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Abstract. Assume that R is a regular local ring that contains an
infinite field and whose field of fractions K has charactertistic 6= 2.
Let X be an exceptional projective homogeneous scheme over R. We
prove that in most cases the condition X(K) 6= ∅ implies X(R) 6= ∅.
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1. Introduction

The main result of the present article extends the main results of [Pa3] and [PP]
to the case of exceptional groups. In the latter paper one can find historical
remarks which might help the general reader. All the rings in the present paper
are commutative and Noetherian. We prove the following theorem.

Theorem 1. Let R be a regular local ring that contains an infinite field and
whose field of fractions K has characteristic 6= 2. Let G be a split simple group
of exceptional type (that is, E6, E7, E8, F4, or G2), P be a parabolic subgroup
of G, [ξ] be a class from H1(R,G), and X = (G/P )ξ be the corresponding
homogeneous space over R. Assume that P 6= P7, P8, P7,8 in case G = E8,
P 6= P7 in case G = E7, and P 6= P1 in case G = Ead7 . Then the condition
X(K) 6= ∅ implies X(R) 6= ∅.

The results of the present paper depend on the following yet unpublished re-
sults: [FP, Corollary of Theorem 1] and [Pa, Theorem 10.0.30].

1The research is supported by Russian Science Foundation grant 14-11-00456
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2. Purity of some H1 functors

Let R be a commutative noetherian domain of finite Krull dimension with a
fraction field F . We say that a functor F from the category of commutative
R-algebras to the category of sets satisfies purity for R if we have

Im [F(R) → F(F )] =
⋂

ht p=1

Im [F(Rp) → F(F )].

An element a ∈ F(F ) is called R-unramified if it belongs to⋂
ht p=1 Im [F(Rp) → F(F )]. If p is a height one prime ideal in R, the

element a is called p-unramified, if it belongs to Im [F(Rp) → F(F )].

If H is an étale group sheaf we write Hi(−,H) for Hiét(−,H) below through the
text.
The following theorem is proven in the characteristic zero case [Pa2, Theo-
rem 4.0.3]. We extend it here to reductive group schemes. Let R be a commu-
tative noetherian ring. Recall that an R-group scheme G is called reductive, if
it is affine and smooth as an R-scheme and if, moreover, for each algebraically
closed field Ω and for each ring homomorphism R→ Ω the scalar extension GΩ

is a connected reductive algebraic group over Ω. This definition of a reductive
R-group scheme coincides with [SGA, Exp. XIX, Definition 2.7].

Theorem 2. Let R be the local ring of a closed point on a smooth scheme
over an infinite field. Let G be a reductive R-group scheme. Let i : Z →֒ G
be a closed subgroup scheme of the center Cent(G). It is known that Z is of
multiplicative type. Let G′ = G/Z be the factor group, π : G → G′ be the
projection.
If the functor H1(−, G′) satisfies purity for R, then the functor H1(−, G) sat-
isfies purity for R as well.

It is known that π is surjective and strictly flat. Thus the exact sequence of
R-group schemes

(*) {1} → Z
i
−→ G

π
−→ G′ → {1}

induces an exact sequence of group sheaves in the fppf-topology.

Lemma 1. Consider the category of R-algebras. The functor

R′ 7→ F(R′) = H1
fppf(R

′, Z)/ Im (δR′),

where δ is the connecting homomorphism associated to sequence (*), satisfies
purity for R.

Proof. The lemma coincides with [Pa, Theorem 10.0.30]. �

Lemma 2. The map

H2
fppf(R,Z) → H2

fppf(K,Z)

is injective.

