
Documenta Math. 513

Around the Abhyankar–Sathaye Conjecture

To A. Merkurjev on his 60th birthday

Vladimir L. Popov1

Received: November 22, 2014

Revised: May 12, 2015
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1 Introduction

Throughout this paper k stands for an algebraically closed field of characteristic
zero which serves as domain of definition for each of the algebraic varieties
considered below.
Recall that an element c of the polynomial ring k[x1, . . . , xn] in variables
x1, . . . , xn with coefficients in k is called a coordinate if there are the elements
t1, . . . , tn−1 ∈ k[x1, . . . , xn] such that

k[c, t1, . . . , tn−1] = k[x1, . . . , xn] (1)

(see, e.g., [vdEs 00]). Every coordinate is irreducible and, if x1, . . . , xn are the
standard coordinate functions on the affine space A

n, then the zero locus {c =
0} of c in A

n is isomorphic to A
n−1. The converse is claimed by the classical

1Supported by grants RFFI 14-01-00160 and NX–2998.2014.1.
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Abhyankar–Sathaye Conjecture. If f ∈ k[x1, . . . , xn] is an irreducible

element whose zero locus in A
n is isomorphic to A

n−1, then f is a coordinate.

This conjecture is equivalent to the claim that every closed embedding
ι : An−1 →֒ A

n is rectifiable, i.e., there is an automorphism σ ∈ AutAn

such that σ ◦ ι : An−1 →֒ A
n is the standard embedding (a1, . . . , an−1) 7→

(a1, . . . , an−1, 0) (see [vdEs 00, Lemma 5.3.13]).
For n = 2 the Abhyankar–Sathaye conjecture is true (the Abhyankar–Moh–
Suzuki theorem). For n > 3 it is still open, though there is a belief that in
general it is false [vdEs 00, p. 103].
Exploration of this conjecture leads to the problem of constructing closed hyper-
surfaces in A

n isomorphic to A
n−1, and irreducible polynomials in k[x1, . . . , xn]

whose zero loci in A
n are such hypersurfaces. The following two facts lead, in

turn, to the idea of linking this problem with unipotent group actions:

(i) Every homogeneous space U/H, where U is a unipotent algebraic group
and H its closed subgroup, is isomorphic to A

dimU/H (see, e.g., [Gr 58,
Prop. 2(ii)]).

(ii) All orbits of every morphic unipotent algebraic group action on a quasi-
affine variety X are closed in X (see [Ro 612, Thm. 2]).

In view of (i) and (ii), every orbit of a morphic unipotent algebraic group action
onA

n is the image of a closed embedding of someAd inA
n. In particular, orbits

of dimension n− 1 are the hypersurfaces of the sought-for type. Such actions,
with a view of getting an approach to the Abhyankar–Sathaye conjecture, have
been the object of study during the last decade, see [Ma 03], [EK05], [DEM08],
[DEFM11]. In particular, for commutative unipotent algebraic group actions,
the following conjecture (whose formulation uses the equivalent language of
locally nilpotent derivations, see [Fr 06]) has been put forward:

Commuting Derivations Conjecture ([Ma 03]). Let D be a set of n − 1
commuting locally nilpotent k-derivations of k[x1, . . . , xn] linearly independent

over k[x1, . . . , xn]. Then

{f ∈ k[x1, . . . , xn] | ∂(f) = 0 for every derivation ∂ ∈ D} = k[c], (2)

where c is a coordinate in k[x1, . . . , xn].

This conjecture is open for n > 3, proved in [Ma 03] for n = 3, and follows from
Rentschler’s theorem [Re 68] for n = 2. In [EK05, Cor. 4.1] it is shown that it
is equivalent to a weak version of the Abhyankar–Sathaye conjecture.
On the other hand, in [EK05] the question is raised as to which extent
k[x1, . . . , xn] is characterized by (2). Namely, let A be a commutative asso-
ciative unital k-algebra of transcendence degree n>0 over k such that

(a) A is a unique factorization domain;

(b) there is a set D of n− 1 commuting linearly independent over A locally
nilpotent k-derivations of A.
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Around the Abhyankar–Sathaye Conjecture 515

Consider the invariant algebra of D, i.e., the k-algebra

AD := {a ∈ A | ∂(a) = 0 for every ∂ ∈ D}.

