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Abstract. We use the Siegel-Eisenstein distributions of degree
three, and their higher twists with Dirichlet characters, in order to
construct admissible p-adic measures attached to the triple products
of elliptic cusp forms. We use an integral representation of Garrett’s
type for triple products of three cusp eigenforms. For a prime p
and for three primitive cusp eigenforms f1, f2, f3 of equal weights
k1 = k2 = k3 = k, we study the critical values of Garrett’s triple
product L(f1 ⊗ f2 ⊗ f3, s, χ) twisted with Dirichlet characters χ. The
result is stated in framework of a general program by John Coates,
see [Co], [Co-PeRi].
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0 Introduction

The purpose of this paper is to give a construction of p-adic admissible measures
(in the sense of Amice-Vélu) attached to Garrett’s triple L-function attached
to three primitive cusp eigenforms of equal weight k, where p is a prime. For
this purpose we use the theory of p-adic integration with values in spaces of
nearly-holomorphic modular forms (in the sense of Shimura, see [ShiAr]) over
a normed O-algebra A where O is the ring of integers in a finite extension K
of Qp. Often we simply assume that A = Cp.
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78 S. Böcherer, A. A. Panchishkin

0.1 Generalities on triple products

Consider three primitive cusp eigenforms

fj(z) =

∞∑

n=1

an,je(nz) ∈ Skj (Nj , ψj), (j = 1, 2, 3) (0.1)

of weights k1, k2, k3, of conductors N1, N2, N3, and of nebentypus characters
ψj mod Nj (j = 1, 2, 3), and let χ denote a Dirichlet character.
The triple product twisted with Dirichlet characters χ is defined as the following
complex L-function (an Euler product of degree eight):

LS(f1 ⊗ f2 ⊗ f3, s, χ) =
∏

p 6∈S

L((f1 ⊗ f2 ⊗ f3)p, χ(p)p
−s), where (0.2)

L((f1 ⊗ f2 ⊗ f3)p, X)−1 = (0.3)

det
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18 −X
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0

0
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0

0
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(
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0

0

α
(2)
p,3

))

=
∏

η

(1− α
(η(1))
p,1 α

(η(2))
p,2 α

(η(3))
p,3 X), η : {1, 2, 3} → {1, 2}, and

1− ap,jX − ψj(p)p
kj−1X2 = (1− α

(1)
p,j(p)X)(1− α

(2)
p,j(p)X), j = 1, 2, 3,

are the Hecke p–polynomials of forms fj and the product is extended over all
primes p 6∈ S, and S = Supp(N1N2N3) denotes the set of all prime divisors of
the product N1N2N3. We always assume that

k1 ≥ k2 ≥ k3, (0.4)

including the case of equal weights k1 = k2 = k3 = k.
We use the corresponding normalized motivic L function (see [De79], [Co],
[Co-PeRi]), which in the case of “balanced” weights (i.e. k1 ≤ k2 + k3 − 2) has
the form:

ΛS(f1 ⊗ f2 ⊗ f3, s, χ) = (0.5)

ΓC(s)ΓC(s− k3 + 1)ΓC(s− k2 + 1)ΓC(s− k1 + 1)L(f1 ⊗ f2 ⊗ f3, s, χ),

where ΓC(s) = 2(2π)−sΓ(s). The motivic Gamma-factor

ΓC(s)ΓC(s− k3 + 1)ΓC(s− k2 + 1)ΓC(s− k1 + 1)

determines the critical values s = k1, · · · , k2 + k3 − 2 and a (conjectural) func-
tional equation of the form: s 7→ k1 + k2 + k3 − 2− s.
Throughout the paper we fix an embedding

ip : Q →֒ Cp, and define (0.6)

λ(p) = α
(1)
p,1α

(1)
p,2α

(1)
p,3, where we assume that |ip(α

(1)
p,j)| ≤ |ip(α

(2)
p,j)|, j = 1, 2, 3.

(0.7)
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Admissible p-adic Measures . . . 79

0.2 Statement of main results

For a fixed positive integer N ∈ N consider the profinite group

Y = YN,p = lim
←
v

Yv, where Yv = (Z/NpvZ)×.

There is a natural projection yp : Y → Z×
p . Let us fix a normed O-algebra A

where O is the ring of integers in a finite extension K of Qp.

Definition 0.1 (a) For h ∈ N, h ≥ 1 let Ph(Y,A) denote the A-module of
locally polynomial functions of degree < h of the variable yp : Y → Z×

p →֒ A×;
in particular,

P
1(Y,A) = C

loc−const(Y,A)

(the A-submodule of locally constant functions). We adopt the notation Φ(U) :=
Φ(χU) for the characteristic function χU of an open subset U ⊂ Y . Let also
denote Cloc−an(Y,A) the A-module of locally analytic functions and C(Y,A) the
A-module of continuous functions so that

P
1(Y,A) ⊂ P

h(Y,A) ⊂ C
loc−an(Y,A) ⊂ C(Y,A).

(b) For a given positive integer h we define an h-admissible measure on Y with
values in an A-module M as a homomorphism of A-modules:

Φ̃ : Ph(Y,A) →M,

such that for all a ∈ Y and for v → ∞

∣∣∣∣∣

∫

a+(Npv)

(yp − ap)
jdΦ̃

∣∣∣∣∣
p,M

= o(p−v(j−h)) for all j = 0, 1, · · · , h− 1,

where ap = yp(a).

We adopt the notation (a)v = a + (Npv) for both an element of Yv and the
corresponding open compact subset of Y .

Up–Operator and Method of Canonical projection.

In Section 2.2, we construct an h-admissible measure Φ̃λ : Ph(Y,A) → M(A)
out of a sequence of distributions

Φr : P
1(Y,A) → M(A)

with values in an A-module M = M(A) of nearly-holomorphic triple modular
forms over A (for all r ∈ N with r ≤ h − 1), where λ ∈ A× is a fixed non-
zero eigenvalue of triple Atkin’s operator UT = UT,p, acting on M(A), and
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80 S. Böcherer, A. A. Panchishkin

h = [2ordpλ(p)] + 1. In our case M(A) ⊂ A[[q1, q2, q3]][R1, R2, R3], and such
modular forms are formal series

g =

∞∑

n1,n2,n3=0

a(n1, n2, n3;R1, R2, R3)q
n1
1 qn2

2 qn3
3 ∈ A[[q1, q2, q3]][R1, R2, R3]

such that for A = C, for all zj = xj + iyj ∈ H and for Rj = (4πyj)
−1 the series

converges to a C∞-modular form on H3 of a given weight (k, k, k) and character
(ψ1, ψ2, ψ3), j = 1, 2, 3. The usual action of U = Up on elliptic modular forms
of one variable extends to triple Atkin’s operator UT = UT,p = (Up)

⊗3 acting
on triple modular forms by

UT (g) =
∞∑

n1,n2,n3=0

a(pn1, pn2, pn3; pR1, pR2, pR3)q
n1
1 qn2

2 qn3
3 . (0.8)

We consider the canonical projection operator πλ : M(A) → M(A)λ onto the
maximal A-submodule M(A)λ over which the operator UT − λI is nilpotent,
and such that Kerπλ =

⋂
n≥1 Im(UT − λI)n. We define an A-linear map

Φ̃λ : Ph(Y,A) → M(A)

on local monomials yjp by

∫

(a)v

yjp dΦ̃
λ = πλ(Φj((a)v))

where Φj : P1(Y,A) → M(A) is a sequence of M(A)-valued distributions on
Y (for j = 0, 1, . . . , h − 1). Recall that for a primitive cusp eigenform fj =∑∞
n=1 an(f)q

n of conductor C = Cfj , the function fj,0 =
∑∞
n=1 an(fj,0)q

n ∈

Q[[q]] is defined as an eigenfunction of U = Up with the eigenvalue α
(1)
p,j ∈ Q

(U(f0) = αf0) which satisfies the identity

fj,0 = fj − α
(2)
p,jfj |Vp = fj − α

(2)
p,jp

−k/2fj |

(
p

0

0

1

)
(0.9)

∞∑

n=1

an(fj,0)n
−s =

∞∑

n=1
p∤n

an(fj)n
−s(1− α

(1)
p,jp

−s)−1.

For any fixed n0 = n·pm with p ∤ n we have an0
(fj,0) = an(fj)·(α

(1)
p,j)

m ∈ Q and
an(fj) are eigenvalues of Hecke operators Tn. Therefore, UT (f1,0⊗f2,0⊗f3,0) =
λ(f1,0 ⊗ f2,0 ⊗ f3,0). Moreover,

f0j = fρj,0

∣∣∣
k

(
0

Np

−1

0

)
, where fρj,0 =

∞∑

n=1

a(n, f0)q
n. (0.10)
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Consider the triple product defined by (0.2) as an Euler product of degree
eight: D(f1 ⊗ f2 ⊗ f3, s, χ) = L(N)(f1 ⊗ f2 ⊗ f3, s, χ), attached to three cusp
eigenforms fj(z) =

∑∞
n=1 an,je(nz) ∈ Skj (Nj , ψj), (j = 1, 2, 3) of weight k, of

conductors N1, N2, N3, and of nebentypus characters ψj mod Nj (j = 1, 2, 3),
where χ mod Npv is an arbitrary Dirichlet character, and the notation L(N)

means that the local factors at primes dividing N = LCM(N1, N2, N2) are
removed from an Euler product. Before giving the precise statements of our
results on p-adic triple L-functions, we describe in more detail critical values
of the L function D(f1 ⊗ f2 ⊗ f3, s, χ).
Let us introduce the following normalized L-function

D
⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , s+ 2k − 2, ψ1ψ2χ) = (0.11)

ΓC(s+ 2k − 2)ΓC(s+ k − 1)3L(N)(fρ1 ⊗ fρ2 ⊗ fρ3 , s+ 2k − 2, ψ1ψ2χ),

where ΓC(s) = 2(2π)−sΓ(s), and ΓC(s + 2k − 2)ΓC(s + k − 1)3 is the motivic
Gamma-factor (compare with (0.5), and see [Co], [Co-PeRi], [Pa94]). For an
arbitrary Dirichlet character χ mod Npv consider the following Dirichlet char-
acters:

χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, (0.12)

χ3 mod Npv = ψ1ψ̄3χ,ψ = χ2ψ1ψ2ψ3;

later on we impose the condition that the conductors of the corresponding
primitive characters χ0,1, χ0,2, χ0,3 are Np-complete (i.e., have the same prime
divisors as those of Np).

Theorem A (Algebraic properties of the triple product) Assume
that k ≥ 2. Then for all pairs (χ, r) such that the corresonding Dirichlet
characters χj are Np-complete, and 0 ≤ r ≤ k − 2, we have that

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈fρ1 ⊗ fρ2 ⊗ fρ3 , f
ρ
1 ⊗ fρ2 ⊗ fρ3 〉T

∈ Q

where

〈fρ1 ⊗ fρ2 ⊗ fρ3 , f
ρ
1 ⊗ fρ2 ⊗ fρ3 〉T := 〈fρ1 , f

ρ
1 〉N 〈fρ2 , f

ρ
2 〉N 〈fρ3 , f

ρ
3 〉N

= 〈f1, f1〉N 〈f2, f2〉N 〈f3, f3〉N .

For the p-adic construction, let Cp = Q̂p denote the completion of an alge-
braic closure of the field Qp of p-adic numbers. Fix a positive integer N , a
Dirichlet character ψ mod N and consider the commutative profinite group
Y = YN,p = lim

←−
m

(Z/NpmZ)∗ and its group XN,p = Homcont(Y,C
×
p ) of (contin-

uous) p-adic characters (this is a Cp-analytic Lie group). The group XN,p is
isomorphic to a finite union of discs U = {z ∈ Cp | |z|p < 1}.
A p-adic L-function L(p) : XN,p → Cp is a certain meromorphic function on
XN,p. Such a function often come from a p-adic measure µ(p) on Y (bounded
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82 S. Böcherer, A. A. Panchishkin

or admissible in the sense of Amice-Vélu, see [Am-V]). In this case we write
for all x ∈ XN,p

L(p)(x) =

∫

YN,p

x(y)dµ(p)(y)

In order to establish p-adic properties, let us use the product (0.7) λ = λ(p) =

α
(1)
p,1α

(1)
p,2α

(1)
p,3, where we assume that |ip(α

(1)
p,j)| ≤ |ip(α

(2)
p,j)|, j = 1, 2, 3.

Theorem B (on admissible measures attached to the triple prod-
uct). Under the assumptions as above there exist a Cp-valued measure
µ̃λf1⊗f2⊗f3 on YN,p, and a Cp-analytic function

D(p)(x, f1 ⊗ f2 ⊗ f3) : Xp → Cp,

given for all x ∈ XN,p by the integral

D(p)(x, f1 ⊗ f2 ⊗ f3) =

∫

YN,p

x(y)dµ̃λf1⊗f2⊗f3(y),

and having the following properties:
(i) for all pairs (r, χ) such that χ mod Cχ is a primitive Dirichlet character
modulo Cχ, χ ∈ Xtors

N,p , assuming that all three corresonding Dirichlet characters
χj given by (0.12) have Np-complete conductor (j = 1, 2, 3), and r ∈ Z is an
integer with 0 ≤ r ≤ k − 2, the following equality holds:

D(p)(χx
r
p, f1 ⊗ f2 ⊗ f3) = (0.13)

ip

( (ψ1ψ2)(2)C
4(2k−2−r)
χ

G(χ1)G(χ2)G(χ3)G(ψ1ψ2χ1)λ(p)2v

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,Np

)

where v = ordp(Cχ), χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, χ3 mod Npv =
ψ1ψ̄3χ, G(χ) denotes the Gauß sum of a primitive Dirichlet character χ0 at-
tached to χ (modulo the conductor of χ0).
(ii) if ordpλ(p) = 0 then the holomorphic function in (i) is a bounded Cp-
analytic function;
(iii) in the general case (but assuming that λ(p) 6= 0) the holomorphic func-
tion in (i) belongs to the type o(log(xhp)) with h = [2ordpλ(p)] + 1 and it can
be represented as the Mellin transform of the h-admissible Cp-valued measure
µ̃λf1⊗f2⊗f3 (in the sense of Amice-Vélu) on Y
(iv) if h ≤ k − 2 then the function D(p) is uniquely determined by the above
conditions (i).