Proof. See [C-TS, Theorem 4.3]. �
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Proof of Theorem 2. Reproduce the diagram chase from the proof of [Pa2, The-
orem 4.0.3]. For this purpose consider the commutative diagram

{1} // F(K)
δK

// H1(K,G)
πK

// H1(K,G′)
∆K

// H2
fppf(K,Z)

{1} // F(R)
δ

//

OO

H1(R,G)
π

//

OO

H1(R,G′)

OO

∆
// H2

fppf(R,Z)

α

OO

Let [ξ] ∈ H1(K,G) be an R-unramified class and let [ξ̄] = πK([ξ]). Clearly,
[ξ̄] ∈ H1(K,G′) is R-unramified. Thus there exists an element [ξ̄′] ∈ H1(R,G′)
such that [ξ̄′]K = [ξ̄]. The map α is injective by Lemma 2. One has ∆([ξ̄′]) = 0,
since ∆K([ξ̄]) = 0. Thus there exists [ξ′] ∈ H1(R,G) such that π([ξ′]) = [ξ̄′].
Twisting G by ξ′ we may assume that [ξ̄] = ∗, so that [ξ] comes from some
a ∈ F(K).

Lemma 3. The above constructed element a ∈ F(K) is R-unramified.

Assume Lemma 3; we use it to complete the proof of Theorem 2. By Lemma 1
the functor F satisfies the purity for regular local rings containing the field
k. Thus there exists an element a′ ∈ F(R) with a′K = a. It is clear that
[δ(a′)]K = [ξ]. It remains to prove Lemma 3. First we need a small variation
of Nisnevich’s theorem.

Lemma 4. Let H be a reductive group scheme over a discrete valuation ring
A. Let K be the fraction field of A. Then the map

H1(A,H) → H1(K,H)

is injective.

Proof. Let [ξ0], [ξ1] be classes from H1(A,H). Let H0 be a principal homo-
geneous H-bundle representing the class ξ0. Let H0 be the inner form of the
group scheme H, corresponding to H0. Let X = Spec(A). For each X-scheme
S there is a well-known bijection φS : H1(S,H) → H1(S,H0) of non-pointed
sets. That bijection takes the principal homogeneous H-bundle H0×X S to the
trivial principal homogeneous H0-bundle H0×X S. That bijection is functorial
with respect to morphisms of X-schemes.
Assume that [ξ0]K = [ξ1]K . Then one has ∗ = φK([ξ0]K) = φK([ξ1]K) ∈
H1(K,H0). The kernel of the map H1(A,H0) → H1(K,H0) is trivial by Nis-
nevich’s theorem [Ni]. Thus φA([ξ]1) = ∗ = φA([ξ]0) ∈ H1(A,H0). Whence
[ξ]1 = [ξ]0 ∈ H1(A,H). �

Now we go back to the proof of Lemma 3. Consider a height 1 prime ideal
p in R. Since [ξ] is R-unramified there exists its lift up to an element [ξ̃] in
H1(Rp, G).
The map

H1(Rp, G
′) → H1(K,G′)
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is injective by Lemma 4. But

(πp([ξ̃]))K = πK([ξ]) = ∗,

so πp[ξ̃] = ∗. Therefore there exists a unique class ap ∈ F(Rp) such that

δ(ap) = [ξ̃] ∈ H1(Rp, G). So, δK(ap,K) = [ξ] ∈ H1(K,G) and finally a = ap,K .
Lemma 3 is proven and Theorem 2 is proven as well. �

3. Purity of some H1 functors, continued

Theorem 3. Let R be such as in Theorem 1. The functor H1(−,PGLn) sat-
isfies purity for R.

Proof. Let [ξ] ∈ H1(K,PGLn) be an R-unramified element. Let
δ : H1(−,PGLn) → H2(−,Gm) be the boundary map corresponding to
the short exact sequence of étale group sheaves

1 → Gm → GLn → PGLn → 1.

