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0 Introduction

Let X ′ → X be a desingularisation of a d-dimensional, integral variety over a
field k, with exceptional fibre E →֒ X. Letting rE denote the rth infinitesimal
thickening of E, we denote by F dK0(X

′, rE) the subgroup of the relative K-
group K0(X

′, rE) generated by the cycle classes of closed points of X ′ \E, for
each r ≥ 1. This inverse system

F dK0(X
′, E)←− F dK0(X

′, 2E)←− F dK0(X
′, 3E)←− · · ·

was first studied by S. Bloch and V. Srinivas [16], in the case of normal surfaces,
as a means of relating zero cycles on the singular variety X to zero cycles on the
smooth variety X ′. They conjectured [pg. 6, op. cit.] in 1985 that this inverse

system would eventually stabilise, i.e., F dK0(X
′, rE)

≃
→ F dK0(X

′, (r−1)E) for
r ≫ 1, with stable value equal to F dK0(X), the subgroup of K0(X) generated
by cycle classes of smooth, closed points of X.
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466 Matthew Morrow

The Bloch–Srinivas conjecture was proved for normal surfaces by A. Krishna
and Srinivas [9, Thm. 1.1], and later extended to higher dimensional, Cohen–
Macaulay varieties with isolated singularities in characteristic zero by Krishna
[6, Thm. 1.1] [7, Thm. 1.2]. The conjecture has not been previously verified in
any case of non-isolated singularities, nor for any higher dimensional varieties
in finite characteristic.

The primary goal of this paper is to prove the following cases of the Bloch–
Srinivas conjecture for varieties which are regular in codimension one:

Theorem 0.1. Let π : X ′ → X be a desingularisation of a d-dimensional,
quasi-projective, integral variety X over an infinite, perfect field k which is
assumed to have strong resolution of singularities. Let E →֒ X be a closed
embedding covering the exceptional fibre, and assume that codim(X,π(E)) ≥ 2.

Then the associated Bloch–Srinivas conjecture is

(i) true up to (d− 1)!-torsion;

(ii) true if X is projective, k = kalg, and char k = 0;

(iii) true if X is projective, k = kalg, and d ≤ char k 6= 0;

(iv) true if X is affine and k = kalg;

(v) true “up to a finite group” if k = kalg and Xsing is contained in an affine
open of X;

(vi) true if π(E) is finite;

(vii) true if the cycle class map CH0(X)→ F dK0(X) is an isomorphism.

The group CH0(X) appearing in part (vii) of Theorem 0.1 is the Levine–Weibel
Chow group of zero cycles of the singular variety X [10, 12]; it will be reviewed
in Section 1.1.

Part (iv) of the Theorem, combined with arguments of Krishna [7] and
R. Murthy [15], has concrete applications to Chow groups of cones and to
the structure of modules and ideals of graded algebras; see Theorem 1.17 and
Corollaries 1.18 and 1.19.

This paper is intended partly to justify the author’s pro cdh-descent theorem
for K-theory [13]; indeed, the results of Theorem 0.1 are obtained in Section 1.2
as corollaries of the following general result, which itself is an immediate con-
sequence of pro cdh-descent:

Theorem 0.2. Let π : X ′ → X be a desingularisation of a d-dimensional,
quasi-projective, integral variety over an infinite, perfect field k which is as-
sumed to have strong resolution of singularities. Let E →֒ X be a closed em-
bedding covering the exceptional fibre. Then:

(i) There exists a unique homomorphism BSr : F dK0(X
′, rE) → F dK0(X)

for r ≫ 1 which is compatible with cycle classes of closed points.
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(ii) The associated Bloch–Srinivas conjecture is true if and only if the canon-
ical map F dK0(X, rY )→ F dK0(X) is an isomorphism for r ≫ 1, where
Y := π(E)red.

Section 2 concerns Chow groups of zero cycles with modulus. If X is a smooth,
projective variety over a field k and D is an effective divisor on X, then the
Chow group with modulus CH0(X;D) is defined to be the free abelian group
on the closed points of X \D, modulo rational equivalence coming from closed
curves C which are not contained in |D| and rational functions f ∈ k(C)×

which are ≡ 1 mod D. This Chow group is central in M. Kerz and S. Saito’s
[5] higher dimensional class field theory.

It is natural to formulate an analogue of the Bloch–Srinivas conjecture for the
Chow groups with modulus given by successive thickenings of the exceptional
fibre of a desingularisation. We will explain this further in Section 2, where we
prove it in the following cases:

Theorem 0.3. Let π : X ′ → X be a desingularisation of a d-dimensional,
quasi-projective, integral variety over an algebraically closed field k which
is assumed to have strong resolution of singularities. Let D be an effec-
tive Cartier divisor on X covering the exceptional fibre, and assume that
codim(X,π(D))≥ 2.

Then the inverse system

CH0(X
′;D)←− CH0(X

′; 2D)←− CH0(X
′; 3D)←− · · ·

eventually stabilises with stable value equal to CH0(X), assuming that either

(i) X is projective and char k = 0; or

(ii) X is projective and d ≤ char k 6= 0; or

(iii) X is affine.

Whenever the assertions of Theorem 0.3 can be proved for a singular, projective
variety X over a finite field (e.g., for surfaces, as we shall see in Remark 2.8),
it has applications to the class field theory of X; in particular, it shows that

there is a reciprocity isomorphism of finite groups CH0(X)0
≃
→ πab

1 (Xreg)
0. See

Remark 2.7 for further details.

We prove Theorem 0.3 by reducing it to the analogous assertion in K-theory,
which is precisely the Bloch–Srinivas conjecture, and then applying Theo-
rem 0.1. This reduction is through the construction of a new cycle class homo-
morphism

CH0(X;D) −→ F dK0(X,D),

which is valid for any effective Cartier divisor D on a smooth variety X. This
also allows us to prove the following result, which appears related to a special
case of a conjecture of Kerz and Saito [5, Qu. V]:
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Theorem 0.4. With notation and assumptions as in Theorem 0.3, the cycle
class homomorphism

CH0(X
′; rD) −→ F dK0(X

′; rD)

is an isomorphism for r ≫ 1.