Remark 0.2 It was checked by B.Gorsse and G.Robert that

〈f0,ρ1 ⊗ f0,ρ2 ⊗ f0,ρ3 , fρ1,0 ⊗ fρ2,0 ⊗ fρ3,0〉T,Np = β · 〈f1, f1〉N 〈f2, f2〉N 〈f3, f3〉N

for some β ∈ Q
∗
(see [Go-Ro]).
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0.3 Scheme of the Proof

We construct Q-valued distributions denoted by µf1⊗f2⊗f3,r on the profinite
group YN,p, and attached to the special values at s = 2k−2−r with 0 ≤ r ≤ k−2
of the triple product L(fρ1 ⊗f

ρ
2 ⊗f

ρ
3 , s, ψ1ψ2χ) twisted with a Dirichlet character

ψ1ψ2χ mod Npv. We use an integral representation of this special value in
terms of a C∞-Siegel-Eisenstein series Fχ,r of degree 3 and of weight k (to
be specified later), where 0 ≤ r ≤ k − 2. Such a series Fχ,r depends on the
character χ, but its precise nebentypus character is ψ = χ2ψ1ψ2ψ3, and it is
defined by Fχ,r = G⋆(Z,−r; k, (Npv)

2
,ψ), where Z denotes a variable in the

Siegel upper half space H3, and the normalized series G⋆(Z, s; k, (Npv)
2
,ψ) is

given by (A.12). This series depends on s = −r, and for the critical values
at integral points s ∈ Z such that 2 − k ≤ s ≤ 0, it represents a (nearly-)
holomorphic Siegel modular form in the sense of Shimura [ShiAr].
Our construction consists of the following steps:
1) We consider the profinite ring AN,p = lim

←−
v

(Z/NpvZ). Starting from any

sequence Fr of nearly-holomorphic Siegel modular forms we construct first a
sequence ΨFr

of modular distributions on the additive profinite group

S = SN,p :=



ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0



∣∣∣∣∣ε12, ε13, ε23 ∈ AN,p



 ;

such distributions take values in C∞-(nearly-holomorphic) modular forms on
the Siegel half plane H3. This construction, given in Section 1, generalizes
the higher twist of Fr, already utilized in the work [Boe-Schm], in a simpler
situation.
2) Next we consider the (real analytic) Siegel-Eisenstein series Fχ,r as a
formal (nearly-holomorphic) Fourier series, whose coefficients admit explicit
polynomial expressions (see Section 1 and Appendix A), and we use the fact
that they may be written in terms of p-adic integrals of χ over Y (see [PaSE]
and [PaIAS]).
A crucial point of our construction is the higher twist in Section 1. We define
the higher twist of the series Fχ,r by the characters (0.12) as the following
formal nearly-holomorphic Fourier expansion:

F χ̄1,χ̄2,χ̄3
χ,r =

∑

T

χ̄1(t12)χ̄2(t13)χ̄3(t23)Q(R,T; k − 2r, r)aχ,r(T)q
T. (0.14)

The series (0.14) can be naturally interpreted as an integral of the Dirichlet
character χ on the group Y with respect to a modular distribution Ψr:

F χ̄1,χ̄2,χ̄3
χ,r =

∫

Y

χ(y)dΨr(y) =: Ψr(χ). (0.15)

These modular distributions take values in the ring of formal Fourier expansion
whose coefficients are polynomials in R = (4π Im(Z))−1 over the field Q (which
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is imbedded into Cp via (0.6). The distributions Ψr are uniformly bounded
(coefficient-by-coefficient).
3) If we consider the diagonal embedding

diag : H×H×H → H3,

then the restriction produces a sequence Φr = 2r diag∗ Ψr of distributions on Y
with values in the tensor product Mk,r(Q)⊗Mk,r(Q)⊗Mk,r(Q) of three spaces
of elliptic nearly-holomorphic modular forms on the Poincaré upper half plane
H (the normalizing factor 2r is neeeded in order to prove certain congruences
between Φr in Section 3).
The important property of these distributions, established in Section 1, is that
the nebentypus character of the triple modular form Φr(χ) is fixed and is equal
to (ψ1, ψ2, ψ3), see Proposition 1.5. Using this property, and applying the
canonical projector πλ of Section 2 to Φr(χ), we prove in Section 3 that the se-
quence of modular distributions Φr on Y produces a p-adic admissible measure
Φ̃λ (in the sense of Amice-Vélu, [Am-V]) with values in a finite dimensional
subspace

M
λ(Cp) ⊂ M(Cp), M(Cp) = Mk,r(Cp)⊗Mk,r(Cp)⊗Mk,r(Cp)

of the Cp-vector space M(Cp) =
⋃
v≥0 Mk,r(Np

v, ψ1, ψ2, ψ3;Cp) of formal
nearly-holomorphic triple modular forms of levels Npv and the fixed nebenty-
pus characters (ψ1, ψ2, ψ3). We use congruences between triple modular forms
Φr(χ) ∈ M(Q) (they have cyclotomic formal Fourier coefficients), and a gen-
eral admissibility criterion (see Theorem 2.4). Proof of the Main Congruence
is contained in Section 3.
4) Application of a Q-valued linear form of type

L : h 7−→

〈
f̃1 ⊗ f̃2 ⊗ f̃3, h

〉

〈
f̃1, f̃1

〉〈
f̃2, f̃2

〉〈
f̃3, f̃3

〉

for h ∈ Mk,r(Q)⊗Mk,r(Q)⊗Mk,r(Q), produces a sequence of Q-valued distri-

butions given by µλr (χ) = L(πλ(Φr)(χ)), λ ∈ Q
×
. More precisely, we consider

three auxilliary modular forms

f̃j(z) =

∞∑

n=1

ãn,je(nz) ∈ Sk(Γ0(Njp
νj ), ψj) (1 ≤ j ≤ 3, νj ≥ 1), (0.16)

with the same eigenvalues as those of (0.1), for all Hecke operators Tq, with

q prime to Np. In our construction we use as f̃j certain “easy transforms”

of primitive cusp forms in (0.1). In particular, we choose as f̃j eigenfunctions

f̃j = f0j of the adjoint Atkin’s operator U∗
p , in this case we denote by fj,0 the

corresponding eigenfunctions of Up. The Q-linear form L produces a Cp-valued
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admissible measure µ̃λ = ℓ(Φ̃λ) starting from the modular p-adic admissible
measure Φ̃λ of stage 3), where ℓ : M(Cp) → Cp denotes a Cp-linear form,
interpolating L. See Section 4 for the construction of µ̃λ.
5) We show in Section 5 that for any suitable Dirichlet character χ mod Npv

the integral

µλr (χ) = L(πλ(Φr(χ)))

coincides (up to a normalisation) with the special L-value

D
∗(fρ1 ⊗f

ρ
2 ⊗f

ρ
3 , 2k−2−r, ψ1ψ2χ) (under the above assumptions on χ and r).

We use a general integral representation of Section B. The basic idea how
a Dirichlet character χ is incorporated in the integral representation [Ga87,
BoeSP] is somewhat similar to the one used in [Boe-Schm], but (surprisingly)
more complicated to carry out. Note however that the existence of a Cp-valued

admissible measure µ̃λ = ℓ(Φ̃λ) established at stage 4), does not depend on
this technical computation, and details will appear elsewhere.

Remark 0.3 Similar techniques can be applied in the case of three arbitrary
“balanced” weights (0.4) k1 ≥ k2 ≥ k3, i.e. when k1 ≤ k2+k3−2, using various
differential operators acting on modular forms (the Maaß-Shimura differential
operators (see [ShiAr], [Or]), and Ibukiyama’s differential operators (see [Ibu],
[BSY]). More precisely, one applies these operators to a twisted Eisenstein
series. In this case the critical values of the L function D(f1 ⊗ f2 ⊗ f3, s, χ)
correspond to s = k1, · · · , k2 + k3 − 2. The equality of weights in the present
paper is made to avoid (for lack of space) the calculus of differential operators.

0.4 Conclusion: some advantages of our p-adic method

The whole construction works in various situations and it can be split into
several independent steps:

1) Construction of modular distributions Φr (on a profinite or even adelic
space Y of type Y = A∗

K/K
∗ for a number field K) with values in an infinite

dimensional modular tower M(A) over complex numbers (or in an A-module
of infinite rank over some p-adic algebra A).

2) Application of a canonical projector of type πλ onto a finite dimensional
subspace Mλ(A) of M(A) (or over a locally free A-module of finite rank over
some A) in the form: πλ(g) = (Uλ)−vπλ,1(U

v(g)) ∈ Mλ(Np,A) as in (2.3) of
Section 2 (this method works only for λ ∈ A×, and gives the λ-characteristic
projector of g ∈ M(Npv,A) (independently of a sufficiently large v)).

3) One proves the admissibility criterium of Theorem 2.4 saying that the
sequence πλ(Φr) of distributions with values in Mλ(A) determines an h-
admissible measure Φ̃λ with values in this finite dimensional space for a suitable
h (determined by the slope ordp(λ)).
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4) Application of a linear form ℓ of type g 7→ 〈f0, πλ(g)〉/〈f, f〉 to the modular
distributions Φr produces a sequence of A-valued distributions µλr = ℓ(πλ(Φr)),
and an A-valued admissible measure. The growth condition can be verified
starting from congruences between modular forms Φj(χ), generalizing our Main
Congruence of Section 3.

5) One shows that certain integrals µλj (χ) of the constructed distributions µλj
coincide with normalized L-values; however, computing these integrals is not
needed for the construction of p-adic admissible measures µ̃λ (which is already
done at stage 4)).

6) Under some assumptions, one can show a result on uniqueness for the con-
structed h-admissibles measures: they are determined by the integrals µλj (χ)
over almost all Dirichlet characters and sufficiently many j = 0, 1, · · · , h − 1
(this stage is not necessary, but it is nice to have uniqueness of the construc-
tion), see [JoH05].

7) If we are lucky, we can prove a functional equation for the constructed
measure µ̃λ (using the uniqueness in 6)), and using a functional equation for
the L-values (over complex numbers), computed at stage 5), for almost all
Dirichlet characters (again, this stage is not necessary, but it is nice to have a
functional equation).

This strategy is applicable in various cases (described above), cf. [PaJTNB],
[Puy], [Go02]. An interesting discussion in the Bourbaki talk [Colm03] of
P.Colmez indicates the use of this method for constructing Euler systems.
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1 Modular distributions attached to the higher twist
of Eisenstein series

1.1 Higher twists of the Siegel-Eisenstein series

In this Section we study a C∞-Siegel-Eisenstein series Fχ,r of degree 3 and of
weight k, where 0 ≤ r ≤ k − 2. As in the Introduction, consider the Dirichlet
characters (0.12) χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, χ3 mod Npv =
ψ1ψ̄3χ.
The series Fχ,r = G⋆(Z,−r; k, (Npv)

2
,ψ), depends on the character χ, but its

precise nebentypus character is ψ = χ2ψ1ψ2ψ3. Here Z denotes a variable in
the Siegel upper half space H3, and the normalized series G⋆(Z, s; k, (Npv)

2
,ψ)

is given by (A.12). This series depends on s = −r, and for the critical values
at integral points s ∈ Z such that 2 − k ≤ s ≤ 0, it represents a (nearly-)
holomorphic function in the sense of Shimura [ShiAr] viewed as formal (nearly-
holomorphic) Fourier series, whose coefficients admit explicit polynomial ex-
pressions in terms of simple p-adic integrals for p ∤ det(T):

Fχ,r =
∑

T∈B3

det(T)k−2r−κQ(R,T; k − 2r, r)aχ,r(T)q
T,

where B3 = {T = (Tij) ∈ M3(R) | T = tT,T ≥ 0,Tij , 2Tii ∈ Z} , and qT =
exp(2πitr(TZ)), R = (4πIm(Z))−1. More precisely, for any T with p ∤ det(T)
there exists a bounded measure FT on Y with values in Q such that

aχ,r(T) =

∫

Y

yrpχ(y)dFT =
∏

ℓ| det(2T)

Mℓ(T,ψ(ℓ)ℓ
−k+2r), (1.1)

where ψ = χ2ψ1ψ2ψ3 (see (A.17), Theorem A.2 in Appendix A, also in [PaSE],
[PaIAS]). Here we use arithmetical nearly-holomorphic Siegel modular forms
(see [ShiAr] and Appendix A.2 for more details) viewed as formal power series
g =

∑
T∈Bm

a(T, Ri,j)q
T ∈ Q[[qBm ]][Ri,j ] such that for all Z ∈ Hm the series

converges to a C∞-Siegel modular form of a given weight k and character ψ.
As in the introduction, (0.14), we define the higher twist of the series Fχ,r
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by the characters (0.12) as the following formal nearly-holomorphic Fourier
expansion:

F χ̄1,χ̄2,χ̄3
χ,r =

∑

T

χ̄1(t12)χ̄2(t13)χ̄3(t23)Q(R,T; k − 2r, r)aχ,r(T)q
T = Ψr(χ).

We construct in this section a sequence of distributions Φr on Y using the
restriction to the diagonal

Φr(χ) : = 2r diag∗ Ψr(χ) = 2rF χ̄1,χ̄2,χ̄3
χ,r ◦ diag (1.2)

= 2r
∑

t1,t2,t3≥0

∑

T:t11=t1,

t22=t2,t23=t3

χ̄1(t12)χ̄2(t13)χ̄3(t23) det(T)
k−2r−κ×

×Q(diag(R1, R2, R3),T; k − 2r, r)aχ,r(T)q
t1
1 q

t2
2 q

t3
3 ,

where χ̄1(t12)χ̄2(t13)χ̄3(t23) = χ̄(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23),

taking values in the tensor product of three spaces of nearly-holomorphic elliptic
modular forms on the Poincaré upper half plane H (recall that the normalizing
factor 2r is neeeded in order to prove congruences between Φr in Section 3).
We show in Proposition 1.5 that the (diagonal) nebentypus character of
F χ̄1,χ̄2,χ̄3
χ,r is (ψ1, ψ2, ψ3), thus it does not depend on χ.

1.2 The higher twist as a distribution

Let us fix a Dirichlet character χ mod Npv as above with v ≥ 1, and an arbi-
trary C∞-modular function

F ∈ M
(3)
k (Γ0(Np

v),ψ)∞,

with a Dirichlet character ψ mod Npv which depends on χ mod Npv, for ex-
ample, the series Fχ,r with the nebentypus character ψ = χ2ψ1ψ2ψ3. Then
the higher twist of F with χ1, χ2, χ3 was initially defined by the formula

F̃ =
∑

ε12,ε13,ε23 mod Npv

χ1(ε12)χ2(ε13)χ3(ε23)F |ktε,Npv (1.3)

where we use the translation tε,Npv =

(
13

1
Npv ε

03 13

)
on H3 with ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0


 . The idea of the construction. We wish to interpret the series

(1.3) in terms of a distribution on a profinite group, using the following model
example: consider the profinite ring AN,p = lim

←−
v

(Z/NpvZ), and a compact

open subset α + (Npv) ⊂ AN,p with α an integer mod Npv, and N is prime
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to p. For any formal series f =
∑
n≥1 anq

n ∈ C[[q]] and for any open subset
α+ (Npv) ⊂ AN,p consider the following partial series:

µf (α+ (Npv)) =
∑

n≥1
n≡α mod Npv

anq
n ∈ C[[q]].