Question 1 ([EK05, p. 449]). Does the equality

AD = k[c] for some element c ∈ A (3)

imply the existence of elements s1, . . . , sn−1 ∈ A and c1, . . . , cn−1 ∈ k[c] such
that A is the polynomial k-algebra k[c, s1, . . . , sn−1] and D = {ci∂si}

n−1
i=1 ?

Note that Equality (3) implies the transcendence of the element c over k, see,
e.g., [Fr 06, p. 27, Principle 11(e)].
Question 1 is inspired by one of the main results of [EK05], Theorem 3.1, claim-
ing that for n = 2 the answer is affirmative. By [Mi 95, Thm. 2.6], Equality
(3) holds and the answer to Question 1 is affirmative if Properties (a) and (b)
hold, A is finitely generated over k, the multiplicative group A⋆ of invertible
elements of A coincides with k⋆, and n = 2.
The present paper contributes to the Commuting Derivation Conjecture and
Question 1. In Section 2 a “rational” version of a strengthened form of the
Commuting Derivation Conjecture is proved, in which the assumption of com-
mutativity is dropped (see Theorem 2). Here “rational” means that the notion
of “coordinate” is replaced by that of “rational coordinate” (see Definition 1
below). Geometrically, the latter means the existence of a birational (rather
than biregular) automorphism of the ambient affine space that rectifies the
corresponding hypersurface into the standard coordinate hyperplane. In Sec-
tion 3, for every n > 4, a systematic method of constructing the pairs (A, D) is
given, for which the answer to Question 1 is negative. Section 4 contains some
remarks.

Notation, conventions, and some generalities

Below, as in [Bor 91], [Sp 98], “variety” means “algebraic variety” in the sense of
Serre. The standard notation and conventions of [Bor 91], [Sp 98], and [PV 94]
are used freely. In particular, the algebra of functions regular on a variety X is
denoted by k[X] (not by O(X) as in [DEFM11], [DEM08]).
Given an algebraic variety Z, below we denote the Zariski tangent space of Z
at a point z ∈ Z by TZ,z.
Let G be an algebraic group and let X be a variety. Given an action

α : G×X → X (4)

of G on X and the elements g ∈ G, x ∈ X, we denote α(g, x) ∈ X by g · x.
The G-orbit and the G-stabilizer of x are denoted resp. by G · x and Gx. If (4)
is a morphism, then α is called a regular (or morphic) action. A regular action
α is called generically free if there is a dense open subset U of X such that the
G-stabilizer of every point of U is trivial.
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516 Vladimir L. Popov

Assume that X is irreducible. The map

BirX → Autk k(X), ϕ 7→ (ϕ∗)−1, (5)

is a group isomorphism. We identify BirX and Autk k(X) by means of (5) when
we consider actions of the subgroups of BirX by k-automorphisms of k(X) and,
conversely, actions of the subgroups of Autkk(X) by birational automorphisms
of X.

Let θ : G → BirX be an abstract group homomorphism. It determines an action
of G on X by birational isomorphisms. If the partially defined map G×X → X,
(g, x) 7→ θ(g)(x) coincides on a dense open subset of G × X with a rational
map ̺ : G×X 99K X, then ̺ is called a rational action of G on X.

By [Ro 56, Thm. 1], for every rational action ̺ there are a regular action of G
on an irreducible variety Y , the open subsets X0 and Y0 of resp. X and Y (the
subset Y0 is not necessarily G-stable), and an isomorphism Y0 → X0 such that
the induced field isomorphism k(X) = k(X0) → k(Y0) = k(Y ) is G-equivariant.

If ̺ is a rational action of G on X, then by

πG,X : X 99K X --
-G

we denote a rational quotient of ̺, i.e., X --
-G and πG,X are resp. a variety and

a dominant rational map such that π∗
G,X(k(X --

-G)) = k(X)G (see [PV 94, Sect.

2.4]). Depending on the situation we choose X --
-G as a suitable variety within

the class of birationally isomorphic ones. A rational section for ̺ is a rational
map σ : X --

-G 99K X such that πG,X ◦ σ = id.

Acknowledgements: I am indebted to the referee for a thorough reading and
comments.

