Theorem 2.1] and [14, Theorem 4.6].

4. The Special Case

In this section we consider the case, which was not resolved by Theorem 1.1.
Hence we assume throughout this section that

A =M2n(Q)
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for some integer n ≥ 0 and a non-split quaternion F -algebra Q, and B ⊆ A is
a separable subalgebra with

Bsep ≃ (M2a(Fsep))
2c ≃ Csep,

where C ⊆ A is the centralizer of B in A and a, c are integers with a ≥ 1, c ≥ 0.
Note that the relation drm = deg(A) implies 2a + c = n + 1. Recall that
G = NGL1(A)(GL1(B)).

Example 4.1. Suppose m = 1, which means that B is central simple of degree
d = 2a. Then the functorH1(−, G) ≃ Forms

θ
A(B) (with θB = [(d, d)]) classifies

central simple algebras B′ of degree d over field extensions K/F such that
B′ ⊗F Q is not a division algebra. This is shown as follows: B′ embeds in AK

if and only if B′ ⊗F Q embeds in AK ⊗F Q ≃ M2d2(K). If this is the case,
the centralizer of B′ ⊗F Q in M2d2(K) has degree d and has opposite Brauer
class to B′ ⊗F Q. Therefore the index of B′ ⊗F Q divides d, i.e. B′ ⊗F Q is
not a division algebra. Conversely, if the index of B′ ⊗F Q divides d, then the
opposite algebra is Brauer equivalent to a degree d algebra, so B′⊗F Q embeds
in M2d2(K).

Let L/F be a maximal separable subfield of Q (of dimension 2 over F ). The
algebra A splits over L. In particular we get the lower bound

ed(Forms(Md(L)
m)) = ed(Forms(BL)) = ed(GL) ≤ ed(G)

on ed(G) by Theorem 1.1(a) and [3, Proposition 1.5].
Moroever we have the upper bound

ed(G) ≤ 4 deg(A)− dim(G) = 4 · 22a+c − 2c((2a)2 + (2a)2 − 1)

= 22a+c+2 − 22a+c+1 + 2c

= 2c(22a+1 + 1),

since 2 copies of ρGcan are generically free by Theorem 2.2 and Lemma 2.6.
The main effort in this section will go into proving a better upper bound on
ed(G).

For this purpose we will show that the canonical representation of the normal-
izer of a maximal torus (and even of some larger subgroup) of G is generically
free. The following lemma reveals that this will improve the above upper bound
on ed(G).

Lemma 4.2. Let T be a maximal torus of G and H a subgroup of G containing
the normalizer NG(T ). Suppose that ρHcan is generically free. Then

ed(G) ≤ ed(H) ≤ 2 deg(A)− dimH

= 2c+2a+1 − dimH.

Proof. The connected component G0
alg ≃ ((GL2a × GL2a)/Gm)2

c

of Galg is

reductive. Therefore the inclusion ι : NG(T ) →֒ G induces a surjection of func-
tors

ι∗ : H
1(−, NG(T )) ։ H1(−, G),

Documenta Mathematica · Extra Volume Merkurjev (2015) 443–459



456 Roland Lötscher

see e.g. [6, Corollary 5.3]. Note that G is supposed to be connected reductive
there, but the proof goes through if only G0 is reductive (over Falg).
Since ι factors through H, the map ι∗ factors through H1(−, H). By [3,
Lemma 1.9] this proves the first inequality. The second inequality follows from
dim(ρHcan) = 2 deg(A) and [3, Proposition 4.11]. �

In order to make use of Lemma 4.2 we will need the following result:

Lemma 4.3. Let R be a connected reductive algebraic group over F . Let T be a
maximal torus of R and let TR ≃ R/NR(T ) denote the variety of maximal tori
in R. Assume that R/Z(R) is simple, i.e., has no nontrivial normal subgroups.
Then there exists a non-empty open subscheme U of TR such that every maximal
torus of Ralg contained in U(Falg) intersects (NR(T ))alg exactly in Z(R)alg.

Proof. First note that T contains Z(R), since R is reductive. If T is central
in R, then T = Z(R), and the claim easily follows. Hence we may assume
that T is non-central. We let R act on TR through conjugation. The kernel
of this action is a proper normal subgroup of R containing Z(R). Hence it
is equal to Z(R). Therefore the kernel of the T -action on TR obtained by
restriction is also Z(R). By [12, Proposition 3.7] the induced T/Z(R)-action

on TR is generically free. Hence there exists a non-empty open subscheme Ũ
of TR such that every S ∈ Ũ(Falg) has stabilizer in Talg equal to Z(R)alg, i.e.

NRalg
(S)∩Talg = Z(R)alg. For a ∈ R(Falg) with S = aTalga

−1 this is equivalent

to (NR(T ))alg ∩ (a−1Talga) = Z(R)alg.