Notation, conventions, etc.

A field k will be called good if and only if it is infinite, perfect, and has strong
resolution of singularities, e.g., char k = 0 suffices. A k-variety means simply
a finite type k-scheme; further assumptions will be specified when required,
and the reference to k with occasionally be omitted. Our conventions about
“desingularisations” can be found at the start of Section 1.2.
A curve over k is a one-dimensional, integral k-variety. Given a closed point x ∈
C0, there is an associated order function ordx : k(X)× → Z characterised by
the property that ordx(t) = lengthOC,x

(OC,x/tOC,x) for any non-zero t ∈ OC,x;
when C is smooth ordx is the usual valuation associated to x.
An effective divisor D on X is by definition a closed subscheme whose defining
sheaf of ideals OX(−D) is an invertible OX -module, or, equivalently, is locally
defined by a single non-zero-divisor; its associated support is denoted by |D|,
but we write X \D in place of X \ |D| for simplicity.
Given a closed embedding Y = SpecOX/I →֒ X, its rth infinitesimal thicken-
ing is denoted by rY = SpecOX/Ir.
A pro abelian group {Ar}r is an inverse system of abelian groups, with mor-
phisms given by the rule

HomProAb({Ar}r, {Bs}s) := lim
←−
s

lim
−→
r

HomAb(Ar, Bs).

The category of pro abelian groups is abelian; we refer to [1, App.] for more
details.
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1 Zero cycles of desingularisations

In this section we prove cases of the Bloch–Srinivas conjecture relating zero
cycles on a singular variety to those on its desingularisation.
There will be an important distinction between closed subsets S ⊆ X and
closed subschemes Y →֒ X; in an attempt to keep this clear we will use the
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Zero Cycles on Singular Varieties 469

differentiating notation ⊆ and →֒ just indicated. Any closed subscheme Y →֒ X
has an associated support |Y | ⊆ X, though we will continue to write X \ Y
rather than X \ |Y | for the associated open complement, and any closed subset
S ⊆ X has an associated reduced closed subscheme Sred →֒ X. The singular
locus of X is denoted by Xsing ⊆ X.

1.1 Review of the Levine–Weibel Chow group

We begin by reviewing the Levine–Weibel Chow group of zero cycles [10, 12],
restricting to the situation that the singularities of X are in codimension ≥ 2,
since this is sufficient for our applications. Unless specified otherwise, k is an
arbitrary field.

Definition 1.1. LetX be an integral k-variety which is regular in codimension
one, and S ⊆ X any closed subset containing Xsing. Then the associated
Levine–Weibel Chow group of zero cycles is

CH0(X;S) :=
free abelian group on closed points of X \ S

〈(f)C : C →֒ X a curve not meeting S, and f ∈ k(C)×〉

where (f)C :=
∑

x∈C0
ordx(f)x as usual. In particular, CH0(X) :=

CH0(X;Xsing).

Remark 1.2. Several remarks should be made:

(i) The group CH0(X;S) we have just defined can actually only reasonably
be called the Levine–Weibel Chow group of zero cycles if we assume that
codim(X,S) ≥ 2. But it is convenient to introduce the notation in slightly
greater generality since it will be useful in Section 2.

(ii) An inclusion of closed subsets S ⊆ S′ ofX, both containingXsing, induces
a canonical surjection CH0(X;S′) ։ CH0(X;S). This surjection is an
isomorphism if X is quasi-projective and S, S′ have codimension ≥ 2, by
a moving lemma [12, pg. 113].

(iii) Suppose that X is a smooth k-variety and that S ⊆ X is a closed subset.
Then there is a canonical surjection CH0(X;S) ։ CH0(X; ∅) = CH0(X),
which will be an isomorphism if S has codimension ≥ 2 and X is quasi-
projective, by the aforementioned moving lemma.

(iv) Suppose that X ′ → X is a proper morphism which restricts to an isomor-

phism X ′\S′ ≃
→ X \S for some closed subsets S ⊆ X, S′ ⊆ X ′ containing

the singular loci. Then the induced map CH0(X;S) → CH0(X
′;S′) is

an isomorphism. Indeed, both sides are generated by the closed points
of X ′ \ S′ = X \ S, and closed curves on X not meeting S correspond to
closed curves on X ′ not meeting S′.
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To review the relationship between CH0(X) andK-theory, we must first explain
the cycle class map. Let X be a k-variety, and i : Y →֒ X a fixed closed sub-
scheme. If j : C →֒ X is a closed subscheme with image disjoint from both |Y |
and Xsing, then j is of finite Tor dimension since it factors as C →֒ Xreg → X,
and it is moreover proper; thus the pushforward map j∗ : K(C) → K(X) on
the K-theory spectra is well-defined. Moreover, the projection formula [19,
Prop. 3.18] associated to the pullback diagram

∅ //

��

C

j

��
Y

i
// X

shows that the composition K(C)
j∗
−→ K(X)

i∗

−→ K(Y ) is null-homotopic, and
thus there is an induced pushforward j∗ : K(C) → K(X,Y ). The cycle class
of C in K0(X,Y ) is defined to be

[C] := j∗([OC ]) ∈ K0(X,Y ).

Although this appears to depend a priori on a chosen null-homotopy, it was
shown by K. Coombes [4] that the “obvious choices of homotopies” yield a
class which is functorial with respect to both X and Y , and so we will follow
Coombes’ choices. A codimension filtration on K0(X,Y ) is now defined by

F pK0(X,Y ) := 〈[C] : C →֒ X an integral closed subscheme of X of codim ≥ p

disjoint from |Y | and Xsing〉

In particular, F dK0(X,Y ) is the subgroup of K0(X,Y ) generated by the cycle
classes of smooth, closed points of X \ Y . The following is standard:

Lemma 1.3. Let notation be as immediately above. If j : C →֒ X is a closed
embedding of a curve into X not meeting |Y | or Xsing, and f ∈ k(C)×, then∑

x∈C0
ordx(f)[x] = 0 in K0(X,Y ).

Proof. One has
∑

x∈C0
ordx(f)[x] = j∗([OC ]− [fOC ]) = j∗(0) = 0 .