2 Rational coordinates

Since char k = 0, equality (1) is equivalent to the property that the sequence
c, t1, . . . , tn−1 is a coordinate system on A

n, i.e., that it separates points of
A

n. Thus to be a coordinate means to be an element of a coordinate system on
A

n. Considering separation of only points in general position in A
n, we arrive

to the following counterparts of these notions:

Definition 1. A sequence of rational functions f1, . . . , fn ∈ k(x1, . . . , xn)
is called a rational coordinate system on A

n if it separates points in general
position in A

n or, equivalently,

k(f1, . . . , fn) = k(x1, . . . , xn).

If a rational function f ∈ k(x1, . . . , xn) is an element of a rational coordinate
system on A

n, then f is called a rational coordinate.
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Around the Abhyankar–Sathaye Conjecture 517

Theorem 1. Let ̺ : S ×X 99K X be a rational action of a connected solvable

affine algebraic group S on an irreducible algebraic variety X. Let

πS,X : X 99K X --
-S (6)

be a rational quotient of this action. Then there are an integer m > 0 and a

birational isomorphism ϕ : X --
-S×A

m 99K X such that the following diagram is

commutative

X --
-S ×A

m ϕ
//❴❴❴❴❴❴❴❴

pr1
$$■

■■
■■

■■
■■

■
X

πS,X��⑦
⑦
⑦
⑦

X --
-S

.

Proof. Replacing X by a birationally isomorphic variety, we may (and shall)
assume that the action ̺ is regular. Put

mS,X := max
x∈X

dimS · x. (7)

First, consider the case

dimS = 1. (8)

In this case mS,X 6 1. If mS,X = 0, the action ̺ is trivial, hence X --
-S = X,

πS,X = id, and the claim is clear. Now let mS,X = 1. This means that S-
stabilizers of points of a dense open subset are finite. In this case, we may
assume that

the action ̺ is generically free. (9)

To prove this claim, recall (see, e.g., [Sp 98, Thm. 3.4.9]) that, given (8), we
have S = Ga or Gm. If S = Ga, then the claim follows from the fact that,
due to the assumption char k = 0, there are no nontrivial finite subgroups in
S. If S = Gm, then S/F is isomorphic to S for any finite subgroup F , see,
e.g., [Sp 98, 2.4.8(ii) and 6.3.6]. Therefore, taking as F the kernel of ̺, we may
assume that ̺ is faithful. As is well-known, since S is a torus, this, in turn,
implies that ̺ is generically free, see, e.g., [Po 13, Lemma 2.4]. Thus (9) holds.

Given (9), by [CTKPR11, Thm. 2.13] we may replace X by an appropriate
S-invariant open subset and assume that (6) is a torsor. Since S is a connected
solvable affine algebraic group, by [Ro 56, Thm. 10] this torsor admits a rational

section and therefore is trivial over an open subset ofX --
-S. As the group variety

of S is birationally isomorphic to A
1, this completes the proof of theorem in

the case when (8) holds.

In the general case we argue by induction on dimS. If dimS > 0, then solv-
ability of S yields the existence of a closed connected normal subgroup N in
S such that the (connected solvable affine) algebraic group G := S/N is one-

dimensional. Put Y := X --
-N . By the inductive assumption, there are an integer
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518 Vladimir L. Popov

r > 0 and a birational isomorphism λ : Y ×A
r 99K X such that the following

diagram is commutative

Y ×A
r λ //❴❴❴❴❴❴❴

pr1
##●

●●
●●

●●
●●

X

πN,X
~~⑦
⑦
⑦
⑦

Y

. (10)

Since N ⊳ S and π∗
N,X(k(Y )) = k(X)N , the action ̺ induces a rational action

of G on Y such that

Y --
-G = X --
-S, (11)

πS,X = πG,Y ◦ πN,X . (12)

Given (11) and using the proved validity of theorem for one-dimensional groups,

we obtain that there are an integer t > 0 and a birational isomorphism γ : X --
-S×

A
t 99K Y such that the following diagram is commutative

X --
-S ×A

t γ
//❴❴❴❴❴❴❴❴

pr1
$$■

■■
■■

■■
■■

Y

πG,Y��⑦
⑦
⑦
⑦

X --
-S

. (13)

¿From (12) and diagrams (10), (13) we see that one can take m = r + t and
ϕ = λ ◦ (γ × idAr ). This completes the proof. �

Remark 1. The number m in the formulation of Theorem 1 is equal to the
number mS,X given by (7).