If q = exp(2πiz) with z ∈ H, it follows from the orthogonality relations that

µf (α+ (Npv)) = (Npv)−1
∑

β mod Npv

exp(−2πiαβ/Npv)f

(
z +

β

Npv

)
,

and that for any Dirichlet character χ mod Npv one has
∫

AN,p

χ(α)dµf (α) =
∑

n≥1

χ(n)anq
n = f(χ) ∈ C[[q]].

(the series f twisted by the character χ).
In the same fashion, consider the additive profinite group

S = SN,p :=



ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0



∣∣∣∣∣ε12, ε13, ε23 ∈ AN,p



 ;

equipped with the scalar product 〈·, ·〉 : SN,p × SN,p −→ AN,p:

〈
ε(1), ε(2)

〉
= tr(ε(1)ε(2)) = 2ε

(1)
12 ε

(2)
12 + 2ε

(1)
13 ε

(2)
13 + 2ε

(1)
23 ε

(2)
23 , where

ε(1) =




0 ε
(1)
12 ε

(1)
13

ε
(1)
12 0 ε

(1)
23

ε
(1)
13 ε

(1)
23 0


 , ε(2) =




0 ε
(2)
12 ε

(2)
13

ε
(2)
12 0 ε

(2)
23

ε
(2)
13 ε

(2)
23 0


 .

Proposition 1.1 Suppose that the function F is invariant with respect to any
integer translation of type tε,1 : F |tε,1 = F . Then
1) The action F |tε,Npv depends only on the class of ε ∈ S/NpvS, and the
additive character e

ε
(0) : ε 7→ exp(

〈
ε, ε(0)

〉
/Npv) on S is trivial iff ε(0) ∈ NpvS.

2) The formula

ΨF (ε
(0) + (Npv)) = (Npv)−3

∑

ε∈S mod NpvS

exp(−2πi
〈
ε, ε(0)

〉
/Npv)F |tε,Npv

(1.4)

= (Npv)−3
∑

ε∈S mod NpvS

e(−
〈
ε, ε(0)

〉
/Npv)F |tε,Npv

defines a distribution with values in C∞-functions on H3, where e(α/Np
v) :=

exp(2πiα/Npv) is well-defined for all α ∈ AN .
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Proof: 1) Follows directly from the invariance: F |tε,1 = F .
2) It suffices to check the finite-additivity condition:

ΨF (ε
(0) + (Npv)) =

∑

ε
(1)∈S mod p

ΨF (ε
(0) +Npvε(1) + (Npv+1)), (1.5)

i.e.,

(Npv)−3
∑

ε∈S/NpvS

e(−
〈
ε, ε(0)

〉
/Npv)F |tε,Npv (1.6)

= (Npv+1)−3×
∑

ε
(1)∈S/pS

∑

ε
(2)∈S/Npv+1S

e(−
〈
ε(2), (ε(0) +Npvε(1))

〉
/Npv+1)F |t

ε
(2),Npv+1 .

(1.7)

For all ε(2) the sum on the right on ε(1) ∈ S/pS in (1.6) becomes

(Npv+1)−3
∑

ε
(1)∈S/pS

e(−
〈
ε(2), (ε(0) +Npvε(1))

〉
/Npv+1)F |t

ε
(2),Npv+1 (1.8)

= (Npv+1)−3e(−

〈
ε(2), ε(0)

〉

Npv+1
)F |t

ε
(2),Npv+1

∑

ε
(1)∈S/pS

e(−

〈
ε(2), Npvε(1)

〉

Npv+1
)

= (Npv+1)−3e(−
〈
ε(2), ε(0)

〉
/Npv+1)F |t

ε
(2),Npv+1

∑

ε
(1)∈S/pS

e
(
−
〈
ε(2), ε(1)

〉)
.

It remains to notice that

∑

ε
(1)∈S/pS

e(−
〈
ε(2), ε(1)

〉
/p) =

{
p3, if ε(2) = pε(3), ε(3) ∈ S

0, otherwise,
(1.9)

because ε(1) 7→ e(−
〈
ε(2), ε(1)

〉
/p) is a non trivial character of S/pS iff ε(2) ∈ pS.

The right hand side of (1.6) becomes

(Npv+1)−3
∑

ε
(1)∈S/pS

∑

ε
(2)∈S/Npv+1S

e(−
〈
ε(2), (ε(0) +Npvε(1))

〉
/Npv+1)F |t

ε
(2),Npv+1

(1.10)

= (Npv+1)−3p3
∑

ε
(3)∈S/NpvS

e(−
〈
ε(3), ε(0)

〉
/Npv)F |t

ε
(3),Npv .

Remark 1.2 The Fourier expansions of the nearly-holomorphic Siegel modular
form

Fε,v :=

ΨF (ε+ (Npv)) = (Npv)−3
∑

ε
′∈S mod NpvS

exp(−2πi〈ε′, ε〉/Npv)F |tε′,Npv .
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is given as the following partial Fourier series

Fε,v(Z) =
∑

T,t12≡ε12 mod Npv

t13≡ε13,t23≡ε23 mod Npv

a(T, R)qT, (1.11)

where F is a nearly-holomorphic Siegel modular form, which is a periodic func-

tion on H3: F =
∑

T

a(T, R)qT, and T =



t11 t12 t13
t12 t22 t23
t13 t23 t33


 runs over half

integral symmetric non negative matrices.

Indeed,

F |tε′,Npv =
∑

T

a(T, R)qT|tε′,Npv =
∑

T

exp(2πitr(ε′T)/Npv)a(T, R)qT,

hence

Fε,v = (Npv)−3
∑

ε
′∈S mod NpvS

exp(−2πi〈ε′, ε〉/Npv)
∑

T

exp(2πitr(ε′T)/Npv)a(T, R)qT.

It suffices to notice that

tr(ε′T) = tr






0 ε′12 ε′13
ε′12 0 ε′23
ε′13 ε′23 0





t11 t12 t13
t12 t22 t23
t13 t23 t33




= 2(ε′12t12+ε

′
13t13+ε

′
23t23).

Let us consider now three Dirichlet characters χ1, χ2, χ3 mod Npv, and let us
compute the corresponding integrals against the constructed modular distribu-
tion (1.4) of the locally constant function ε 7→ χ1(ε12)χ2(ε13)χ3(ε23) on the
profinite additive group

S = SN :=



ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0



∣∣∣∣∣ε12, ε13, ε23 ∈ AN



 .

Proposition 1.3 Let F be a function invariant with respect to any
translation of type tε,1 : F |tε,1 = F . Let us write Fχ̄1,χ̄2,χ̄3

=∫
S
χ̄1(ε12)χ̄2(ε13)χ̄3(ε23)dΨF (ε). Then

Fχ̄1,χ̄2,χ̄3
= (1.12)

(Npv)−3
∑

ε∈S/NpvS

GNpv (χ̄1,−ε12)GNpv (χ̄2,−ε13)GNpv (χ̄3,−ε23)F |tε,Npv .

Here GNpv (χ, ε) :=
∑

α′

e(εα′/Npv)χ(α′) denotes the Gauß sum (of a non nec-

essarily primitive Dirichlet character χ).
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Remarks 1.4 1) The advantage of the expression (1.12) in compare with (1.3)
is that it does not depend on a choice of v.
2)It follows from (1.11, that the Fourier expansion of the series (1.12) is given
by

Fχ̄1,χ̄2,χ̄3
=
∑

T

χ̄1(t12)χ̄2(t13)χ̄3(t23)a(T, R)q
T. (1.13)

Proof is similar to that of Proposition 1.1, and it follows from the definitions.

1.3 The level of the higher twist

Let us consider the symplectic inclusion:

i : SL2(Z)× SL2(Z)× SL2(Z) → Sp3(Z) (1.14)

(
a1
c1

b1
d1

)
,

(
a2
c2

b2
d2

)
,

(
a3
c3

b3
d3

)
7→




a1
a2

a3

c1
c2

c3

b1
b2

b3

d1
d2

d3




We study the behaviour of the modular form Fχ̄1,χ̄2,χ̄3
with respect to the

subgroup

i(Γ0(N
2p2v)3) ⊂ Γ

(3)
0 (N2p2v),

where (χ1 ⊗ χ2 ⊗ χ3)(ε) = χ1(ε12)χ2(ε13)χ3(ε23).
We will have to study two different types of twist; we can treat them simulta-
neously if we consider a function

φ : Z/NZ 7−→ C

which is “ϕ-spherical” i.e.

φ(gXh) = ϕ(g)ϕ(h)φ(X)

for all g, h ∈ (Z/NZ)×, X ∈ Z/NZ, where ϕ is a Dirichlet character mod N .
Let us use Proposition 1.12 and the spherical function

φ : (ε12, ε13, ε23) 7→ GNpv (χ̄1,−ε12)GNpv (χ̄2,−ε13)GNpv (χ̄3,−ε23),

with respect to three variables (ε12, ε13, ε23), and the Dirichlet characters

(ε12, ε13, ε23) 7→ χ1(ε12)χ2(ε13)χ3(ε23).
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Proposition 1.5 Consider a (nearly-holomorphic) Siegel modular form F for

the group Γ
(3)
0 (Npv) and the Dirichlet character ψ = χ2ψ1ψ2ψ3).

Then for all M = i
((

a1
c1

b1
d1

)
,
(
a2
c2

b2
d2

)
,
(
a3
c3

b3
d3

))
∈ Γ

(3)
0 (N2p2v) one has:

1) F̃ |M = ψχ̄1χ̄2(d1)︸ ︷︷ ︸
ψ1

ψχ̄1χ̄3(d2)︸ ︷︷ ︸
ψ2

ψχ̄2χ̄3(d3)︸ ︷︷ ︸
ψ3

F̃ , where F̃ is defined by (1.3),

2) Fχ̄1,χ̄2,χ̄3
|M = ψχ̄1χ̄2(d1)︸ ︷︷ ︸

ψ1

ψχ̄1χ̄3(d2)︸ ︷︷ ︸
ψ2

ψχ̄2χ̄3(d3)︸ ︷︷ ︸
ψ3

Fχ̄1,χ̄2,χ̄3
, where Fχ̄1,χ̄2,χ̄3

is defined by (1.12).

Proof. We study modular forms on H3. Let us consider a more general sit-
uation and write N instead of Npv. We use the (somewhat unconventional)
congruence subgroup (with N |M):

Γ
(3)
1 (M,N) :=

{
γ =

(
A B
C D

)
∈ Γ

(3)
0 (M)

∣∣∣D ≡ diag(D1, D2, D3)modN

}
.

Here the Di denote integers along the diagonal of D. It is easy to see that this
defines a subgroup of Sp(3,Z) and that a similar congruence also holds for A.

The appropriate space of modular forms, denoted by M
(3)
k (M,N ;χ;ψ1, ψ2, ψ3),

with Dirichlet characters ψj mod N and a Dirichlet character χ modM is then
the set of holomorphic functions on H3 satisfying

f |k γ = χ(detD)




3∏

j=1

ψj(Dj)


 f

for all γ =

(
A B
C D

)
∈ Γ

(3)
1 (M,N). For any α ∈ R and any 1 ≤ i < j ≤ 3

we define a symmetric matrix of size 3 by

S
(3)
ij (α) :=




α

α




(the number α sits in the (i, j)th and (j, i)positions). Then, for a function

F ∈ M
(3)
k (M,N ;χ;ψ1, ψ2, ψ3) we define a new function Fφij on H3 by

Fφij(Z) =
∑

α mod N

φ(α) · F (Z+ S
(3)
ij (

α

N
))

Proposition 1.6 Assume that N2 |M , χ is a character mod M
N , and

F ∈ M
(3)
k (M,N ;χ;ψ1, ψ2, ψ3). Then

Fφij ∈ M
(3)
k (M,N ;χ;ψ′

1, ψ
′
2, ψ

′
3)
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with

ψ′
r =

{
ψr if r /∈ {i, j}

ψr · ϕ if r ∈ {i, j}

Remarks 1.7 1) We mention here two basic types of ϕ-spherical functions
φ : Z/NZ:
Type I: “Dirichlet character” φ(X) := ϕ(X)
Type II: “Gauß sum” φ(X) = G(ϕ,−X) where G(ϕ,X) denotes a Gauß
sum (a version of such spherical functions of matrix argument was studied
in [Boe-Schm]):

G(ϕ,X) :=
∑

α mod N

ϕ(α) exp(2πi
1

N
αX)

2) Our basic example is as follows: let ϕ1, ϕ2, ϕ3 be three Dirichlet characters
mod N and let φi be ϕi-spherical functions on Z/NZ. Furthermore let F ∈

M
(3)
k (Γ0(M), χ) with N2 |M and χ a Dirichlet character mod M

N . Then

h(z1, z2, z3) :=
∑

α,β,γ mod N

φ1(α)φ2(β)φ3(γ)F (




z1
α
N

β
N

α
N z2

γ
N

β
N

γ
N z3


)

is an element of

Mk(Γ0(M), χϕ̄1ϕ̄2)⊗Mk(Γ0(M), χϕ̄1ϕ̄3)⊗Mk(Γ0(M), χϕ̄2ϕ̄3)

(note that the definition of h depends on N)
3) Other important cases are treated in [Boe-Schm] it can also (by iteration) be
applied to cases of block matrices of different size which e.g. occur in the work
[Boe-Ha] on the L-function for GSp(2)×GL(2).

Proof. We first try to find X ∈ Sym3(
1
NZ) such that

(
13 S( αN )
03 13

)(
A B

C D

)(
13 −X
03 13

)

=

(
A+ S( αN )C −AX +B− S( αN )CX + S( αN )D

C −CX +D

)

is in Γ
(3)
0 (M) (for the moment we only assume here that

(
A B

C D

)
is integral.

The conditions N2 |M and the congruences mod M and N will then be forced
to hold). The first (evident) condition is that C ≡ 0modM . It is easy to see
that the two numbers on the diagonal

−CX +D and A+ S(
α

N
)C

are integers, if C is congruent to 0 modulo N .
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The remaining condition is that

−AX +B− S(
α

N
)CX + S(

α

N
)D

is integral, which is satisfied if C ≡ 0modN2 and −A ·X + S( αN )D is integral.
Therefore we should choose any X satisfying

(NX) ≡ AS(α)D mod N

where A is a (multiplicative) inverse of the matrix A mod N . Now we use the
fact that A ≡ diag(A1, A2, A3) mod N and D ≡ diag(D1, D2, D3) mod N are
matrices which are diagonal modulo N , we may therefore choose the integral
symmetric matrix NX to be modulo N equal to

NX := S
(3)
ij

(
Ai · α ·Dj

)
⇒ X = X(α) = S

(3)
ij

(
Ai · α ·Dj

N

)
.

By the above,

Fφij |k

(
A B

C D

)
=

∑

α mod N

φ(α)F |k

(
1 S( αN )
0 1

)(
A B

C D

)

=
∑

α mod N

φ(α)F |k

(
Ã B̃

C̃ D̃

)(
1 X(α)
0 1

)

where

(
Ã B̃

C̃ D̃

)
∈ Γ

(3)
1 (M,N) with

Ã ≡ A mod
M

N
and D̃ ≡ D mod

M

N

(in particular, these congruences hold mod N). Therefore

Fφij |k

(
A B

C D

)
= χ(det(D))ψ1(D1) . . . ψn(Dn)

∑

α mod N

φ(α)F |k

(
13 X(α)
03 13

)
.