Now suppose that X is a d-dimensional, integral k-variety which is regular in
codimension one, let Y →֒ X be a closed subscheme, and let S ⊆ X be a closed
subset containing both |Y | and Xsing. It follows from Lemma 1.3 that the cycle
class homomorphism

CH0(X;S) −→ F dK0(X,Y ), x 7−→ [x]

is well-defined. In particular, taking S = Xsing and Y = ∅ yields the cycle class
homomorphism

[ ] : CH0(X) −→ F dK0(X),
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Zero Cycles on Singular Varieties 471

which is evidently surjective. Moreover, as part of a general Riemann–Roch
theory, M. Levine [11, 10] constructed a Chern class ch0 : F dK0(X)→ CH0(X)
such that the compositions [ ] ◦ ch0 and ch0 ◦ [ ] are both multiplication by
(−1)d−1(d− 1)!. In particular, [ ] : CH0(X)→ F dK0(X) is an isomorphism if
d = 2.
We complete our review of the Levine–Weibel Chow group of zero cycles by
presenting the higher dimensional cases in which the cycle class homomorphism
can be shown to be an isomorphism:

Theorem 1.4 (Barbieri Viale, Levine, Srinivas). Let X be a d-dimensional,
integral, quasi-projective variety over an algebraically closed field k which
is regular in codimension one. Then the cycle class homomorphism
CH0(X)→ F dK0(X) is

(i) an isomorphism if X is projective and char k = 0;

(ii) an isomorphism if X is projective and d ≤ char k 6= 0;

(iii) an isomorphism if X is affine and char k is arbitrary;

(iv) a surjection with finite kernel if Xsing is contained in an affine open
subscheme of X and char k = 0;

(v) a surjection with finite kernel if Xsing is contained in an affine open
subscheme of X and d ≤ char k 6= 0;

Proof. Thanks to the existence of Levine’s Chern class ch0, it is enough to
check that CH0(X) has no (d − 1)!-torsion in cases (i)–(ii), that it has only a
finite amount of (d− 1)!-torsion in cases (iv)–(v), and that it has no torsion in
case (iii).
Then (i) and (ii) are [10, Thm. 3.2], while (iv) and (v) are [2, Thm. A]. Finally,
(iii) in characteristic zero (and when d ≤ char k 6= 0) is [10, Corol. 2.7], and so
it remains only to deal with the following case: assuming that X is an integral,
affine variety which is regular in codimension one, over an algebraically closed
field of finite characteristic, we must show that CH0(X) is torsion-free. This

is true for the normalisation X̃ by [18], and so it remains only to check that

CH0(X)
≃
→ CH0(X̃). But since X is assumed to be regular in codimension

one, there are closed subsets S ⊆ X, S′ ⊆ X̃ (given by the conductor ideal, for
example) of codimension ≥ 2, containing the singular loci, and such that the

morphism X̃ → X restricts to an isomorphism X̃ \ S′ ≃
→ X \ S. Then, in the

commutative diagram

CH0(X̃;S′) // CH0(X̃)

CH0(X;S) //

OO

CH0(X)

OO

the horizontal arrows are isomorphisms by Remark 1.2(ii), while the left vertical
arrow is an isomorphism by Remark 1.2(iv). Hence the right vertical arrow is
an isomorphism, as required.
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1.2 The Bloch–Srinivas conjecture

Before we can carefully state the Bloch–Srinivas conjecture we must first fix
some terminology concerning desingularisations. Given an integral variety X,
a desingularisation is any proper, birational morphism π : X ′ → X where
X ′ is smooth; in particular, we allow the desingularisation to change the
smooth locus of X, though it is not clear if this is ever important in prac-
tice. There exists a smallest closed subset S ⊆ X with the property that

X ′ \ π−1(S)
≃
→ X \ S, and π−1(S) is known as the exceptional set of the reso-

lution; setting E := π−1(S)red yields the exceptional fibre E →֒ X ′. Corollaries
1.10–1.15 will require that π(|E|) has codimension ≥ 2 inX, which in particular
implies that X is regular in codimension one.

If X ′ → X is a desingularisation of an integral variety X, with exceptional fibre
E →֒ X ′, then Bloch and Srinivas [16, pg. 6] made the following conjecture in
1985:

Conjecture 1.5 (Bloch–Srinivas). The inverse system

F dK0(X
′, E)←− F dK0(X

′, 2E)←− F dK0(X
′, 3E)←− · · ·

stabilises, with stable value F dK0(X).

Remark 1.6. To be precise, Bloch and Srinivas stated their conjecture in the
case of a normal surface X over an algebraically closed field, assuming that
the desingularisation did not alter the smooth locus of X. If Conjecture 1.5 is
false because it has been formulated in excessive generality, it is the author’s
fault. In fact, we will consider Conjecture 1.5 in greater generality still, by
replacing the exceptional fibre E by any reduced closed subscheme E →֒ X ′

whose support contains the exceptional set (henceforth “covers the exceptional
set”).

We interpret part of the Bloch–Srinivas conjecture as an implicit statement
that there exists a cycle class homomorphism

BSr : F dK0(X
′, rE) −→ F dK0(X)

for r ≫ 1 which is compatible with cycle classes of closed points x ∈ X ′ \ E,
i.e., BSr([x]) = [x]. Such a map BSr is unique if it exists.

Our main technical theorem, which is an immediate consequence of the author’s
pro cdh-descent theorem for K-theory [13], proves the existence of the maps
BSr in full generality, and reduces the Bloch–Srinivas conjecture to the study
of the K-theory of X:

Theorem 1.7. Let X be a d-dimensional, integral variety over a good field k;
let π : X ′ → X be a desingularisation, E →֒ X ′ any reduced closed subscheme
covering the exceptional set, and set Y := π(|E|)red. Then:
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(i) For r ≫ 1, the canonical map F dK0(X, rY )→ F dK0(X) factors through
the surjection F dK0(X, rY ) → F dK0(X

′, rE), i.e., there exists a com-
mutative diagram

F dK0(X
′, rE)

∃BSr

&&▲
▲

▲
▲

▲
▲

▲
▲

▲

// F dK0(X
′)

F dK0(X, rY )

OOOO

// F dK0(X)

OO

(ii) The following are equivalent:

(a) The associated Bloch–Srinivas conjecture is true, i.e., BSr is an iso-
morphism for r ≫ 1.