Corollary. In the notation of Theorem 1, there are the elements f1, . . . , fm
of k(X) such that

(i) f1, . . . , fm are algebraically independent over k(X)S;

(ii) k(X) = k(X)S(f1, . . . , fm).

Theorem 2. Let a unipotent algebraic group U regularly act on A
n. If

max
a∈An

dimU · a = n− 1, (14)

then there is an irreducible polynomial c ∈ k[An] such that

(a) k[c] = k[An]U ;

(b) c is a rational coordinate.
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Around the Abhyankar–Sathaye Conjecture 519

Proof. By Rosenlicht’s theorem [Ro 56, Thm. 2] and the fiber dimension the-
orem, (14) implies that the transcendence degree of k(An)U over k is 1
(cf. [PV 94, Sect. 2.3, Cor.]). Since U is unipotent, k(An)U is the field of
fractions of k[An]U , see [Ro 612, p. 220, Lemma]. By [Za 54] these proper-
ties imply that k[An]U is a finitely generated k-algebra. Integral closedness of
k[An] yields integral closedness of k[An]U , see, e.g., [PV 94, Thm. 3.16]. Thus
A

n//U := Spec k[An]U is an irreducible smooth affine algebraic curve. The curve
A

n//U is unirational because k(An//U) = k(An)U is the subfield of the field of
rational functions k(An). By Lüroth’s theorem, from this we infer that this
curve is rational. We then conclude that An//U is obtained from P

1 by remov-
ing s > 1 points. Since k[An//U ]⋆ = k⋆, we have s = 1, i.e., A

n//U = A
1,

or, equivalently, k[An]U = k[c] for an element c ∈ k[An]. Since the group U
is unipotent, it is connected (in view of char k = 0) and admits no nontrivial
algebraic homomorphisms U → Gm. This implies (see, e.g., [PV 94, Thm. 3.1])
that every nonconstant irreducible element of k[An] dividing c lies in k[An]U ,
which, in turn, easily implies irreducibility of c.
We now claim that c is a rational coordinate. Indeed, since k(An)U is the field
of fractions of k[An]U , we have k(An)U = k(c). Hence by (14), Remark 1, and
the Corollary of Theorem 1, there are elements f1, . . . , fn−1 ∈ k(An) such that
k(An) = k(c, f1, . . . , fn−1). Whence the claim by Definition 1. �

3 Commuting derivations of unique factorization domains

First, we shall introduce the notation. Let G be a connected simply connected
semisimple algebraic group. Fix a maximal torus T of G. Let X and X∨ be,
respectively, the character lattice and the cocharacter lattice of T in additive
notation, and let 〈 , 〉 : X × X∨ → Z be the natural pairing. The value of an
element ϕ ∈ X at a point t ∈ T denote by tϕ. Let Φ and Φ+ ⊂ X respectively
be the root system of G with respect to T and the system of positive roots
of Φ determined by a fixed Borel subgroup B of G containing T . Given a root
α ∈ Φ, denote by α∨ : Gm → T and Uα respectively the coroot and the one-
dimensional unipotent root subgroup of G corresponding to α.
Let ∆ = {α1, . . . , αr} be the system of simple roots of Φ+ indexed as in
[Bou 68]. If I is a subset of ∆, let ΦI be the set of elements of Φ that are linear
combinations of the roots in I. Denote by LI be the subgroup of G generated
by T and all the Uα’s with α ∈ ΦI . Let UI (respectively, U−

I ) be the subgroup
of G generated by all the Uα’s with α ∈ Φ+ \ΦI (respectively, −α ∈ Φ+ \ΦI ).
Then PI := LIUI and P−

I := LIU
−
I are parabolic subgroups of G opposite to

one another, UI and U−
I are the unipotent radicals of PI and P−

I respectively,
LI is a Levi subgroup of PI and P−

I , and

dimUI = dimU−
I = |Φ+ \ ΦI |, (15)

dimG = dimLI + 2dimU−
I . (16)

