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1. Introduction

In the last few years there have been several significant developments in non-
commutative Iwasawa theory.
Firstly, in [11], Coates, Fukaya, Kato, Sujatha and the second named author
formulated a main conjecture for elliptic curves without complex multiplication.
More precisely, if F∞ is any Galois extension of a number field F which contains
the cyclotomic Zp-extension Fcyc of F and is such that Gal(F∞/F ) is a compact
p-adic Lie group with no non-trivial p-torsion, then Coates et al. formulated a
Gal(F∞/F )-equivariant main conjecture for any elliptic curve which is defined
over F , has good ordinary reduction at all places above p and whose Selmer
group (over F∞) satisfies a certain natural torsion condition.
Then, in [16], Fukaya and Kato formulated a natural main conjecture for any
compact p-adic Lie extension of F and any critical motive M which is defined
over F and has good ordinary reduction at all places above p.
The key feature of [11] is the use of the localization sequence of algebraic
K-theory with respect to a canonical Ore set. However, the more general ap-
proach of [16] is rather more involved and uses a notion of ‘localized K1-groups’
together with Nekovář’s theory of Selmer complexes and the (conjectural) ex-
istence of certain canonical p-adic L-functions. See [39] for a survey.
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The p-adic L-functions of Fukaya and Kato satisfy an interpolation formula
which involves both the ‘non-commutative Tamagawa number conjecture’ (this
is a natural refinement of the ‘equivariant Tamagawa number conjecture’ for-
mulated by Flach and the first named author in [7] and hence also implies the
‘main conjecture of non-abelian Iwasawa theory’ discussed by Huber and Kings
in [19]) as well as a local analogue of the non-commutative Tamagawa number
conjecture. Indeed, by these means, at each continuous finite dimensional p-
adic representation ρ of Gal(F∞/F ), the ‘value at ρ’ of the p-adic L-function
is explicitly related to the value at the central critical point of the complex
L-function associated to the ‘ρ∗-twist’ M(ρ∗) of M, where ρ∗ denotes the con-
tragredient of the representation ρ. However, if the Selmer module of M(ρ∗)
has strictly positive rank (and by a recent result of Mazur and Rubin [21],
which is itself equivalent to a special case of an earlier result of Nekovář [24,
Th. 10.7.17], this should often be the case), then both sides of the Fukaya-Kato
interpolation formula are equal to zero.
The main aim of the present article is therefore to extend the formalism of
Fukaya and Kato in order to obtain an interesting interpolation formula for
all representations ρ as above. To this end we shall introduce a notion of ‘the
leading term at ρ’ for elements of suitable localized K1-groups. This notion
is defined in terms of the Bockstein homomorphisms that have already played
significant roles (either implicitly or explicitly) in work of Perrin-Riou [27, 29],
of Schneider [34, 33, 32, 31] and of Greither and the first named author [9, 4]
and have been systematically incorporated into Nekovář’s theory of Selmer
complexes [24]. We then give two explicit applications of this approach in the
setting of extensions F∞/F with Fcyc ⊆ F∞. We show first that the ‘p-adic
Stark conjecture at s = 1’, as formulated by Serre [35] and interpreted by Tate
in [37], can be reinterpreted as providing interpolation formulas for the leading
terms of the global Zeta isomorphisms associated to certain Tate motives in
terms of the leading terms at s = 1 (in the classical sense) of the p-adic Artin
L-functions that are constructed by combining Brauer induction with the fun-
damental results of Deligne and Ribet and of Cassou-Nogués. We then also
prove an interpolation formula for the leading terms of the Fukaya-Kato p-adic
L-functions which involves the leading term at the central critical point of the
associated complex L-function, the Neron-Tate pairing and Nekovář’s p-adic
height pairing.
In a subsequent article we shall apply the approach developed here to describe
the leading terms of the ‘algebraic p-adic L-functions’ that are introduced by
the first named author in [5], and we shall use the resulting description to prove
that the main conjecture of Coates et al. for an extension F∞/F and an elliptic
curve E implies the equivariant Tamagawa number conjecture for the motive
h1(E)(1) at each finite degree subextension of F∞/F . We note that this result
provides a partial converse to the theorem of Fukaya and Kato which shows
that, under a natural torsion hypothesis on Selmer groups, the main conjecture
of Fukaya and Kato specialises to recover the main conjecture of Coates et al.
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The main contents of this article are as follows. In §2 we recall some basic
facts regarding (non-commutative) determinant functors and the localized K1-
groups of Fukaya and Kato. In §3 we discuss the formalism of Iwasawa theory
descent in the setting of localized K1-groups and we introduce a notion of the
leading terms at p-adic representations for the elements of such groups. We
explain how this formalism applies in the setting of the canonical Ore sets in-
troduced by Coates et al., we show that it can be interpreted as taking values
after ‘partial derivation in the cyclotomic direction’, and we use it to extend
several well known results concerning Generalized Euler-Poincaré characteris-
tics. In §4 we recall the ‘global Zeta isomorphisms’ that are conjectured to
exist by Fukaya and Kato, and in §5 we prove an interpolation formula for the
leading terms of the global Zeta isomorphisms that are associated to certain
Tate motives. Finally, in §6, we prove an interpolation formula for the leading
terms of the p-adic L-functions that are associated to certain critical motives.
We shall use the same notation as in [39].
It is clear that the recent developments in non-commutative Iwasawa theory
are due in large part to the energy, encouragement and inspiration of John
Coates. It is therefore a particular pleasure for us to dedicate this paper to
him on the occasion of his sixtieth birthday.
This collaboration was initiated during the conference held in Boston in June
2005 in recognition of the sixtieth birthday of Ralph Greenberg. The authors
are very grateful to the organizers of this conference for the opportunity to
attend such a stimulating meeting.

2. Preliminaries

2.1. Determinant functors. For any associative unital ring R we write
B(R) for the category of bounded (cohomological) complexes of (left) R-
modules, C(R) for the category of bounded (cohomological) complexes of
finitely generated (left) R-modules, P (R) for the category of finitely generated
projective (left) R-modules and Cp(R) for the category of bounded (cohomolog-
ical) complexes of finitely generated projective (left) R-modules. We also write
Dp(R) for the category of perfect complexes as full triangulated subcategory of
the bounded derived category Db(R) of (left) R-modules. We write (P (R), is),
(Cp(R), quasi) and (Dp(R), is) for the subcategories of isomorphisms in P (R),
quasi-isomorphisms in Cp(R) and isomorphisms in Dp(R) respectively.
For each complex C = (C•, d•C) and each integer r we define the r-fold shift

C[r] of C by setting C[r]i = Ci+r and diC[r] = (−1)rdi+r
C for each integer i.

We recall that in [16, §1.2] Fukaya and Kato construct an explicit alternative
to the category of virtual objects that is used in [7]. Indeed, they construct
explicitly a category CR and a ‘determinant functor’

dR : (P (R), is)→ CR

which possess the following properties:
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a) CR has an associative and commutative product structure (M,N) 7→
M ·N (which we often write more simply as MN) with canonical unit
object 1R = dR(0). If P is any object of P (R), then in CR the object
dR(P ) has a canonical inverse dR(P )

−1. Every object of CR is of the
form dR(P ) · dR(Q)−1 for suitable objects P and Q of P (R);

b) All morphisms in CR are isomorphisms and elements of the form dR(P )
and dR(Q) are isomorphic in CR if and only if P and Q correspond to
the same element of the Grothendieck group K0(R). There is a natural
identification AutCR

(1R) ∼= K1(R) and if MorCR
(M,N) is non-empty,

then it is a K1(R)-torsor where each element α of K1(R) ∼= AutCR
(1R)

acts on φ ∈ MorCR
(M,N) to give αφ :M = 1R ·M

α·φ
−−→ 1R ·N = N ;

c) dR preserves the product structure: specifically, for each P and Q in
P (R) one has dR(P ⊕Q) = dR(P ) · dR(Q).

The functor dR can be extended to give a functor

dR : (Cp(R), quasi)→ CR

in the following way: for each C ∈ Cp(R) one sets

dR(C) := dR(
⊕

i∈Z

C2i)dR(
⊕

i∈Z

C2i+1)−1.

This extended functor then has the following properties for all objects C,C ′

and C ′′ of Cp(R):

d) If 0 → C ′ → C → C ′′ → 0 is a short exact sequence in Cp(R), then
there exists a canonical morphism in CR of the form

dR(C) ∼= dR(C
′)dR(C

′′),

which we take to be an identification;
e) If C is acyclic, then the quasi-isomorphism 0→ C induces a canonical

morphism in CR of the form

1R = dR(0)→ dR(C);

f) For any integer r there exists a canonical morphism dR(C[r]) ∼=
dR(C)

(−1)r in CR which we take to be an identification;
g) The functor dR factorizes through the image of Cp(R) in Dp(R) and

extends (uniquely up to unique isomorphism) to give a functor

dR : (Dp(R), is)→ CR.

h) For each C ∈ Db(R) we write H(C) for the complex with H(C)i =
Hi(C) in each degree i and in which all differentials are 0. If H(C)
belongs to Dp(R) (in which case we shall say that C is cohomologically
perfect), then there are canonical morphisms in CR of the form

dR(C) ∼= dR(H(C)) ∼=
∏

i∈Z

dR(H
i(C))(−1)i ;
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i) If R′ is any other (associative unital) ring and Y is an (R′, R)-bimodule
that is both finitely generated and projective as a left R′-module, then
the functor Y ⊗R − : P (R)→ P (R′) extends to give a diagram

(Dp(R), is)
dR−−−−→ CR

Y⊗L
R−

y
yY⊗R−

(Dp(R′), is)
dR′

−−−−→ CR′

which commutes (up to canonical isomorphism). In particular, if R→
R′ is any ring homomorphism and C ∈ Dp(R), then we often write
dR(C)R′ in place of R′ ⊗R dR(C).

Remark 2.1. Unless R is a regular ring, property d) does not extend to ar-
bitrary exact triangles in Dp(R). In general therefore all constructions in the
sequel which involve complexes must be made in such a way to avoid this
problem (nevertheless, we suppress any explicit discussion of this issue in the
present manuscript and simply refer the reader to [7] for details as to how this
problem can be overcome). The second displayed morphism in h) is induced
by the properties d) and f). However, whilst a precise description of the first
morphism in h) is important for the purposes of explicit computations, it is
actually rather difficult to find in the literature. Here we use the description
given by Knudsen in [20, §3].

Remark 2.2. In the sequel we will have to distinguish between two inverses of a
morphism φ : C → D with C,D ∈ CR. The inverse with respect to composition
will be denoted by φ : D → C while

φ−1 := idD−1 · φ · idC−1 : C−1 → D−1

is the unique isomorphism such that φ · φ−1 = id1R
under the identification

X · X−1 = 1R for both X = C and X = D. If D = C, then φ : C →
C corresponds uniquely to an element of K1(R) ∼= AutCR

(1R) by the rule
φ · idC−1 : 1R → 1R. Under this identification φ and φ−1 agree in K1(R) and
are inverse to φ. Furthermore, the following relation between ◦ and · is easily
verified: if φ : A → B and ψ : B → C are morphisms in CR, then one has
ψ ◦ φ = ψ · φ · idB−1 .

We shall use the following

Convention: If φ : 1 → A is a morphism and B an object in CR, then we

write B
· φ

// B ·A for the morphism idB · φ. In particular, any morphism

B
φ

// A can be written as B
· (idB−1 · φ)

// A .

Remark 2.3. In this remark we let C denote the complex P0
φ
→ P1, in which

the first term is placed in degree 0 and P0 = P1 = P . Then, by definition, one

has dR(C)
def

1R . However, if φ is an isomorphism (so C is acyclic), then
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by property e) there is also a canonical morphism 1R
acyc

// dR(C) . This latter

morphism coincides with the composite

1R dR(P1)dR(P1)
−1
dR(φ)−1·id

dR(P1)−1
// dR(P0)dR(P1)

−1 dR(C)

and thus depends on φ. Indeed, Remark 2.2 shows that the composite mor-
phism

1R
acyc

// dR(C)
def

1R

corresponds to the element dR(φ)
−1 of K1(R). Thus, in order to distinguish

between the above identifications of 1R with dR(C), we shall say that C is

trivialized by the identity when using either dR(C)
def

1R or its inverse with

respect to composition.

Remark 2.4. Let O = OL be the valuation ring of a finite extension L of Qp

and A a finite O-module. Then for any morphism in CO of the form a : 1O →
dO(A), and in particular therefore for that induced by any exact sequence of
O-modules of the form 0 // On // On // A // 0 , we obtain a canonical

element c = c(a) ∈ L× ∼= AutCL
(1L) by means of the composite

1L
aL

// L⊗O dO(A) dL(L⊗O A)
acyc

// 1L

where the map ’acyc’ is induced by property e). As an immediate consequence
of the elementary divisor theorem one checks that ordL(c) = lengthO(A).

2.2. The localized K1-group. In [16, §1.3] a localized K1-group is defined
for any full subcategory Σ of Cp(R) which satisfies the following four conditions:

(i) 0 ∈ Σ,
(ii) if C,C ′ are in Cp(R) and C is quasi-isomorphic to C ′, then C ∈ Σ ⇔

C ′ ∈ Σ,
(iii) if C ∈ Σ, then C[n] ∈ Σ for all n ∈ Z,
(iv) if 0 → C ′ → C → C ′′ → 0 is an exact sequence in Cp(R) with both

C ′ ∈ Σ and C ′′ ∈ Σ, then C ∈ Σ.

Since we want to apply the same construction to a subcategory which is not
necessarily closed under extensions, we weaken the last condition to

(iv′) if C ′ and C ′′ belong to Σ, then C ′ ⊕ C ′′ belongs to Σ.

Definition 2.5. (Fukaya and Kato) Let Σ be any full subcategory of Cp(R)
which satisfies the conditions (i), (ii), (iii) and (iv′). Then the localized K1-
group K1(R,Σ) is defined to be the (multiplicatively written) abelian group
which has as generators all symbols of the form [C, a] where C ∈ Σ and a is a
morphism 1R → dR(C) in CR, and as relations

(0) [0, id1R
] = 1,

(1) [C ′,dR(f) ◦ a] = [C, a] if f : C → C ′ is a quasi-isomorphism with C
(and thus also C ′) in Σ,
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(2) if 0→ C ′ → C → C ′′ → 0 is an exact sequence in Σ, then

[C, a] = [C ′, a′] · [C ′′, a′′]

where a is the composite of a′ · a′′ with the isomorphism induced by
property d),

(3) [C[1], a−1] = [C, a]−1.

Remark 2.6. Relation (3) is a simple consequence of the relations (0), (1) and
(2). Note also that this definition of K1(R,Σ) makes no use of the conditions
(iii) and (iv′) that the category Σ is assumed to satisfy. In particular, if Σ
satisfies (iv) (rather than only (iv′)), then the above definition coincides with
that given by Fukaya and Kato. We shall often refer to a morphism in CR of
the form a : 1R → dR(C) or a : dR(C)→ 1R as a trivialization (of C).