(b) The canonical map F dK0(X, rY ) → F dK0(X) is an isomorphism
for r ≫ 1.

(c) The canonical map F dK0(X, rY ) → F dK0(X) is an isomorphism
for all r ≥ 1.

Proof. There is an abstract blow-up square

Y ′ //

��

X ′

π

��
Y // X

where Y ′ := X ′ ×X Y ; note that Y ′ is a nilpotent thickening of E. By pro
cdh-descent for K-theory [13, Thm. 0.1] (it is here that the field k is required
to be good), the canonical homomorphism of pro abelian groups

{K0(X, rY )}r −→ {K0(X
′, rY ′)}r ∼= {K0(X

′, rE)}r

is an isomorphism. Restricting to the codimension filtration we deduce that
the homomorphism

{F dK0(X, rY )}r −→ {F
dK0(X

′, rE)}r (†)

is injective; but each map F dK0(X, rY ) → F dK0(X
′, rE) is evidently surjec-

tive, since both sides are generated by the closed points of X \ Y = X ′ \ E.
Thus (†) is an isomorphism.
By definition of an isomorphism of pro abelian groups, this implies that for any
s ≥ 1 there exists r ≥ s and a homomorphism F dK0(X

′, rE′)→ F dK0(X, sY )
making the diagram commute:

F dK0(X
′, rE)

∃

''P
P

P
P

P
P

P

F dK0(X, rY )

OOOO

// // F dK0(X, sY )
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Note that the vertical and horizontal arrows are surjective, since the groups
are generated by the closed points of X \Y = X ′ \E. This diagram shows that
the canonical map F dK0(X, rY ) → F dK0(X) factors through the surjection
F dK0(X, rY )→ F dK0(X

′, rE), proving (i).
This gives a commutative diagram

F dK0(X
′, rE)

''PP
PP

PP
PP

PP
PP

PP BSr

((
F dK0(X, rY )

OOOO

// // F dK0(X, sY ) // F dK0(X)

from which a simple diagram chase yields the following implications (valid for
any s ≥ 1 and r ≫ s):

F dK0(X, rY ) → F dK0(X) is an isomorphism =⇒ BSr is an iso-
morphism.
BSr is an isomorphism =⇒ F dK0(X, sY ) → F dK0(X) is an iso-
morphism.

The equivalence of (a)–(c) follow, completing the proof.

Remark 1.8. Suppose that the desingularisation X ′ → X does not change
the smooth locus of X and that E is equal to the exceptional fibre (this
is probably the most important case of the conjecture). Then Theorem 1.7
states that the associated Bloch–Srinivas conjecture is true if and only if

F dK0(X, rY )
≃
→ F dK0(X) for r ≫ 1, where Y = (Xsing)red.

In particular, under these additional hypotheses on X ′ and E we see that the
Bloch–Srinivas conjecture depends only on X, and not on the chosen desin-
gularisation. Even in the case of arbitrary desingularisations and general E
covering the exceptional set, Theorem 1.7 shows that the associated Bloch–
Srinivas conjecture depends only on X and π(|E|).

Remark 1.9. The proof of Theorem 1.7 also shows the following: the in-
verse system F dK0(X

′, rE), r ≥ 1, stabilises if and only if the inverse
system F dK0(X, rY ), r ≥ 1, stabilises, in which case the canonical map
F dK0(X, rY )→ F dK0(X

′, rE) is an isomorphism for r ≫ 1.

The following corollary recovers all previously known cases of the Bloch–
Srinivas conjecture (normal surfaces [9, Thm. 1.1]; Cohen–Macaulay varieties
with isolated singularities in characteristic zero [6, Thm. 1.1] [7, Thm. 1.2];
note that in these cases one can use the reduction ideal trick of Weibel [20] to
avoid assuming that k has resolution of singularities, c.f., Remark 2.8):

Corollary 1.10. Let X be a d-dimensional, integral variety over a good field
k; let π : X ′ → X be a desingularisation, and E →֒ X ′ any reduced closed
subscheme covering the exceptional set. Assume π(|E|) is finite and d ≥ 2.
Then the associated Bloch–Srinivas conjecture is true.
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Proof. Set Y := π(|E|)red. According to Theorem 1.7, it is necessary and
sufficient to show that the canonical map F dK0(X, rY ) → F dK0(X) is an
isomorphism for all r ≥ 1. But this follows from [6, Lem. 3.1] since rY is zero
dimensional.

The next corollary proves the Bloch–Srinivas conjecture under the assumption
that the cycle class homomorphism CH0(X)→ F dK0(X) is an isomorphism:

Corollary 1.11. Let X be a d-dimensional, integral, quasi-projective va-
riety over a good field k; let π : X ′ → X be a desingularisation, and
E →֒ X ′ any reduced closed subscheme covering the exceptional set. Assume
codim(X,π(|E|)) ≥ 2 and that the cycle class map CH0(X)→ F dK0(X) is an
isomorphism.
Then the associated Bloch–Srinivas conjecture is true.

Proof. Set Y = π(|E|)red. According to Theorem 1.7, it is necessary and
sufficient to show that the canonical map F dK0(X, rY ) → F dK0(X) is an
isomorphism for all r ≥ 1. To prove this we consider the commutative diagram

F dK0(X, rY ) // F dK0(X)

CH0(X; |Y |) //

OO

CH0(X)

OO

The right vertical arrow is an isomorphism by assumption, the bottom hori-
zontal arrow is an isomorphism by Remark 1.2(ii), and the left vertical arrow is
a surjection since the domain and codomain are generated by the closed points
of X \ Y . It follows that the top horizontal arrow (and left vertical arrow – we
will need this in the proof of Theorem 2.5) is an isomorphism, as desired.