Every closed subgroup of G containing B is of the form PI for some I. Every
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parabolic subgroup of G is conjugate to a unique PI , called standard (with
respect to T and B); see, e.g., [Sp 98, 8.4.3].
Let D ⊂ X be the monoid of highest weights (with respect to T and B) of
simple G-modules. Given a weight ̟ ∈ D, let E(̟) be a simple G-module
with ̟ as the highest weight.
Denote by ̟1, . . . , ̟r the system of all indecomposable elements (i.e., funda-
mental weights) of D indexed in such a way that

〈̟i, α
∨
j 〉 = δij . (17)

This system freely generates D, i.e., for every weight ̟ ∈ D there are uniquely
defined nonnegative integers m1, . . . ,mr such that ̟ = m1̟1+ · · ·+mr̟r. By
virtue of (17),

〈̟,α∨
i 〉 = mi. (18)

The integers (18) are called the numerical labels of ̟. The “labeled” Dynkin
diagram of α1, . . . , αr, in which mi is the label of the node αi for every i, is
called the Dynkin diagram of ̟.
Given a nonzero ̟ ∈ D, denote by P(E(̟)) the projective space of all one-
dimensional linear subspaces of E(̟). The natural projection

π : E(̟) \ {0} → P(E(̟))

is G-equivariant with respect to the natural action of G on P(E(̟)). The fixed
point set of B in P(E(̟)) is a single point p(̟) and the G-orbit O(̟) of p(̟)
is the unique closed G-orbit in P(E(̟)).
Consider in E(̟) the affine cone X(̟) over O(̟), i.e.,

X(̟) = {0} ⊔ π−1(O(̟)). (19)

It is a G-stable irreducible closed subset of E(̟). Let A(̟) be the coordinate
algebra of X(̟):

A(̟) = k[X(̟)],

and let n be the transcendence degree of A(̟) over k, i.e.,

n = dimX(̟). (20)

Since every Uα is a one-dimensional unipotent group, its natural action on
X(̟) determines, as is well-known, an algebraic vector field Fα on X(̟),
which, in turn, determines a locally nilpotent derivation ∂α of A(̟); see, e.g.,
[Fr 06, 1.5]. Actually, ∂α is induced by a locally nilpotent derivation of k[E(̟)].
Namely, as above, the natural action of Uα on E(̟) determines a locally nilpo-
tent derivation Dα of k[E(̟)]. Since the ideal I(̟) of X(̟) in k[E(̟)] is Dα-
stable, Dα induces a locally nilpotent derivation of A(̟) = k[E(̟)]/I(̟); the
latter is ∂α.
In the following theorem we have collected some facts we need. Some of them
are probably folklore, but, for lack of references, we gave short elementary
proofs in all cases.
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Around the Abhyankar–Sathaye Conjecture 521

Theorem 3. For every nonzero weight ̟ ∈ D, the following hold:

(i) The stabilizer Gp(̟) of p(̟) in G is PI(̟), where

I(̟) = {α ∈ ∆ | 〈̟,α∨〉 = 0}. (21)

(ii) dimU−
I(̟) = |Φ+ \ ΦI(̟)| = n− 1.

(iii) The stabilizer of a point in general position for the natural action of

U−
I(̟) on X(̟) is trivial.

(iv) The set {∂−α | α ∈ Φ+ \ΦI(̟)} of n− 1 locally nilpotent derivations of

the algebra A(̟) is linearly independent over A(̟).

(v) The following properties are equivalent:

(C) {∂−α | α ∈ Φ+ \ΦI(̟)} is a set of commuting derivations. Equiva-

lently, the unipotent group U−
I(̟) is commutative.

(D) In the Dynkin diagram of ̟, every connected component S has at

most one node with a nonzero label, and if such a node v exists,

then S is not of type E8, F4, or G2, and v is a black node of S
colored as in the following table:

type of S colored S

Al • • · · · • •
Bl • ◦ · · · ◦ +3◦
Cl ◦ ◦ · · · ◦ks •

Dl

•
• ◦ · · · ◦

✉✉✉✉
■■

■■

•
E6

• ◦ ◦ ◦ •

◦
E7

◦ ◦ ◦ ◦ ◦ •

◦

(vi) A(̟)⋆ = k⋆.

(vii) A(̟) is a unique factorization domain if and only if ̟ is a fundamental

weight.