Instead of summing over α we may as well sum over β := Di · α ·Dj mod N.
Then we obtain

χ(det(D))ψ1(D1) . . . ψn(Dn)ϕ(Di)ϕ(Dj)
∑

β mod N

φ(β)F |k

(
13 S

(3)
ij ( βN )

03 13

)

= χ(det(D)ψ1(D1) . . . ψn(Dn)ϕ(Di)ϕ(Dj)F
φ
ij .

Notice that the properties of Propositions 1.6 hold for the iterated twists, and
Propositions 1.5 follows from Propositions 1.6 by three iterated twists with N
equal to Npv.
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2 Computation of the canonical projection

2.1 A general construction: the canonical λ-characteristic pro-
jection

We explain now a general method which associates a p-adic measure µλ,Φ on
a profinite group Y , to a sequence of distributions Φr on Y with values in
a suitable (infinite dimensional) vector space M of modular forms, and to a
nonzero eigenvalue λ of the Atkin operator U = Up acting on M. We consider
holomorphic (or nearly-holomorphic) modular forms in a space of the type

M = Mk(ψ,Q) =
⋃

v≥0

Mk(Np
v, ψ,Q) ⊂ M(Cp) =

⋃

v≥0

Mk(Np
v, ψ,Cp),

with finite dimensional vector spaces Mk(Np
v, ψ,Q) at each fixed level, en-

dowed with a natural Q-rational structure (for example, given by the Fourier
coefficients). The parameters here are triples k = (k1, k2, k3), ψ = (ψ1, ψ2, ψ3)
of weights and characters. The important property of our construction is that
does not use passage to a p-adic limit. We put

Mk(Np
v, ψ,A) = Mk(Np

v, ψ,Q)⊗Q A.

for any Q-algebra A.

Definition 2.1 Let A = Cp , A = Q, or A = C, and M = M(A).

(a) For a λ ∈ A let us define M(λ) = Ker (U −λI) the subspace of eigenvectors
with eigenvalue λ).

(b) Let us define the λ-characteristic subspace of U on M by

M
λ =

⋃

n≥1

Ker (U − λI)n

(c) Let us define for any v ≥ 0

M
λ(Npv) = M

λ ∩M(Npv), M
(λ)(Npv) = M

(λ) ∩M(Npv).

Proposition 2.2 Let ψ mod N be a fixed Dirichlet character, then
Uv(M(Npv+1, ψ)) ⊂ M(Np,ψ).

Proof follows from a known formula of J.-P. Serre: for g ∈ Mk(Np
v+1, ψ),

g|kU
v = p3v(k/2−1)g|kWNpv+1TrNp

v+1

Np WNp, (2.1)

where WN : M(N,ψ) → M(N, ψ̄) is the involution (over C) of level N (see
[Se73] for the elliptic modular case, which extends to the triple modular case).
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Proposition 2.3 Let A = Cp or A = Q, M = M(A), λ ∈ A∗, and let Uλ be
the restriction of U on Mλ, then

(a) (Uλ)v : Mλ(Npv+1)
∼
→ Mλ(Np) is an A-linear invertible operator, where

Uλ = U |Mλ(Npv+1).

(b) The vector subspace Mλ(Npv+1) = Mλ(Np) does not depend on v.

(c) Let πλ,v+1 : M(Npv+1) → Mλ(Npv+1) be the projector on the λ-

characteristic subspace of U with the kernel Ker (πλ,v) =
⋂

n≥1

Im(U − λI)n =

⊕

β 6=λ

M
β(N0p

v)), then the following diagram is commutative

M(Npv+1) −→
πλ,v+1

Mλ(Npv+1)

Uv
y

y≀ Uv

M(Np) −→
πλ,1

Mλ(Np)

(2.2)

Let us use the notation

πλ(g) = (Uλ)−vπλ,1(U
v(g)) ∈ M

λ(Γ0(Np), ψ,C) (2.3)

for the canonical λ-characteristic projection of g ∈ M(Γ0(Np
v+1), ψ,C).

Proof of (a). The linear operator (Uλ)v acts on the A-linear vector space
Mλ(Npv+1) of finite dimension, and its determinant is in A∗, hence the A-
linear operator (Uλ)v is invertible.

Proof of (b). We have the obvious inclusion of vector spaces: Mλ(Np) ⊂
Mλ(Npv+1). On the other hand the A-vector spaces Mλ(Npv+1) and Mλ(Np)
are isomorphic by (a), hence they coincide:

M
λ(Np) ⊂ M

λ(Npv+1) = Uv(Mλ(Npv+1)) ⊂ M
λ(Np).

Proof of (c). Following the theory of reduction of endomorphisms in finite
dimensional vector spaces over a field K, the canonical projector πλ,v onto the
λ-characteristic subspace

⋃
n≥1 Ker (U − λI)n with the kernel

⋂
n≥1 Im(U −

λI)n can be expressed, on one hand, as a polynomial of U over K, hence πλ,v
commutes with U . On the other hand, the restriction of πλ,v+1 on M(Np)
coincides with πλ,1 : M(Np) → Mλ(Np), because its image is

⋃

n≥1

Ker (U − λI)n ∩M(Np) =
⋃

n≥1

Ker (U |M(Np) − λI)n,

and its kernel is

⋂

n≥1

Im(U − λI)n ∩M(Np) =
⋂

n≥1

Im(U |M(Np) − λI)n.
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2.2 A general result on admissible measures with values in mod-
ular forms (a criterion for admissibility)

Consider the profinite group Y = lim
←−
v

Yv where Yv = (Z/NpvZ)×. There is a

natural projection yp : Y → Z×
p . Let A be a normed ring over Zp, and M be a

normed A-module with the norm | · |p,M .
Let us recall Definition 0.1, c): for a given positive integer h an h-admissible
measure on Y with values in M is an A-module homomorphism

Φ̃ : Ph(Y,A) →M

such that for fixed a ∈ Y and for v → ∞
∣∣∣∣∣

∫

a+(Npv)

(yp − ap)
h′dΦ̃

∣∣∣∣∣
p,M

= o(p−v(h
′−h)) for all h′ = 0, 1, . . . , h− 1,

where ap = yp(a), P
h(Y,A) denotes the A-module of locally polynomial func-

tions of degree < h of the variable yp : Y → Z×
p →֒ A×. We adopt the notation

(a)v = a+(Npv) for both an element of Yv and the corresponding open compact
subset of Y .
We wish now to construct an h-admissible measure Φ̃λ : Ph(Y,A) → M(A) out
of a sequence of distributions

Φλr : P1(Y,A) → M(A)

with values in an A-module M = M(A) of modular forms over A as in Section
2.1).
For this purpose we recall first Proposition 2.3, (c). Suppose that λ ∈ A× is an
invertible element of the algebra A. Recall that the λ-characteristic projection
operator

πλ,v : M(Npv;A) → M(Npv;A)λ ⊂ M(Npv;A) (v ≥ 1)

is determined by the kernel
⋂

n≥1

Im(U − λI)n; this projector is given as a poly-

nomial of U over A whose degree is bounded by the rank of M(Npv;A).
Using Proposition 2.3(c), the sequence of projectors πλ,v can be glued to the
canonical projection operator

πλ : M(A) → M(A)λ ⊂ M(A) (2.4)

given for all g ∈ M(A) by

πλ(g) = gλ = U−v [πλ,1U
v(g)]

(gλ is well defined if v is sufficiently large so that g ∈ M(Npv+1)).
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Next we construct an admissible measure

Φ̃λ : Ph(Y,A) → M(Np;A)

such that ∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v) = πλ(Φr((a)v))

where Φr : P1(Y,A) → M(A) are M(A)-valued distributions on Y for r =
0, 1, . . . , h− 1 , and Φλr ((a)v) are their λ-characteristic projections given by

Φλr ((a)v) = U−v′
[
πλ,1U

v′Φr((a)v)
]

for any sufficiently large v′. Note first of all that the definition
∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v) = U−κv [πλ,1U

κvΦr((a)v)] .

of the linear form Φ̃λ : Ph(Y,A) → M(A) is independent on the choice of the
level: for any sufficiently large v′, we have by Proposition 2.3 the following
comutative diagram

M(Npv
′+1;A)

πλ,v′+1
−→ M(Npv

′+1;A)λ

Uv
′
y

y≀ Uv
′

M(Np;A)
πλ,1
−→ M(Np;A)λ

in which the right vertical arrow is an A-isomorphism by Proposition 2.3 (b),
and the A-linear endomorphism U commutes with the characteristic projectors
πλ,v′+1, πλ,1. Hence the following sequence stabilizes: for some v′0 and for all
v′ ≥ v′0 we have that

U−v′
[
πλ,1U

v′Φr((a)v)
]
= U−v′0

[
πλ,1U

v′0Φr((a)v)
]
.

Theorem 2.4 Let λ ∈ A be an element whose absolute value is a positive
constant with 0 < |λ|p < 1. Suppose that there exists a positive integer κ such
that for any (a)v ⊂ Y the following two conditions are satisfied:

Φr
(
(a)v

)
∈ M(N ′pκv), with N ′ independent of v, (level)

∣∣∣∣∣U
κv
( r∑

r′=0

(
r

r′

)
(−y0p)

r−r′Φr′
(
(a)v)

))
∣∣∣∣∣
p

≤ Cp−vr (growth)

for all r = 0, 1, . . . , h− 1 with h = [κordp(λ)] + 1.

Then there exists an h-admissible measure Φ̃λ : Ph(Y,A) → M such that for
all ((a)v) ⊂ Y and for all r = 0, 1, . . . , h− 1 one has

∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v)
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where
Φλr ((a)v) = πλ(Φr((a)v)) := U−κv [πλ,1U

κvΦr((a)v)]

is the canonical projection of πλ of the modular form Φr((a)v) (note
that UκvΦr((a)v) ∈ M(Npκv;A)λ = M(Np;A)λ because of the inclusion
Uκv−1(M(Npκv;A)) ⊂ M(Np;A) for all v ≥ 1, see Proposition 2.3 (a))

Proof. We need to check the h-growth condition of Definition 0.1, c) for the
linear form

Φ̃λ : Ph(Y,A) → M(A)λ

(given by the condition of Theorem 2.4). This growth condition says that for
all a ∈ Y and for v → ∞

∣∣∣∣∣

∫

(a)v

(yp − y0p)
r dΦ̃λ

∣∣∣∣∣
p,M

= o(p−v(r−h))

for all r = 0, 1, . . . , h− 1, where h = [κordp(λ)] + 1 and y0p = yp(a).

Let us develop the definition of Φ̃λ using the binomial formula:

∫

(a)v

(yp − y0p)
r dΦ̃λ =

r∑

r′=0

(
r

r′

)
(−y0p)

r−r′Φλr′((a)v) = λ−vκ ·

λvκ · U−vκ

[
πλ,1U

κv
( r∑

r′=0

(
r

r′

)
(−y0p)

r−r′Φr′
(
(a)v

))
]
. (2.5)

First we notice that all the operators

λvκ · U−vκ =
(
λ−1U

)−vκ
=
(
I + λ−1Z

)−vκ
=

n−1∑

j=0

(
−vκ

j

)(
λ−1Z

)j

are uniformly bounded for v → ∞ by a positive constant C1 (where U =
λI +Z and Zn = 0 where n is the rank of M(Np;A)). Note that the binomial

coefficients

(
−vκ

j

)
are all Zp-integral.

On the other hand by the condition (growth) of the theorem (for the distribu-
tions Φr) we have the following inequality:

∣∣∣∣∣U
κv(

r∑

r′=0

(
r

r′

)
(−y0p)

r−r′Φr′((a)v))

∣∣∣∣∣
p,M

≤ Cp−vr

for all r = 0, 1, . . . ,κh− 1. If we apply to this estimate the previous bounded
operators we get

∣∣∣∣∣

∫

(a)v

(yp − y0p)
r dΦ̃λ

∣∣∣∣∣
p,M

≤ C · C1|λ
−vκ |p · p

−vr = o(p−v(r−h))
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because of the estimate

|λ−vκ |p =
(
pordp(λ)

)vκ
= o(pvh), and κordp(λ) < h = [κordp(λ)] + 1.

(2.6)

We apply Theorem 2.4 in Section 5.1 in order to obtain a p-adic measure in
the form µλ,Φ = ℓ(πλ(Φ)). Here λ is a non-zero eigenvalue of Atkin’s operator
U = Up acting on M, ℓ : Mλ(Np;A) → A is an A-linear form, applied to the
projection πλ : M → Mλ ⊂ Mλ(Np;A) of a modular distribution Φ, where
A = Cp.

3 Main Congruence for the higher twists of the Siegel-
Eisenstein series

The purpose of this section is to show that the admissibility criterion of The-
orem 2.4 with h∗ = 2 is satisfied by a sequence of modular distributions (1.2),
constructed in Section 1.

3.1 Construction of a sequence of modular distributions

As in the Introduction, consider the series Fχ,r = G⋆(Z,−r; k, (Npv)
2
,ψ), given

by (A.12), viewed as formal (nearly-holomorphic) Fourier series, whose coeffi-
cients admit explicit polynomial expressions. The only property that we use
in this section is the fact that they can be written in terms of simple p-adic
integrals:

Fχ,r =
∑

T

det(T)k−2r−κQ(R,T; k − 2r, r)aχ,r(T)q
T,

[PaSE], [PaIAS] and (1.1)). Here we use a universal polynomial, described in
[CourPa], Theorem 3.14 as follows:

Q(R,T) = Q(R,T; k − 2r, r) (3.1)

=
r∑

t=0

(
r

t

)
det(T)r−t

∑

|L|≤mt−t

RL(κ− k + r)QL(R,T),

QL(R,T) = tr
(
tρm−l1(R)ρ

⋆
l1(T)

)
· . . . · tr

(
tρm−lt(R)ρ

⋆
lt(T)

)
),

where we use the natural representation ρr : GLm(C) −→ GL(∧rCm) (0 ≤
r ≤ m) of the group GLm(C) on the vector space ΛrCm. Thus ρr(z) is a
matrix of size

(
m
r

)
×
(
m
r

)
composed of the subdeterminants of z of degree r.