We now assume to be given a left denominator set S of R and we let
RS := S−1R denote the corresponding localization and ΣS the full subcat-
egory of Cp(R) consisting of all complexes C such that RS ⊗R C is acyclic.
For any C ∈ ΣS and any morphism a : 1R → dR(C) in CR we write θC,a for
the element of K1(RS) which corresponds under the canonical isomorphism
K1(RS) ∼= AutCRS

(1RS
) to the composite

(1) 1RS
−→ dRS

(RS ⊗R C)→ 1RS

where the first arrow is induced by a and the second by the fact that RS ⊗R C
is acyclic. Then it can be shown that the assignment [C, a] 7→ θC,a induces an
isomorphism of groups

chR,ΣS
: K1(R,ΣS) ∼= K1(RS)

(cf. [16, Prop. 1.3.7]). Hence, if Σ is any subcategory of ΣS we also obtain a
composite homomorphism

chR,Σ : K1(R,Σ)→ K1(R,ΣS) ∼= K1(RS).

In particular, we shall often use this construction in the following case: C is
a fixed object of Dp(R) which is such that RS ⊗R C is acyclic and Σ denotes
the smallest full subcategory ΣC of Cp(R) which contains all objects of Cp(R)
that are isomorphic in Dp(R) to C and also satisfies the conditions (i), (ii),
(iii) and (iv) that are described above. (With this definition, it is easily seen
that ΣC ⊂ ΣS).

3. Leading terms

In this section we define a notion of the leading term at a continuous finite
dimensional p-adic representation of elements of suitable localized K1-groups.
To do this we introduce an appropriate ‘semisimplicity’ hypothesis and use
a natural construction of Bockstein homomorphisms. We also discuss several
alternative characterizations of this notion. We explain how this formalism
applies in the context of the canonical localizations introduced in [11] and
we use it to extend several well known results concerning Generalized Euler-
Poincaré characteristics.
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3.1. Bockstein homomorphisms. Let G be a compact p-adic Lie group
which contains a closed normal subgroup H such that the quotient group
Γ := G/H is topologically isomorphic to Zp. We fix a topological generator
γ of Γ and denote by

θ ∈ H1(G,Zp) = Homcont(G,Zp)

the unique homomorphism G ։ Γ → Zp which sends γ to 1. We write Λ(G)

for the Iwasawa algebra of G. Then, since H1(G,Zp) ∼= Ext1Λ(G)(Zp,Zp) by

[25, Prop. 5.2.14], the element θ corresponds to a canonical extension of Λ(G)-
modules of the form

(2) 0→ Zp → Eθ → Zp → 0.

Indeed, one has Eθ = Z2
p upon which G acts via the matrix

(
1 θ
0 1

)
.

For any A• in B(Λ(G)) we endow the complex A• ⊗Zp
Eθ with the natural

diagonal G-action. Then (2) induces an exact sequence in B(Λ(G)) of the form

0→ A• → A• ⊗Zp
Eθ → A• → 0.

This sequence in turn induces a ‘cup-product’ morphism in Db(Λ(G)) of the
form

(3) A• θ
−→ A•[1].

It is clear that this morphism depends upon the choice of γ, but nevertheless
we continue to denote it simply by θ.
We now let ρ : G→ GLn(O) be a (continuous) representation ofG on Tρ := On,
where O = OL denotes the valuation ring of a finite extension L of Qp. Then
in the sequel we are mainly interested in the morphism

On ⊗L
Λ(G) A

• θ∗−→ On ⊗L
Λ(G) A

•[1]

that is induced by (3), where we consider On as a right Λ(G)-module via the
transpose ρt of ρ. In particular, in each degree i we shall refer to the induced
homomorphism

Bi : Tor
Λ(G)
i (Tρ, A

•)→ TorΛ(G)
i−1 (Tρ, A

•)

of hyper-tor groups

TorΛ(G)
i (Tρ, A

•) := H−i(On ⊗L
Λ(G) A

•)

as the Bockstein homomorphism (in degree i) of (A•, Tρ, γ).

3.2. The case G = Γ. In this section we consider the case G = Γ and take
the trivial Γ-module Zp for ρ. We set T := γ − 1 ∈ Λ(Γ).
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3.2.1. Bockstein homomorphisms. For any complex A• ∈ B(Λ(Γ)) it is clear
that the canonical short exact sequence

0→ Λ(Γ)
×T
−−→ Λ(Γ)→ Zp → 0

induces an exact triangle in Db(Λ(Γ)) of the form

(4) A• ×T
−−→ A• → Zp ⊗

L
Λ(Γ) A

• → A•[1].

However, in order to be as concrete as possible, we choose to describe this
result on the level of complexes. To this end we fix the following definition of
the mapping cone of a morphism f : A• → B• of complexes:

cone(f) := B• ⊕A•[1],

with differential in degree i equal to

dicone(f) :=

(
diB• f i

0 −di+1
A•

)
: Bi ⊕Ai+1 → Bi+1 ⊕Ai+2.

If A• is a bounded complex of projective Λ(Γ)-modules, then we set

cone(A•) := cone(A• T
−→ A•)

and
A•

0 := Zp ⊗Λ(Γ) A
•.

In any such case there exists a morphism of complexes π : cone(A•) → A•
0 of

the form

−−−−→ Ai−1 ⊕Ai di−1
cone−−−−→ Ai ⊕Ai+1 di

cone−−−−→ Ai+1 ⊕Ai+2 di+1
cone−−−−→

πi−1

y πi

y πi+1

y

−−−−→ Ai−1
0

di−1

A•
0−−−−→ Ai

0

di
A•

0−−−−→ A0
i+1

di+1

A•
0−−−−→

where, in each degree i, πi sends (a, b) ∈ Ai ⊕ Ai+1 to the image of a in
Zp ⊗Λ(Γ) A

i = Ai
0. It is easy to check that π is a quasi-isomorphism.

Now from (4) we obtain short exact sequences

(5) 0→ Hi(A•)Γ → H−i(Γ, A
•)→ Hi+1(A•)Γ → 0

where
Hi(Γ, A

•) := TorΛ(Γ)
i (Zp, A

•)

denotes the hyper-homology of A• (with respect to Γ) and for any Λ(Γ)-module
M we write MΓ = M/TM and MΓ = TM (= kernel of multiplication by T )
for the maximal quotient module, resp. submodule, of M upon which Γ acts
trivially.

Lemma 3.1. Let A• be a bounded complex of projective Λ(Γ)-modules. Then in
each degree i the Bockstein homomorphism of the triple (A•,Zp, γ) coincides
with the composite

Hi(Γ, A
•)→ H−i+1(A•)Γ

κ−i+1(A•)
−−−−−−−→ H−i+1(A•)Γ → Hi−1(Γ, A

•)
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where the first and third arrows are as in (5) and κ−i+1(A•) denotes the tau-
tological homomorphism

H−i+1(A•)Γ →֒ H−i+1(A•) ։ H−i+1(A•)Γ.

Proof. As is shown by Rapoport and Zink in [30, Lem. 1.2], on the level of
complexes the cup product morphism of the triple (A•,Zp, γ) is described by
the morphism

θ : cone(A•)→ cone(A•)[1]

which sends (a, b) ∈ Ai⊕Ai+1 to (b, 0) ∈ Ai+1⊕Ai+2. Now let ā be in ker(d−i
A•

0
)

representing a class in Hi(Γ, A
•). Then there exists (a, b) ∈ ker(d−i

cone) with
π−i((a, b)) = ā. Since (a, b) ∈ ker(d−i

cone) one has b ∈ ker(di+1
A• ) and Tb =

−diA•(a). This implies that diA•(a) is divisible by T (in Ai+1) and also that
b = −T−1diA•(a) ∈ Ai+1. Thus θ maps (a, b) to (−T−1diA•(a), 0) and the

class in Hi−1(Γ, A
•) is represented by −T−1diA•(a) ∈ ker(d−i+1

A•
0

). By using the

canonical short exact sequence

0→ A• → cone(A•)→ A•[1]→ 0

one immediately verifies that Bi coincides with the composite homomorphism
described in the lemma. �

From this description it is clear that for any bounded complex of projective
Λ(Γ)-modules A• the pair

(6) (Hi(Γ, A
•),Bi)

forms a homological complex (which, by re-indexing, we shall consider as coho-
mological complex whenever convenient). It is also clear that this construction
extends in a well-defined fashion to objects A• of Dp(Λ(Γ)).

3.2.2. Semisimplicity.

Definition 3.2. (Semisimplicity) For any A• ∈ Dp(Λ(Γ)) we set

rΓ(A
•) :=

∑

i∈Z

(−1)i+1 dimQp
(Hi(A•)Γ ⊗Zp

Qp) ∈ Z.

We say that a complex A• ∈ Dp(Λ(Γ)) is semisimple if the cohomology of the
associated complex (6) is Zp-torsion (and hence finite) in all degrees. We let
Σss denote the full subcategory of Cp(Λ(Γ)) consisting of those complexes that
are semisimple.

Remark 3.3. (i) If A• ∈ Dp(Λ(Γ)) is semisimple, then the cohomology of A•

is a torsion Λ(Γ)-module in all degrees.
(ii) In each degree i Lemma 3.1 gives rise to a canonical exact sequence

0→ cok(κ−i(A•))→ ker(Bi)/im(Bi+1)→ ker(κ−i+1(A•))→ 0.
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This implies that a complex A• ∈ Dp(Λ(Γ)) is semisimple if and only if the
homomorphism κi(A•)⊗Zp

Qp is bijective in each degree i, and hence also that
in any such case one has

rΓ(A
•) =

∑

i∈Z

(−1)i+1 dimQp
(Hi(A•)Γ ⊗Zp

Qp).

Definition 3.4. (The canonical trivialization) For each A• ∈ Db(Λ(Γ)) we
write (H•(Γ, A

•), 0) for the complex with (H•(Γ, A
•), 0)i = Hi(Γ, A

•) in each
degree i and in which all differentials are the zero map. In particular, if A• ∈
Σss, then we obtain a canonical composite morphism

(7) t(A•) : dZp
(Zp ⊗Λ(Γ) A

•)Qp
∼= dZp

((H•(Γ, A
•), 0))Qp

= dZp
((H•(Γ, A

•),B•))Qp
∼= 1Qp

where the first, resp. last, morphism uses property h) (in §2.1) for the functor
dZp

, resp. property i) for the natural homomorphism Zp → Qp and then
property e) for the functor dQp

.

Remark 3.5. If the complex Qp⊗Λ(Γ) A
• is acyclic, then t(A•) coincides with

the trivialization obtained by directly applying property e) to Qp ⊗Λ(Γ) A
•.

The category Σss satisfies the conditions (i), (ii), (iii) and (iv′) that are de-
scribed in §2 (but does not satisfy condition (iv)). In addition, as the following
result shows, the above constructions behave well on short exact sequences of
semisimple complexes.

Lemma 3.6. Let A•, B• and C• be objects of Σss which together lie in a short
exact sequence in Cp(Λ(Γ)) of the form

0→ A• → B• → C• → 0.

Then one has

rΓ(B
•) = rΓ(A

•) + rΓ(C
•)

and, with respect to the canonical morphism

dZp
(Zp ⊗Λ(Γ) B

•)Qp
∼= dZp

(Zp ⊗Λ(Γ) A
•)Qp

· dZp
(Zp ⊗Λ(Γ) C

•)Qp

that is induced by the given short exact sequence, one has

t(B•) = t(A•) · t(C•).

Proof. We let p denote the kernel of the augmentation map Λ(Γ) → Zp and
R the localization Λ(Γ)p of Λ(Γ) at p. Then R is a discrete valuation ring
with uniformizer T and residue class field R/(T ) naturally isomorphic to Qp.
Further, if a complex K• ∈ Dp(Λ(Γ)) is semisimple, then the structure theory
of finitely generated Λ(Γ)-modules implies that in each degree i the R-module
Hi(K•

p) is isomorphic to a direct sum of (finitely many) copies of R/(T ) and

hence also to Qp ⊗Zp
Hi(K•)Γ ∼= Qp ⊗Zp

Hi(K•)Γ.
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To prove the claimed equality rΓ(B
•) = rΓ(A

•)+ rΓ(C
•) it is therefore enough

to take dimensions over Qp
∼= R/(T ) in the long exact cohomology sequence of

the following short exact sequence in Cp(R)

(8) 0→ A•
p → B•

p → C•
p → 0.

To prove the second claim we note that if K• ∈ Cp(Λ(Γ)), then the complex
K•

0,p := Qp ⊗Λ(Γ)K
• is isomorphic in Dp(Qp) to Qp ⊗RK

•
p . Hence, since each

term of C•
p is a projective R-module, the short exact sequence (8) gives rise to

a short exact sequence in Cp(Qp) of the form

(9) 0→ A•
0,p → B•

0,p → C•
0,p → 0.

Now one has a commutative diagram in CQp

dQp
(B•

0,p) −−−−→ dQp
(A•

0,p)dQp
(C•

0,p)y
y

dQp
(H(B•

0,p)) −−−−→ dQp
(H(A•

0,p))dQp
(H(C•

0,p))

in which the upper, resp. lower, horizontal morphism is induced by (9), resp, by
the long exact cohomology sequence of (9), and both vertical arrows are induced
by applying property h) of dQp

in §2.1. (For a proof of the commutativity of the
above diagram see [2, Thm. 3.3].) Further, in this situation the exact sequences
(5) induce short exact sequences 0 → Hi(A•

p) → Hi(A•
0,p) → Hi+1(A•

p) → 0
(and similarly for B• and C•) which together lie in a short exact sequence of
long exact sequences

0 0 0 0
y

y
y

y

−→ Hi(A•
p) −→ Hi(B•

p) −→ Hi(C•
p) −→ Hi+1(A•

p) −→y
y

y
y

−→ Hi(A•
0,p) −→ Hi(B•

0,p) −→ Hi(C•
0,p) −→ Hi+1(A•

0,p) −→y
y

y
y

−→ Hi+1(A•
p) −→ Hi+1(B•

p) −→ Hi+1(C•
p) −→ Hi+2(A•

p) −→y
y

y
y

0 0 0 0

where the upper and lower, resp. central, row is the exact cohomology sequence
of (8), resp. (9). It is now a straightforward exercise to derive the required
equality t(B•) = t(A•) · t(C•) from the commutativity of both of the above
diagrams. �
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3.2.3. Leading terms. We write ρtriv for the trivial representation of Γ.

Definition 3.7. (The leading term) For each A• ∈ Σss and each morphism
a : 1Λ(Γ) → dΛ(Γ)(A

•) in CΛ(Γ) we define the leading term (A•, a)∗(ρtriv) of the

pair (A•, a) at ρtriv to be equal to (−1)rΓ(A
•) times the element of Qp\{0} which

corresponds via the canonical isomorphisms Q×
p
∼= K1(Qp) ∼= AutCQp

(1Qp
) to

the composite morphism

1Qp

Qp⊗Λ(Γ)a
−−−−−−→ dZp

(Zp ⊗Λ(Γ) A
•)Qp

t(A•)
−−−→ 1Qp

.

