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1 Introduction

In [7], Coleman and Mazur construct a rigid analytic space E (the “Eigen-
curve”) that parameterizes overconvergent and therefore classical modular
eigenforms of finite slope. The geometry of E is at present poorly understood,
and seems quite complicated, especially over the centre of weight space. Re-
cently, some progress has been made in understanding the geometry of E in
certain examples (see for example [3],[4]). Many questions remain. In this
paper, we address the following question raised on p5 of [7]:

Do there exist p-adic analytic families of overconvergent eigenforms
of finite slope parameterized by a punctured disc, and converging,
at the puncture, to an overconvergent eigenform of infinite slope?

We answer this question in the negative for the 2-adic eigencurve of tame
level 1. Another way of phrasing our result is that the map from the eigencurve
to weight space satisfies the valuative criterion of properness, and it is in this
sense that the phrase “proper” is used in the title, since the projection to
weight space has infinite degree and so is not technically proper in the sense of
rigid analytic geometry. One might perhaps say that this map is “functorially
proper”. Our approach is based on the following simple idea. One knows
(for instance, from [1]) that finite slope eigenforms of integer weight may be
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212 Kevin Buzzard and Frank Calegari

analytically continued far into the supersingular regions of the moduli space.
On the other hand, it turns out that eigenforms in the kernel of U do not extend
as far. Now one can check that a limit of highly overconvergent eigenforms is
also highly overconvergent, and this shows that given a punctured disc as above,
the limiting eigenform cannot lie in the kernel of U .

The problem with this approach is that perhaps the most natural definition
of “highly overconvergent” is not so easy to work with at non-integral weight.
The problem stems from the fact that such forms of non-integral weight are
not defined as sections of a line bundle. In fact Coleman’s definition of an
overconvergent form of weight κ is a formal q-expansion F for which F/Eκ

is overconvergent of weight 0, where Eκ is the p-deprived weight κ Eisenstein
series. One might then hope that the overconvergence of F/Eκ would be a good
measure of the overconvergence of F . One difficulty is that if F is an eigenform
for the Hecke operators, the form F/Eκ is unlikely to be an eigenform. This
does not cause too much trouble when proving that finite slope eigenforms
overconverge a long way, as one can twist the U -operator as explained in [5]
and apply the usual techniques. We outline the argument in sections 2 and
3 of this paper. On the other hand we do not know how to prove general
results about (the lack of) overconvergence of forms in the kernel of U in this
generality. Things would be easier if we used V (Eκ) to twist from weight κ
to weight 0, but unfortunately the results we achieve using this twist are not
strong enough for us to get the strict inequalities that we need.

The approach that we take in our “test case” of N = 1 and p = 2 is to control
the kernel of U in weight κ by explicitly writing down the matrix of U (and
of 2V U − Id) with respect to a carefully-chosen basis. To enable us to push
the argument through, however, we were forced to diverge from Coleman’s
choice of twist. We define the overconvergence of F , not in terms of F/Eκ, but
rather in terms of F/hs for some explicit modular form h. The benefit of our
choice of h is that it is nicely compatible with the explicit formulae developed
in [3], and hence we may prove all our convergence results by hand in this case.
Our proof that eigenforms of finite slope overconverge “as far as possible” is
essentially standard. The main contribution of this paper is to analyze the
overconvergence (or lack thereof) of eigenforms in the kernel of the U operator
in this case.