Put ρ⋆r(z) = det(z)ρm−r(
tz)−1. Then the representations ρr and ρ

⋆
r turn out to

be polynomial representations so that for each z ∈ Mm(C) the linear operators
ρr(z), ρ

⋆
r(z) are well defined. In (3.1), L runs over all the multi-indices 0 ≤

l1 ≤ · · · ≤ lt ≤ m, such that |L| = l1 + · · · + lt ≤ mt − t. The coefficients
RL(β) ∈ Z[1/2][β] in (3.1) are polynomials in β of degree (mt− |L|) and with
coefficients in the ring Z[1/2].
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3.2 Utilizing the admissibility criterion

Recall an important property of the sequence of distributions Φr defined by
(1.2), Section 1: the nebentypus character of Φr(χ) is (ψ1, ψ2, ψ3), so that it
does not depend on χ. Now let us prove that the sequence of distributions Φr on
Y produces a certain admissible measure Φ̃ with values in a finite dimensional
Cp-vector subspace

M
λ ⊂ M, M = Mk,r(Cp)⊗Mk,r(Cp)⊗Mk,r(Cp),

(of nearly-holomorphic triple modular forms over Cp) using a general admissi-
bility criterion (see Theorem 2.4).

3.3 Sufficient conditions for admissibility of measures with val-
ues in nearly-holomorphic modular forms

In order to construct the admissible measures of Theorem B we use the admis-
sible measures µ̃λ(f1 ⊗ f2 ⊗ f3, y) constructed in Section 5 out of the modular
distributions Φr in the form

µ̃λ(f1 ⊗ f2 ⊗ f3)(χy
r
p) = ℓ(πλ(Φr)(χ)).

The growth condition for µ̃λ follows then from a growth condition for Φr:

sup
a∈Y

∣∣∣∣∣

∫

a+(Npv)

(yp − ap)
rdΦ̃λ

∣∣∣∣∣
p

= o
(
|Npv|r−2ordpλ

p

)
, (3.2)

where
Φ̃λ(χyrp) = πλ(Φr(χ)).

Let us use a general result giving a sufficient condition for the admissibility
of measures with values in nearly-holomorphic Siegel modular forms (given in
Theorem 2.4) with κ = 2, h = [2ordpλ] + 1. Then we need to check that the
nearly-holomorphic triple modular forms Φr(χ) are of level N

2χ2v, nebentypus
(ψ1, ψ2, ψ3), and satisfy the congruences

∣∣∣∣∣U
2v
T

( r∑

r′=0

(
r

r′

)
(−a0p)

r−r′Φr′
(
(a)v)

))
∣∣∣∣∣
p

≤ Cp−vr (3.3)

and for all r = 0, 1, · · · , k − 2.

3.4 Special Fourier coefficients of the higher twist of the
Siegel-Eisenstein distributions

Let us use the Fourier expansions (1.13) for Ψr(χ). These formulas directly
imply the Fourier expansion of Φr(χ)|U

2v
p as follows

Φr(χ)|U
2v
p =

∑

t1,t2t3≥0

a(p2vt1, p
2vt2, p

2vt3; p
2vR1, p

2vR2, p
2vR3, r)q

t1
1 q

t2
2 q

t3
3

(3.4)
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with

a(p2vt1, p
2vt2, p

2vt3; p
2vR1, p

2vR2, p
2vR3, r)

=
∑

T:diag(T)=(p2vt1,p2vt2,p2vt3)

χ̄(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23)×

× det(T)k−2r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T)

=
∑

T:diag(T)=(p2vt1,p2vt2,p2vt3)

vχ,r(T, diag(R1, R2, R3)),

where

vχ,r(T, diag(R1, R2, R3)) = χ̄(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23)× (3.5)

× det(T)k−2r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T)

= χ(p)(2)χ̄(p)(T)χ◦(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23)×

× det(T)k−2r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T).

Let us notice that, for any T with diag(T) = (p2vt1, p
2vt2, p

2vt3) one has

det(T) ≡ 2t12t13t23 mod p2v,

χ(p)(2t12t13t23) = χ(p)(det(T)) = χ(det(T)χ◦(det(T),

2raχ,r(T) =

∫

Y

yrpχ(y)dFT,

with χ = χ(p)χ◦, χ(p) mod pv, χ◦ mod N, and p ∤ N,

for a bounded measure FT on Y with values in Q. It follows that

vχ,r(T, diag(R1, R2, R3))

= χ(p)(2)χ̄(det(T)) det(T)−rχ◦(det(T)ψ̄2ψ3(t13)ψ̄1ψ3(t23)· (3.6)

· det(T)k−r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T) (3.7)

= det(T)k−r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)χ◦(2)

∫

Y

χyrpdFT;χ◦,ψ1,ψ2,ψ3
,
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where FT;χ◦,ψ1,ψ2,ψ3
denotes the bounded measure defined by the equality:

∫

Y

χyrpdFT;χ◦,ψ1,ψ2,ψ3
(3.8)

= χ(p)(2)χ◦(2)2rχ̄(det(T)) det(T)−rχ◦(det(T)ψ̄2ψ3(t13)ψ̄1ψ3(t23)aχ,r(T).

3.5 Main Congruence for the Fourier expansions

Let us use the orthogonality relations for Dirichlet characters in order to prove
the admissibility of the distributions given by the sequence πλ(Φr(χ)) using the
Fourier expansions (3.4). According to the admissibility criterion of Theorem
2.4 we need to check the following Main Congruence:

∣∣∣
r∑

r′=0

(
r

r′

)
(−a0p)

r−r′ 1

ϕ(Npv)

∑

χ mod Npv

χ−1(a)vχ,r′(T, p
2v diag(R1, R2, R3))

∣∣∣
p

≤ Cp−vr, (3.9)

where we use the notation (3.6) for vχ,r′(T, diag(R1, R2, R3)), implying that
the coefficients

ip(vχ,r′(T, diag(R1, R2, R3)))

in (3.5) are given as sums of the following expressions:

Br(χ,T) = χ◦(2) det(T)k−r−κ
∫

Y

χyrpdFT;χ◦,ψ1,ψ2,ψ3
· (3.10)

·

r∑

t=0

(
r

t

)
det(T)r−t

∑

|L|≤mt−t

RL(κ− k + r)QL(p
2v diag(R1, R2, R3),T),

where FT;χ◦,ψ1,ψ2,ψ3
denotes the bounded measure defined by (3.8). Using

the expressions (3.10), the main congruence (3.9) is reduced to proving the
congruence for the numbers Br(χ,T): there exists a non-zero integer Ck such
that

Ck ·

r∑

r′=0

(
r

r′

)
(−a0p)

r−r′ 1

ϕ(Npv)

∑

χ mod Npv

χ−1(a)Br′(χ,T) ≡ 0 mod pvr

(3.11)

⇐⇒ Ck ·A ≡ 0 mod Npvr,
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where we use the notation

A =Ar(T;χ
◦, ψ1, ψ2, ψ3) =

r∑

r′=0

(
r

r′

)
(−a0p)

r−r′ 1

ϕ(Npv)

∑

χ mod Npv

χ−1(a)·

(3.12)

· χ◦(2) det(T)k−r
′−κ

∫

Y

χyr
′

p dFT;χ◦,ψ1,ψ2,ψ3

r′∑

t=0

(
r′

t

)
det(T)r

′−t

∑

|L|≤mt−t

RL(κ− k + r′)QL(p
2v diag(R1, R2, R3),T).

Note that RL(κ − k + r′) is a polynomial of degree mt − |L| = 3t − |L| in

κ − k + r′ (see (3.1)), hence in r′, and
(
r′

t

)
is a polynomial of degree t in r′.

One can therefore write

(
r′

t

)
RL(κ− k + r) =

4t−|L|∑

n=0

µn
(r′ + n+ 1)!

(r′ + 1)!
.

Here the coefficients µn are fixed rational numbers (independent of r′).
Using the orthogonality relations for Dirichlet characters modNpv, we see that
the sum over r′ in (3.12), denoted by C = Cr(t, L,T;χ

◦, ψ1, ψ2, ψ3), takes the
form

Cr(t, L,T;χ
◦, ψ1, ψ2, ψ3) = χ◦(2) det(T)k−t−κ

∫

y≡a mod pv

4t−|L|∑

n=0

µn

r∑

r′=0

(
r

r′

)
(−a)r−r

′ (r′ + n+ 1)!

(r′ + 1)!
yr
′

︸ ︷︷ ︸
y−n

∂n

∂yn
(
yn+1(y − a)r

)

dFT;χ◦,ψ1,ψ2,ψ3
(y)

Note that we write χ = χ◦χ(p), fix χ◦, and sum over all characters χ(p) mod pv.
We have therefore (y−a)r ≡ 0 mod (pv)r in the integration domain y ≡ a mod
pv, implying the congruence

ckCr(t, L,T;χ
◦, ψ1, ψ2, ψ3) ≡ 0 (mod (pv)r−n) ≡ 0 (mod (pv)r−4t+|L|),

(3.13)
where ck ∈ Q∗ is a nonzero constant coming from the denominators of the fixed
rational numbers µn, and of the bounded distributions FT;χ◦,ψ1,ψ2,ψ3

.

3.6 Proof of the Main Congruence

Now the expression (3.12) transforms to

Ar(T) =
r∑

t=0

∑

|L|≤2t

det(T)t ·C(t, L,T) det(T)k−2r−κQL(p
2v diag(R1, R2, R3),T),

(3.14)
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where QL(p
2v diag(R1, R2, R3),T) is a homogeneuos polynomial of degree 3t−

|L| in the variables Rij implying the congruence

QL(p
2v diag(R1, R2, R3),T) ≡ 0 (mod (p2v)(3t−|L|)). (3.15)

On the other hand we know from the description (3.1) of the polynomial

Q(R,T) = Q(R,T; k − 2r, r) =

r∑

t=0

(
r

t

)
det(T)r−t

∑

|L|≤2t

RL(κ− k + r)QL(R,T),

QL(R,T) = tr
(
tρ3−l1(R)ρ

⋆
l1(T)

)
· . . . · tr

(
tρ3−lt(R)ρ

⋆
lt(T)

)
,

that 2t− |L| ≥ 0 so we obtain the desired congruence as follows
{
ckCr(t, L,T) ≡ 0 (mod (pv)r−4t+|L|)

QL(p
2v diag(R1, R2, R3),T) ≡ 0 (mod (p2v)(3t−|L|))

(3.16)

⇒ ckAr(T) ≡ 0 (mod pvr),

since v(r − 4t+ |L|) + 2v(3t− |L|) = vr + 2vt− v|L| ≥ vr, proving (3.9).

3.7 Construction of admissible measures with values in nearly-
holomorphic modular forms

We wish now to construct an h-admissible measure Φ̃λ : Ph(Y,A) → MT (A)
on Y out of the following sequence of the higher twists of Siegel-Eisenstein
distributions given by the equality (1.2):

Φr := 2r diag∗ Ψr = 2rF χ̄1,χ̄2,χ̄3
χ,r ,Φr : P

1(Y,A) → MT (A)

(they take values in the A-module

M = MT (ψ1, ψ2, ψ3;A) ⊂ Mk,r(ψ1;A)⊗Mk,r(ψ2;A)⊗Mk,r(ψ3;A)

of triple modular forms over A = Cp or A = Q).

Theorem 3.1 Let λ ∈ A be an element whose absolute value is a positive
constant with 0 < |λ|p < 1, and define h = [2ordp(λ)] + 1. Then the sequence
(1.2) satisfies for any (a)v ⊂ Y the following two conditions:

Φr
(
(a)v

)
∈ M(N ′p2v), with N ′ independent of v, (level)

∣∣∣∣∣U
2v
T

( r∑

r′=0

(
r

r′

)
(−y0p)

r−r′Φr′
(
(a)v)

))
∣∣∣∣∣
p

≤ Cp−vr (growth)

for all r = 0, 1, . . . , h− 1.
Moreover, there exists an h-admissible measure Φ̃λ : Ph(Y,A) → MT such that
for all ((a)v) ⊂ Y and for all r = 0, 1, . . . , h− 1 one has

∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v)
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where

Φλr ((a)v) = πλ,T (Φr((a)v)) := U−2v
T

[
πλ,1U

2v
T Φr((a)v)

]

is the canonical projection of πλ of the triple modular form Φr((a)v) (note
that U2v

T Φr((a)v) ∈ MT (Np
2v;A)λ = MT (Np;A)

λ because of the inclusion
U2v−1
T (MT (Np

2v;A)) ⊂ MT (Np;A) for all v ≥ 1, see Proposition 2.3 (a)).

Proof. We use Theorem 2.4 with κ = 2, and we to check the h-growth condition
for the A-linear map

Φ̃λ : Ph(Y,A) → MT (A)

defined in Theorem 3.1. We have to check that for any ((a)v) ∈ Y the following
two conditions are satisfied: for all r = 0, 1, . . . , h− 1,

Φr((a)v) ∈ M(N2p2v), (level)

∣∣∣∣∣U
2v
T

( r∑

r′=0

(
r

r′

)
(−y0p)

r−r′Φr′((a)v)
)∣∣∣∣∣
p

≤ Cp−vr. (growth)

The (level) condition is implied by the definition (1.2)

Φr(χ) =2r diag∗ F χ̄1,χ̄2,χ̄3
χ,r ,

and Proposition 1.5.
The (growth) is deduced from the Main Congruence (3.9) (proved in Section
3.6) for the Fourier coefficients of the functions (1.2).

4 A trilinear form on the characteristic subspace of the U-
operator

4.1 The adjoint operator U∗

Let f =
∑∞
n=1 anq

n denote a primitive cusp eigenform of conductor dividing
Np, with coefficients ip(an) in a finite extension K of Qp and of Dirichlet
character ψ modulo N . Let α ∈ K be a root of the Hecke polynomial x2 −
ap(f)x+ ψ(p)pk−1 as above, and let α′ denote the other root.
Recall that the function f0 =

∑∞
n=1 an(f0)q

n ∈ Q[[q]] is defined by (0.9) as
an eigenfunction of U = Up with the eigenvalue α ∈ Q. In the following
proposition, let U∗ denote the operator adjoint to

U = Up : Mr,k(Γ1(Np),C) → Mr,k(Γ1(Np),C)

in the complex vector space Mr,k(Γ1(Np),C) with respect to the Petersson
inner product.

Proposition 4.1 (a) The following operator identity holds: U∗ =W−1
NpUWNp

(in the complex vector space Mr,k(Γ1(Np),C)).
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(b)There are the following identities in Mr,k(Γ1(Np),C):

f0|U∗ = αf0 and Tl(f
0) = al(f)f

0

for all “good primes” l ∤ Np.
(c) The linear form g 7→ 〈f0, g〉Np on Mr,k(Γ1(Np),C) vanishes on the complex
vector subspace Kerπα,1 = Im(U−αI)n1 where n1 = dimMr,k(Γ1(Np),C), and
we use the same notation as above

πα,1 : Mr,k(Γ1(Np),C) → M
α
r,k(Γ1(Np),C)

for the complex characteristic projection onto the α-primary subspace of
the operator U (acting on the finite-dimensional complex vector space
Mr,k(Γ1(Np),C)) hence

〈f0, g〉Np = 〈f0, πα,1(g)〉Np

(d) If g ∈ M(Npv+1;Q) and α 6= 0, then we have the equality

〈f0, πα(g)〉Np = α−v〈f0, Uvg〉Np

where
πα(g) = gα = U−v

[
πα,1U

vg
]
∈ M

α(Np)

is the α-part of g.
(e) The linear form

Lf,α : M(Npv;C) → C, g 7→
〈f0, α−vUv(g)〉Np

〈f0, f0〉Np

is defined over Q:
Lf,α : M(Npv;Q) → Q

and there exists a unique Cp-linear form ℓf,α on M(Npv;Cp) = M(Npv;Q)⊗ip
Cp such that ℓf,α(g) = ip(Lf,α(g)) for all g ∈ ip(M(Npv;Q)).