After taking Lemma 3.6 into account, it can be shown that this construction
induces a well defined homomorphism of groups

(−)∗(ρtriv) : K1(Λ(Γ),Σss)→ Q×
p

[A•, a] 7→ [A•, a]∗(ρtriv) := (A•, a)∗(ρtriv).

In particular therefore, (property g) of the functor dΛ(Γ) combines with re-
lation (1) in the definition of K1(Λ(Γ),Σss) to imply that) the notation
[A•, a]∗(ρtriv) extends in a well-defined fashion to pairs of the form (A•, a)
where A• ∈ Dp(Λ(Γ)) is semisimple and a is a morphism in CΛ(Γ) of the form
1Λ(Γ) → dΛ(Γ)(A

•).

The reason for the occurrence of ρtriv in the above definition will become clear
in the next subsection. In the remainder of the current section we justify the
name ‘leading term’ by explaining the connection between (A•, a)∗(ρtriv) and
the leading term (in the usual sense) of an appropriate characteristic power
series.
To this end we note that Remark 3.3(i) implies that Σss is a subcategory of
the full subcategory of Cp(Λ(Γ)) consisting of those complexes C for which
Q(Γ) ⊗Λ(Γ) C is acyclic, where we write Q(Γ) for the quotient field of Λ(Γ).
Hence there exists a homomorphism

chΓ := chΛ(Γ),Σss
: K1(Λ(Γ),Σss)→ K1(Q(Γ)) ∼= Q(Γ)×.

Now the identification between Λ(Γ) and the power series ring Zp[[T ]] (which,
of course, depends on the choice of T = γ − 1) allows any element F of Q(Γ)×

to be written uniquely as

(10) F (T ) = T rG(T )

with r = r(F ) ∈ Z and G(T ) ∈ Q(Γ) such that G(0) ∈ Q×
p . The leading

coefficient of F with respect to its expansion in the Laurent series ring Qp{{T}}
is therefore equal to F ∗(0) := G(0).

Proposition 3.8. Let A• be any object of Dp(Λ(Γ)) which is semisimple and
a any morphism in CΛ(Γ) of the form 1Λ(Γ) → dΛ(Γ)(A

•).

(i) (Order of vanishing) For L := [A•, a] one has r(chΓ(L)) = rΓ(A
•).
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(ii) (Leading terms) One has a commutative diagram of abelian groups

K1(Λ(Γ),Σss)
chΓ−−−−→ K1(Q(Γ))

(−)∗(ρtriv)

y
y(−)∗(0)

Q×
p Q×

p .

Proof. We use the localization R of Λ(Γ) that was introduced in the proof of
Lemma 3.6.
It is easy to see that both of the homomorphisms (−)∗(ρtriv) and chΓ factor
via the flat base change R ⊗Λ(Γ) − through K1(R,Ξ), where Ξ denotes the
full subcategory of Cp(R) consisting of those complexes K• with the property
that in each degree i the R-module Hi(K•) is isomorphic to a direct sum of
(finitely many) copies of R/(T ). Thus it suffices to show the commutativity
of the above diagram with K1(Λ(Γ),Σss) replaced by K1(R,Ξ). Moreover, by
Lemma 3.9 below this is reduced to the case where A• is a complex of the form

R
d
−→ R where R occurs in degrees −1 and 0 and d denotes multiplication by

either T or 1. Further, since the complex R
×1
−−→ R is acyclic we shall therefore

assume that d denotes multiplication by T .
Now MorCR

(1R,dR(A
•)) is a K1(R)-torsor and so all possible trivializations

arise in the following way: if ǫ is any fixed element of R×, then the R-module
homomorphism R → A−1, resp. R → A0, that sends 1 ∈ R to 1 ∈ R, resp. to
ǫ ∈ R, induces a morphism can1 : dR(R) → dR(A

−1), resp. canǫ : dR(R) →
dR(A

0), in CR, and hence also a morphism aǫ := (can1)
−1·canǫ : 1R → dR(A

•).
Setting Lǫ := [A•, aǫ] ∈ K1(R,Ξ), one checks easily that chΓ(Lǫ) = T−1ǫ and
thus chΓ(Lǫ)

∗(0) = ǫ(0). On the other hand, the Bockstein homomorphism B1

of the triple (A•, R/(T ), γ) is equal to Qp
−1
−−→ Qp as one checks by using the

description given in the proof of Lemma 3.1. Thus L∗
ǫ (ρtriv) is, by definition,

equal to (−1)rΓ(A
•) times the determinant of

Qp
ǫ(0)
−−→ Qp

(B1)
−1=−1

−−−−−−−−→ Qp
1
−→ Qp.

Hence, observing that rΓ(A
•) = −1 = r(chΓ(Lǫ)), we have L∗

ǫ (ρtriv) = ǫ(0) =
chΓ(Lǫ)

∗(0). This proves both claims of the Proposition. �

Lemma 3.9. Let R be a discrete valuation ring with uniformizer T and assume
that A• ∈ Cp(R) is such that in each degree i the R-module Hi(A•) is annihi-
lated by T . Then A• is isomorphic in Cp(R) to the direct sum of finitely many
complexes of the form R → R where the differential is equal to multiplication
by either 1 or T.

Proof. Assume that m is the maximal degree such that Am 6= 0 and fix an
isomorphism D : Rd ∼= Am. Let (e1, . . . , ed) be the standard basis of Rd. Then,
by assumption, for each integer i with 1 ≤ i ≤ d, one has Tei ∈ im(D−1◦dm−1).
For each such i we set hi := 1 if ei ∈ im(D−1 ◦ dm−1) and, otherwise, we set
hi := T . We write H for the diagonal d × d-matrix with entries h1, . . . , hd.
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Then, since the image of the map Rd H
−→ Rd is equal to im(D−1 ◦ dm−1), there

exists a retraction E : Rd −→ Am−1 (i.e. with left inverse ‘H−1 ◦D−1 ◦ dm−1’)
that makes the following diagram commutative

−−−−→ 0 −−−−→ Rd H
−−−−→ Rd −−−−→ 0 −−−−→

y E

y D

y
y

−−−−→ Am−2 dm−2

−−−−→ Am−1 dm−1

−−−−→ Am dm

−−−−→ 0 −−−−→ .

Now if B• denotes the upper row of this diagram and C• := A•/B• the asso-
ciated quotient complex (not the mapping cone!), then one checks readily that
there exists a split exact sequence 0→ B• → A• → C• → 0. This implies that
C• belongs to Cp(R) and has cohomology annihilated by T (in all degrees).
Thus, since the length of C• is strictly shorter than the length of A•, the proof
can be completed by induction. �

Remark 3.10. It will be clear to the reader that analogous statements hold
for all results of this subsection if we replace Zp by O, Qp by L, Λ(Γ) by
ΛO(Γ) := O[[Γ]] and Q(Γ) by the quotient field QO(Γ) of ΛO(Γ).

3.3. The general case. We extend the constructions of §3.2 to the setting
of the Bockstein homomorphisms that are discussed at the end of §3.1.
If A• ∈ Cp(Λ(G)), then for any continuous representation of G of the form
ρ : G→ GLn(O) we regard the complex

A•(ρ∗) := On ⊗Zp
A•

as a complex of (left) ΛO(G)-modules by means of the following G-action:
g(x⊗Zp

a) := ρ∗(g)(x)⊗Zp
g(a) for each g ∈ G, x ∈ On and a ∈ Ai. With this

action, there exists a natural isomorphism in Cp(Zp) between Zp⊗Λ(G)A
•(ρ∗)

and the complex On ⊗Λ(G) A
• that occurs in §3.1. Further, it can be shown

that the Bockstein homomorphisms B• of the triple (A•, Tρ, γ) give rise to a
complex of the form (H•(G,A

•(ρ∗)),B•) where for each integer i and each
normal closed subgroup J of G we set

Hi(J,A
•(ρ∗))) := H−i(Zp ⊗Λ(J) A

•(ρ∗)) ∼= TorΛ(J)
i (Tρ, A

•)

(see, for example, the proof of Lemma 3.13 below).

Definition 3.11. (Semisimplicity at ρ) For each A• ∈ Dp(Λ(G)) we set

rG(A
•)(ρ) :=

∑

i∈Z

(−1)i+1 dimL

(
Hi(H,A

•(ρ∗))Γ ⊗O L
)
∈ Z,

where L is the fraction field of O. We say that a complex A• ∈
Dp(Λ(G)) is semisimple at ρ if the cohomology of the associated complex
(H•(G,A

•(ρ∗)),B•) is Zp-torsion in each degree. We let Σss−ρ denote the
full subcategory of Cp(Λ(G)) consisting of those complexes that are semisim-
ple at ρ, and we note that Σss−ρ satisfies the conditions (i), (ii), (iii) and (iv′)
that are described in §2.
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Definition 3.12. (Finiteness at ρ) We say that a complex A• ∈ Dp(Λ(G)) is
finite at ρ if the groups Hi(G,A

•(ρ∗)) are Zp-torsion in all degrees i. We let
Σfin−ρ denote the full subcategory of Cp(Λ(G)) consisting of those complexes
that are finite at ρ, and we note that Σfin−ρ satisfies the conditions (i), (ii),
(iii) and (iv) that are described in §2. In particular we have Σfin−ρ ⊆ Σss−ρ.

In the next result we consider the tensor product ΛO(Γ) ⊗O O
n as an

(ΛO(Γ),Λ(G))-bimodule where ΛO(Γ) acts by multiplication on the left and
Λ(G) acts on the right via the rule (τ ⊗O x)g := τ ḡ⊗O ρ(g)

t(x) for each g ∈ G
(with image ḡ in Γ), x ∈ On and τ ∈ ΛO(Γ). For each complex A• ∈ Σss−ρ we
then set

A•
ρ := (ΛO(Γ)⊗O O

n)⊗Λ(G) A
• ∈ Cp(ΛO(Γ)).

Lemma 3.13. Fix A• ∈ Cp(Λ(G)).

(i) There are natural quasi-isomorphisms in Cp(ΛO(Γ)) of the form

A•
ρ
∼= ΛO(Γ)⊗ΛO(G) A

•(ρ∗) ∼= O ⊗ΛO(H) A
•(ρ∗).

(ii) One has rG(A
•)(ρ) = rΓ(A

•
ρ).

(iii) The Bockstein homomorphism in any given degree of (A•, Tρ, γ) (as
defined in §3.1) coincides with the Bockstein homomorphism in the
same degree of (A•

ρ,Zp, γ).
(iv) One has A• ∈ Σss−ρ if and only if A•

ρ ∈ Σss (when considered as an
object of Cp(ΛO(Γ))). Further, if this is the case, then the trivialization

t(A•
ρ) : dO(O ⊗ΛO(Γ) A

•
ρ)L → 1L

that is defined as in (7) coincides with the composite morphism

(11) t(A•(ρ∗)) : dO(O ⊗ΛO(G) A
•(ρ∗))L ∼= dO((H•(G,A

•(ρ∗)), 0))L

= dO((H•(G,A
•(ρ∗)),B•))L ∼= 1L

where the first, resp. last, morphism uses property h) (in §2.1) for the
functor dO, resp. property i) for the homomorphism O → L and then
property e) for the functor dL.

(v) If A•, B• and C• are objects of Σss−ρ which together lie in a short exact
sequence in Cp(Λ(G)) of the form

0→ A• → B• → C• → 0,

then one has

rG(B
•)(ρ) = rG(A

•)(ρ) + rG(C
•)(ρ)

and, with respect to the canonical morphism

dO(O ⊗ΛO(G) B
•(ρ∗))L = dO(O ⊗ΛO(G) A

•(ρ∗))L · dO(O ⊗ΛO(G) C
•(ρ∗))L

that is induced by the given short exact sequence, one has

t(B•(ρ∗)) = t(A•(ρ∗)) · t(C•(ρ∗)).
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Proof. Claim (i) is clear (given the specified actions). Claim (ii) then follows
by using the isomorphisms of claim (i) to directly compare the definitions of
rG(A

•)(ρ) and rΓ(A
•
ρ). In a similar way, claims (iii) and (iv) follow from the

functorial construction of Bockstein homomorphisms and the fact that there
are natural isomorphisms in Cp(O) of the form

On ⊗Λ(G) A
• ∼= O ⊗ΛO(G) A

•(ρ∗)

∼= O ⊗ΛO(Γ)

(
ΛO(Γ)⊗ΛO(G) A

•(ρ∗)
)

∼= Zp ⊗Λ(Γ) A
•
ρ.

Finally, to prove claim (v) we observe that, by claim (i), the given short ex-
act sequence gives rise to a short exact sequence of semisimple complexes in
Cp(ΛO(Γ)) of the form

0→ A•
ρ → B•

ρ → C•
ρ → 0.

The equalities of claim (v) thus follow from claims (ii), (iii) and (iv) and the
results of Lemma 3.6 as applied to the last displayed short exact sequence. �

Definition 3.14. (The leading term at ρ) For each complex A• ∈ Σss−ρ and
each morphism a : 1Λ(G) → dΛ(G)(A

•) in CΛ(G) we define the leading term

(A•, a)∗(ρ) of the pair (A•, a) at ρ to be equal to (−1)rG(A•)(ρ) times the element
of L \ {0} which corresponds via the canonical isomorphisms L× ∼= K1(L) ∼=
AutCL

(1L) to the composite morphism

1L

Ln⊗Λ(G)a
−−−−−−→ dL(L

n ⊗Λ(G) A
•)

t(A•(ρ∗))
−−−−−−→ 1L.

Then, since ΣA• ⊂ Σss−ρ, Lemma 3.13(v) can be used to show that this con-
struction induces a well-defined homomorphism of groups

(−)∗(ρ) : K1(Λ(G),ΣA•)→ L×

[A•, a] 7→ [A•, a]∗(ρ) := (A•, a)∗(ρ).

In particular, (property g) of the functor dΛ(G) combines with relation (1) in
the definition of K1(Λ(G),ΣA•) to imply that) the notation [A•, a]∗(ρ) extends
in a well-defined fashion to pairs of the form (A•, a) where A• ∈ Dp(Λ(G)) is
semisimple at ρ and a is a morphism in CΛ(G) of the form 1Λ(G) → dΛ(G)(A

•).

If A• is clear from the context, then we often write a∗(ρ) in place of [A•, a]∗(ρ).
It is easily checked that (in the case G = Γ and ρ = ρtriv) these definitions are
compatible with those given in §3.2. Further, in §3.4.3 we shall reinterpret the
expression [A•, a]∗(ρ) defined above as the leading term at s = 0 of a natural
p-adic meromorphic function.

Remark 3.15. If A• ∈ Dp(Λ(G)) is both semisimple at ρ and such that
rG(A

•)(ρ) = 0 (which is the case, for example, if A• is finite at ρ), then
we set [A•, a](ρ) := [A•, a]∗(ρ) and refer to this as the value of [A•, a] at ρ. In
particular, after taking account of Remark 3.5, it is clear that this definition
coincides with that given in [16, 4.1.5].
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3.4. Canonical localizations. We apply the constructions of §3.3 in the
setting of the canonical localizations of Λ(G) that were introduced in [11].