One disadvantage of our approach is that the power series defining hs only
converges for s sufficiently small and hence our arguments only deal with forms
whose weights lie in a certain disc at the centre of weight space. However,
recently in [4], the 2-adic level 1 eigencurve was shown to be a disjoint union
of copies of weight space near the boundary of weight space, and hence is
automatically proper there.
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The 2-adic Eigencurve is Proper. 213

2 Definitions

Let ∆(τ) = q
∏∞

n=1(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + · · · denote the
classical level 1 weight 12 modular form (where q = e2πiτ ). Set

f = ∆(2τ)/∆(τ) = q + 24q2 + 300q3 + 2624q4 + · · · ,

a uniformizer for X0(2), and

h = ∆(τ)2/∆(2τ) =
∏

n≥1

(

1− qn

1 + qn

)24

= 1− 48q + 1104q2 − 16192q3 + . . .

a modular form of level 2 and weight 12. Note that the divisor of h is 3(0),
where (0) denotes the zero cusp on X0(2), and hence that

h1/3 =
∏

n≥1

(

1− qn

1 + qn

)8

is a classical modular form of weight 4 and level 2.
We briefly review the theory of overconvergent p-adic modular forms, and make
it completely explicit in the setting we are interested in, namely p = 2 and tame
level 1. Let C2 denote the completion of an algebraic closure of Q2. Normalize
the norm on C2 such that |2| = 1/2, and normalize the valuation v : C×

2 → Q

so that v(2) = 1. Choose a group-theoretic splitting of v sending 1 to 2, and let
the resulting homomorphism Q → C×

2 be denoted t 7→ 2t. Define v(0) = +∞.
Let O2 denote the elements of C2 with non-negative valuation.
If r ∈ Q with 0 < r < 2/3 (note that 2/3 = p/(p + 1) if p = 2) then
there is a rigid space X0(1)≥2−r over C2 such that functions on this space
are r-overconvergent 2-adic modular functions. Let X[r] denote the rigid space
X0(1)≥2−r . By Proposition 1 of the appendix to [3], we see that X[r] is simply
the closed subdisc of the j-line defined by |j| ≥ 2−12r. We will also need to use
(in Lemma 6.13) the rigid space X[2/3], which we define as the closed subdisc
of the j-line defined by |j| ≥ 2−8. The parameter q can be viewed as a rigid
function defined in a neighbourhood of ∞ on X[r], and hence any rigid function
on X[r] can be written as a power series in q; this is the q-expansion of the
form in this rigid analytic setting. Moreover, it is well-known that the classical
level 2 form f descends to a function on X[r] (for any r < 2/3), with the same
q-expansion as that given above.
For 0 < r < 2/3, define M0[r] to be the space of rigid functions on X[r],
equipped with its supremum norm. Then M0[r] is a Banach space over C2

— it is the space of r-overconvergent modular forms of weight 0. An easy
calculation using the remarks after Proposition 1 of the appendix to [3] shows
that the set {1, 212rf, 224rf2, . . . , (212rf)n, . . .} is an orthonormal Banach basis
for M0[r], and we endow M0[r] once and for all with this basis.
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We define W to be the open disc of centre 1 and radius 1 in the rigid affine line
over C2. If w ∈ W(C2) then there is a unique continuous group homomorphism
κ : Z×

2 → C×
2 such that κ(−1) = 1 and κ(5) = w; moreover this establishes a

bijection between W(C2) and the set of even 2-adic weights, that is, continuous
group homomorphisms κ : Z×

2 → C×
2 such that κ(−1) = 1. Note that if k is

an even integer then the map x 7→ xk is such a homomorphism, and we refer
to this weight as weight k. Let τ : Z×

2 → C×
2 denote the character with

kernel equal to 1 + 4Z2, and let 〈·〉 denote the character x 7→ x/τ(x); this
character corresponds to w = 5 ∈ W(C2). If t ∈ C2 with |t| < 2 then we may
define 5t := exp

(

t log(5)
)

∈ W(C2) and we let 〈·〉t denote the homomorphism

Z×
2 → C×

2 corresponding to this point of weight space. One checks easily
that the points of weight space corresponding to characters of this form are
{w ∈ W(C2) : |w − 1| < 1/2}.
We now explain the definitions of overconvergent modular forms of general
weight that we shall use in this paper. Recall h =

∏

n≥1(1− qn)24/(1 + qn)24.