(viii) The following properties are equivalent:

(s1) X(̟) is singular;

(s2) dimE(̟)>n;

(s3) X(̟) 6= E(̟).

The singular locus of every singular X(̟) is the vertex 0.
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Proof. (i): By the definition of p(̟), the group B is contained in Gp(̟). Hence

Gp(̟) = PI for some I. (22)

In order to prove (i), fix a point v ∈ π−1(p(̟)) and denote by Gv its stabilizer
in G and by ℓ the line π−1(p(̟))∪{0} in E(̟). We first show that the following
properties of a root α ∈ ∆ are equivalent:

(a) α ∈ I;

(b) 〈̟,α∨〉 = 0;

(c) the image of α∨ is contained in Gv.

The definitions of p(̟) and v imply that

t · v = t̟v for every element t ∈ T , (23)

and the definition of 〈 , 〉 entails the equality

(α∨(s))̟ = s〈̟,α∨〉 for every element s ∈ Gm. (24)

Combining (23) and (24), we obtain the equivalence (b)⇔(c).
(a)⇒(c): By (22), the line ℓ is stable with respect to Uα. Being unipotent,
the group Uα has no nontrivial characters and, therefore, no nontrivial one-
dimensional modules. This proves that Uα is contained in Gv.
If (a) holds, then by (22) the line ℓ is stable with respect to U−α as well. The
same argument as for Uα then shows that U−α is contained in Gv. Hence Gv

contains the group Sα generated by Uα and U−α. But Sα contains the image
of α∨. This proves the implication (a)⇒(c).
(c)⇒(a): Assume that (c) holds. Since, as explained above, Uα is contained in
Gv, the subgroup of Sα generated by Uα and the image of α∨ is contained in
Gv. This subgroup is a Borel subgroup of Sα. Therefore the Sα-orbit of v is
a complete subvariety of E(̟), i.e., a point. This means that Sα is contained
in Gv. Therefore, U−α is contained in Gv; whence (a) holds. This proves the
implication (c)⇒(a).

Combining now (22) and (21) with the equivalence (a)⇔(c), we obtain the
proof of Part (i).

(ii): Since X(̟) is the affine cone over O(̟), we have

dimX(̟) = dimO(̟) + 1. (25)

On the other hand, (15), (16), and (i) entail

dimO(̟) = dimU−
I̟

. (26)

Combining (25), (26), and (20), we obtain the proof of Part (ii).

Documenta Mathematica · Extra Volume Merkurjev (2015) 513–528



Around the Abhyankar–Sathaye Conjecture 523

(iii): Since U−
I ∩PI = {e} for every I, the stabilizer of v for the natural action

of U−
I̟

on X(̟) is trivial because of (i). Hence dimX(̟) is the maximum of

dimensions of U−
I̟

-orbits in X(̟). Since U−
I̟

-orbits of points of a dense open

subset of X(̟) have maximal dimension, this means that the U−
I̟

-stabilizer of

a point in general position in X(̟) is finite. But U−
I̟

has no nontrivial finite
subgroups because it is a connected unipotent group and char k = 0. This
proves Part (iii).

(iv): Given a point a ∈ X(̟), consider its U−
I(̟)-orbit U

−
I(̟) ·a. By (iii), taking

a suitable a, we may assume that

dimTU−

I(̟)
·a,a = dimU−

I(̟). (27)

Since U−
I(̟) =

∏

α∈Φ+\ΦI(̟)
U−α (the product being taken in any order), and

char k = 0,

TU−

I(̟)
·a,a = the linear span of {F−α(a) | α ∈ Φ+ \ ΦI(̟)} over k. (28)

It follows from (27), (28), and (ii) that all the vectors F−α(a), where α ∈
Φ+ \ ΦI(̟) are linearly independent over k. Hence all the vector fields F−α,
where α ∈ Φ+ \ ΦI(̟), are linearly independent over A(̟). This proves Part
(iv).

(v): Since standard parabolic subgroups of G are products of standard
parabolic subgroups of connected simple normal subgroups of G, the proof
is reduced to the case, where G is simple. In this case (C)⇔(D) follows from
(21) and the known classification of parabolic subgroups that have commutative
unipotent radical (see, e.g., [RRS 92, Lemma 2.2 and Rem. 2.3]).