In particular, we have proved the Bloch–Srinivas conjecture for projective va-
rieties over an algebraically closed field of characteristic zero which are regular
in codimension one:

Corollary 1.12. Let X be a d-dimensional, integral variety over an al-
gebraically closed field k which has strong resolution of singularities; let
π : X ′ → X be a desingularisation, and E →֒ X ′ any reduced closed subscheme
covering the exceptional set. Assume codim(X,π(|E|)) ≥ 2 and that one of the
following is true:

(i) X is projective and char k = 0; or

(ii) X is projective and d ≤ char k 6= 0; or

(iii) X is affine and char k is arbitrary.

Then the associated Bloch–Srinivas conjecture is true.

Proof. This follows from Corollary 1.11 and the results of Levine and Srinivas
recalled in Theorem 1.4.
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Remark 1.13. It seems plausible that some descent or base change technique
should eliminate the requirement in Corollary 1.12 that k be algebraically
closed.

We can also solve the Bloch–Srinivas conjecture up to (d−1)!-torsion whenever
X is regular in codimension one:

Corollary 1.14. Let X be a d-dimensional, integral, quasi-projective va-
riety over a good field k; let π : X ′ → X be a desingularisation, and
E →֒ X ′ any reduced closed subscheme covering the exceptional set. Assume
codim(X,π(|E|)) ≥ 2.

Then the associated Bloch–Srinivas conjecture is true up to (d − 1)!-torsion,
i.e., the maps

BSr : F dK0(X
′, rE)⊗ Z[ 1

(d−1)! ] −→ F dK0(X)⊗ Z[ 1
(d−1)! ]

are isomorphisms for r ≫ 1.

Proof. Set Y = π(|E|)red. By a trivial modification of Theorem 1.7, it is neces-
sary and sufficient to show that the canonical map F dK0(X, rY )→ F dK0(X)
is an isomorphism for all r ≥ 1 after inverting (d− 1)!. This follows exactly as
in Corollary 1.11, since the cycle class map CH0(X)→ F dK0(X) is an isomor-
phism after inverting (d − 1)!, thanks to the existence of Levine Chern class
ch0 : F dK0(X)→ CH0(X).

The next result solves the Bloch–Srinivas conjecture up to a finite group when
the singular locus Xsing has codimension ≥ 2 and is contained in an affine open
of X. Note that the “obvious” cases in which this happens, namely when Xsing

is finite or X itself is affine, are already largely covered by Corollaries 1.10
and 1.12(iii) respectively:

Corollary 1.15. Let X be a d-dimensional, integral, quasi-projective variety
over an algebraically closed field k which has strong resolution of singularities;
let π : X ′ → X be a desingularisation, and E →֒ X ′ any reduced closed sub-
scheme covering the exceptional set. Assume codim(X,π(|E|)) ≥ 2, that Xsing

is contained in an affine open of X, and moreover that d ≤ char k if char k 6= 0.

Then the maps

BSr : F dK0(X
′, rE) −→ F dK0(X)

are surjective with finite kernel for r ≫ 1, and the inverse system
F dK0(X

′, rE), r ≥ 1, stabilises.

Proof. Set Y = π(|E|)red. We concatenate commutative diagrams we have
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already considered in Theorem 1.7 and Corollary 1.11:

F dK0(X
′, rE)

BSr

��
F dK0(X, rY )

OOOO

// F dK0(X)

CH0(X; |Y |)
∼= //

OOOO

CH0(X)

OO

The left vertical arrows are surjective since the groups are generated by the
closed points of X \Y = X ′\E; the bottom horizontal arrow is an isomorphism
by Remark 1.2(ii); the right vertical arrow is surjective with finite kernel Λ by
the result of Barbieri Viale recalled in Theorem 1.4.
A simple diagram chase shows that BSr is surjective and that its kernel Λr is
naturally a quotient of Λ. Since Λ is finite, this tower of quotients Λr must
eventually stabilise, completing the proof.

Remark 1.16. We finish our discussion of the Bloch–Srinivas conjecture with
a remark about SK1. Let π : X ′ → X, E, Y , k be as in the statement of
Theorem 1.7, and assume X is quasi-projective and codim(X,Y ) ≥ 2.
The maps F dK0(X, rY ) → F dK0(X) are surjective for all r ≥ 1 (by Re-
mark 1.2(ii) and existence of the cycle class maps); hence we may add

(b′) The canonical map F dK0(X, rY )→ F dK0(X) is injective for r ≫ 1.

to the list of equivalent conditions in Theorem 1.7(ii).
Next, it follows from [6, Lem. 3.1] that (b′) (hence the associated Bloch–
Srinivas conjecture) would follow from showing that ∂(SK1(rY )) = 0, where ∂ :
K1(rY ) → K0(X, rY ) is the boundary map and SK1(rY ) := Ker(K1(rY ) ։
H0(rY,O×

rY )); equivalently, it is enough to show that SK1(X) → SK1(rY ) is
surjective. Using the arguments of Theorem 1.7 it would even be enough to
show, for each r ≫ 1, that

Im(SK1(sY )→ SK1(rY )) ⊆ Im(SK1(X)→ SK1(rY ))

for some s ≥ r. It is not clear whether one should expect this to be true.

We finish the section with some consequence of the Bloch–Srinivas conjecture.
The following result about Chow groups of cones was conjectured by Srinivas
[17, §3] in 1987; it was proved by Krishna [7, Thm. 1.5] under the assumption
that the cone X was normal and Cohen–Macaulay, and we will combine his
argument with Theorem 1.7 to establish the result in general; due to the failure
of Kodaira vanishing in finite characteristic we must restrict to characteristic
zero:
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Theorem 1.17. Let Y →֒ P
N
k be a d-dimensional, smooth, projective variety

over an algebraically closed field k of characteristic zero; assume d > 0 and
Hd(Y,OY (1)) = 0, and let X be the affine cone over Y . Then CH0(X) = 0.