Denote by π : R→ TR, a 7→ aTa−1 the projection map and by ι : R→ R, a 7→
a−1 the inversion map. Then U := (π◦ι)(π−1(Ũ)) has the desired property. �

Proposition 4.4. With the standing assumptions r = d = 2a > 1, m = 2c ≥ 1
and ind(A) = 2:

ed(G) ≤ 2c+2a+1 − 2c(22a + 2a − 1)

= 2c(22a − 2a + 1).

Proof. We first consider the case m = 1 (i.e., c = 0): Let E be a maximal étale
subalgebra of the centralizer C = CA(B) and let

H = (GL1(B)×NGL1(C)(GL1(E)))/Gm ⊆ G.

We will show that ρHcan is generically free. Since dim(H) = 22a + 2a − 1 this
would establish the claim in case m = 1 in view of Lemma 4.2. Over Falg we
may identify Halg with (GL(V ∗)×NGL(V )(T ))/Gm where V is an Falg-vector

space of dimension d = 2a and T is a maximal torus of GL(V ). Moreover ρHcan
becomes a direct sum of two copies of the natural representation

Halg → GL(V ∗ ⊗Falg
V ) = GL(End(V ∗))

over Falg. Hence it suffices to show that Gm is an SGP for the natural action
of H ′ := GL(V ∗) × NGL(V )(T ) on two copies of W := End(V ∗). Identify

N := NGL(V )(T ) with its image in H ′ under the map ϕ 7→ ((ϕ∗)−1, ϕ). The
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proof of Proposition 2.4(b) shows that N is an SGP for the H ′ action on one
copy of W . Moreover the stabilizer of any ρ ∈ End(V ∗) in N is given by
the intersection of N with the centralizer CGL(V )(ρ

∗). When ρ is semisimple
regular, CGL(V )(ρ

∗) is a maximal torus of GL(V ). It can be considered as a
rational point of the variety of maximal tori TGL(V ) of GL(V ). By Lemma 4.3
there exists a non-empty open subscheme U of TGL(V ) such thatN∩S = Gm for
every S ∈ U(Falg). Let GL(V ∗)ss,reg ⊂ A(W ) denote the open subset given by
the regular semisimple elements. We have a morphism GL(V ∗)ss,reg → TGL(V ),
sending a semisimple regular element ρ to the centralizer CGL(V )(ρ

∗). The
preimage P of U in GL(V ∗)ss,reg is a non-empty open subset of A(W ) such
that every ρ ∈ P (Falg) has stabilizer in N equal to Gm. By Lemma 2.3 this
implies the claim.

Now let m = 2c be arbitrary. Since the functor H1(−, G) : FieldsF → Sets
depends only on the type of B, we may replace B by any subalgebra of A of
the same type as B without changing ed(G). As

A =M2n(Q) =Mm(B0 ⊗F C0),

with B0 =M2a(F ) and C0 =M2a−1(Q), we may take for B the m×m diagonal-
matrices with entries in B0. Its centralizer C is the set of m×m diagonal-
matrices with entries in C0. Therefore

G = (G0)
m
⋊ Sm

where

G0 = (GL1(B0)×GL1(C0)) /Gm = NGL1(B0⊗FC0)(GL1(B0))

has ed(G0) ≤ 22a − 2a + 1 by the case m = 1. By [13, Lemma 4.13] we have
ed(G) ≤ m ed(G0) and the claim follows. �

Remark 4.5. Consider the case m = 1. Since ed((PGL2a)sep) = ed(Gsep) ≤

ed(G) the upper bound
ed(G) ≤ 22a − 2a + 1

should be compared with the best existing upper bound on the essential di-
mension of (PGL2a)sep, namely

ed((PGL2a)sep) ≤ 22a − 3 · 2a + 1

by [10, Proposition 1.6] (which assumes char(F ) = 0).

Corollary 4.6. Suppose B is central simple (i.e., m = 1) and char(F ) 6= 2.
Then

max{2, (a− 1)2a + 1} ≤ ed(G) ≤ 22a − 2a + 1.

In particular when B has degree 2 we have

ed(G) ∈ {2, 3}

and when B has degree 4 we have

ed(G) ∈ {5, 6, . . . , 13}.

If B is central simple of degree 2 and char(F ) = 2 we still have ed(G) ∈ {2, 3}.
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Proof. The upper bound on ed(G) is contained in Proposition 4.4.
By Theorem 1.1(a) we have ed(Forms(M2a(Fsep))) = ed(Gsep) ≤ ed(G) .
Hence the lower bound

(a− 1)2a + 1 ≤ ed(G)

follows from [16, Theorem 6.1] (which assumes char(F ) 6= 2) and the lower
bound 2 ≤ ed(G) follows from [20, Lemma 9.4(a)] (the paper assumes charac-
teristic 0, but the proof works in arbitrary characteristic). �
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