(vi): Since ̟ 6= 0, the action of T on π−1(p(̟)) is nontrivial and, therefore,
transitive. Since the restriction of π to X(̟)\{0} is a G-equivariant morphism
onto the orbit O(̟), this entails that

G · v = X(̟) \ {0}. (29)

By [PV72, Thm. 2],
A(̟) → k[G · v], f 7→ f |G·v

is an isomorphism of k-algebras. On the other hand, the orbit map G → G · v
induces the embedding of k[G · v] →֒ k[G], and, being connected semisimple, G
has no nontrivial characters, hence k[G]⋆ = k⋆ by [Ro 611, Thm. 3]. This proves
Part (vi).

(vii): This is proved, based on [Po 72, 74], in [PV72, Thms. 4 and 5].

(viii): By virtue of (29), the singular locus of X(̟) is either {0} or empty;
whence X(̟) is singular if and only if dimTX(̟),0 > n. On the other hand,
TE(̟),0 = E(̟) because TX(̟),0 is a submodule of the G-module TE(̟),0 =
E(̟), which is simple. This implies (viii). �
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Thus, for every fundamental weight ̟ such that

— the property specified in Theorem 3(v)(D) holds;

— the variety X(̟) is singular,

the answer to Question 1 for the pair (A, D), where

A := A(̟),

D := {∂−α | α ∈ Φ+ \ ΦI(̟)},

is negative. There are examples of such pairs in any dimension n > 4.

Example 1. Let G be of type Dℓ, ℓ > 3, and ̟ = ̟1. Denote by V the
underlying vector space of E(̟) and by ϕ̟ : G → GL(V ) the homomorphism
determining the G-module structure of E(̟). Then dimV = 2ℓ and ϕ̟(G) is
the orthogonal group of a nondegenerate quadratic form f on V . There is a
basis

e1, e2, . . . , eℓ, e−ℓ, e−ℓ+1, . . . , e−1 (30)

of V such that
f = x−1x1 + x−2x2 + · · ·+ x−ℓxℓ,

where xi is the ith coordinate function on V in basis (30). The variety X(̟)
coincides with that of all isotropic vectors of f ,

X(̟) = {v ∈ V | f(v) = 0},

which, in turn, coincides with the closure of the G-orbit of e1. Hence, if P2ℓ

is the polynomial ring in 2ℓ variables x1, x2, . . . , xℓ, x−ℓ, x−ℓ+1, . . . , x−1 with
coefficients in k (i.e., P2ℓ = k[E(̟)]), then

A(̟) = P2ℓ/(f). (31)

The k-algebra A(̟) is a unique factorization domain of transcendence degree
n := 2ℓ− 1 over k, and A(̟)∗ = k∗. The hypersurface of zeros of f in V is not
smooth, hence A(̟) is not a polynomial ring over k.
Identifying every element of GL(V ) with its matrix with respect to the ba-
sis (30), we may assume that GL(V ) = GL2ℓ and that the elements of ϕ̟(T )
(resp. ϕ̟(B)) are diagonal (resp. upper triangular) matrices (see, e.g., [Bou 75,
Chap.VIII, §13, no. 4]). Using the explicit description of Φ, ∆, and Uα’s avail-
able in this case (see loc.cit.), it is then not difficult to see that all the derivations
D−α of P2ℓ, where α ∈ Φ+ \ΦI(̟), are precisely the following n−1 commuting
derivations Dj , j = 2, 3, . . . , ℓ,−ℓ, . . . ,−3,−2, defined by the formula

Dj(xi) =

{

0 for i 6= j,

x1 for i = j
if i 6= −1,

Dj(x−1) = −x−j .
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Let ∂j be the locally nilpotent derivation ofA(̟) induced (in view ofDj(f) = 0
and (31)) by Dj . Then D := {∂j} is the set of n − 1 commuting derivations
that are linearly independent over A(̟); whence (3) holds (see, e.g., [Ma 03,
Prop. 3.4], [DEFM11, Lemma 1]). Thus in this case the answer to Question 1
is negative. �

Example 2. Let G be of type Bℓ, ℓ > 2, and ̟ = ̟1. An argument similar to
that in Example 1 shows that if P2ℓ+1 is the polynomial ring in 2ℓ+1 variables
x1, x2, . . . , xℓ, x0, x−ℓ, x−ℓ+1, . . . , x−1 with coefficients in k, then