3.4.1. The canonical Ore sets. We recall from [11, §2-§3] that there are canon-
ical left and right denominator sets S and S∗ of Λ(G) where

S := {λ ∈ Λ(G) : Λ(G)/Λ(G)λ is a finitely generated Λ(H)-module}

and

S∗ :=
⋃

i≥0

piS.

We write S∗-tor for the category of finitely generated Λ(G)-modules M which
satisfy Λ(G)S∗ ⊗Λ(G) M = 0. We further recall from loc. cit. that a finitely
generated Λ(G)-module M belongs to S∗-tor, if and only if M/M(p) is finitely
generated when considered as a Λ(H)-module (by restriction) where M(p) de-
notes the submodule of M consisting of those elements that are annihilated by
some power of p.

3.4.2. Leading terms. In this subsection we use the notation of Definition 3.14
and the isomorphism K1(Λ(G),ΣS∗) ∼= K1(Λ(G)S∗) described at the end of
§2.2.
If ρ : G→ GLn(O) is any continuous representation and A• any object of ΣS∗ ,
then ΣA• ⊂ ΣS∗ and so there exists a canonical homomorphism

chG,A• := chΛ(G),ΣA• : K1(Λ(G),ΣA•)→ K1(Λ(G),ΣS∗) ∼= K1(Λ(G)S∗).

In addition, the ring homomorphism Λ(G)S∗ → Mn(Q(Γ)) which sends each
element g ∈ G to ρ(g)ḡ where ḡ denotes the image of g in Γ, induces a homo-
morphism of groups

ρ∗ : K1(Λ(G)S∗)→ K1(Mn(QO(Γ))) ∼= K1(QO(Γ)) ∼= QO(Γ)
×.

Proposition 3.16. Let A• be a complex which belongs to both ΣS∗ and Σss−ρ.

(i) (Order of vanishing) One has rG(A
•)(ρ) = rΓ(A

•
ρ) = r(ρ∗◦chG,A•(A•)).

(ii) (Leading terms) The following diagram of abelian groups commutes

K1(Λ(G),ΣA•)
chG,A•

−−−−→ K1(Λ(G)S∗)

(−)∗(ρ)

y
y(ρ∗(−))∗(0)

L× L×,

where (−)∗(0) denotes the ‘leading term’ homomorphism
K1(QO(Γ)) → L× which occurs in Proposition 3.8 (and Remark
3.10).

Proof. By Lemma 3.13(i) one has Hi(H,A
•(ρ∗)) = H−i(O ⊗ΛO(H) A

•(ρ∗)) =

H−i(A•
ρ) in each degree i. Thus, after taking account of Proposition 3.8 (and

Remark 3.10), claim (i) follows directly from Definitions 3.2 and 3.11.
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Claim (ii) is proved by the same argument as used in [16, Lem. 4.3.10]. Indeed,
one need only observe that the above diagram arises as the following composite
commutative diagram

K1(Λ(G),ΣA•)
chΛ(G),ΣA•

−−−−−−−→ K1(Λ(G)S∗)

(ΛO(Γ)⊗OOn)⊗Λ(G)−

y
yρ∗

K1(ΛO(Γ),Σss)
chΛO(Γ),Σss
−−−−−−−→ K1(QO(Γ))

(−)∗(ρtriv)

y
y(−)∗(0)

L× L×

where the lower square is as in Proposition 3.8. �

For any element F of K1(Λ(G)S∗) we write F ∗(ρ) for the leading term
(ρ∗(F ))

∗(0) of F at ρ. By Proposition 3.16, this notation is consistent with
that of Definition 3.14 in the case that F belongs to the image of chG,A• . In a
similar way, if r(ρ∗(F )) = 0, then we shall use the notation F (ρ) := F ∗(ρ).

3.4.3. Partial derivatives. We now observe that the constructions of the pre-
vious section allow an interpretation of the expression (A•, a)∗(ρ) defined in
§3.3 as the leading term (in the usual sense) at s = 0 of a natural p-adic
meromorphic function.
At the outset we fix a representation of G of the form χ : G։ Γ→ Z×

p which
has infinite order and set

cχ,γ := logp(χ(γ)) ∈ Q×
p .

We also fix an object A• of ΣS∗ and a morphism a : 1Λ(G) → dΛ(G)(A
•) in

CΛ(G), we set L := [A•, a] ∈ K1(Λ(G),ΣA•) and for any continuous representa-
tion ρ : G→ GLn(O) we define

fρ(T ) := ρ∗(chG,A•(L)) ∈ K1(QO(Γ)) ∼= QO(Γ)
×.

Then, since the zeros and poles of elements of QO(Γ) are discrete, the function

s 7→ fL(ρχ
s) := fρ(χ(γ)

s − 1)

is a p-adic meromorphic function on Zp.

Lemma 3.17. Let A• and a be as above and set r := rG(A
•)(ρ). Then,

(i) in any sufficiently small neighbourhood U of 0 in Zp one has

L∗(ρχs) = L(ρχs) = fL(ρχ
s)

for all s ∈ U \ {0},
(ii) crχ,γL

∗(ρ) is the (usual) leading coefficient at s = 0 of fL(ρχ
s), and

(iii) if r ≥ 0, then one has

crχ,γL
∗(ρ) =

1

r!

dr

dsr
fL(ρχ

s)
∣∣
s=0

.
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Proof. If U is any sufficiently small neighbourhood of 0 in Zp, then one has
fρχs(0) ∈ L× for all s ∈ U \ {0}. Since fρχs(T ) = fρ(χ(γ)

s(T +1)− 1) we may
therefore deduce from Proposition 3.16 that L∗(ρχs) = L(ρχs) = fρχs(0) =
fρ(χ(γ)

s − 1) = fL(ρχ
s) for any s ∈ U \ {0}. This proves claim (i).

In addition, if r ≥ 0 and we factorize fρ(T ) as T
rGρ(T ) with Gρ(T ) ∈ QO(Γ),

then Gρ(0) = f∗ρ (0) and

1

r!

dr

dsr
fL(ρχ

s)
∣∣
s=0

= lim
0 6=s→0

fρ(χ(γ)
s − 1)

sr

= lim
0 6=s→0

( (χ(γ)s − 1)r

sr
Gρ(χ(γ)

s − 1)
)

=
(

lim
0 6=s→0

χ(γ)s − 1

s

)r
Gρ(0)

= (logp(χ(γ)))
rf∗ρ (0)

= crχ,γL
∗(ρ),

where the last equality follows from Proposition 3.16. This proves claim (iii).
Also, if r < 0, then (whilst we no longer have the interpretation of the limit as
a partial derivative) the same arguments prove the statement concerning the
leading coefficient at s = 0 that is made in claim (ii). �

Remark 3.18. Lemma 3.17 is of particular interest in the case that χ is equal
to the cyclotomic character of G when the above calculus can be interpreted
as partial derivation in the ‘cyclotomic’ direction (cf. Remark 5.6).

3.5. Generalized Euler-Poincaré characteristics. In this subsection
we show that the constructions made in §3.3 give rise to a natural extension of
certain results from [11, 16, 38].
To do this we fix a continuous representation ρ : G→ GLn(O) and a complex
A• ∈ Σss−ρ and in each degree i we set

Hi
B(G,A•(ρ∗)) := Hi

(
(H−•(G,A

•(ρ∗)),B−•)
)
.

We then define the (generalized) additive, respectively multiplicative, Euler-
Poincaré characteristic of the complex A•(ρ∗) by setting

χadd(G,A
•(ρ∗)) :=

∑

i∈Z

(−1)ilengthO
(
Hi

B(G,A•(ρ∗))
)
,

respectively

χmult(G,A
•(ρ∗)) := (#κL)

χadd(G,A•(ρ∗))

where κL denotes the residue class field of L. We recall that for a single Λ(G)-
module M , or rather its Pontryagin-dual D, similar Euler characteristics have
already been studied by several other authors (cf. [12, 42, 18]). Indeed, they
use the Hochschild-Serre spectral sequence to construct differentials

di : Hi(G,D)→ Hi(H,D)Γ → Hi(H,D)Γ → Hi+1(G,D)

where the second arrow is induced by the identity map on Hi(H,D); then the
generalized Euler characteristics studied in loc. cit. are defined just as above but
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by using the complex (H•(G,D), d•) in place of (H−•(G,−),B−•). However,
Lemma 3.13(i) implies that the Pontryagin dual of di is equal to the Bockstein
homomorphism Bi+1 : Hi+1(G,P

•) → Hi(G,P
•) where P • is a projective

resolution of M .

Proposition 3.19. Let ordL denote the valuation of L which takes the value 1
on any uniformizing parameter and | − |p the p-adic absolute value, normalized
so that |p|p = p−1.
If A• ∈ Σss−ρ and a : 1Λ(G) → dΛ(G)(A

•) is any morphism in CΛ(G), then for
L := [A•, a] one has

χadd(G,A
•(ρ∗)) = ordL(L

∗(ρ))

and

χmult(G,A
•(ρ∗)) = |L∗(ρ)|−[L:Qp]

p .

Proof. We observe first that by combining Lemma 3.13 with property h) in
§2.1 (with R = O) we obtain canonical morphisms

1O

On⊗Λ(G)a
// dO(O

n ⊗Λ(G) A
•) ∼= dO(O ⊗ΛO(G) A

•(ρ∗)))

∼= dO((H−•(G,A
•(ρ∗)),B−•))

∼=
∏

i∈Z

dO

(
Hi

B(G,A•(ρ∗))
)(−1)i

.

After applying L⊗O− to this composite morphism and then identifying all fac-
tors in the product expression with 1L by acyclicity we recover the definition of
the leading term L∗(ρ) := (A•, a)∗(ρ).On the other hand, if we take the product

over all i of any arbitrarily chosen maps fi : 1O → dO

(
Hi

B(G,A•(ρ∗))
)(−1)i

,
this will coincide with the above map modulo O×. Thus the product over all i
of the maps

(1O)L
(fi)L

//

dO

(
Hi

B(G,A•(ρ∗))
)(−1)i

L

acyc
// 1L ,

which calculate the length of Hi
B(G,A•(ρ∗)) by Remark 2.4, differs from L∗(ρ)

only by a unit in O and hence the claimed result follows. �

Remark 3.20. If the complex Qp ⊗Zp
A•(ρ∗) is acyclic, then the leading term

L∗(ρ) is equal to the value of L at ρ (in the sense of Remark 3.15). This implies
that Proposition 3.19 recovers the results of [11, Thm. 3.6], [38, Prop. 6.3 ] and
[16, Rem. 4.1.13].

4. Global Zeta isomorphisms

In this section we recall the non-commutative Tamagawa Number Conjecture
that has been formulated by Fukaya and Kato.
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4.1. Galois cohomology. The main reference for this section is [16, §1.6],
but see also [7]; here we use the same notation as in the survey article [39]. For
simplicity we assume throughout this section that p is odd.
We fix a finite set S of places of Q which contains both Sp := {p} and
S∞ := {∞} and let U denote the corresponding dense open subset Spec(Z[ 1S ])
of Spec(Z). We fix an algebraic closure Q̄ of Q and, for each place v of
Q, an algebraic closure Q̄v of Qv. We then set GQ := Gal(Q̄/Q) and
GQv

:= Gal(Q̄v/Qv) and write GS for the Galois group of the maximal ex-
tension of Q inside Q̄ which is unramified outside S. If X is any topological
abelian group which is endowed with a continuous action of GS , then we write
RΓ(U,X) (RΓc(U,X)) for global Galois cohomology with restricted ramifica-
tion (and compact support) and for any place v of Q we denote by RΓ(Qv, X)
the corresponding local Galois cohomology complex.
We let L denote a finite extension of Qp, we write O for the valuation ring of L
and we let V denote a finite dimensional L-vector space which is endowed with
a continuous action of GQ. Then the ‘finite parts’ of global and local Galois
cohomology are written as RΓf (Q, V ) and RΓf (Qv, V ) respectively, and there
exists a canonical exact triangle of the form
(12)

RΓc(U, V ) // RΓf (Q, V ) //

⊕
v∈S RΓf (Qv, V ) // RΓc(U, V )[1].

We set tp(V ) := DdR(V )/D0
dR(V ) and also tℓ(V ) := 0 for each prime number

ℓ 6= p. Then, for each prime ℓ, Fukaya and Kato define a canonical morphism
in CL of the form

ηℓ(V ) : 1L → dL(RΓf (Qℓ, V ))dL(tℓ(V )).(13)

For the explicit definition of this morphism we refer the reader either to the
original reference [16, §2.4.4] or to the survey article [39, Appendix].

4.2. K-Motives over Q. For further background on this (standard) material
we refer the reader to either [16, §2.2, 2.4], [7, §3] or [39, §2].
We fix a finite extension K of Q and a motive M that is defined over Q and
has coefficients K. As usual we write MB ,MdR, Mℓ and Mλ for the Betti, de
Rham, ℓ-adic and λ-adic realizations ofM , where ℓ ranges over rational primes
and λ over non-archimedean places of K. We also let tM denote the tangent
space MdR/M

0
dR of M . For any ring R and R[Gal(C/R)]-module X we denote

by X+ and X− the R-submodule of X upon which complex conjugation acts
as multiplication by +1 and −1 respectively.
In our later calculations we will use each of the following isomorphisms:

• The comparison isomorphisms between the Betti and λ-adic realiza-
tions of M induce canonical isomorphisms of Kλ-modules, respectively
Kℓ-modules, of the form

(14) g+λ : Kλ ⊗K M+
B
∼=M+

λ , respectively g
+
ℓ : Kℓ ⊗K M+

B
∼=M+

ℓ .
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• We set KR := R ⊗Q K. Then the comparison isomorphism between
the de Rham and Betti realizations of M induces a canonical KR-
equivariant period map

(15) R⊗Q M
+
B

αM
// R⊗Q tM .

• For each p-adic place λ of K, the comparison isomorphism between the
p-adic and de Rham realizations ofM induces a canonical isomorphism
of Kλ-modules of the form

(16) tp(Mλ) = DdR(Mλ)/D
0
dR(Mλ)

gt
dR

∼=
// Kλ ⊗K tM .

We further recall that the ‘motivic cohomology groups’ H0
f (M) := H0(M) and

H1
f (M) of M are K-modules that can be defined either in terms of algebraic

K-theory or motivic cohomology in the sense of Voevodsky (cf. [7]). They are
both conjectured to be finite dimensional.

4.3. The Tamagawa Number Conjecture. For each embedding K → C
the complex L-function that is associated to a K-motive M is defined (for the
real part of s large enough) as an Euler product

LK(M, s) =
∏

ℓ

Pℓ(M,p−s)−1

over all rational primes ℓ. We assume meromorphic continuation of this func-
tion and write L∗

K(M) ∈ C× and r(M) ∈ Z for its leading coefficient and order
of vanishing at s = 0 respectively.
To establish a link between L∗

K(M) and Galois cohomology one uses the ‘fun-
damental line’

∆K(M) : = dK(H0
f (M))−1

dK(H1
f (M))dK(H0

f (M
∗(1))∗)dK(H1

f (M
∗(1))∗)−1

dK(M+
B )dK(tM )−1.