Proof (a) See [Miy], Theorem 4.5.5 (see also [Ran90]).
(b) Let us use directly the statement a):

f0|U∗ = fρ0 |WNpW
−1
NpUWNp = ᾱfρ|WNp = ᾱf0.

(c) If g ∈ Kerπα,1 = Im(U − αI)n1 then g = (U − αI)n1g1 and

〈f0, (U − αI)n1g1〉Np = 〈(U∗ − ᾱI)f0, (U − αI)n1−1g1〉Np = 0

hence 〈f0, g〉Np = 0; moreover

〈f0, g〉Np = 〈f0, πα,1(g) + (g − πα,1(g))〉Np = 〈f0, πα,1(g)〉Np.
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(d) Let us use the definitions and write the following product:

αv〈f0, παg〉Np = 〈U∗v(f0), U−v
[
πα,1U

vg
]
〉Np

= 〈f0, πα,1(U
vg)〉Np = 〈f0, Uvg〉Np

by (c) as Uvg ∈ M(Np).
(e) Note that Lf,α(f0) = 1, f0 ∈ M(Np;Q). Consider the complex vector space

KerLf,α = 〈f0〉⊥ = {g ∈ M(Npv;C) | 〈f0, g〉Npv = 0}.

It admits a Q-rational basis (as it is stable under all “good” Hecke operators
Tl (l ∤ Np):

〈f0, g〉Npv = 0 ⇒ 〈f0, Tlg〉Npv = 〈T ∗
l f

0, g〉Npv = 0

and diagonalizing the action of Tl (over Q) we get such a basis establishing e).
We obtain then the Cp-linear form ℓf,α on M(Npv;Cp) = M(Npv;Q) ⊗ip Cp
such that ℓf,α(g) = ip(Lf,α(g)) by extending scalars from Q to Cp via the
imbedding ip.
Note that we use here only the α-part M(Npv;A)α because the constructed
linear form ℓf,α passes through the πα (for A = Cp , A = Q, or A = C).
Moreover, f0 can be included to a basis {f0, gi}i=2,··· ,n of M(Npv;A)α, where
gi are eigenfunctions of all Hecke operators Tl for primes l ∤ Np; they are
algebraically orthogonal to f0 (in the sense of the algebraic Petersson product
studied by Hida [Hi90]) so that projection to the f0 part of this basis gives such
an A-linear form.

4.2 The triple U-operator

In the following proposition, we consider the triple U -operator

UT = U1,p ⊗ U2,p ⊗ U3,p : MT (Γ1(Np),C) → MT (Γ1(Np),C), where (4.1)

MT (Γ1(Np),C) = Mk1(Γ1(Np),C)⊗Mk2(Γ1(Np),C)⊗Mk3(Γ1(Np),C),

acting on the complex vector space MT (Γ1(Np),C) endowed with the triple
Petersson inner product 〈·, ·〉 defined by

〈g1 ⊗ g2 ⊗ g3, h1 ⊗ h2 ⊗ h3〉T = 〈g1, h1〉Np〈g2, h2〉Np〈g3, h3〉Np.

Let
U∗
T = U∗

1,p ⊗ U∗
2,p ⊗ U∗

3,p

denote the adjoint operator on MT (Γ1(Np),C) for the triple Petersson inner
product. Recall the notation (0.9) and (0.10):

fj,0 = fj − α
(2)
p,jfj |Vp = fj − α

(2)
p,jp

−k/2fj |

(
p

0

0

1

)

fρj,0 =

∞∑

n=1

a(n, f0)q
n, f0j = fρj,0|k WNp = fρj,0

∣∣∣
k

(
0

Np

−1

0

)
.
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Proposition 4.2 (a) The following operator identity holds:

U∗
T =W−1

NpUp,1WNp ⊗W−1
NpUp,2WNp ⊗W−1

NpUp,3WNp

(in the complex vector space MT (Γ1(Np),C)).
(b) There are the following identities in MT (Γ1(Np),C):

U∗
T (f

0
1 ⊗ f02 ⊗ f03 ) = λ(f01 ⊗ f02 ⊗ f03 ).

(c)The linear form on MT (Γ1(Np),C) defined by

g1⊗g2⊗g3⊗ 7→
〈
f01 ⊗ f02 ⊗ f03 , g1 ⊗ g2 ⊗ g3

〉
T
= 〈f01 , g1〉Np〈f

0
2 , g2〉Np〈f

0
3 , g3〉Np

vanishes on the complex vector subspace Kerπλ,T,1 = Im(UT −λI)nT where we
write nT = dimMT (Γ1(Np),C), and we use the notation

πλ,T,1 : MT (Γ1(Np),C) → M
λ
T (Γ1(Np),C)

for the complex characteristic projection onto the λ-primary subspace of
the operator UT acting on the finite-dimensional complex vector space
MT (Γ1(Np),C). Moreover, the following equality holds

〈
f01 ⊗ f02 ⊗ f03 , g1 ⊗ g2 ⊗ g3

〉
T
=
〈
f01 ⊗ f02 ⊗ f03 , πλ,T,1(g1 ⊗ g2 ⊗ g3)

〉
T
.

(d) If g ∈ MT (Np
v+1;Q) and λ 6= 0, then we have the equality

〈f01 ⊗ f02 ⊗ f03 , πλ,T (g)〉T,Np = λ−v〈f01 ⊗ f02 ⊗ f03 , U
v
T g〉T,Np

where

πλ,T (g) = gλ = U−v
T

[
πλ,T,1U

v
T g
]
∈ M

λ
T (Np)

is the λ-part of g.
(e) The linear form

LT,λ : MT (Np
v;C) → C, g 7→

〈f01 ⊗ f02 ⊗ f03 , λ
−vUvT g〉T,Np

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,Np

is defined over Q:

LT,λ : MT (Np
v;Q) → Q

and there exists a unique Cp-linear form ℓT,λ on MT (Np
v;Cp) =

MT (Np
v;Q)⊗ipCp such that ℓT,λ(g) = ip(Lf,α(g)) for all g ∈ ip(MT (Np

v;Q)).

Remark 4.3 We may view the trilinear form

(g1, g2, g3) 7→ ℓT,λ(g1 ⊗ g2 ⊗ g3)

as a p-adic version of the triple Petersson product following Hida [Hi90].
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Proof of Proposition 4.2, a), b) follows directly from that of Proposition 4.1.
In order to prove c) we need to show that the linear form on MT (Γ1(Np),C)
defined by

g1 ⊗ g2 ⊗ g3⊗ 7→
〈
f01 ⊗ f02 ⊗ f03 , g1 ⊗ g2 ⊗ g3

〉
T,Np

= 〈f01 , g1〉Np〈f
0
2 , g2〉Np〈f

0
3 , g3〉Np

vanishes on the complex vector subspace

Kerπλ,T,1 = Im(UT − λI)nT = (Ker (U∗
T − λI)nT )⊥.

It suffices to notice that

f01 ⊗ f02 ⊗ f03 ∈ Ker (U∗
T − λI) ⊂ Ker (U∗

T − λI)nT ,

because of the equality

U∗
T (f

0
1 ⊗ f02 ⊗ f03 ) = U∗

1,p(f
0
1 )⊗ U∗

2,p(f
0
2 )⊗ U∗

3,p(f
0
3 ) = λ(f01 ⊗ f02 ⊗ f03 ).

More precisely, if g ∈ Kerπλ,T,1 = Im(UT −λI)nT then g = (UT −λI)nT g1 and

〈f01 ⊗ f02 ⊗ f03 , (UT − λI)ng1〉T,Np

= 〈(U∗
T − λI)(f01 ⊗ f02 ⊗ f03 , (UT − λI)n−1g1)〉T,Np = 0

hence 〈f01 ⊗ f02 ⊗ f03 , g〉T,Np = 0. Moreover, the following equality holds

〈
f01 ⊗ f02 ⊗ f03 , g1 ⊗ g2 ⊗ g3

〉
T
=
〈
f01 ⊗ f02 ⊗ f03 , πλ,T,1(g1 ⊗ g2 ⊗ g3)

〉
T
,

by the definition of the projection πλ,T,1:

g1 ⊗ g2 ⊗ g3 − πλ,T,1(g1 ⊗ g2 ⊗ g3) ∈ Kerπλ,T,1.

d) Let us use the definitions and write the following product:

λv〈f01 ⊗ f02 ⊗ f03 , πλ,T g〉T,Np = 〈U∗
T
v(f01 ⊗ f02 ⊗ f03 ), U

−v
T

[
πλ,T,1U

v
T g
]
〉T,Np =

〈f01 ⊗ f02 ⊗ f03 , πλ,T,1(U
v
T g)〉T,Np = 〈f01 ⊗ f02 ⊗ f03 , U

v
T g〉T,Np

by c) as UvT g ∈ MT (Np).
e) Note that LT,λ(f

0
1 ⊗ f02 ⊗ f03 ) = 1, f01 ⊗ f02 ⊗ f03 ∈ MT (Np;Q). Consider the

complex vector space

KerLT,λ = 〈f01 ⊗ f02 ⊗ f03 〉
⊥ = {g ∈ MT (Np

v;C) | 〈f0, g〉T,Npv = 0}.

It admits a Q-rational basis (as in Proposition 4.1) establishing e).
We obtain then the Cp-linear form ℓT,λ on MT (Np

v;Cp) = MT (Np
v;Q)⊗ip Cp

such that ℓT,λ(g) = ip(LT,λ(g)) by extending scalars from Q to Cp via the
imbedding ip.

Documenta Mathematica · Extra Volume Coates (2006) 77–132
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5 Computation of p-adic integrals and L-values

5.1 Construction of p-adic measures

Let M = MT (A) =
⋃
v≥0 Mk,r(Np

v, ψ1;A) ⊗A Mk,r(Np
v, ψ2;A) ⊗A

Mk,r(Np
v, ψ3;A) be the A-module of nearly-holomorphic triple modular

forms with formal Fourier coefficients in A, where A = Cp. Let us define an
A-valued measure

µ̃λ(y; f1 ⊗ f2 ⊗ f3) : C
loc−an(Y,A) → A

by applying the trilinear form ℓT,λ : M(Npv;A) → A of Proposition 4.2

µ̃λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ(Φ̃
λ) (5.1)

to the h-admissible measure Φ̃λ of Theorem 2.4 on Y with values in M(A)λ ⊂
M(Np;A). That h-admissible measure was defined as an A-linear map Φ̃λ :
Ph(Y,A) → M(A)λ satisfying for any (a)ν ⊂ Y and for all r = 0, 1, . . . , h − 1
the following equality:

∫

(a)ν

yrp dΦ̃
λ = πλ(Φr((a)ν)) ∈ M(Np),

where h = [2ordpλ(p)] + 1, hence

∫

(a)ν

yrp dµ̃
λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ

(∫

(a)ν

yrp dΦ̃
λ(y)

)
. (5.2)

5.2 Evaluation of the integral

∫

Y

χ(y) yrp dµ̃
λ(y; f1 ⊗ f2 ⊗ f3) (5.3)

for r ∈ N, 0 ≤ r ≤ k − 2. The result is given in terms of Garrett’s triple L
function D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2 − r, ψ1ψ2χ). Let us use the action of the

involution WNj
=

(
0 −1
Nj 0

)
of the exact level Nj of fj :

fj
∣∣
k
WNj

=

(
0 −1
Nj 0

)
= γj · f

ρ
j , fρj

∣∣
k
WNj

=

(
0 −1
Nj 0

)
= γ̄j · fj ,

where fρj (z) =

∞∑

n=1

ān,je(nz) ∈ Sk(Nj , ψ̄j), (5.4)

(j = 1, 2, 3) and γj is the corresponding root number. (5.5)
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Recall the notation (0.9) and (0.10):

fj,0 = fj − α
(2)
p,jfj |Vp = fj − α

(2)
p,jp

−k/2fj |

(
p

0

0

1

)

fρj,0 =
∞∑

n=1

a(n, f0)q
n, f0j = fρj,0|k WNp = fρj,0

∣∣∣
k

(
0

Np

−1

0

)
.

Proposition 5.1 Under the notations and assumptions as in Theorem B.2,
the value of the integral (5.3) is given for 0 ≤ r ≤ k − 2 by the image under ip
of the following algebraic number

T · λ−2v
LNp(−r)

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0⊗〉T,N2p2v
,

where

T = 2−r
((Np)3/N1N2N3)

k/2γ̄1γ̄2γ̄3(χ1χ2χ3)(2)p
3·v(k−2)

N1,1N1,2N1,3G(χ1,0)G(χ2,0)G(χ3,0)
×

× (Np2v)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
.

γj is the corresponding root number, given by (5.4), and the factor LNp(−r),
given by (5.13).

Remark. In particular, Propostion 5.1 implies Theorem A, using a computa-
tion by B.Gorsse and G.Robert (see [Go-Ro]) that for some β ∈ Q

∗

〈f0,ρ1 ⊗ f0,ρ2 ⊗ f0,ρ3 , fρ1,0 ⊗ fρ2,0 ⊗ fρ3,0〉T,Np = β · 〈f1, f1〉N 〈f2, f2〉N 〈f3, f3〉N .