A(̟) = P2ℓ+1/(h), where h = x2
0 + x−1x1 + x−2x2 + · · ·+ x−ℓxℓ. (32)

The k-algebra A(̟) is a unique factorization domain of transcendence degree
n := 2ℓ over k, which is not a polynomial ring over k, and A(̟)∗ = k∗. The
derivations D−α of P2ℓ+1, where α ∈ Φ+ \ ΦI(̟), are precisely the following
n − 1 commuting derivations Dj , j = 2, 3, . . . , ℓ, 0,−ℓ, . . . ,−3,−2, defined by
the formula

Dj(xi) =

{

0 for i 6= j,

x1 for i = j
if i 6= −1,

Dj(x−1) =

{

−x−j for j 6= 0,

2x0 for j = 0.

Let ∂j be the locally nilpotent derivation of A(̟) induced (in view ofDj(h) = 0
and (32)) by Dj . Then D := {∂j} is the set of n − 1 commuting derivations
that are linearly independent over A(̟); whence (3) holds. Therefore, in this
case the answer to Question 1 is negative as well. �

In Examples 1 and 2, the algebras A(̟) are hypersurfaces (quadratic cones). In
the general case, they are quotient algebras of polynomial algebras modulo
the ideals generated by finitely many quadratic forms. Namely, the G-module
S2(E(̟)∗) of quadratic forms on E(̟) contains a unique submodule (the Car-
tan component) C(̟) isomorphic to E(2̟)∗; whence there is a unique sub-
module M(̟) such that S2(E(̟)∗) = C(̟) ⊕ M(̟). It is known that the
ideal of k[E(̟)] generated by M(̟) is then the ideal of elements k[E(̟)] van-
ishing on X(̟) (see in [Br 85, Sect. 4.1, Thm.] the part concerning the ideal
J). Therefore, X(̟) is cut out in E(̟) by

dimE(̟)
(

dimE(̟) + 1
)

2
− dimE(2̟)

homogeneous quadrics (cf. also [Li 82]).
We note that a pair (A, D) with A of transcendence degree 3 over k, for which
the answer to Question 1 is negative, exists as well: based on the famous theo-
rem that the Koras–Russell threefoldX is not isomorphic toA3 (see [Ma-Li 96]),
in [EK05] it is shown that one may take A = k[X].
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4 Remarks

1. The same arguments as in the proof of Theorem 2 prove the following

Theorem 4. Let X be an irreducible affine n-dimensional variety endowed

with a regular action of a unipotent algebraic group U.Assume that

(i) X is unirational;

(ii) X is normal;

(iii) k[X]⋆ = k⋆;

(iv) max
x∈X

dimU · x = n− 1.

Then there is an irreducible element t of k[X] and elements f1, . . . fn−1 ∈ k(X)
such that

(a) k[X]U = k[f ];

(b) k(X) = k(t, f1, . . . , fn−1).

In particular, X is rational.

2. Theorem 1 in [DEFM11] (in which the notation O(X) is used in place of
our k[X]) reads as follows:

Let U be an n-dimensional unipotent group acting faithfully on an affine n-
dimensional variety X satisfying O(X)⋆ = k⋆. Then X ∼= A

n if one of the

following two conditions holds:

(a) some x ∈ X has trivial isotropy subgroup, or

(b) n = 2, X is factorial, and U acts without fixed points.

The proof in [DEFM11] shows that, in fact, X is also assumed to be irre-
ducible. We remark that, actually, given (a), the assumption O(X)⋆ = k⋆ is
superfluous and, changing the proof (see below), one may drop it. Moreover,
in this case, more generally, affiness of X may be replaced by quasi-affiness,
the assumption dimU = n may be dropped, and (a) may be replaced by the
assumption

dimUx + dimX = dimU. (33)

Proof. Indeed, (33) implies that dimU · x = dimX. On the other hand, by
[Ro 612, Thm. 2], unipotency of U implies that U · x is closed in X. Hence
U · x = X. Therefore, X ∼= U/Ux, whence the claim by (i) in Introduction. �
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[vdEs 00] A. van den Essen, Polynomial Automorphisms, Progress in Math-
ematics, Vol. 190, Birkhäuser Verlag, Basel, 2000.
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