Indeed, as described in [16, §2.2.7], it is conjectured that archimedean regula-
tors and height pairings combine with the period map αM to induce a canonical
morphism in CKR

(the ‘period-regulator isomorphism’) of the form

(17) ϑ∞(N) : KR ⊗K ∆K(M) ∼= 1KR
.

In addition, a standard conjecture on cycle class maps and Chern class maps
induces, for each non-archimedean place λ of K, a canonical ‘λ-adic period-
regulator isomorphism’ in CKλ

(which involves the morphism in (13))

(18) ϑλ(N) : ∆K(M)Kλ
∼= dKλ

(RΓc(U,Mλ))
−1.

We now fix a compact p-adic Lie extension F∞ of Q which is unramified outside
S. We set G := Gal(F∞/Q) and write Λ(G) for the associated Iwasawa algebra.
For any motive M over Q we fix a GQ-stable full Zp-sublattice Tp of Mp and
define a (left) Λ-module by setting

T := Λ(G)⊗Zp
Tp
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on which Λ(G) acts via left multiplication (on the left hand factor) and each
element g of GQ acts diagonally via g(x⊗Zp

y) = xḡ−1⊗Zp
g(y), where ḡ denotes

the image of g in G ⊂ Λ(G).
For any non-archimedean place λ of K we write Oλ for the valuation ring of
Kλ. We consider a continuous representation ρ : G → GLn(Oλ) of G which,
with respect to a suitable choice of basis, is the λ-adic realization Nλ of a
K-motive N. We continue to denote by ρ the induced ring homomorphism
Λ(G) → Mn(Oλ) and we consider On

λ as a right Λ(G)-module via action by
the transpose ρt on the left, viewing On

λ as set of column vectors (contained
in Kn

λ ). Note that, setting M(ρ∗) := N∗ ⊗M, we obtain an isomorphism of
Galois representations

On
λ ⊗Λ(G) T ∼= Tλ(M(ρ∗)),

where Tλ(M(ρ∗)) is the Oλ-lattice O
n
λ ⊗ Tp of M(ρ∗)λ, on which g ∈ GQ

acts diagonally: g(x ⊗ t) = ρ∗(g)x ⊗ g · t denoting by ρ∗ the contragredient
representation of ρ.

Conjecture 4.1 (Fukaya and Kato, [16, Conj. 2.3.2]). Set Λ := Λ(G). Then
there exists a canonical morphism in CΛ

ζΛ(M) := ζΛ(T) : 1Λ → dΛ(RΓc(U,T))
−1

with the following property: for all K,λ and ρ as above the (generalized) base
change Kn

λ ⊗Λ − sends ζΛ(M) to the composite morphism

1Kλ

ζK(M(ρ∗))Kλ
// ∆K(M(ρ∗))Kλ

ϑλ(N)
// dKλ

(RΓc(U,M(ρ∗)λ))
−1,

where

ζK(M(ρ∗)) : 1K → ∆K(M(ρ∗))

denotes the unique morphism which is such that, for every embedding K → C,
the leading coefficient L∗

K(M(ρ∗)) is equal to the composite

1C

ζK(M(ρ∗))C
// ∆K(M(ρ∗))C

(ϑ∞(N))C
// 1C.

Fukaya and Kato refer to the (conjectural) morphism ‘ζΛ(M)’ in Conjecture
4.1 as a global Zeta isomorphism. We note also that it is straightforward to
show that Conjecture 4.1 implies the ‘p-primary component’ of the Equivariant
Tamagawa Number Conjecture that is formulated by Flach and the first named
author in [7, Conj. 4(iv)] and hence also implies the ‘main conjecture of non-
abelian Iwasawa theory’ that is discussed by Huber and Kings in [19]. For a
further discussion of Conjecture 4.1 see [39, §4].

5. The interpolation formula for Tate motives

In this section we give a first explicit application of the formalism developed
in §3. More precisely, we show that the ‘p-adic Stark conjecture at s = 1’, as
formulated by Serre in [35] and discussed by Tate in [37, Chap. VI, §5], can be
naturally interpreted as an interpolation formula for the leading term (in the
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sense of Definition 3.14) of certain global Zeta isomorphisms that are predicted
to exist by Conjecture 4.1 in terms of the leading terms (in the classical sense)
of suitable p-adic Artin L-functions. Interested readers can find further explicit
results concerning Conjecture 4.1 in the special case that we consider here in,
for example, both [3] and [8].
Throughout this section we set G(F/E) := Gal(F/E) for any Galois extension
of fields F/E. We also fix an odd prime p and a totally real Galois extension
F∞ of Q which contains the cyclotomic Zp-extension Qcyc of Q and is such
that G := G(F∞/Q) is a compact p-adic Lie group. We assume further that
F∞/Q is unramified outside a finite set of prime numbers S (which therefore
contains p). We set H := G(F∞/Qcyc) and Γ := G(Qcyc/Q) ∼= G/H. We fix
a subfield E of F∞ which is both Galois and of finite degree over Q, we set
Ḡ := G(E/Q) and we write Sp(E) for the set of p-adic places of E and Ecyc,
Ew,cyc for each w ∈ Sp(E) and Qp,cyc for the cyclotomic Zp-extensions of E,
Ew and Qp respectively. For simplicity, we always assume that the following
condition is satisfied

(19) E ∩Qcyc = Q and Ew ∩Qp,cyc = Qp for all w ∈ Sp(E).

We note that this condition implies that there is a direct product decompo-
sition G(Ecyc/Q) ∼= Γ × Ḡ and hence allows us to regard γ as a topological
generator of each of the groups Γ, G(Ecyc/E), G(Ew,cyc/Ew) for w ∈ Sp(E)
and G(Qp,cyc/Qp).
We let T denote the (left) Λ(G)-module Λ(G) endowed with the following (left)
action of GQ: each σ ∈ GQ acts on T as right multiplication by the element
χcyc(σ̄)σ̄

−1 where σ̄ denotes the image of σ in G and χcyc is the cyclotomic
character G → Γ → Z×

p . For each subfield F of F∞ which is Galois over Q
we let TF denote the (left) Λ(G(F/Q))-module Λ(G(F/Q)) ⊗Λ(G) T. We also

set U := Spec(Z[ 1S ]) and note that for each such field F there is a natural
isomorphism in Dp(Λ(G(F/Q))) of the form

(20) Λ(G(F/Q))⊗L
Λ(G) RΓc(U,T) ∼= RΓc(U,TF ).

We regard each character of Ḡ as a character of G via the natural projection
G։ Ḡ. For any field C we write R+

C(G) and RC(G) for the set of finite dimen-

sional C-valued characters of G and for the ring of finite dimensional C-valued
virtual characters of G, respectively. For each ρ ∈ R+

C(G) we fix a repre-

sentation space Vρ of character ρ and for any Qp[G]-module N , respectively
endomorphism α of a Qp[Ḡ]-module N , we write Nρ for the Cp-module

HomḠ(Vρ,Cp ⊗Qp
N) ∼= ((Vρ∗)Cp

⊗Qp
N)Ḡ,

respectively αρ for the induced endomorphism of Nρ. We use similar notation
for complex characters ρ and Q[Ḡ]-modules N .
For any abelian group A we write A⊗̂Zp for its p-adic completion lim

←−n
A/pnA.

5.1. Leopoldt’s Conjecture. We recall that Leopoldt’s Conjecture (for the
field E at the prime p) is equivalent to the injectivity of the natural localisation
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map

λp : OE

[
1

p

]×
⊗Z Zp →

∏

w∈Sp(E)

E×
w ⊗̂Zp.

If ρ ∈ R+
Cp
(Ḡ), then in the sequel we say that Leopoldt’s Conjecture ‘is valid

at ρ’ if one has (Qp ⊗Zp
ker(λp))

ρ = 0.

We set cγ := cχcyc,γ ∈ Q×
p (see §3.4.3) and for each ρ ∈ R+

Cp
(Ḡ) we define

〈ρ, 1〉 := dimCp
(H0(Ḡ, Vρ)) = dimCp

((Qp)
ρ).

Lemma 5.1. We fix ρ ∈ R+
Cp
(Ḡ) and assume that Leopoldt’s Conjecture is valid

at ρ.

(i) There are canonical isomorphisms

(Qp ⊗Zp
Hi

c(U,TE))
ρ ∼=





(Qp ⊗Zp
cok(λp))

ρ, if i = 2

(Qp)
ρ, if i = 3

0, otherwise.

(ii) RΓc(U,T) is semisimple at ρ and one has rG(RΓc(U,T))(ρ) = 〈ρ, 1〉.
(iii) For each w ∈ Sp(E) we write NEw/Qp

for the homomorphism

E×
w ⊗̂Zp → Q×

p ⊗̂Zp that is induced by the field theoretic norm map.
Then, with respect to the identifications given in claim (i), the Bock-
stein homomorphism in degree −2 of (RΓc(U,T), Tρ, γ) is equal to −c−1

γ

times the homomorphism

(Qp ⊗Zp
H2

c (U,TE))
ρ → (Qp ⊗Zp

H3
c (U,TE))

ρ

that is induced by the homomorphism

logp,E :
∏

w∈Sp(E)

E×
w ⊗̂Zp → Zp

which sends each element (ew)w to
∑

w logp(NEw/Qp
(ew)).

Proof. Claim (i) can be verified by combining the exact cohomology sequence
of the tautological exact triangle

(21) RΓc(U,TE)→ RΓ(U,TE)→
⊕

ℓ∈S

RΓ(Qℓ,TE)→ RΓc(U,TE)[1]

together with the canonical identifications Hi(U,TE) ∼= Hi(OE [
1
S ],Zp(1)) and

Hi(Qℓ,TE) ∼=
⊕

w∈Sℓ(E)H
i(Ew,Zp(1)) and an explicit computation of each of

the groups Hi(OE [
1
S ],Zp(1)) and Hi(Ew,Zp(1)). As this is routine we leave

explicit details to the reader except to note that Qp⊗Zp
H2

c (U,TE) is canonically
isomorphic to Qp⊗Zp

cok(λp) (independently of Leopoldt’s Conjecture), whilst

the fact that E is totally real implies that the vanishing of (Qp⊗Zp
H1

c (U,TE))
ρ

is equivalent to that of (Qp ⊗Zp
ker(λp))

ρ.
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To prove claims (ii) and (iii) we note first that, in terms of the notation used in
§3.3, the isomorphism (20) (with F = Ecyc) induces a canonical isomorphism
in Dp(ΛO(Γ)) of the form

(22) RΓc(U,T)ρ ∼= O
n ⊗Zp[Ḡ] RΓc(U,TEcyc

),

where Γ acts naturally on the right hand factor in the tensor product.
From Lemma 3.13(iv) we may therefore deduce that RΓc(U,T) is semisim-
ple at ρ if and only if the complex On ⊗Zp[Ḡ] RΓc(U,TEcyc

) ∈ Dp(ΛO(Γ))
is semisimple. But the latter condition is easy to check by using the crite-
rion of Remark 3.3(ii): indeed, one need only note that Hi

c(U,TEcyc
) is finite

if i /∈ {2, 3}, that H3
c (U,TEcyc

) identifies with Zp (as a Γ-module) and that
the exact sequences of (5) combine with the descriptions of claim (i) to imply
that ((Qp ⊗Zp

H1
c (U,TEcyc

))ρ)Γ and (Qp ⊗Zp
H1

c (U,TEcyc
))ρΓ both vanish. In

addition, the same observations combine with Lemma 3.13(ii) to imply that
rG(RΓc(U,T))(ρ) = dimCp

((Qp)
ρ).

Regarding claim (iii), the isomorphism (22) combines with Lemma 3.13(iii) to

imply that (B−2)
ρ = (B̂−2)

ρ where B̂−2 is the Bockstein homomorphism in
degree −2 of (RΓc(U,TEcyc

),Zp, γ), with γ regarded as a topological generator
of G(Ecyc/E). Also, by comparing (21) to the corresponding exact triangle
with Ecyc in place of E, we obtain a morphism of exact triangles of the form

RΓ(Qp,TEcyc
)

γ−1
−−−−→ RΓ(Qp,TEcyc

) −−−−→ RΓ(Qp,TE) −−−−→y
y

y

RΓc(U,TEcyc
)[1]

γ−1
−−−−→ RΓc(U,TEcyc

)[1] −−−−→ RΓc(U,TE)[1] −−−−→ .

Thus, by combining the description of Lemma 3.1 with consideration of the
long exact cohomology sequences of this diagram we obtain a commutative
diagram

⊕
w∈Sp(E) Qp ⊗Zp

H1(Ew,Zp(1)) −−−−→ Qp ⊗Zp
H2

c (U,TE)

(Qp⊗ZpB−1,w)w

y
y(−1)×(Qp⊗ZpB̂−2)

⊕
w∈Sp(E) Qp ⊗Zp

H2(Ew,Zp(1)) −−−−→ Qp ⊗Zp
H3

c (U,TE).

Here the upper row is the (tautological) surjection that is induced by the
canonical identifications H1(Ew,Zp(1)) ∼= E×

w ⊗̂Zp and Qp ⊗Zp
H2

c (U,TE) ∼=
Qp ⊗Zp

cok(λp), the lower row is the surjection induced by the canonical

identifications H2(Ew,Zp(1)) ∼= Zp and H3
c (U,TE) ∼= Zp together with the

identity map on Zp, B−1,w is the Bockstein homomorphism in degree −1 of
(RΓ(Ew,cyc,Zp(1)),Zp, γ) where γ is considered as a topological generator of
G(Ew,cyc/Ew), and the factor −1 occurs on the right hand vertical arrow be-
cause of the 1-shift in the lower row of the previous diagram.
Further, for each w ∈ Sp(E) the natural isomorphism (in Dp(Zp))

Zp ⊗
L
Zp[G(Ew/Qp)]

RΓ(Ew,Zp(1)) ∼= RΓ(Qp,Zp(1))
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induces a commutative diagram

H1(Ew,Zp(1)) −−−−→ H1(Qp,Zp(1))

B−1,w

y
yB−1,p

H2(Ew,Zp(1)) −−−−→ H2(Qp,Zp(1))

where the upper horizontal arrow is induced by the canonical identifications
H1(Ew,Zp(1)) ∼= E×

w ⊗̂Zp and H1(Qp,Zp(1)) ∼= Q×
p ⊗̂Zp together with the

map NEw/Qp
, the lower horizontal arrow is induced by the canonical iden-

tifications H2(Ew,Zp(1)) ∼= Zp and H2(Qp,Zp(1)) ∼= Zp together with the
identity map on Zp, and B−1,p is the Bockstein homomorphism in degree
−1 of (RΓ(Qp,cyc,Zp(1)),Zp, γ). To prove claim (iii) it thus suffices to re-
call that, with respect to the natural identifications H1(Qp,Zp(1)) ∼= Q×

p ⊗̂Zp

and H2(Qp,Zp(1)) ∼= Zp, the map B−1,p is equal to c−1
γ · logp (see, for example,

[9, p. 352]). �

5.2. The p-adic Stark conjecture at s = 1. For each character χ ∈
RC(Ḡ) we write LS(s, χ) for the Artin L-function of χ that is truncated by
removing the Euler factors attached to primes in S (cf. [37, Chap. 0, §4]).
Then, for each character ρ ∈ RCp

(G) there exists a unique p-adic meromorphic
function Lp,S(·, ρ) : Zp → Cp such that for each strictly negative integer n and
each isomorphism ι : Cp

∼= C one has

Lp,S(n, ρ)
ι = LS(n, (ρ · ω

n−1)ι)

where ω : GQ → Z×
p is the Teichmüller character (cf. [37, Chap. V., Thm.