Let Dξ be a central simple K-algebra of degree n corresponding ξ. If Dξ
∼=

Ml(D
′) for a skew-field D′, then there exists [ξ′] ∈ H1(K,PGLn′) such that

D′ = Dξ′ . Then δ([ξ
′]) = [D′] = [D] = δ(ξ). Replacing ξ by ξ′, we may assume

that D := Dξ is a central skew-field over K of degree n and the class [D] is

R-unramified. Since the functor H2(−,Gm) satisfies purity for R, there exists
an Azumaya R-algebra A and an integer d such that AK =Md(D).
There exists a projective leftA-module P of finite rank such that each projective
left A-module Q of finite rank is isomorphic to the left A-module Pm for an
appropriative integer m (see [DeM, Cor.2]). In particular, two projective left
A-modules of finite rank are isomorphic if they have the same rank as R-
modules. One has an isomorphism A ∼= P s of left A-modules for an integer
s. Thus one has R-algebra isomorphisms A ∼= EndA(P

s) ∼= Ms(EndA(P )).
Set B = EndA(P ). Observe, that BK = EndAK

(PK), since P is a finitely
generated projective left A-module.
The class [PK ] is a free generator of the group K0(AK) = K0(Md(D)) ∼= Z,
since [P ] is a free generator of the group K0(A) and K0(A) = K0(AK). The
PK is a simple AK -module, since [PK ] is a free generator of K0(AK). Thus
EndAK

(PK) = BK is a skew-field.
We claim that the K-algebras BK and D are isomorphic. In fact, AK =
Mr(BK) for an integer r, since PK is a simple AK-module. From the other
side AK = Md(D). As D, so BK are skew-fields. Thus r = d and D is
isomorphic to BK as K-algebras.
We claim further that B is an Azumaya R-algebra. That claim is local with
respect to the étale topology on Spec(R). Thus it suffices to check the claim
assuming that Spec(R) is strictly henselian local ring. In that case A =Ml(R)
and P = (Rl)m as an Ml(R)-module. Thus B = EndA(P ) = Mm(R), which
proves the claim.
Since BK is isomorphic to D, one has m = n. So, B is an Azumaya R-algebra,
and the K-algebra BK is isomorphic to D. Let [ζ] ∈ H1(R,PGLn) be class
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corresponding to B. Then [ζ]K = [ξ], since δ([ζ])K = [BK ] = [D] = δ([ξ]) ∈
H2(K,Gm). �

We denote by Simn the group of similitudes of a split quadratic form of rank
n and by Sim+

n its connected component. Recall that H1(−, Simn) classifies
similarity classes of nondegenerate quadratic forms of rank n (see [KMRT,
(29.15)]).

Theorem 4. Let R be such as in Theorem 1. The functor H1(−, Simn) satisfies
purity for R.

Proof. Let [ξ] ∈ H1(K, Simn) be an R-unramified element. Let ϕ be a quadratic
form over K whose similarity class represents [ξ]. Diagonalizing ϕ we may
assume that ϕ =

∑n
i=1 fi · t

2
i for certain non-zero elements f1, f2, . . . , fn ∈ K.

For each i write fi in the form fi =
gi
hi

with gi, hi ∈ R and hi 6= 0.
There are only finitely many height one prime ideals q in R such that there
exists 0 ≤ i ≤ n with fi not in Rq. Let q1, q2, . . . , qs be all height one prime
ideals in R with that property and let qi 6= qj for i 6= j.
For all other height one prime ideals p in R each fi belongs to the group of
units R×

p of the ring Rp.
If p is a height one prime ideal of R which is not from the list q1, q2, . . . , qs,
then ϕ =

∑n
i=1 fi · t

2
i may be regarded as a quadratic space over Rp. We will

write pϕ for that quadratic space over Rp. Clearly, one has (pϕ)⊗Rp
K = ϕ as

quadratic spaces over K.
For each j ∈ {1, 2, . . . , s} choose and fix a quadratic space jϕ over Rqj

and
a non-zero element λj ∈ K such that the quadratic spaces (jϕ) ⊗Rqj

K and

λj · ϕ are isomorphic over K. The ring R is factorial since it is regular and
local. Thus for each j ∈ {1, 2, . . . , s} we may choose an element πj ∈ R such
that firstly πj generates the only maximal ideal in Rqj

and secondly πj is an
invertible element in Rn for each height one prime ideal n different from the
ideal qj .
Let vj : K

× → Z be the discrete valuation of K corresponding to the prime

ideal qj . Set λ =
∏s
i=1 π

vj(λj)
j and

ϕnew = λ · ϕ.