Proof. We may resolve X, which has a unique singular point, to obtain X ′

which is a line bundle over Y , whose zero section is the exceptional fibre
of the resolution X ′ → X. By Corollary 1.10 or 1.12(iii), we know that
CH0(X) ∼= F d+1K0(X

′, rY ) for r ≫ 1; moreover, CH0(X
′) surjects onto

F dK0(X
′), and CH0(X

′) = 0 since X ′ is a line bundle, so F dK0(X
′) = 0. So

it is enough to show that the canonical map F d+1K0(X
′, rY ) → F d+1K0(X

′)
is an isomorphism. According to Krishna’s proof of [7, Cor. 8.5], this would
follows from knowing that:

(i) Hd(X ′,Kd,X′)⊗ k× −→ Hd(Y,Kd,Y )⊗ k× is surjective; and

(ii) Hd

(
rY,

Ωd
(rY,Y )

dΩd−1
(rY,Y )

)
= 0 for r ≫ 1.

Condition (i) is satisfied since the zero section Y →֒ X ′ is split by the line
bundle structure map X ′ → Y . Condition (ii) is deduced from the Akizuki–
Nakano vanishing theorem, as explained in Lem. 9.1 and the proof of Thm. 1.5
in [7].

Corollary 1.18. Let Y, k be as in the previous theorem, and let A be its
homogeneous coordinate ring. Then every projective module over A of rank at
least d has a free direct summand of rank one.

Proof. This follows from Theorem 1.17 using a result of R. Murthy [15,
Cor. 3.9].

Corollary 1.19. Let k be an algebraically closed field of characteristic zero,
and f ∈ k[t] := k[t0, . . . , td] a homogenous polynomial of degree at most d + 1
which defines a smooth hypersurface in P

d
k. Then every smooth closed point of

Spec k[t]/〈f〉 is a complete intersection.
In other words, if m is any maximal ideal of k[t] containing f other than the
origin, then m = 〈f, f1, . . . , fd〉 for some f1, . . . , fd ∈ k[t].

Proof. This also follows from Theorem 1.17 thanks to Murthy [15, Thm. 4.4].

2 Chow groups with modulus

If X is a smooth variety over a field k, and D is an effective divisor on X,
then the Chow group CH0(X; |D|) from Definition 1.1 may be a rather coarse
invariant, as there may not be enough curves on X avoiding the codimension-
one subset |D|. Of greater interest is CH0(X;D), the Chow group of zero cycles
on X with modulus D, which we will define precisely in Definition 2.1; note
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the notational difference, indicating that CH0(X;D) depends not only on the
support of D, but on its schematic, and possibly non-reduced, structure.
According to the higher dimensional class field theory of M. Kerz and S. Saito,
when k is finite and X is proper over k, the group CH0(X;D) classifies the
abelian étale covers of X \D whose ramification is bounded by D; we refer the
reader to [5] for details since we will not require any of their results.
We now turn to definitions, and refer again to [op. cit.] for a more detailed
exposition. Let C be a smooth curve over a field k, and D an effective divisor
on C; writing D =

∑
x∈|D| mxx as a Weil divisor, we let

k(C)×D := {f ∈ k(C)× : ordx(f − 1) ≥ mx for all x ∈ |D|}

denote the rational functions on C which are ≡ 1 mod D. More generally, if
X is a smooth variety over k and D is an effective divisor on X, then for any
curve C →֒ X which is not contained in |D| we write

k(C)×D := k(C̃)×φ∗D,

where φ : C̃ → C →֒ X is the resulting map from the normalisation C̃ to X;
evidently k(C)×D = k(C)× if C does not meet |D|.
The Chow group with modulus is defined as follows:

Definition 2.1. Let X be a smooth variety over k, and D an effective divisor
on X. Then the associated Chow group of zero cycles of X with modulus D is

CH0(X;D) :=
free abelian group on closed points of X \D

〈(f)C : C →֒ X a curve not contained in |D|, and f ∈ k(C)×D〉

where (f)C =
∑

x∈C0
ordx(f)x.

If we were to define

k(C)×|D| :=

{
k(C)× if C does not meet |D|,

1 if C meets |D|,

and repeat Definition 2.1 with |D| in place of D, then the resulting group
CH0(X; |D|) would coincide with that defined in Definition 1.1. Since
k(C)×|D| ⊆ k(C)×D, we thus obtain a canonical surjection

CH0(X; |D|)−→→ CH0(X;D).

One sense in which CH0(X;D) is a more refined invariant than CH0(X; |D|)
is that the cycle class homomorphism CH0(X; |D|)→ K0(X,D) of Section 1.1
factors through CH0(X;D). There does not appear to be a proof of this im-
portant result in the literature, so we give one here, beginning with a much
stronger result in the case of curves:

Documenta Mathematica · Extra Volume Merkurjev (2015) 465–486



480 Matthew Morrow

Lemma 2.2. Let C be a smooth curve over a field k, and D an effective divisor
on C. Then the canonical map

free abelian group on closed points of C \D −→ K0(C,D), x 7−→ [x]

induces an injective cycle class homomorphism

CH0(C;D) −→ K0(C,D),

which is an isomorphism if D 6= 0 (and has cokernel = Z if D = 0).

Proof. The Zariski descent spectral sequence for the K-theory of C relative to
D degenerates to short exact sequences, since dimC = 1, yielding in particular

0 −→ H1(C,K1,(C,D)) −→ K0(C,D) −→ H0(C,K0,(C,D)) −→ 0.

Here Ki,(C,D) is by definition the Zariski sheafification on C of the presheaf
U 7→ Ki(U,U ×C D).
To describe these terms further we make some standard comments about the
long exact sequence of sheaves

K2,C → K2,D → K1,(C,D) → K1,C → K1,D → K0,(C,D) → K0,C → K0,D.

Firstly, K1,C
∼= O×

C and K1,D
∼= O×

D, so the map K1,C → K1,D is surjec-
tive; moreover, the sheaves K2,C and K2,D are generated by symbols, and
so the map K2,C → K2,D is also surjective. It follows that K1,(C,D)

∼=
Ker(O×

C → O
×
D) =: O×

(C,D) and that H0(C,K0,(C,D)) = Ker(H0(C,K0,C) →

H0(D,K0,D)). Secondly, K0,C
∼= Z via the rank map, and so H0(C,K0,C) ∼= Z;

similarly, H0(D,K0,D) ∼=
⊕

x∈|D| Z via the rank map. If D 6= 0, we deduce that

the map H0(C,K0,C) → H0(D,K0,D) is injective and so H0(C,K0,(C,D)) = 0;
while if D = 0 then evidently H0(X,K0,(C,D)) = H0(X,K0,C) ∼= Z.
In conclusion, it remains only to construct the cycle class isomorphism

CH0(C;D)
≃
−→ H1(C,O×

(C,D)).