Define h1/8 to be the formal q-expansion
∏

n≥1((1− qn)3/(1 + qn)3. Now

(1− qn)/(1 + qn) = 1− 2qn + 2q2n − · · · ∈ 1 + 2qZ[[q]]

and hence h1/8 ∈ 1 + 2qZ[[q]]. Write h1/8 = 1 + 2qg with g ∈ Z[[q]]. If S
is a formal variable then we define hS ∈ 1 + 16qSZ2[[8S, q]] to be the formal
binomial expansion of (1 + 2qg)8S . If s ∈ C2 with |s| < 8 then we define hs to
be the specialization in 1 + 2qO2[[q]] of h

S at S = s. In fact for the main part
of this paper we shall only be concerned with hs when |s| < 4.
If s ∈ C2 with |s| < 8, then define µ(s) := min{v(s), 0}, so −3 < µ(s) ≤ 0.
Define X to be the pairs (κ, r) (where κ : Z×

2 → C×
2 and r ∈ Q) such that there

exists s ∈ C2 with |s| < 8 satisfying

• κ = 〈·〉−12s, and

• 0 < r < 1/2 + µ(s)/6.

Note that the second inequality implies r < 1/2, and conversely if |s| ≤ 1 and
0 < r < 1/2 then (〈·〉−12s, r) ∈ X .
For (κ, r) ∈ X , and only for these (κ, r), we define the space Mκ[r] of r-
overconvergent forms of weight κ thus. Write κ = 〈·〉−12s and define Mκ[r] to
be the vector space of formal q-expansions F ∈ C2[[q]] such that Fhs is the
q-expansion of an element of M0[r]. We give Mκ[r] the Banach space struc-
ture such that multiplication by hs induces an isomorphism of Banach spaces
Mκ[r] → M0[r], and we endow Mκ[r] once and for all with the orthonormal
basis {h−s, h−s(212rf), h−s(212rf)2, . . .}.

Remark 2.1. We do not consider the question here as to whether, for all
(κ, r) ∈ X , the space Mκ[r] is equal to the space of r-overconvergent modular
forms of weight κ as defined by Coleman (who uses the weight κ Eisenstein
series Eκ to pass from weight κ to weight 0). One could use the methods
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The 2-adic Eigencurve is Proper. 215

of proof of §5 of [4] to verify this; the issue is verifying whether Eκh
s is r-

overconvergent and has no zeroes on X[r]. However, we do not need this result
— we shall prove all the compactness results for the U operator that we need
by explicit matrix computations, rather than invoking Coleman’s results. Note
however that our spaces clearly coincide with Coleman’s if κ = 0, as the two
definitions coincide in this case. Note also that for r > 0 sufficiently small
(depending on κ = 〈·〉−12s with |s| < 8), the definitions do coincide, because if
E1 := 1 + 4q + 4q2 + · · · denotes the weight 1 level 4 Eisenstein series, then
h/E12

1 = 1 − 96q + · · · is overconvergent of weight 0, has no zeroes on X[r]
for r < 1/3, and has q-expansion congruent to 1 mod 32. Hence for r > 0
sufficiently small, the supremum norm of (h/E12

1 )−1 on X[r] is t with t < 1/2
and |s|t < 1/2, and this is enough to ensure that the power series (h/E12

1 )s is
the q-expansion of a function on X[r] with supremum norm at most 1. Hence
instead of using powers of h to pass between weight κ and weight 0, we could
use powers of E1. Finally, Corollary B4.5.2 of [5] shows that if κ = 〈·〉−12s

then there exists r > 0 such that E−12s
1 /Eκ is r-overconvergent, which suffices.