Claim. The quadratic space ϕnew is R-unramified. In fact, if a height one prime
ideal p is different from each of qj ’s, then vp(λ) = 0. Thus, λ ∈ R×

p . In that
case λ · (pϕ) is a quadratic space over Rp and moreover one have isomorphisms
of quadratic spaces (λ · (pϕ)) ⊗Rp

K = λ · ϕ = ϕnew. If we take one of qj ’s,

then λ
λj

∈ R×

qj
. Thus, λ

λj
· (jϕ) is a quadratic space over Rqj

. Moreover, one

has
λ

λj
· (jϕ)⊗Rq

K =
λ

λj
· λj · ϕ = ϕnew.

The Claim is proven.
By [PP, Corollary 3.1] there exists a quadratic space ϕ̃ over R such that the
quadratic spaces ϕ̃⊗RK and ϕnew are isomorphic over K. This shows that the
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similarity classes of the quadratic spaces ϕ̃⊗RK and ϕ coincide. The theorem
is proven. �

Theorem 5. Let R be such as in Theorem 1. The functor H1(−, Sim+
n ) satisfies

purity for R.

Proof. Consider an element [ξ] ∈ H1(K, Sim+
n ) such that for any p of height

1 [ξ] comes from [ξp] ∈ H1(Rp, Sim
+
n ). Then the image of [ξ] in H1(K, Simn)

by Theorem 4 comes from some [ζ] ∈ H1(R, Simn). We have a short exact
sequence

1 → Sim+
n → Simn → µ2 → 1,

and R×/(R×)2 injects into K×/(K×)2. Thus the element [ζ] comes actually
from some [ζ ′] ∈ H1(R, Sim+

n ). It remains to show that the map

H1(K, Sim+
n ) → H1(K, Simn)

is injective, or, by twisting, that the map

H1(K, Sim+(q)) → H1(K, Sim(q))

has trivial kernel. The latter follows from the fact that the map

Sim(q)(K) → µ2(K)

is surjective (indeed, any reflection goes to −1 ∈ µ2(K)). �

4. Proof Theorem 1

Till the end of the proof of Lemma 9 we suppose that R is the local ring of a
closed point on a smooth scheme over an infinite field. Let [ξ] be a class from
H1(R,G), and X = (G/P )ξ be the corresponding homogeneous space. Denote
by L a Levi subgroup of P .

Lemma 5. Consider a parabolic subgroup P1 in PGO+
n , which is the stabilizer

of an isotropic line. A Levi subgroup of P1 is isomorphic to Sim+
n−2.

Proof. Is is clear from the matrix representation that a Levi subgroup of a
parabolic subgroup P1 in O+

n is isomorphic to O+
n−2 ×Gm. Now the homomor-

phism
O+
n−2 ×Gm → Sim+

n−2

induced by the natural inclusions is surjective in the sense of groups schemes,
and its kernel is µ2. The claim follows. �

Recall that a subset Ψ of a root system Φ is called closed if for any α, β ∈ Ψ
such that α+ β ∈ Φ we have α+ β ∈ Ψ.

Lemma 6. Let L modulo its center be isomorphic to PGO+
2m (resp., PGO+

2m+1

or PGO+
2m×PGL2). Denote by Φ the root system of G with respect to T ,

and by Ψ the root system of L with respect to T , where T is a maximal split
torus in L. Assume that there is a root λ ∈ Φ such that the smallest closed
set of roots Ψ′ containing Ψ and ±λ is a root subsystem of type Dm+1 (resp.
Bm+1 or Dm+1 + A1), and Ψ is the standard subsystem of type Dm (resp.
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Bm or Dm + A1) therein. Then there is a surjective map L → Sim+
2m (resp.,

L→ Sim+
2m+1 or L→ Sim+

2m×PGL2) whose kernel is a central closed subgroup

scheme in L. In particular, the functor H1(−, L) satisfies purity for R.