2.2]). Indeed, this function is the ‘S-truncated p-adic Artin L-function’ of ρ
that is constructed by Greenberg in [17] by combining techniques of Brauer
induction with the fundamental results of Deligne and Ribet [15] and Cassou-
Noguès [10]. For typographical simplicity in the sequel, we fix an isomorphism
ι : Cp

∼= C as above and hence often omit it from the notation.
In this section we recall a conjecture of Serre regarding the ‘leading term at
s = 1’ of Lp,S(s, ρ). To this end we set E∞ := R ⊗Q E ∼=

∏
Hom(E,C) R and

write log∞(O×
E ) for the inverse image of O×

E →֒ E×
∞ under the (componentwise)

exponential map exp∞ : E∞ → E×
∞. We set E0 := {x ∈ E : TrE/Q(x) = 0}.

Then log∞(O×
E ) is a lattice in R⊗QE0 and so there is a canonical isomorphism

of C[Ḡ]-modules

µ∞ : C⊗Z log∞(O×
E )
∼= C⊗Q E0.

By a standard argument (cf. [14, §6, Exer. 6]) this implies that the Q[Ḡ]-
modules E0 and Q ⊗Z log∞(O×

E) are (non-canonically) isomorphic. We also
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note that the composite homomorphism

(23) log∞(O×
E )

exp∞
−−−→ O×

E

λp
−→

∏

w∈Sp(E)

U1
Ew

(uw)w 7→(logp(uw))w
−−−−−−−−−−−−−→

∏

w∈Sp(E)

Ew
∼= Qp ⊗Q E,

factors through the inclusion Qp ⊗Q E0 ⊂ Qp ⊗Q E and hence induces an
isomorphism of Qp[Ḡ]-modules

µp : Qp ⊗Z log∞(O×
E )
∼= Qp ⊗Q E0.

Conjecture 5.2 (Serre). For each ρ ∈ R+
Cp
(Ḡ) we set

L∗
p,S(1, ρ) := lim

s→1
(s− 1)〈ρ,1〉 · Lp,S(s, ρ).

Then L∗
p,S(1, ρ) is equal to the leading term of Lp,S(s, ρ) at s = 1, and for each

choice of isomorphism of Q[Ḡ]-modules g : E0 → Q⊗Z log∞(O×
E) one has

L∗
p,S(1, ρ)

detCp
((Cp ⊗Qp

µp) ◦ (Cp ⊗Q g))ρ
=

L∗
S(1, ρ)

detC(µ∞ ◦ (C⊗Q g))ρ
.

Remark 5.3. This conjecture is the ‘p-adic Stark conjecture at s = 1’ as
discussed by Tate in [37, Chap. VI, §5], where it is attributed to Serre [35].
More precisely, there are some slight imprecisions in the discussion of [37, Chap.
VI, §5] (for example, and as already noted by Solomon in [36, §3.3], the intended
meaning of the symbols ‘logU ’ and ‘µp’ in [37, p. 137] is unclear) and Conjecture
5.2 represents a natural clarification of the presentation given in loc. cit..

Remark 5.4. We fix a subgroup J of Ḡ and write 1J for the trivial character

of J . If ρ = IndḠJ 1J , then the inductive behaviour of L-functions combines
with the analytic class number formula for EJ to show that Conjecture 5.2 is
valid for ρ if and only if the p-adic zeta function of the field EJ has a simple

pole at s = 1 with residue equal to 2[E
J :Q]−1hRpep/

√
|d| where h,Rp and d are

the class number, p-adic regulator and absolute discriminant of EJ respectively
and ep :=

∏
v∈Sp(EJ )(1−Nv−1) (cf. [37, Rem., p. 138]). From the main result

(§5, Thm.) of Colmez in [13] one may thus deduce that Conjecture 5.2 is valid

for ρ = IndḠJ 1J if and only if Leopoldt’s Conjecture is valid for EJ . We note
also that if Leopoldt’s Conjecture is valid for E, then it is valid for all such
intermediate fields EJ .

5.3. The interpolation formula. We now reinterpret the equality of Con-
jecture 5.2 as an interpolation formula for the Zeta isomorphism ζΛ(G)(T) that
is predicted to exist by Conjecture 4.1.

Theorem 5.5. If Conjecture 5.2 is valid, then for each ρ ∈ R+
Cp
(Ḡ) the complex

RΓc(U,T) is semisimple at ρ and one has both rG(RΓc(U,T))(ρ) = 〈ρ, 1〉 and

(24) c〈ρ,1〉γ · ζΛ(G)(T)
∗(ρ) = L∗

p,S(1, ρ).
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Remark 5.6. One can naturally interpret (24) as an equality of leading terms
of p-adic meromorphic functions. Indeed, whilst Conjecture 5.2 predicts that
L∗
p,S(1, ρ) is the leading term at s = 1 of Lp,S(s, ρ), Lemma 3.17 interprets the

left hand side of (24) as the leading term at s = 0 of the function fL(ρχ
s
cyc)

with L := [RΓc(U,T), ζΛ(G)(T)] ∈ K1(Λ(G),Σss−ρ).

Proof. We note first that if Conjecture 5.2 is valid, then Remark 5.4 implies
that Leopoldt’s Conjecture is valid for E and so Lemma 5.1(ii) implies that
rG(RΓc(U,T))(ρ) = 〈ρ, 1〉 for each ρ ∈ R+

Cp
(Ḡ) and also that RΓc(U,T) is

semisimple at each such ρ.
We now fix ρ ∈ R+

Cp
(Ḡ) and a number field K over which the character ρ can

be realised. We fix an embedding K →֒ C and write λ for the place of K which
is induced by the fixed isomorphism ι : Cp

∼= C. We set M := h0(SpecE)(1)
and note that M([ρ]∗) :=M ⊗ [ρ]∗ is a K-motive, where [ρ]∗ denotes the dual
of the Artin motive corresponding to ρ.
To evaluate ζΛ(G)(T)

∗(ρ) we need to make Definition 3.14 explicit. To do
this we use the observations of [6, §1.1, §1.3] to explicate the isomorphism
ζK(M([ρ]∗))Kλ

which occurs in Conjecture 4.1. Indeed one has H1
f (M) =

O×
E ⊗ZQ, H0

f (M
∗(1)) = Q, tM = E and H0

f (M) = H1
f (M

∗(1)) =M+
B = 0 (the

latter since E is totally real). This implies that

C⊗K ∆K(M([ρ]∗)) = dC((Q⊗Z O
×
E)ρ)dC((Q)ρ)dC((E)ρ)

−1

and that ζK(M([ρ]∗))Kλ
is equal to the composite morphism

1Cp
→1Cp

(25)

→dCp
((Qp ⊗Z O

×
E)

ρ)dCp
((Qp)

ρ)dCp
((Qp ⊗Q E)ρ)−1

→dCp
(Cp ⊗Kλ

H2
c (U,M([ρ]∗)λ))

−1
dCp

(Cp ⊗Kλ
H3

c (U,M([ρ]∗)λ)

→dCp
(Cp ⊗Kλ

RΓc(U,M([ρ]∗)λ))
−1.

In this displayed formula we have used the following notation: the first map
corresponds to multiplication by L∗

S(1, ρ); the second map is induced by ap-
plying (Cp⊗R,ι−1 −)ρ to both the natural isomorphism R⊗QE ∼=

∏
Hom(E,C) R

and also the exact sequence

(26) 0→ R⊗Z O
×
E

(log ◦σ)σ
−−−−−−→

∏

σ∈Hom(E,C)

R
(xσ)σ 7→

∑
σ xσ

−−−−−−−−−→ R→ 0;

the third map is induced by Lemma 5.1(i) and the inverse of the isomorphism

(27)
∏

w∈Sp(E)

Qp ⊗Zp
U1
Ew

(uw)w 7→(logp(uw))w
−−−−−−−−−−−−−→

∏

w∈Sp(E)

Ew
∼= Qp ⊗Q E;

the last map is induced by property h) as described in §2.1 (with R = Cp).
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Also, from Lemma 5.1(iii) we know that Cp ⊗Kλ
t(RΓc(U,T)(ρ∗)) is equal to

the composite

dCp
(Cp ⊗Kλ

RΓc(U,M([ρ]∗)λ)
−1(28)

→ dCp
(H2

c (U,M([ρ]∗)λ)
−1

dCp
(H3

c (U,M([ρ]∗)λ)

→ dCp
((Qp)

ρ)−1
dCp

((Qp)
ρ) = 1Cp

where the first arrow is induced by property h) in §2.1 (with R = Cp) and
the second by Lemma 5.1(i) and the homomorphism −c−1

γ logp,E described in
Lemma 5.1(iii).
Now, after taking account of Lemma 5.1(ii), the leading term ζΛ(G)(T)

∗(ρ) is

defined (in Definition 3.14) to be equal to (−1)〈ρ,1〉 times the element of C×
p

which corresponds to the composite of (25) and (28). Thus, after noting that
there is a commutative diagram of the form

∏
w∈Sp(E) Qp ⊗Zp

U1
Ew
−−−−→ Qp ⊗Zp

cok(λp)

(27)
y

ylogp,E

Qp ⊗Q E
TrE/Q
−−−−→ Qp

where the upper horizontal arrow is the tautological projection, the observa-
tions made above imply that

(29) c〈ρ,1〉γ · ζΛ(G)(T)
∗(ρ) = L∗

S(1, ρ) · ξ

where ξ is the element of C×
p that corresponds to the composite morphism

1Cp
= dCp

((Qp ⊗Z O
×
E)

ρ)dCp
((Qp ⊗Z O

×
E)

ρ)−1(30)

→ dCp
((Qp ⊗Q E0)

ρ)dCp
((Qp ⊗Z O

×
E)

ρ)−1

→ dCp
((Qp ⊗Q E0)

ρ)dCp
((Qp ⊗Q E0)

ρ)−1 = 1Cp
.

Here the first arrow is induced by applying Cp ⊗R,ι−1 − to the isomorphism

R⊗ZO
×
E
∼= R⊗QE0 coming from the map (log ◦σ)σ in (26) and the second by the

isomorphism Qp ⊗Z O
×
E
∼= Qp ⊗Q E0 coming from the second and third arrows

in (23). (Note also that the factor (−1)〈ρ,1〉 in the definition of ζΛ(G)(T)
∗(ρ)

cancels against the factor −1 in the term −c−1
γ which occurs in the morphism

(28) and hence does not occur in the formula (29)).
But, upon comparing the definitions of µ∞ and µp in §5.2 with the maps
involved in (30), one finds that ξ is equal to

detCp
((Cp ⊗Qp

µp) ◦ (Cp ⊗C,ι−1 µ∞)−1)ρ =
detCp

((Cp ⊗Qp
µp) ◦ (Cp ⊗Q g))

ρ

detC(µ∞ ◦ (C⊗Q g))ρ

and hence (29) implies that

c
〈ρ,1〉
γ · ζΛ(G)(T)

∗(ρ)

detCp
((Cp ⊗Qp

µp) ◦ (Cp ⊗Q g))ρ
=

L∗
S(1, ρ)

detC(µ∞ ◦ (C⊗Q g))ρ
.
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The claimed equality (24) now follows immediately upon comparing this equal-
ity to that of Conjecture 5.2. �

Corollary 5.7. If Leopoldt’s Conjecture is valid for E at p, then for every
finite dimensional Q-rational character ρ of Ḡ there exists a natural number
nρ such that

(c〈ρ,1〉γ · ζΛ(G)(T)
∗(ρ))nρ = L∗

p,S(1, ρ)
nρ .

Further, if ρ is a permutation character, then one can take nρ = 1.

Proof. If ρ is Q-rational, then Artin’s Induction Theorem implies the existence
of a natural number nρ such that in RCp

(G) one has nρ · ρ =
∑

H nH · Ind
G
H1H

where H runs over the set of subgroups of Ḡ and each nH is an integer (cf. [37,
Chap. II, Thm. 1.2]). Further, ρ is said to be a permutation character if and
only if there exists such a formula with nρ = 1. The stated result thus follows
by combining Theorem 5.5 with Remark 5.4 and the fact that each side of (24)
is both additive and inductive in ρ. �

6. The interpolation formula for critical motives

As a second application of the formalism introduced in §3, in this section we
prove an interpolation formula for the leading terms (in the sense of Definition
3.14) of the p-adic L-functions that Fukaya and Kato conjecture to exist for any
critical motive which has good ordinary reduction at all places above p. (We
recall that a motive M is said to be ‘critical’ if the map (15) is bijective). To
study these p-adic L-functions we must combine Conjecture 4.1 together with
a local analogue of this conjecture (which is also due to Fukaya and Kato, and
is recalled as Conjecture 6.1 below) and aspects of Nekovář’s theory of Selmer
complexes and of the theory of p-adic height pairings.

6.1. Local epsilon isomorphisms. At the outset we fix a ‘p-adic period’ t
(that is, a topological generator of Zp(1)). Let L be any finite extension of Qp

and V any finite-dimensional L-vector space with continuous GQp
-action. Then

we write ǫp(V ) := ǫ(Dpst(V )) for Deligne’s epsilon-factor at p, where Dpst(V )
is endowed with the linearized action of the Weil group and thereby considered
as a representation of the Weil-Deligne group, see [16, §3.2] or [29, App. C].
(Note that this notation hides dependence on the choice of a Haar measure
and p-adic period. Note also that the choice of t = (tn) ∈ Zp(1) determines a

homomorphism ψp : Qp → Qp
×
with ker(ψp) = Zp by sending 1

pn to tn ∈ µpn).

The subfield of inertial invariants (BdR)
Ip of BdR identifies with the completion

Q̂nr
p of the maximal unramified extension Qnr

p of Qp in Qp. For L and V as

above we set L̃ := Q̂nr
p ⊗Qp

L and

Γ∗(−j) :=

{
Γ(j) = (j − 1)!, if j > 0,

lims→j(s− j)Γ(s) = (−1)j((−j)!)−1, if j ≤ 0,
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and
ΓL(V ) :=

∏

j∈Z

Γ∗(j)−h(−j),

where h(j) := dimL gr
jDdR(V ).