5.3 Evaluation of the trilinear form

In order to compute the p-adic integral, the next step of the proof uses com-
putations similar to those in [Hi85], §4 and §7. More precisely let us write the
integral in the form
∫

Y

χ(y) yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3) =
∑

a∈Yv

χ(a)

∫

(a)v

yrp dℓT,λ(Φ̃
λ)(y)) =

= ℓT,λ

(
∑

a∈Yv

χ(a)

∫

(a)v

yrp dΦ̃
λ(y)

)
= ℓT,λ

(
∑

a∈Yv

χ(a)Φλr ((a)v)

)
, (5.6)

where (a)v = (a+ (Npv)) ⊂ Y , and by definition (5.1)

µ̃λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ(Φ̃
λ)(y), (5.7)

∫

(a)v

yrp d
(
Φ̃λ
)
= Φλr ((a)v) ∈ M

λ
T (Np) (5.8)
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for r = 0, 1, . . . , h−1. Moreover Φr
(
(a)v

)
is a triple modular form given by (1.2)

of level N2p2v as a value of a higher twist of a Siegel-Eisenstein distributions,
hence

Φλr (χ) = U−2v
T

[
πλ,T,1U

2v
T

(
2rF χ̄1,χ̄2,χ̄3

χ,r ◦ diag
)]
. (5.9)

Taking into account the equalities (5.9), the integral (5.6) transforms to the
following

∫

Y

χ(y) yrp dµ̃
λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ

(
∑

a∈Yv

χ(a)Φλr ((a)v)

)
(5.10)

= ℓT,λ

(
U−2v
T

[
πλ,T,1U

2v
T

(
2rF χ̄1,χ̄2,χ̄3

χ,r ◦ diag
)])

Notice that then it follows that the sum in the right hand side of the equality
(5.10) can be expressed through the functions (1.2):

∫

Y

χ(y) yrp dµ̃
λ(y; f1 ⊗ f2 ⊗ f3)(y)

ℓT,λ

(
U−2v
T

[
πλ,T,1U

2v
T

(
2rF χ̄1,χ̄2,χ̄3

χ,r ◦ diag
)])

(5.11)

where we use the functions (1.2). The function

g = Φr(χ) = 2rF χ̄1,χ̄2,χ̄3
χ,r ◦ diag

is computed in (B.5), Appendix B as follows:

E(z1, z2, z3;−r, k,Np
v,ψ, χ1, χ2, χ3)

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)2
−rΦr(χ),

thus it is a nearly-holomorphic triple modular form in in the Qab-module

M(Qab) = MT (N
2p2v, ψ1 ⊗ ψ2 ⊗ ψ3;Q

ab)

⊂ Mk,r(N
2p2v, ψ1;Q

ab)⊗Mk,r(N
2p2v, ψ2;Q

ab)⊗Mk,r(N
2p2v, ψ3;Q

ab).

Then by the general formula of Proposition 4.2 e) we have:

LT,λ : MT (N
2p2v;C) → C, g 7→

〈f01 ⊗ f02 ⊗ f03 , λ
−2vU2v

T g〉T,N2p

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,N2p
,

(5.12)

ℓT,λ
(
U−2v
T

[
πλ,T,1U

2v
T (g)

])
= ip

(
〈f01 ⊗ f02 ⊗ f03 , λ

−2vU2v
T (g)〉T,N2p

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0〉N2p

)

= ip

(
λ−2vp3·2v(k−1) ·

〈V 2v(f01 ⊗ f02 ⊗ f03 ), g〉T,N2p2v+1

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,N2p

)
.
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The scalar products in 5.12 can be computed using Theorem B.2, but we omit
here the details. This implies Proposition 5.1 using the integral representation

of Theorem B.2 for modular forms f̃j,2v(z) =

∞∑

n=1

aj,n,2ve(nz) as above:

D
⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ1) (5.13)

(Np2v)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
× LNp(−r)

=
〈
f̃1,2v ⊗ f̃2,2v ⊗ f̃3,2v,E(z1, z2, z3;−r, k,N

2p2v,ψ, χ1, χ2, χ3)
〉
T,N2p2v

,

where

LNp(s)=LNp(s; f̃1,2v ⊗ f̃2,2v ⊗ f̃3,2v):=
∑

n|N∞

GN (ψ1ψ2χ1, 2n)
an,1,2van,2,2van,3,2v

n2s+2k−2
.

5.4 Proof of Theorem B

Let us use Propostion 5.1 and (5.13):

2−r
∫

Y

χ(y) yrp dµ̃
λ(y; f1 ⊗ f2 ⊗ f3)(y) = 2−rℓT,λ

(
U−2v
T

[
πλ,T,1U

2v
T (g)

])

(5.14)

=
((Np)3/N1N2N3)

k/2γ̄1γ̄2γ̄3(χ1χ2χ3)(2)p
3·v(k−2)

λ2vN1,1N2,1N3,1G(χ1,0)G(χ2,0)G(χ3,0)
×

× (Np2v)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
LNp(−r)×

×
D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ1)

〈f01 ⊗ f02 ⊗ f03 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,N2p

Let us show that under the assumptions as above there exist an admissible
Cp-valued measure µ̃λf1⊗f2⊗f3 on YN,p, and a Cp-analytic function

D(p)(x, f1 ⊗ f2 ⊗ f3) : Xp → Cp,

given for all x ∈ XN,p by the integral

D(p)(x, f1 ⊗ f2 ⊗ f3) =

∫

YN,p

x(y)dµ̃λf1⊗f2⊗f3(y),
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and having the following properties: for all pairs (r, χ) such that for χ ∈ Xtors
p

the corresponding Dirichlet characters χj are Np-complete, and r ∈ Z with
0 ≤ r ≤ k − 2, the following equality holds:

D(p)(χx
r
p, f1 ⊗ f2 ⊗ f3) = (5.15)

ip

( (ψ1ψ2)(2)C
4(2k−3−r)
χ

G(χ1)G(χ2)G(χ3)G(ψ1ψ2χ1)λ(p)2v

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈fρ1 ⊗ fρ2 ⊗ fρ3 , f
ρ
1 ⊗ fρ2 ⊗ fρ3 〉T

)

where v = ordp(Cχ), χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, χ3 mod Npv =
ψ1ψ̄3χ, G(χ) denotes the Gauß sum of a primitive Dirichlet character χ0 at-
tached to χ (modulo the conductor of χ0).
Indeed, we may write

D(p)(x, f1 ⊗ f2 ⊗ f3) = C · x(2)

∫

Y

x(y)dµ̃λ(y; f1 ⊗ f2 ⊗ f3)

with an appropriate constant, given by the RHS of (5.14), where v = ordp(Cχ).
Moreover, it follows from the properties of the constructed measure

µ̃λf1⊗f2⊗f3(y) := C · µ̃λ(2
−1y; f1 ⊗ f2 ⊗ f3)

that

(ii) if ordpλ(p) = 0 then the holomorphic functions in (i), (ii) are bounded
Cp-analytic functions: it suffices to use the equality (2.5) with r = 0 in

order to show that in this case the measure Φ̃λ is bounded because of
|λ(p)|p = 1);

(iii) in the general case (but assuming that λ(p) 6= 0) the holomorphic func-
tions in (i) belong to the type o(log(xhp)) with h = [2ordpλ(p)]+1 and they
can be represented as the Mellin transform of the h-admissible measure
µ̃λf1⊗f2⊗f3 (in the sense of Amice-Vélu);

(iv) if h = [2ordpλ] + 1 ≤ k− 2 then the function D(p) is uniquely determined
by the above conditions (i).

A Nearly-holomorphic Siegel-Eisenstein series

A.1 Fourier expansions of Siegel-Eisenstein series

In this section χ denotes a Dirichlet character modulo an arbitrary integer N
(not to be confused with N in the Introduction). We recall some standard facts
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about the Fourier expansions of the Siegel-Eisenstein series defined by:

E(Z, s; k, χ,N) = E(Z, s) (A.1)

= det(y)s
∑

γ∈P∩Γ\Γ

χ(det(dγ))j(γ,Z)
−k|j(γ,Z)|−2s,

for k + 2Re(s) > m + 1, s ∈ C, k ∈ Z, and by analytic continuation over s
for other values of s ∈ C (see [Sh83]). It is assumed in the identity (A.1) that
N > 1, χ is a Dirichlet character mod N (not necessarily primitive, e.g. trivial
modulo N > 1), and

γ =

(
aγ
cγ

bγ
dγ

)
∈ Γ = Γm0 (N) ⊂ Γm = Sp(m,Z).

Recall an explicit computation of the Fourier expansion of the series

E⋆(Z, s) = E⋆(Z, s; k, χ,N) := E(−Z
−1, s) det(Z)−k, (A.2)

obtained from (A.1) by applying the involution

Jm =

(
0m
1m

−1m
0m

)
.

Note that for k > m + 1 and N = 1 both series coincide and were studied by
Siegel:

E(Z) = Emk (Z) = E(Z, 0) = E⋆(Z, 0).

The detailed study of the series E⋆(Z, s; k, χ,N) was made by G. Shimura
[Sh83] and P. Feit ([Fei86], §10).

On the other hand, it is convenient to use the following notation. Let φ be
a Dirichlet character mod Q > 1 and consider the Eisenstein series of degree
m ≥ 1

Fα,β(Z, Q, φ) := det(y)β
∑

c,d

φ(det c) det(cZ+ d)−α,−β (A.3)

= det(y)β
∑

c,d

φ(det c) det(cZ+ d)−α det(cZ+ d)−β

= det(y)β
∑

c,d

φ(det c) det(cZ+ d)β−α| det(cZ+ d)|−2β (A.4)

where (c, d) runs over all “non-associated coprime symmetric pairs” with
det(c) coprime to Q. A more conceptual description would be to sum over
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Tm(Q)∞\Tm(Q), where

T
m(Q) =

{(
a b
c d

)
∈ Sp(m,Z)

∣∣∣A ≡ 0 mod Q

}
=

(
0m −1m
1m 0m

)
Γm0 (Q)

T
m(Q)∞ =

((
0m −1m
1m 0m

)
Γm0 (Q)

(
0m −1m
1m 0m

)−1
)

∞{(
a b
c d

)
∈ Sp(m,Z)

∣∣∣c = 0, b ≡ 0 mod Q

}
⊂ Γm,0(Q) ⊂ Sp(m,Z),

where Γm,0(Q) =

(
0m −1m
1m 0m

)
Γm0 (Q)

(
0m −1m
1m 0m

)−1

⊂ Sp(m,Z) is the

stabilizer of M =

(
0m −1m
1m 0m

)
Γm0 (Q), and more generally, for any set M ⊂

Sp(m,Z) of symplectic matrices we denote by M∞ the set of those matrices

γ =
(
a
c
b
d

)
∈ Sp(m,Z) satisfying the conditions c = 0 and γM ⊂ M.

Action of σ ∈ Sp(m,Z) on the Eisenstein series

Note that for any σ ∈ Sp(m,Z) one has

E(Z, s; k, χ,N)|kσ =
∑

γ∈Γm
0 (N)∞\Γm

0 (N)

φ(det dγ)(1|kγσ)(Z)(Im(γσ(Z))s

= det(y)s
∑

γ∈Γm
0 (N)∞\Γm

0 (N)

φ(det dγ)j(γσ,Z)
−k|j(γσ,Z)|−2s

= det(y)s
∑

γ̃∈(Γm
0 (N))∞\Γm

0 (N)σ

φ(det dσ−1γ̃)j(γ̃,Z)
−k|j(γ̃,Z)|−2s,

by writing γ̃ = σγ, σ−1γ̃ = γ: Pγ1 = Pγ2 ⇐⇒ P γ̃1 = P γ̃2.

In particular, for σ = Jm =

(
0m −1m
1m 0m

)
one has

(
a
c
b
d

)
Jm =

(
b
d
−a
−c

)
∈

Γm0 (N)Jm, hence

E(Z, s; k, χ,N)|

(
0m −1m
1m 0m

)
= E⋆(Z, s; k, χ,N)

= det(y)s
∑

( b

d

−a

−c )∈(Γm
0 (N))∞\Γm

0 (N)σ

χ(det d) det(dZ− c)−k| det(dZ− c)|−2s.

Notice that Jm(N)Γm0 (N) = Γm0 (N)Jm(N), where Jm(N) =(
0m −1m

N · 1m 0m

)
, and

Jm(N)

(
a

c

b

d

)
=

(
−c

Na

−d

Nb

)
=

(
a1
c1

b1
d1

)
Jm(N) =

(
Nb1
Nd1

−a1
−c1

)
.
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Therefore (Nd1,−c1) = (Na,Nb), and (a, b) runs over all “non-associated co-
prime symmetric pairs” with det(a) coprime to N . We may therefore write
(Nd1,−c1) = (Na,Nb), and

E⋆(NZ, s; k, χ,N) (A.5)

= det(Ny)s
∑

(

b1
d1

−a1
−c1

)

∈(Γm
0 (N))∞\Γm

0 (N)σ

χ(det d1) det(d1NZ− c1)
−k| det(d1NZ− c1)|

−2s

= N−m(k+s) det(y)s
∑

a,b

χ(det a) det(aZ+ b)−k−s,−s (A.6)

= N−m(k+s)Fk+s,s(Z, N, χ) (A.7)

A.2 Arithmetical variables of nearly-holomorphic Siegel modu-
lar forms and differential operators

Consider a commutative ring A, the formal variables q = (qi,j)i,j=1,...,m, R =
(Ri,j)i,j=1,...,m, and the ring of formal arithmetical Fourier series

A[[qBm ]][Ri,j ] =

{
f =

∑

T∈Bm

a(T, R)qT
∣∣∣ a(T, R) ∈ A[Ri,j ]

}
(A.8)

using the semi-group

Bm =
{
T = (Tij) ∈ Mm(R) | T = t

T,T ≥ 0,Tij , 2Tii ∈ Z
}

and the symbols

qT =

m∏

i=1

qTii

ii

∏

i<j

q
2Tij

ij ⊂ A[[q11, . . . , qmm]][qij , q
−1
ij ]i,j=1,··· ,m

(over the complex numbers this notation corresponds to qT = exp(2πitr(TZ)),
R = (4πIm(Z))−1).

The formal Fourier expansion of a nearly-holomorphic Siegel modular form f
with coefficients in A is an element of A[[qBm ]][Ri,j ]. Let

M
m
k (N,ψ) ⊂ M̃

m
k (N,ψ) ⊂ M

m
k (N,ψ)∞

denote the complex vector spaces of holomorphic, nearly-holomorphic, and C∞-
Siegel modular forms of weight k and character ψ for Γm0 (N), see [ShiAr],
[CourPa] so that Mm

k (N,ψ) ⊂ C[[qBm ]], M̃m
k (N,ψ) ⊂ C[[qBm ]][Ri,j ], and

Mm
k (N,ψ)∞ ⊂ C∞(Hm).
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A.3 Formal Fourier expansions of nearly-holomorphic Siegel-
Eisenstein series

In the Siegel modular case Γm = Sp2m(Z) ⊃ Γm0 (N) the series

E(Z, s; k, χ,N) = E(Z, s) (A.9)

= det(y)s
∑

γ∈P∩Γ\Γ

χ(det(dγ))j(γ,Z)
−k|j(γ,Z)|−2s ∈ M

∞
k (Γ0(N), χ̄)

is absolutely convergent for k + 2Re(s) > m + 1, but can be continued to
all s ∈ C. However, for N > 1, the Fourier expansion is known only for

the involuted series E(·, s)|W (N), where W (N) =
(

0m
N ·1m

−1m
0m

)
, and for some

critical values s ∈ Z (for N = 1 both series coincide). Here Z ∈ Hm is in the
Siegel upper half-space:

Hm =
{
Z = t

Z ∈ Mm(C)|ImZ > 0
}
, and P =

{(
a b
0 c

)
∈ Sp2m(R)

}

is the Siegel parabolic subgroup.