Proof. Consider the subgroup HΨ′ of G corresponding to Ψ′ in the sense of
[SGA, Exp. XXII, Definition 5.4.2]. Then HΨ′ is split reductive of type Dm+1

(resp. Bm+1 or Dm+1 + A1) by [SGA, Exp. XXII, Proposition 5.10.1], so it
maps onto the split adjoint group of the same type. Under this map L maps
onto a Levi subgroup of a parabolic subgroup P1, which is isomorphic to Sim+

2m

(resp. Sim+
2m+1 or Sim+

2m×PGL2) by Lemma 5. The purity claim follows from
Theorem 5, Theorem 3 and Theorem 2. �

Lemma 7. For any semi-local R-algebra S the map

H1(S,L) → H1(S,G)

is injective. Moreover, X(S) 6= ∅ if and only if [ξ]S comes from H1(S,L).

Proof. See [SGA, Exp. XXVI, Cor. 5.10]. �

Lemma 8. Assume that the functor H1(−, L) satisfies purity for R. Then
X(K) 6= ∅ implies X(R) 6= ∅.

Proof. By Lemma 7 [ξ]K comes from some [ζ] ∈ H1(K,L), which is uniquely
determined. Since X is smooth projective, for any prime ideal p of height 1 we
have X(Rp) 6= ∅. By Lemma 7 ξRp

comes from some [ζp] ∈ H1(Rp, L). Now

[ζp]K = [ζ], and so by the purity assumption there is [ζ ′] ∈ H1(R,L) such that
[ζ ′]K = [ζ].
Set [ξ′] to be the image of ζ ′ in H1(R,G). We claim that [ξ′] = [ξ]. Indeed, by
the construction [ξ′]K = [ξ]K . It remains to recall that the map H1(R,G) →
H1(K,GK) is injective by [FP, Corollary of Theorem 1]. �

Lemma 9. Let Q ≤ P be another parabolic subgroup, Y = (G/Q)ξ. Assume
that X(K) 6= ∅ implies Y (K) 6= ∅, and Y (K) 6= ∅ implies Y (R) 6= ∅. Then
X(K) 6= ∅ implies X(R) 6= ∅.

Proof. Indeed, there is a map Y → X, so Y (R) 6= ∅ implies X(R) 6= ∅. �

Proof of Theorem 1. We first suppose that R is the local ring of a closed point
on a smooth scheme over an infinite field. By Lemma 9 we may assume that
PK is a minimal parabolic subgroup of (Gξ)K . All possible types of such PK
are listed in [T, Table II]: the Dynkin diagram with circled vertices erased
corresponds to the type of L. We show case by case that H1(−, L) satisfies
purity for R, hence we are in the situation of Lemma 8.
If P = B is the Borel subgroup, obviously H1(S,L) = {∗} for any semi-local
R-algebra S. In the case of index E9

7,4 (resp. 1E16
6,2) L modulo its center

is isomorphic to PGL2 ×PGL2 ×PGL2 (resp. PGL3 ×PGL3), and we may
apply Theorem 2 and Theorem 3. In the all other cases we provide an element
λ ∈ X∗(T ) such that the assumption of Lemma 6 holds (α̃ stands for the
maximal root, enumeration follows [B]). The indices E78

7,1, E
133
8,1 and E78

8,2 are

Documenta Mathematica · Extra Volume Merkurjev (2015) 491–500



498 I. Panin, V. Petrov

not in the list below since in those cases the L does not belong to one of the
type Dm, Bm, Dm × A1. The index E66

7,1 is not in the list below since in that

case we need a weight λ which is not in the root lattice. So, the indices E78
7,1,

E133
8,1 , E

78
8,2 and E66

7,1 are the exceptions in the statement of the Theorem.