We let
ǫp,L(V ) : 1L̃ →

(
dL(RΓ(Qp, V ))dL(V )

)
L̃

denote the morphism that is obtained by taking the product of ΓL(V ) with the

morphisms ηℓ(V ) and (ηℓ(V ∗(1))∗) from (13) and the morphism

ǫdR(V ) : 1L̃ → dL̃(V )dL̃(DdR(V ))−1

that is constructed by Fukaya and Kato in [16, Prop. 3.3.5].
We set Λ := Λ(G) and define

Λ̃ :=W (Fp)[[G]] = lim
←−
U

(
W (Fp)⊗Zp

Zp[G/U ]
)
,

where U runs over all open normal subgroups of G andW (Fp) denotes the Witt

ring of Fp. Now we fix a finite-dimensional Qp-linear representation V of GQp
,

a full Galois stable Zp-sublattice T of V, set T := Λ⊗Zp
T and we write O for

the valuation ring of L. For any continuous representations ρ : G → GLn(O)
we denote by V (ρ∗) the Galois representation ρ∗ ⊗ V := On ⊗Zp

V, on which
GQp

acts diagonally, via ρ∗ on the first factor.
The following conjecture will play a key role in the sequel (for further discussion
of this conjecture see [39, Conj. 5.9]).

Conjecture 6.1 (Fukaya and Kato, [16, Conj. 3.4.3]). There exists a canonical
morphism in CΛ̃ of the form

ǫp,Λ(T) : 1Λ̃ →
(
dΛ(RΓ(Qp,T)) · dΛ(T)

)
Λ̃

which is such that for all finite degree extensions L of Qp, with valuation ring
O, and all continuous representations ρ : G → GLn(O) ⊆ GLn(L) such that
V (ρ∗) is de Rham one has

Ln ⊗Λ ǫp,Λ(T) = ǫp,L(V (ρ∗)).

6.2. Selmer complexes. We fix a continuous finite-dimensional L-linear rep-
resentation W of GQ which satisfies the following ‘condition of Da̧browski-
Panchishkin’:

(DP) W is de Rham and there exists a GQp
-subrepresentation Ŵ of W (re-

stricted to GQp
) such that D0

dR(Ŵ ) = tp(W ) := DdR(W )/D0
dR(W ).

Thus we have an exact sequence of GQp
-representations

0→ Ŵ →W → W̃ → 0

such that D0
dR(Ŵ ) = tp(W̃ ) = 0 (cf. [23, Prop. 1.28]). Setting Z := W ∗(1),

Ẑ := W̃ ∗(1) and Z̃ := Ŵ ∗(1) we obtain by Kummer duality the analogous
exact sequence

0→ Ẑ → Z → Z̃ → 0
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and we note that Z also satisfies the condition (DP).
We now fix a finite set S of places of Q which contains both S∞ := {∞} and
Sp := {p} and is such that W (and hence also Z) is a representation of GS ,
and we set U := Spec(Z[ 1S ]).

Then the Selmer complex SCU (Ŵ ,W ) is defined to be the natural mapping
fibre
(31)

SCU (Ŵ ,W ) // RΓ(U,W ) // RΓ(Qp,W/Ŵ )⊕
⊕

ℓ 6=p RΓ(Qℓ,W ) //

while the modified Selmer complex SC(Ŵ ,W ) is defined to be the natural
mapping fibre
(32)

SC(Ŵ ,W ) // RΓ(U,W ) // RΓ(Qp,W/Ŵ )⊕
⊕

ℓ 6=p RΓ/f (Qℓ,W ) //

where in both cases ℓ runs over all prime numbers that are distinct from p. Also,
for each such ℓ, the complex RΓ/f (Qℓ,W ) is defined as the natural mapping
cone

(33) RΓf (Qℓ,W ) // RΓ(Qℓ,W ) // RΓ/f (Qℓ,W ) //

For any GQp
-representation V and prime number ℓ we define an element of the

polynomial ring L[u] by setting

Pℓ(V, u) := PL,ℓ(V, u) :=

{
detL(1− ϕℓu|V

Iℓ), if ℓ 6= p,

detL(1− ϕpu|Dcris(V )), if ℓ = p,

where ϕℓ denotes the geometric Frobenius automorphism of ℓ.
Then the following three conditions are easily seen to be equivalent:

(A1) Pℓ(W, 1)Pℓ(Z, 1) 6= 0 for all primes ℓ 6= p,
(A2) H

0(Qℓ,W ) = H0(Qℓ, Z) = 0 for all primes ℓ 6= p,
(A3) RΓf (Qℓ,W ) is quasi-null for all primes ℓ 6= p.

We also consider the following conditions:

(B1) Pp(W, 1)Pp(Z, 1) 6= 0,
(B2) Dcris(W )ϕp−1 = Dcris(Z)

ϕp−1 = 0,
(B3) H

0(Qp,W ) = H0(Qp, Z) = 0.

We note that (B1) is equivalent to (B2) and that [23, Thm. 1.15] shows that
(B3) implies (B2).
Finally we consider the following mutually equivalent conditions (to see that

(C2) is equivalent to (C3) one uses loc. cit. and the fact that tp(W̃ ) = tp(Z̃) =
0) :

(C1) Pp(W̃ , 1)Pp(Z̃, 1) 6= 0,

(C2) Dcris(W̃ )ϕp−1 = Dcris(Z̃)
ϕp−1 = 0,

(C3) H
0(Qp, W̃ ) = H0(Qp, Z̃) = 0.

Lemma 6.2. Let X denote either W or Z.
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(i) If condition (A1) is satisfied, then for every prime ℓ 6= p all of the
following complexes are quasi-null

RΓ(Qℓ, X) ∼= RΓf (Qℓ, X) ∼= RΓ/f (Qℓ, X) ∼= 0.

(ii) If condition (C1) is satisfied, then there are isomorphisms in Dp(L) of
the form

RΓ/f (Qp, X) ∼= RΓ(Qp, X̃)

and
RΓf (Qp, X) ∼= RΓ(Qp, X̂) ∼= RΓf (Qp, X̂).

(iii) If conditions (A1) and (C1) are both satisfied, then there exists an
isomorphism in Dp(L) of the form

SCU (Ŵ ,W ) ∼= RΓf (Q,W ).

Proof. We assume (A1). Then by local duality and the local Euler character-
istic formula it follows immediately that RΓ(Qℓ, X) is quasi-null. The other
statements in claim (i) are then obvious. To prove claim (ii) we assume (C1).
Then, since every bounded complex of finitely generated L-modules is canoni-
cally isomorphic in Db(L) to its cohomology, considered as a complex with zero

differentials, we have RΓ(Qp, X̂) ∼= RΓf (Qp, X̂) ∼= RΓf (Qp, X) by [16, Lem.
4.1.7]. Thus the exact triangles

RΓ(Qp, X̂)→ RΓ(Qp, X)→ RΓ(Qp, X̃)→

and
RΓf (Qp, X)→ RΓ(Qp, X)→ RΓ/f (Qp, X)→

are naturally isomorphic in Dp(L). Finally, we note that claim (iii) follows im-

mediately from claims (i) and (ii) and the respective definitions of SCU (Ŵ ,W )
and RΓf (Q,W ). �

6.3. p-adic height pairings. To prepare for our derivation of the interpo-
lation formula in §6.4 we now discuss certain preliminaries regarding p-adic
height pairings.
We let M be any motive over Q, V = Mp its p-adic realization, ρ an Artin
representation defined over the number field K and [ρ] the corresponding Artin
motive. We fix a p-adic place λ of K, set L := Kλ and write O for the valuation
ring of L. Then the λ-adic realisation

(34) W := Nλ = V ⊗Qp
[ρ]∗λ

of the motive N :=M(ρ∗) :=M ⊗ [ρ]∗ is an L-adic representation. We assume
that V (and hence, since [ρ]∗ is pure of weight zero, also W ) satisfies the
condition (DP). We fix a full Galois stable Zp-sublattice T of V and set Tρ :=
T ⊗Zp

On, a Galois stable lattice in W (where we assume that without loss of
generality [ρ]∗λ is given as ρ∗ : GQ → GLn(O)). Similarly we fix a full GQp

-

stable Zp-sublattice T̂ of V̂ and we define T̃ to be the lattice in Ṽ that is

induced from T . Finally we set T̂ρ := T̂ ⊗Zp
On and T̃ρ := T̃ ⊗Zp

On (which

are Galois stable O-sublattices of Ŵ and W̃ respectively).
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Example 6.3. Let A be an abelian variety that is defined over Q and set
M := h1(A)(1). If A has good ordinary reduction at p, then W := Nλ satisfies
the conditions (DP), (A1), (B1) and (C1). Indeed, the last three conditions are
valid for weight reasons, and more generally, condition (DP) is known to be
valid for any motive which has good ordinary reduction at p (see [28]). More

precisely, for A (still in the good ordinary case) we have Ŵ = V̂ ⊗ [ρ]∗λ where

V̂ = Vp(Â∨) denotes the p-adic Tate-module of the formal group of the dual
abelian variety A∨ of A. However, if, for example, A is an elliptic curve with
(split) multiplicative reduction at p, then M does not satisfy the condition
(B1).

Now we define a GQp
-stable Zp-sublattice of V̂ by setting

T̂ := T ∩ V̂ .

As before we let T denote the Galois representation Λ⊗Zp
T and set T̂ := Λ⊗Zp

T̂

similarly. Then T̂ is a GQp
-stable Λ-submodule of T. It is in fact a direct

summand of T and there exists a morphism in CΛ̃ of the form

(35) β : dΛ(T
+)Λ̃
∼= dΛ(T̂)Λ̃.

Now the Selmer complexes SCU (T̂,T) and SC(T̂,T) are defined analogously
as for W above.
Then SCU (X̂,X) coincides with the Selmer complex R̃Γf (X) that occurs in
[24, (11.3.1.5)] for X ∈ {W,Z}. More generally, we set Γ := Gal(Qcyc/Q) and
define

Tcyc,ρ := Λ(Γ)⊗Zp
Tρ

and similarly also T̂cyc,ρ and T̃cyc,ρ. Then SCU (T̂cyc,ρ,Tcyc,ρ) identifies with

the Selmer complex R̃Γf,Iw(Qcyc/Q, Tρ) that is defined in [24, (8.8.5)] (with

Nekovář’s local conditions induced by setting T+
ℓ := T̂cyc(ρ) if ℓ = p and

T+
ℓ := 0 otherwise, and with Nekovář’s set Σ taken to be the set of all rational

primes). Thus we obtain a pairing

hp(W ) : H1
f (Q,W )×H1

f (Q, Z)→ L

from [24, §11] where hp(W ) is denoted h̃π,1,1. Now, by [24, Thm. 11.3.9], the
pairing hp(W ) coincides up to sign with the height pairings constructed by
Schneider [32] (in the case of abelian varieties) and Perrin-Riou [26] (for semi-
stable representations) and also those constructed earlier by Nekovář [23]: see
also [loc. cit., §8.1] and the papers of Mazur and Tate [22] and Zarhin [41] for
alternative definitions of related height pairings.
It follows from the construction of Nekovář’s height pairing (cf. [24, the sen-
tence after (11.1.3.2)]) that the induced map

(36) ad(hp(W )) : H1
f (Q,W )→ H1

f (Q, Z)
∗
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is equal to the composite

(37) H1
f (Q,W ) ∼= H1(SCU (Ŵ ,W ))

B
−→ H2(SCU (Ŵ ,W ))

∼= H2
f (Q,W ) ∼= H1

f (Q, Z)
∗

where the first and third maps are by Lemma 6.2(iii), B denotes the Bockstein

homomorphism for SCU (T̂cyc,ρ,Tcyc,ρ) and the last map comes from global
duality.

6.4. The interpolation formula. In this section we assume that the mo-
tive N := M(ρ∗) is critical. Then, assuming the conjecture [39, Conj. 3.3] of
Fontaine and Perrin-Riou to be valid, the motivic cohomology groups

(D1) H
0
f (N) = H0

f (N
∗(1)) = 0

both vanish. In fact, if we also assume the validity of a well-known conjecture
[39, Conj. 3.6] on p-adic regulator maps, this last condition is equivalent to the
condition

(D2) H
0
f (Q,W ) = H0

f (Q, Z) = 0

where W is defined in (34) and Z :=W ∗(1).
We also consider the condition

(F) The pairing hp(W ) is non-degenerate.

Example 6.4. If A is an abelian variety over Q, then the motiveM = h1(A)(1)
satisfies the conditions (D1) and (D2). However, very little is known about the
non-degeneracy of the p-adic height pairing in the ordinary case. Indeed, as far
as we are aware, the only theoretical evidence for non-degeneracy is a result of
Bertrand [1] that for an elliptic curve with complex multiplication, the height
of a point of infinite order is non-zero (but even this is unknown in the non CM
case). Computationally, however, there has been a lot of work done recently
by Stein and Wuthrich [40]. We are grateful to J. Coates, P. Schneider and C.
Wuthrich for providing us with these examples.

We now fix a compact p-adic Lie extension F∞ of Q which contains Qcyc and
is unramified outside S. We let G denote the group Gal(F∞/Q), with quotient
Γ := Gal(Qcyc/Q), and we set Λ := Λ(G).

In [16] Fukaya and Kato use the morphisms ζΛ(M) and ǫp,Λ(T̂) that are pre-
dicted to exist by Conjecture 4.1 and Conjecture 6.1 to construct canonical
‘p-adic L-function’ morphisms in CΛ of the form

(38) LU,β := LU,β(M) : 1Λ → dΛ(SCU (T̂,T))

and

(39) Lβ := Lβ(M) : 1Λ → dΛ(SC(T̂,T))

both depending on the isomorphism β in (35). We set SCU := SCU (T̂,T)
and SC := SC(T̂,T). Then the morphisms LU,β and Lβ give rise to elements
[SCU ,LU,β ] and [SC,Lβ ] of K1(Λ(G),ΣSCU

) and K1(Λ(G),ΣSC) respectively

Documenta Mathematica · Extra Volume Coates (2006) 165–209



202 David Burns and Otmar Venjakob

(where we use the notation ΣC introduced at the end of §2.2), and for simplicity
we continue to denote these elements by LU,β and Lβ respectively.
We write Υ for the set of all primes ℓ 6= p with the property that the ramification
index of ℓ in F∞/Q is infinite. We note that Υ is empty if G has a commutative
open subgroup.

Theorem 6.5. We assume that the motive M(ρ∗) is critical, that the repre-
sentation W defined in (34) satisfies the conditions (DP ), (A1), (B1), (C1),

(D2) and (F ) and that the morphisms ζΛ(M) and ǫp,Λ(T̂) that are described in
Conjecture 4.1 and Conjecture 6.1 exist.
Then both SCU (T̂,T) and SC(T̂,T) are semisimple at ρ, one has r :=

rG(SCU (T̂,T))(ρ) = rG(SC(T̂,T))(ρ) = dimLH
1
f (Q,W ) and the leading term

L∗
β(ρ) (respectively L

∗
U,β(ρ)) is equal to the product

(40) (−1)r
L∗
K,B(M(ρ∗))

Ω∞(M(ρ∗))R∞(M(ρ∗))
· Ωp,β(M(ρ∗))Rp(M(ρ∗))

· ΓQp
(V̂ )−1 ·

PL,p(Ŵ
∗(1), 1)

PL,p(Ŵ , 1)
,

where L∗
K,B(M(ρ∗)) denotes the leading term at s = 0 of the B-truncated com-

plex L-function of M(ρ∗) with B := Υ∪Sp (respectively B := S\S∞). Further,
the regulator terms R∞(M(ρ∗)) and Rp(M(ρ∗)) and period terms Ω∞(M(ρ∗))
and Ωp,β(M(ρ∗)) that occur in the above formula are as defined in the course
of the proof given below.