We will do this via a standard Gersten resolution.
Given an open subscheme U ⊆ C containing |D|, let jU : U → C denote the
open inclusion. Then the canonical map O×

(C,D) → jU∗j
∗
UO

×
C,D fits into an

exact sequence of sheaves

0 −→ O×
(C,D) −→ jU∗j

∗
UO

×
(C,D)

(ordx)x
−−−−−→

⊕

x∈C\U

ix∗Z −→ 0,

where ix∗Z is a skyscraper sheaf at the closed point x. This remains exact after
taking the filtered colimit over all open U containing |D|, yielding

0 −→ O×
(C,D) −→ k(C)×D

(ordx)x
−−−−−→

⊕

x∈C0\D

ix∗Z −→ 0,
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where k(C)×D denotes a constant sheaf by abuse of notation. This latter se-
quence is a flasque resolution of O×

(C,D), and using it to compute cohomology

yields a natural isomorphism

coker
(
k(C)×D

(ordx)x
−−−−−→

⊕

x∈C0\D

Z
) ≃
−→ H1(C,O×

(C,D)).

But the left side of this isomorphism is precisely CH0(C;D), thereby completing
the proof.

Proposition 2.3. Let X be a smooth variety over a field k, and D an effective
divisor on X. Then the canonical map

free abelian group on closed points of X \D −→ K0(X,D), x 7−→ [x]

descends to a cycle class homomorphism

CH0(X;D) −→ K0(X,D).

Proof. We must show that if C →֒ X is a curve not contained in |D| and
f ∈ k(C)×D, then

∑
x∈C0

ordx(f)[x] = 0 in K0(X,D). We will deduce this from
Lemma 2.2 once we have verified a suitable pushforward formalism.
Let φ : C̃ → C →֒ X be the resulting map from the normalisation C̃ to X, and
consider the following pullback square:

φ∗D

φ′

��

j′ // C̃

φ

��
D

j
// X

We claim that φ and j are Tor-independent; that is, if y is a closed point of C̃
such that x := φ(y) lies in |D|, we must show that ToriOX,x

(OD,x,OC̃,y
) = 0

for all i > 0. But since D is an effective Cartier divisor, there exists a non-
zero-divisor t ∈ OX,x such that OD,x = OX,x/tOX,x; thus the only possible
non-zero higher Tor is Tor1, which equals the φ∗(t)-torsion of O

C̃,y
; this could

only be non-zero if φ∗(t) = 0 in O
C̃,y

, but this would contradict the condition

that C does not lie in |D|. This proves the desired Tor-independence.
Moreover, φ is a finite morphism and X is assumed to be smooth, whence φ
is proper and of finite Tor-dimension. Therefore the projection formula [19,
Prop. 3.18] (or [4, Thm. 4.4]) states that the diagram

K(C̃)

φ∗

��

j′∗ // K(φ∗D)

φ′

∗

��
K(X)

j∗
// K(D)
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is well-defined and commutes up to homotopy; so there is an induced pushfor-
ward map

φ∗ : K(C̃, φ∗D) −→ K(X,D),

which by functoriality of pushforwards (as in Section 1.1 we must appeal to
[4, §4–5] to know that the obvious choices of homotopies yield a functorial

construction) satisfies φ∗[x] = [φ(x)] for any x ∈ C̃0. Therefore

∑

x∈C0

ordx(f)[x] =
∑

x∈C̃0

ordφ(x)(f)[φ(x)]

= φ∗

( ∑

x∈C̃0

ordx(f)[x]
)

= φ∗(0)

= 0,

where
∑

x∈C̃0
ordx(f)[x] ∈ K0(C̃, φ∗D) vanishes by Lemma 2.2.

Remark 2.4. F. Binda [3] has independently proved Proposition 2.3, as well
as constructing cycle class homomorphisms CH0(X;D;n)→ Kn(X,D) for the
higher Chow groups with modulus.

Let X be a d-dimensional, smooth variety over k. Given effective divisors
D′ ≥ D with the same support, the inclusions k(C)×D′ ⊆ k(C)×D induce a canon-
ical surjection CH0(X;D′) ։ CH0(X;D). This applies in particular when
D′ = rD is a thickening of D. Combining this observation with Proposition
2.3 we obtain a commutative diagram of inverse systems of Chow groups and
relative K-groups (recall the definition of F dK0 from Section 1.1) in which
all maps are surjective (since every group is generated by the closed points of
X \D):

F dK0(X,D) F dK0(X, 2D)oooo F dK0(X, 3D)oooo F dK0(X, 4D)oooo · · ·oooo

CH0(X;D)

OOOO

CH0(X; 2D)oooo

OOOO

CH0(X; 3D)oooo

OOOO

CH0(X; 4D)oooo

OOOO

· · ·oooo

CH0(X; |D|)

kkkk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

gggg❖❖❖❖❖❖❖❖❖❖❖

OOOO 77 77♦♦♦♦♦♦♦♦♦♦♦

44 44❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤

There are two natural questions to consider concerning this diagram. Firstly,
a question seemingly related to a conjecture of Kerz and Saito [5, Qu. V] is
whether the cycle class homomorphism

{CH0(X; rD)}r −→ {F
dK0(X; rD)}r

is an isomorphism of pro abelian groups, perhaps at least ignoring (d − 1)!-
torsion.
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Secondly, changing notation, now suppose that X ′ → X is a desingularisation
of an integral variety X, whose exceptional fibre is an effective Cartier divisor
D. Then, as a Chow-theoretic analogue of the Bloch–Srinivas conjecture, we
ask whether the inverse system

CH0(X
′;D)←− CH0(X

′; 2D)←− CH0(X
′; 3D)←− · · ·

eventually stabilises, with stable value most likely equal to the Levine–Weibel
Chow group CH0(X) of X.
The following theorem simultaneously answers cases of these two questions,
working under almost identical hypotheses to Corollary 1.11:

Theorem 2.5. Let X be a d-dimensional, integral, quasi-projective variety
over a good field k; let π : X ′ → X be a desingularisation, and D any effec-
tive Cartier divisor on X whose support contains the exceptional set. Assume
codim(X,π(|D|)) ≥ 2 and that the cycle class map CH0(X)→ F dK0(X) is an
isomorphism.
Then CH0(X) ∼= CH0(X

′; |D|), and the canonical maps

CH0(X
′; |D|) −→ CH0(X

′; rD) −→ F dK0(X
′; rD)

are isomorphisms for r ≫ 1.