Index 1E28
6,2 E48

7,1 E31
7,2 E28

7,3 E91
8,1 E66

8,2 E28
8,4 F 21

4,1

λ α1 −α̃ α1 α1 −α̃ α8 α1 −α̃

It remains to settle the case P = P1 for G = Esc7 . Denote by Ẽ7 a Levi
subgroup of a parabolic subgroup P8 in E8. Comparing the exact sequences

H1(R,Esc7 ) → H1(R,Ead7 ) → H2(R,µ2)

and

H1(R, Ẽsc7 ) → H1(R,Ead7 ) → H2(R,Gm)

and one sees that the image of [ξ] in H1(R,Ead7 ) comes from some [ζ] ∈
H1(R, Ẽ7). Let P̃1 denote the corresponding parabolic subgroup in Ẽ7; then

we have (Esc7 /P1)ξ ≃ (Ẽ7/P̃1)ζ .

We claim that H1(−, L̃) satisfies purity for R, where L̃ is a Levi subgroup of

P̃1. Indeed, consider a Levi subgroup G′ of a parabolic subgroup P1 inside E8;
then G′ has type D7 and L̃ is a Levi subgroup of a parabolic subgroup P1 in
G′. The rest of the proof goes exactly the same way as in Lemma 6.
Now suppose that R is a regular local ring containing an infinite field k. We
first prove a general lemma. Let k′ be an infinite field, X be a k′-smooth
irreducible affine variety, Denote by k′[X] the ring of regular functions on X
and by k′(X) the field of rational functions on X. Let p be prime ideal in k′[X],
and let Op be the corresponding local ring.

Lemma 10. Theorem 1 holds for the local ring Op.

Proof. Choose a maximal ideal m ⊂ k′[X] containing p. One has inclusions of
k′-algebras Om ⊂ Op ⊂ k′(X). We already proved Theorem 1 for the ring Om.
Thus Theorem 1 holds for the ring Op. �

The rest of the proof of Theorem 1 follows the arguments from [FP, page 5],
which we reproduce here. Namely, let m be the maximal ideal of R. Let k′ be
the algebraic closure of the prime field of R in k. Note that k′ is perfect. It
follows from Popescu’s theorem ([P, Sw]) that R is a filtered inductive limit
of smooth k′-algebras Rα. Modifying the inductive system Rα if necessary,
we can assume that each Rα is integral. There are an index α, a 1-cocycle
ξα ∈ Z1(Rα, G), and an element fα ∈ Rα such that ξ = ϕα(ξα), f is the
image of fα under the homomorphism φα : Rα → R, the homogeneous space
Xα := (G/H)ξα over Rα has a section over (Rα)fα .
If the field k′ is infinite, then set p = φ−1

α (m). The homomorphism φα induces a
homomorphism of local rings (Rα)p → R. By Lemma 10 one has Xα(Rα) 6= ∅,
whence X(R) 6= ∅.
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If the field k′ is finite, then k contains an element t transcendental over k′.
Thus R contains the subfield k′(t) of rational functions in the variable t. So, if

R′

α := Rα⊗k′k
′(t), then φα can be decomposed as follows Rα

iα−→ Rα⊗k′k
′(t) =

R′

α

ψα
−−→ R. Let ξ′ = iα(ξα), f

′

α = fα ⊗ 1 ∈ R′

α, then the homogeneous space
X ′

α := (G/H)ξ′α over R′

α has a section over (R′

α)f ′

α
.

Let q = ψ−1
α (m). The ring R′

α is a k′(t)-smooth algebra over the infinite field
k′(t), and the homogeneous space X ′

α := (G/H)ξ′α over R′

α has a section over
(R′

α)f ′

α
. By Lemma 10 one has X ′

α((R
′

α)q) 6= ∅. The homomorphism ψα can
be factored as R′

α → (R′

α)q → R. Thus X(R) 6= ∅. �

The authors heartily thank Anastasia Stavrova for discussion on the earlier
version of this work.
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