Remark 6.6. The formulas of Theorem 6.5 represent a natural generalization
of the formulas obtained by Perrin-Riou in [29, 4.2.2 and 4.3.6]. Further, by
slightly altering the definition of the complex L-function an analogous formula
can be proved even in the case that the condition (B1) is not satisfied. Indeed,
if condition (B1) fails, then one can have PL,p(W, 0) = 0 and so the order of
vanishing at s = 0 of the functions LK,B(M(ρ∗), s) and LK(M(ρ∗), s) may
differ. However, to avoid this problem, in formula (40) one need only replace

PL,p(Ŵ , 1) by the leading coefficient of PL,p(Ŵ , ps) at s = 0, or equivalently

one can replace the term
L∗

K,B(M(ρ∗))

PL,p(Ŵ ,1)
by

L∗
K,B\{p}(M(ρ∗))

{PL,p(W,u)−1PL,p(Ŵ ,u)}u=1
.

Proof. We first prove all of the assertions concerning SCU (T̂,T).
By [16, 4.1.4(2)] there exists a canonical isomorphism

(41) (ΛO(Γ)⊗O O
n)⊗L

Λ(G) SCU (T̂,T) ∼= SCU (T̂cyc,ρ,Tcyc,ρ).

Lemma 3.13 therefore combines with the following result to imply that,
under the stated conditions, SCU (T̂,T) is semisimple at ρ and one has

rG(SCU (T̂,T))(ρ) = dimLH
1
f (Q,W ).

Lemma 6.7. We assume that the conditions (A1), (C1) and (D2) are satisfied.

(i) Then SCU (T̂cyc,ρ,Tcyc,ρ) is semisimple if and only if the condition (F)
holds.
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(ii) Further, if condition (F) is satisfied, then rΓ(SCU (T̂cyc,ρ,Tcyc,ρ)) =
dimLH

1
f (Q,W ).

Proof. By assumption, the condition (D2) can be combined with the isomor-
phism of Lemma 6.2 (iii) and the global duality isomorphism H3

f (Q,W ) ∼=

H0
f (Q, Z)

∗ to imply that SCU (Ŵ ,W ) is acyclic outside degrees 1 and 2. Both

claims therefore follow from the fact that the homomorphisms (36) and (37) are
known to coincide and that there are canonical isomorphisms L⊗Λ(Γ) Tcyc,ρ

∼=

W, L⊗Λ(Γ)T̂cyc,ρ
∼= Ŵ and thus L⊗Λ(Γ)SCU (T̂cyc,ρ,Tcyc,ρ) ∼= SCU (Ŵ ,W ). �

We next prove the explicit formula (40) for the leading term L∗
U,β(ρ). Our

proof of this result is closely modeled on that of [16, Thm. 4.2.26] (as amplified
in [39, proof of Thm. 6.4]).
At the outset we set N :=M(ρ∗), let γ = (γi)i and δ = (δi)i denote a choice of

‘good bases’ (in the sense of [16, 4.2.24(3)]) of M+
B and tM for T̂ and write γ′

and δ′ for the induced K-bases of N+
B and tN respectively. Then these choices

induce a morphism

(42) canγ′,δ′ : 1K → dK(N+
B )dK(tN )−1.

Furthermore, we let P∨ = (P∨
1 , . . . , P

∨
d(N)) and P = (P1, . . . , Pd(N)) be K-bases

of H1
f (N) and H1

f (N
∗(1)) respectively. Then, letting P d := (P d

1 , . . . , P
d
d(N))

denote the dual basis of P , we obtain a similar morphism

(43) canP∨,Pd : 1K → dK(H1
f (N))dK(H1

f (N
∗(1))∗)−1.

Then can := canγ′,δ′ · canP∨,Pd is a morphism
(44)
can : 1K → ∆K(N) = dK(N+

B )dK(tN )−1
dK(H1

f (N))dK(H1
f (N

∗(1))∗)−1.

We fix an embedding of K into C. We let Ω∞(N) denote the determinant of
the canonical isomorphism

(45) αN : (N+
B )C → (tN )C

with respect to the bases γ′ and δ′, and R∞(N) the determinant of the inverse
of the canonical isomorphism

(46) h∞(N) :
(
H1

f (N
∗(1))∗

)
C
→ H1

f (N)C

with respect to the bases P d and P∨ respectively. Thus we have morphisms

Ω∞(N) : 1C

(canγ′,δ′ )C
−−−−−−−→ dK(N+

B )CdK(tN )−1
C

d(αN )·id
−−−−−−→ 1C

and

R∞(N) : 1C

(can
P∨,Pd )C

−−−−−−−−→ dK(H1
f (N))CdK(H1

f (N
∗(1))∗)−1

C

id·d(h∞(N))−1

−−−−−−−−−−→ 1C

whose product gives

Ω∞(N)R∞(N) : 1C
can
−−→ ∆K(N)C

(ϑ∞(N))C
−−−−−−→ 1C.
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Upon comparing this with the leading term

L∗
K(M) : 1C

ζK(N)C
−−−−−→ ∆K(N)C

(ϑ∞(N))C
−−−−−−→ 1C

we deduce that ζK(N) : 1K → ∆K(N) is equal to the morphism

L∗
K(M)

Ω∞(N)R∞(N)
· can : 1K → ∆K(N).

Before proceeding we recall the relevant descent properties of Selmer complexes.

Lemma 6.8. We use the notation of §6.3.

(i) There exist canonical isomorphisms of the form

Ln ⊗L
Λ,ρ RΓc(U,T) ∼= RΓc(U,W ), Ln ⊗L

Λ,ρ SCU (T̂,T) ∼= SCU (Ŵ ,W ).

(ii) There exists an exact triangle of the form

Ln ⊗L
Λ,ρ SC(T̂,T)

// SC(Ŵ ,W ) //

⊕
ℓ∈Υ RΓf (Qℓ,W ) // .

Proof. See [16, Prop. 1.6.5 and Prop. 4.2.17]. �

Now, after taking account of Lemma 6.8(i), the leading term L∗
U,β(ρ) is defined

(in Definition 3.14) to be equal to (−1)r times the morphism

1L̃

ζΛ(M)(ρ)L̃−−−−−−−→ dL(RΓc(U,W ))−1

L̃

β(ρ)ǫ(T̂)−1(ρ)
−−−−−−−−−→

dL(SCU (Ŵ ,W ))−1

L̃

t(SCU (ρ∗))L̃−−−−−−−−→ 1L̃

where ζΛ(M)(ρ) := Ln⊗ΛζΛ(N), β(ρ) := Ln⊗Λβ and ǫ(T̂)(ρ) := Ln⊗Λǫp,Λ(T̂).
But Conjecture 4.1 implies that ζΛ(M)(ρ) is equal to

1L̃

ζK(N)L̃−−−−−→ ∆K(N)L̃
ϑλ(N)
−−−−→ dL(RΓc(U,W ))−1

L̃
,

while Conjecture 6.1 implies that

ǫ(T̂)(ρ) = ǫp,L(Ŵ ),

and hence it follows that L∗
U,β(ρ) is equal to the product of the following seven

terms (47)-(53):

(47) (−1)r
L∗
K(N)

Ω∞(M(ρ∗))R∞(N)
;

(48) ΓL(Ŵ )−1 = ΓQp
(V̂ )−1;

(49)

Ωp,β(M(ρ∗)) : dL(Ŵ )L̃
· ǫdR(Ŵ )−1

// dL(DdR(Ŵ ))L̃
d(gt

dR)
// dK(tM(ρ∗))L̃

· canγ,δ
//

dK

(
M(ρ∗)+B

)
L̃

d(g+
λ )
// dL(W

+)L̃
β(ρ)

// dL(Ŵ )L̃,
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where we use D0
dR(Ŵ ) = 0 for the second isomorphism and where we apply

Remark 2.2 to regard this as an automorphism of 1L̃;

(50)
∏

ℓ∈S\{p,∞}

PL,ℓ(W, 1) :

1L

∏
ηℓ(W )

//

∏
ℓ∈S\{p,∞} dL(RΓf (Qℓ,W ))

acyc
// 1L,

where the first map comes from the trivialization by the identity and the second
from the acyclicity;

(51) {PL,p(W,u)PL,p(Ŵ , u)−1}u=1 :

1L

ηp(W )·ηp(Ŵ )−1

// dL(RΓf (Qp,W ))dL(RΓf (Qp, Ŵ ))−1
quasi

// 1L,

where we use that tp(W ) = DdR(Ŵ ) = tp(Ŵ ) and the quasi-isomorphism
described in Lemma 6.2(ii);

(52) PL,p(Ŵ
∗(1), 1) : 1L

(ηp(Ŵ∗(1)))∗
// dL(RΓf (Qp, Ŵ

∗(1)))
acyc

// 1L,

where we use the fact that tp(Ŵ
∗(1)) = D0

dR(Ŵ ) = 0;

(53) Rp(N) : 1L

(can
P∨,Pd )L

−−−−−−−−→ dK(H1
f (N))LdK(H1

f (N
∗(1))∗)−1

L

∼=
−→

dK(H1
f (Q,W ))LdK(H1

f (Q, Z)
∗)−1

L

hp(W )
−−−−→ 1L

which is equal to the determinant over L of the isomorphism ad(hp(W )) with
respect to the chosen bases P∨ and P .
Indeed, in order to compare L∗

U,β(ρ) with the product of the above terms (47)-

(53) one just has to verify that after revealing all definitions and identifications,
in particular all comparison isomorphisms, the same constituents show up in
both expressions (here we rely on Remark 2.2 which implies that all composi-
tions of maps in CL̃ can be interpreted as products and hence are independent
of any ordering). Thus we shortly indicate how the constituents of L∗

U,β(ρ)

give rise to precisely those in the product: As we remarked earlier, ζΛ(M)(ρ)
decomposes up to the comparison isomorphism d(g+λ ), which contributes to
factor (49), into ζK(N)L and ϑλ(N). While ζK(N)L gives the full factor (47)
and contributes with canγ,δ and canP∨,Pd to the factors (49) and (53), respec-
tively, the second part ϑλ(N) gives the full factor (50), the half factor (51)
in the form of ηp(W ) and contributes d(g+dR) to factor (49). Further, β(ρ)

contributes to factor (49), while according to [16, §3.3] ǫ(T̂)−1(ρ) = ǫp,L(Ŵ )−1

gives the full factors (48) and (52), the other half of (51) in the form of ηp(Ŵ )−1

and adds ǫdR(Ŵ ) to factor (49). Finally, we had observed at the end of §6.3
that t(SCU (ρ

∗)) is equal to hp(W ).
Since L∗

U,β(ρ) is equal to the product of the terms (47)-(53), it is therefore
enough to show that the product of these terms is also equal to the explicit
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product expression in (40). But this follows immediately by a direct comparison
of the maps involved and then using the fact that

L∗
K,B(N) = L∗

K(N) ·
∏

ℓ∈S\S∞

PL,ℓ(W, 1) · PL,p(Ŵ , 1)−1 · PL,p(Ŵ
∗(1), 1).

At this stage we have proved all of the claims in Theorem 6.5 concerning
SCU (T̂,T) and so it only remains to prove the analogous claims for the com-

plex SC(T̂,T). But these claims can be proved easily by combining the above
argument with consideration of the exact triangle

SCU (Ŵ ,W )→ Ln ⊗L
Λ SC(T̂,T)→

⊕

ℓ/∈(Sp∪Υ)

RΓf (Qℓ,W )→

(which itself results from comparing the defining exact triangles (31) and (32)
firstly with each other and then with the exact triangle in Lemma 6.8(ii)) and
the equality

L∗
K,Υ′(N) = L∗

K,B′(N)
∏

ℓ∈B\Υ

PL,ℓ(W, 1)
−1

with Υ′ = Υ ∪ {p} and B′ = S \ S∞. �

Example 6.9. Let E be an elliptic curve defined over Q. Set M := h1(E)(1)
and F∞ := Q(E(p)) where E(p) denotes the p-power torsion subgroup of E(Q).

Then it is conjectured that SCU (T̂,T) always belongs to ΣS∗ (cf. [11, Conj. 5.1]
and [16, 4.3.5 and Prop. 4.3.7]). Further, as was shown in [16], the existence
of a morphism Lβ(M) as in (39) implies the existence of the element LE of
K1(Λ(G)S∗) that [11, Conj. 5.7] predicts to exist with a precise interpolation

property for all Artin representations ρ such that rG(SC(T̂,T))(ρ) = 0. More
generally, the formula (40) now gives a precise interpolation property for (the
leading term of) the element LE at all Artin representations at which the
underlying archimedean and p-adic height pairings are non-degenerate.
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Birkhäuser, Boston, 1984. 1, 5, 5.2, 5.3, 5.4, 5.3

[38] O. Venjakob, Characteristic Elements in Noncommutative Iwasawa The-
ory, J. reine angew. Math., 583, 2005. 3.5, 3.20

[39] O. Venjakob, From the Birch and Swinnerton-Dyer Conjecture to non-
commutative Iwasawa theory via the Equivariant Tamagawa Number Con-
jecture - a survey, to appear in ‘L-functions and Galois representations’,

Documenta Mathematica · Extra Volume Coates (2006) 165–209



Non-Commutative p-Adic L-Functions 209

Proceedings of the 2004 Durham Symposium, C.U.P. 1, 4.1, 4.1, 4.2, 4.3,
6.1, 6.4, 6.4

[40] C. Wuthrich, On p-adic heights in families of elliptic curves, J. London
Math. Soc. (2) 70 (2004), no. 1 , 23–40. 6.4

[41] Y. Zarhin, Neron coupling and quasicharacters, Izv. Akad. Nauk SSSR
Ser. Mat. 36 (1972), 497–509. 6.3

[42] S. Zerbes, Selmer groups over p-adic Lie extensions. I, J. London Math.
Soc. (2) 70 (2004), no. 3, 586–608. 3.5

David Burns
King’s College London
Dept. of Mathematics
London WC2R 2LS
United Kingdom

Otmar Venjakob
Universität Bonn
Mathematisches Institut
Beringstraße 1
D-53115 Bonn
Germany

Documenta Mathematica · Extra Volume Coates (2006) 165–209



210

Documenta Mathematica · Extra Volume Coates (2006)


	1. Introduction
	2. Preliminaries
	2.1. Determinant functors
	2.2. The localized K1-group

	3. Leading terms
	3.1. Bockstein homomorphisms
	3.2. The case G=
	3.3. The general case
	3.4. Canonical localizations
	3.5. Generalized Euler-Poincaré characteristics

	4. Global Zeta isomorphisms
	4.1. Galois cohomology
	4.2. K-Motives over Q
	4.3. The Tamagawa Number Conjecture

	5. The interpolation formula for Tate motives
	5.1. Leopoldt's Conjecture.
	5.2. The p-adic Stark conjecture at s = 1.
	5.3. The interpolation formula

	6. The interpolation formula for critical motives
	6.1. Local epsilon isomorphisms
	6.2. Selmer complexes
	6.3. p-adic height pairings
	6.4. The interpolation formula

	References