Proof. Let Y →֒ X be the reduced closed subscheme with support π(|D|); this
has codimension ≥ 2 and covers Xsing. Consider the following commutative
diagram, which exists for any r ≫ 1:

CH0(X
′; |D|) // CH0(X

′; rD) // F dK0(X
′; rD)

BSr

��
CH0(X; |Y |)

OO

// CH0(X) // F dK0(X)

The bottom right horizontal arrow is an isomorphism by assumption; the bot-
tom left horizontal arrow is an isomorphism by Remark 1.2(ii); the left vertical
arrow is an isomorphism by Remark 1.2(iv); the right vertical arrow is an iso-
morphism by Corollary 1.11. Since the two top horizontal arrows are surjective,
it follows that they are isomorphisms.

Corollary 2.6. Let X be a d-dimensional, integral variety over an al-
gebraically closed field k which has strong resolution of singularities; let
π : X ′ → X be a desingularisation, and D any effective Cartier divisor on X
whose support contains the exceptional set. Assume codim(X,π(|D|)) ≥ 2 and
that one of the following is true:

(i) X is projective and char k = 0; or

(ii) X is projective and d ≤ char k 6= 0; or

(iii) X is affine.
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Then CH0(X) ∼= CH0(X
′; |D|), and the canonical maps

CH0(X
′; |D|) −→ CH0(X

′; rD) −→ F dK0(X
′; rD)

are isomorphisms for r ≫ 1.

Proof. This follows from Theorem 2.5 and the results of Levine and Srinivas
recalled in Theorem 1.4.

Remark 2.7 (Class field theory of singular varieties). In this remark we ex-
plain how the CH0 isomorphism of Theorem 2.5 over a finite field Fq can be
interpreted as part of an unramified class field theory for singular, projective
varieties.
Let X be a projective variety over Fq which is regular in codimension one;
suppose that a desingularisation π : X ′ → X exists, that D is an effective
Cartier divisor on X whose support contains the exceptional set, and that
codim(X,π(|D|)) ≥ 2. Write U := X ′ \D = X \ π(|D|).
The Kerz–Saito class group [5] of U is C(U) := lim

←−r
CH0(X

′; rD), and their
class field theory provides a reciprocity isomorphism C(U)0

≃
→ πab

1 (U)0, where
the superscripts 0 denote degree-0 subgroups. Assuming that the conclusions
of Theorem 2.5 are true in this setting, we deduce that C(U) = CH0(X

′; rD) ∼=
CH0(X) for r ≫ 1. Kerz–Saito prove moreover that each group CH0(X

′; rD)0

is finite.
In particular, this would prove finiteness of CH0(X)0, which is known in the
smooth case thanks to the unramified class field theory of S. Bloch, K. Kato
and Saito, et al. It would also yield a reciprocity isomorphism

CH0(X)0
≃
−→ πab

1 (U)0, [x] 7→ Frobx

However, since the canonical map πab
1 (U)→ πab

1 (X) is surjective but generally
not an isomorphism, we would obtain in general only a surjective reciprocity
map

CH0(X)0 −→ πab
1 (X)0,

indicating that the Levine–Weibel Chow group CH0(X) is not the correct class
group for unramified class field theory of a singular variety.

Remark 2.8 (The case of surfaces). If X is an integral, projective surface
over Fq which is regular in codimension one, then we have actually proved
the observations of Remark 2.7 unconditionally: CH0(X) is isomorphic to the
Kerz–Saito class group C(Xreg), its degree-0 subgroup is finite, and there is a
reciprocity isomorphism

CH0(X)0
≃
−→ πab

1 (Xreg)
0

of finite groups. This was brought to the author’s attention by [8], in which
Krisha reproduced the argument while being unaware of the present paper.

Documenta Mathematica · Extra Volume Merkurjev (2015) 465–486



Zero Cycles on Singular Varieties 485

To prove this we must only check that Theorem 2.5 is true for surfaces over
finite fields. In fact, we will let X be a 2-dimensional, integral, quasi-projective
variety over an arbitrary field k which is regular in codimension one. Then X
admits a resolution of singularities π : X ′ → X with exceptional set equal to
exactly π−1(Xsing); let E := π−1(Xsing)red and Y := (Xsing)red.
Then Theorem 1.7 is true for the data X ′ → X, Y , E. Indeed, it is only
necessary to establish the isomorphism (†) occurring in the proof, which may
be broken into the two isomorphisms

{F dK0(X, rY )}r
≃
→ {F dK0(X̃, X̃ ×X rY )}r

≃
→ {F dK0(X

′, rE)}r,

where X̃ → X denotes the normalisation of X. The second of these isomor-
phisms is due to Krishna and Srinivas [9, Thm. 1.1]; the first isomorphism

follows from the isomorphism {K0(X, rY )}r
≃
→ {K0(X̃, X̃ ×X rY )}r, which is

a case of the author’s pro-excision theorem [14, Corol. 0.4 & E.g. 2.5], and the
obvious surjectivity just as in the proof of Theorem 1.7.
Now assume further (perhaps after blowing-up X ′ at finitely many points)
that there is an effective divisor D on X ′ with support π−1(Xsing). Since the
cycle class map CH0(X) → F dK0(X) is automatically an isomorphism (as
we remarked immediately before Theorem 1.4), it follows that the assertions
of Theorem 2.5 are also true, as required: CH0(X) ∼= CH0(X

′; |D|), and the
canonical maps CH0(X

′; |D|) → CH0(X
′; rD) → F dK0(X

′; rD) are isomor-
phisms for r ≫ 1.
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