Example A.1 (Involuted Siegel-Eisenstein series) Let χ be a Dirichlet
character modulo N . Recall that by (A.5)

E⋆(NZ, s; k, χ,N) = N−m(k+s)Fk+s,s(Z, N, χ) (A.10)

= N−m(k+s) det(y)s
∑

a,b

χ(det a) det(aZ+ b)−k−s,−s, where

E⋆(NZ, s) = E(−(NZ)−1, s) det(NZ)−k = N−km/2E|W (N), (A.11)

G⋆(Z, s) = G∗(Z, s; k, χ,N) = Nm(k+s)E∗(NZ, s)· (A.12)

· Γ̃(k, s)LN (k + 2s, χ)




[m/2]∏

i=1

LN (2k + 4s− 2i, χ2)




κ = (m+ 1)/2, and for m odd the Γ-factor has the form:

Γ̃(k, s) = imk2−m(k+1)π−m(s+k)Γm(k + s),

where Γm(s) = πm(m−1)/4
m−1∏

j=0

Γ(s− (j/2))).

In order to describe the formal Fourier expansions explicitly let us consider the
Maass differential operator ∆m, acting on C∞-functions over V ⊗ C of degree
m, which is defined by the equality:

∆m = det(∂ij), ∂ij = 2−1(1 + δij)∂/∂ij . (A.13)
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For an integer n ≥ 0 and a complex number β consider the polynomial

Rm(Z;n, β) = (−1)mnetr(Z) det(Z)n+β∆n
m

[
e−tr(Z) det(Z)−β

]
, (A.14)

with Z ∈ V ⊗ C, where the exponentiation is well defined by

det(y)β = exp (β log[det(y)]) ,

for det(y) > 0, y ∈ Y ⊗ C. According to definition (A.14) the degree of
the polynomial Rm(Z;n, β) is equal to mn and the term of the highest degree
coincides with det(Z)n. We have also that for β ∈ Q the polynomial Rm(Z;n, β)
has rational coefficients.

Theorem A.2 Let m be an odd integer such that 2k > m, and N > 1 be an
integer, then:
For an integer s such that s = −r ≤ 0, 0 ≤ r ≤ k − κ, there is the following
Fourier expansion

G⋆(Z,−r) = G⋆(Z,−r; k, χ,N) =
∑

Am∋T≥0

b⋆(T, y,−r)qT =
∑

Am∋T≥0

a(T, R)qT,

(A.15)
where for s > (m + 2 − 2k)/4 in (A.15) the only non-zero terms occur for
positive definite T > 0, and for all s = −r with 0 ≤ r ≤ k − κ, and for all
T > 0, T ∈ Am, where

b⋆(T, y,−r) = a(T, R) =W ⋆(y,T,−r)M(T, χ, k − 2r), (A.16)

W ⋆(y,T,−r) = 2−mκ det(T)k−2r−κQ(R,T; k − 2r, r).

Here a(T, R) = a(T, R; r,N, χ) is a homogeneous polynomial with rational co-
efficients in the variables Rij and Tij, and

M(T, k − 2r, χ) =
∏

ℓ| det(2T)

Mℓ(T, χ(ℓ)ℓ
−k+2r) (A.17)

is a finite Euler product, in which Mℓ(T, x) ∈ Z[x]; we use the notation qT =
exp(2πitr(TZ)), R = (4πIm(Z))−1 as above, and polynomials Q(R,T; k− 2r, r)
are given by (3.1).

Proof: see [Sh83], [Fei86], Theorem 2.14 and formulas (2.137) in [CourPa]. The
use of definitions gives

W ⋆(y,T,−r) =2−mκ det(T)k−2r−κ det(4πy)−rRm(4πTy; r, κ− k + r)

where Rm(y;n, β) is defined by (A.14). Moreover, let us use the polynomials
(3.1):

Q(R,T; k − 2r, r) det(T)−r = det(4πTy)−rRm(4πTy; r, κ− k + r),

it follows

W ⋆(y,T,−r) =2−mκ det(T)k−2r−κ det(4πy)−rRm(4πTy; r, κ− k + r)

= 2−mκ det(T)k−2r−κQ(R,T; k − 2r, r).
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B An integral representation for the triple product

B.1 Summary of analytic results

In this section we use the following data :

• Three equal weights k = k1 = k2 = k3

• Three Dirichlet characters modNj with ψj(−1) = (−1)k

• Three cusp forms f̃j(z) =
∑∞
n=1 ãn,je(nz) ∈ Sk(Ñj , ψj), (j =

1, 2, 3) with Nj |Ñj , assumed to be eigenforms for all Hecke operators Tq,

with q prime to N . In our construction we use as f̃j some “easy trans-
forms” of primitive cusp forms fj ∈ Sk(Nj , ψj) in the Introduction, so
that they have the same eigenvalues for all Hecke operators Tq, for q prime

to N . For example, f̃j could be chosen as eigenfunctions f̃j = f0j of the
conjugate Atkin’s operator U∗

p given by (0.10), in this case we denote by
fj,0 the corresponding eigenfunctions of Up.

• Assume that Ñ |Npv, where Ñ := LCM{Ñ1, Ñ2, Ñ3}

• Consider a non necessary primitive Dirichlet character χ mod Npv, and
the Dirichlet characters as in (0.12).

Using the notation zj = xj + iyj ∈ H, one associates to this data the following
function

E(z1, z2, z3) = E(z1, z2, z3; s, k,ψ, χ1, χ2, χ3) := (B.1)

i3k2−3(k+1)−2s−2k+2π3(s+k)+2Γ(2s+ 2k − 1)Γ(s+ k − 1)×

× L(Np)(k + 2s,ψ)L(Np)(4s+ 2k − 2,ψ2)
∑

ε12,ε13,ε23 mod Npv

χ1(ε12)χ2(ε13)χ3(ε23)

Fk+s,s(⋆,N
2p2v,ψ)

∣∣∣∣




1 0 0 0 ε12
Npv

ε13
Npv

1 0 ε12
Npv 0 ε23

Npv

1 ε13
Npv

ε23
Npv 0

1 0 0
1 0

1




(z1, z2, z3)y
s
1y
s
2y
s
3.

Note that the product of the normalizing Gamma-factor and of the two Dirich-
let L-functions come from the definitions (A.11) and (A.10) of the Siegel-
Eisenstein series.
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B.2 Fourier expansion of the Eisenstein series (B.1)

Consider again the Dirichlet characters (0.12), and the corresponding function
(B.1) of level Npv.
We wish to express the series (B.1), evaluated at s = −r, through the series
(1.2) in the case of Np-complete conductors.

Proposition B.1 For F (Z) =
∑

T

a(T, R)qT one has Fφ(Z) =

∑

T

gt(φ,T)a(T, R)q
T, where ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0


 , φ(ε) =

χ1(ε12)χ2(ε13)χ3(ε23), T denotes the (half integral) block matrix and

gt(φ,T) =
∑

ε∈SN,p/NpvSN,p

φ(ε) exp(2πitr(
1

Npv
Tε)), where φ(ε) = χ1(ε12)χ2(ε13)χ3(ε23).

Proof. Indeed,

F |tε,Npv =
∑

T

a(T, R)qT|tε,Npv =
∑

T

exp(2πitr(εT)/Npv)a(T, R)qT, and it

suffices to notice again that

tr(εT) = tr






0 ε12 ε13
ε12 0 ε23
ε13 ε23 0





t11 t12 t13
t12 t22 t23
t13 t23 t33




 = 2(ε12t12 + ε13t13 + ε23t23).

Using this formula for F = G⋆(Z, s; k − 2r, (Npv)
2
,ψ) at s = −r (see (A.3)),

gives:

E(z1, z2, z3;−r, k,ψ, χ1, χ2, χ3) = (B.2)

∑

ε∈S/NpvS

χ1(ε12)χ2(ε13)χ3(ε23)G
⋆(Z,−r; k − 2r, (Npv)

2
,ψ)|tε,Npv (z1, z2, z3)

=


∑

T

∑

ε∈S/NpvS

χ1(ε12)χ2(ε13)χ3(ε23) exp(2πitr(εT)/Np
v)a(T, R)qT


◦ diag

then the sum over ε ∈ S/NpvS transforms simply to the product

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23),

which is easily evaluated by the general formula for a generalized Gauss sum
GN (χ, c) =

∑
b mod N χ(b)e(bcN

−1). This last sum admits the following known
expression in terms of the usual Gauss sums (see for example [PaTV], Section
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124 S. Böcherer, A. A. Panchishkin

2, (2.20)): let χ0 denote the primitive Dirichlet character modulo N0 associated
with χ, N1 = NN−1

0 , then

GN (χ, c) = G(χ0)N1

∑

d|N1

µ(d)χ0(d)d
−1δ
( c

N1d−1

)
χ̄0

( c

N1d−1

)
.

Writing χ0,j for the primitive Dirichlet character modulo N0,j associated with
χj mod Npv, and using the notation Npv = N0,jN1,j , gives

GNpv (χ1, 2t12)

= G(χ0,1)N1,1

∑

d1|N1,1

µ(d1)χ0,1(d1)d
−1
1 δ
( 2t12

N1,1d
−1
1

)
χ̄0,1

( 2t12

N1,1d
−1
1

)

GNpv (χ2, 2t13)

= G(χ0,2)N1,2

∑

d2|N1,2

µ(d2)χ0,2(d2)d
−1
2 δ
( 2t12

N1,2d
−1
2

)
χ̄0,2

( 2t13

N1,2d
−1
2

)

GNpv (χ3, 2t23)

= G(χ0,3)N1,3

∑

d3|N1,3

µ(d3)χ0,3(d3)d
−1
3 δ
( 2t23

N1,3d
−1
3

)
χ̄0,3

( 2t23

N1,3d
−1
3

)

Let us take the product of these expressions using the notation

2t′12 =
2t12

N1,1/d1
(modN0,1d1),

2t′13 =
2t13

N1,2/d2
(modN0,2d2),

2t′23 =
2t23

N1,3/d3
(modN0,3d3)

It follows

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23)

= N1,1N1,2N1,3

∑

d1|N1,1
d2|N1,2
d3|N1,3

µ(d1)µ(d2)µ(d3)χ0,1(d1)χ0,2(d2)χ0,3(d3)(d1d2d3)
−1

G(χ0,1)G(χ0,2)G(χ0,3)χ̄0,1(2t
′
12)χ̄0,2(2t

′
13)χ̄0,3(2t

′
23).

The formula (B.3) transforms to

E(z1, z2, z3;−r, k,ψ, χ1, χ2, χ3) (B.3)

=

(
∑

T

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23)a(T, R)q
T

)
◦ diag
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= N1,1N1,2N1,3

∑

d1|N1,1
d2|N1,2
d3|N1,3

µ(d1)µ(d2)µ(d3)χ0,1(d1)χ0,2(d2)χ0,3(d3)(d1d2d3)
−1

G(χ0,1)G(χ0,2)G(χ0,3)
∑

T:t12=d1t
′
12,

t13=d2t
′
13,t23=d3t

′
23,

χ̄0,1(2t
′
12)χ̄0,2(2t

′
13)χ̄0,3(2t

′
23)a(T, R)q

t11
1 qt222 qt333 .

Later on we impose the condition that the conductors of χ0,1, χ0,2, χ0,3 are
complete (i.e. have the same prime divisors as those of Np), when χ0,j(dj) = 0
unless all dj = 1, when χ0,j(dj) = 1. In this complete case χ0,j(n) = χj(n) for
all n ∈ Z, hence the equality (B.3) simplifies to the following:

E(z1, z2, z3;−r, k,ψ, χ1, χ2, χ3) (B.4)

=

(
∑

T

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23)a(T, R)q
T

)
◦ diag

= N1,1N1,2N1,3G(χ0,1)G(χ0,2)G(χ0,3)

(
∑

T

χ̄1(2t12)χ̄2(2t13)χ̄3(2t23)a(T, R)q
T

)
◦ diag

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)

(
∑

T

a(T, R)χ̄1(t12)χ̄2(t13)χ̄3(t23)q
T

)
◦ diag .

Thus we have expressed the series (B.1) through the series (1.2) in the case of
Np-complete conductors:

E(z1, z2, z3;−r, k,Np
v,ψ, χ1, χ2, χ3) (B.5)

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)F
χ̄1,χ̄2,χ̄3
χ,r ◦ diag

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)2
−rΦr(χ).

B.3 The integral representation

Consider three auxilliary modular forms as in (0.16):

f̃j(z) =

∞∑

n=1

ãn,je(nz) ∈ Sk(Γ0(Njp
νj ), ψj) (1 ≤ i ≤ 3)
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with the same eigenvalues, as those of (0.1), for all Hecke operators Tq, with q
prime to Np.

Theorem B.2 Under the assumptions and notations as in section B.1, the
following integral representation holds:

∫ ∫ ∫

(Γ0(N2p2v)\H)3

f̃1(z1)f̃2(z2)f̃3(z3)E(z1, z2, z3; s, k,N
2p2v,ψ, χ1, χ2, χ3))×

∏

j

ykj (
dxjdyj
y2j

)

= i−3k+3(2π)−4sΓ(s+ 2k − 2)Γ(s+ k − 1)3

(Npv)k+2s N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
× LNp(s)

L(Np)(fρ1 ⊗ fρ2 ⊗ fρ3 , s+ 2k − 2, ψ1ψ2χ1),

where

(2π)−4sΓ(s+ 2k − 2)Γ(s+ k − 1)3 = 2−4ΓC(s+ 2k − 2)ΓC(s+ k − 1)3,

ΓC(s) = 2(2π)−sΓ(s)

is the motivic Gamma-factor,

LNp(s) = LNp(s; f̃1 ⊗ f̃2 ⊗ f̃3) :=
∑

n|(Np)∞

GNpv (ψ1ψ2χ1, 2n)
ãn,1ãn,2ãn,3
n2s+2k−2

.

(B.6)

Remark. In the special case when the character ψ1ψ2χ has Np-complete con-

ductor, or if it is primitive mod Npv, and f̃1, f̃2, f̃3 are primitive normalized
cusp eigenforms, one can show that LNp(s) = (ψ1ψ2χ1)(2)G(ψ1ψ2χ1).

Theorem B.2 follows from a computation, similar to that in [BoeSP], Theorem
4.2, (triple product, no twisting character) and [Boe-Schm], Section 2 (standard
L-function, with twisting character). Details will appear elsewhere.

Corollary B.3 Under the notations and assumptions, for all critical values
s = 2k − 2− r, r = 0, · · · , k − 2 the following integral representation holds

(2π)4rΓ(−r + 2k − 2)Γ(−r + k − 1)3L(N)(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ1)

(Npv)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
× LNp(s)

=
〈
f̃1 ⊗ f̃2 ⊗ f̃3,E(z1, z2, z3;−r, k, k,N

2p2v,ψ, χ1, χ2, χ3)
〉
T,N2p2v

.
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[BSY] Böcherer, S., Satoh, T., and Yamazaki, T., On the pullback of
a differential operator and its application to vector valued Eisenstem
series, Comm. Math. Univ. S. Pauli, 41 (1992), 1-22.
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Séminaire Bourbaki, exposé n◦ 919, juin 2003.
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