Recall that if X and Y are Banach spaces over a complete field K with or-
thonormal bases {e0, e1, e2, . . .} and {f0, f1, f2, . . .}, then by the matrix of a
continuous linear map α : X → Y we mean the collection (aij)i,j≥0 of elements
of K such that α(ej) =

∑

i≥0 aijfi. One checks that

• supi,j |aij | <∞, and

• for all j we have limi→∞ |aij | = 0,

and conversely that given any collection (aij)i,j≥0 of elements of K having
these two properties, there is a unique continuous linear map α : X → Y
having matrix (aij)i,j≥0 (see Proposition 3 of [10] and the remarks following it
for a proof). When we speak of “the matrix” associated to a continuous linear
map between two spaces of overconvergent modular forms, we will mean the
matrix associated to the map using the bases that we fixed earlier.
If R is a ring then we may define maps U , V and W on the ring R[[q]] by

U
(

∑

anq
n
)

=
∑

a2nq
n,

V
(

∑

anq
n
)

=
∑

anq
2n,

and

W
(

∑

anq
n
)

=
∑

(−1)nanq
n.

Recall that U(V (G)F ) = GU(F ) for F,G formal power series in q, and that V :
R[[q]] → R[[q]] is a ring homomorphism. The operatorW is not standard (or at
least, our notation for it is not standard), but is also a ring homomorphism (it
sends f(q) to f(−q)) and one also checks easily that W = 2V U − Id. We shall
show later on that there are continuous linear maps between various spaces of
overconvergent modular forms which correspond to U and W , and will write
down explicit formulae for the matrices associated to these linear maps.
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3 The U operator on overconvergent modular forms

Our goal in this section is to make precise the statement in the introduction that
finite slope U -eigenforms overconverge a long way. Fix r ∈ Q with 0 < r < 1/2.
We will show that if (κ, r) ∈ X then the U -operator (defined on q-expansions)
induces a continuous linear map Mκ[r] → Mκ[r], and we will compute the
matrix of this linear map (with respect to our chosen basis of Mκ[r]). We
will deduce that if 0 < ρ < r and F is ρ-overconvergent with UF = λF 6= 0
then F is r-overconvergent. These results are essentially standard but we shall
re-prove them, for two reasons: firstly to show that the arguments still go
through with our choice of twist, and secondly to introduce a technique for
computing matrices of Hecke operators in arbitrary weight that we shall use
when analyzing the W operator later.
It is well-known that the U -operator induces a continuous linear map U :
M0[r] → M0[r], and its associated matrix was computed in [3]. Now choose
m ∈ Z≥0, and set k = −12m. One checks that (k, r) ∈ X . If φ ∈M0[r] then

hmU
(

h−mφ
)

= hmU
(

∆(2τ)−mf2mφ
)

= hm∆(τ)−mU
(

f2mφ
)

= f−mU
(

f2mφ
)

.

A simple analysis of the q-expansion of f−mU(f2mφ) shows that it has no
pole at the cusp of X[r] and hence f−mU(f2mφ) ∈ M0[r]. We deduce that
U induces a continuous map Mk[r] → Mk[r], and moreover that the matrix
of this map (with respect to the basis fixed earlier) equals the matrix of the
operator Uk := f−mUf2m acting on M0[r]. We now compute this matrix.

Lemma 3.1. For m ∈ Z≥0 and k = −12m as above, and j ∈ Z≥0, we have

Uk

(

(212rf)j
)

=

∞
∑

i=0

uij(m)(212rf)i,

where uij(m) is defined as follows: we have u00(0) = 1, uij(m) = 0 if 2i−j < 0
or 2j − i+ 3m < 0, and

uij(m) =
3(i+ j + 3m− 1)!(j + 2m)28i−4j+12r(j−i)

2(2i− j)!(2j − i+ 3m)!

if 2i− j ≥ 0, 2j − i+ 3m ≥ 0, and i, j, m are not all zero.

Proof. The case m = 0 of the lemma is Lemma 2 of [3], and the general case
follows easily from the fact that Uk = f−mUf2m. Note that in fact all the
sums in question are finite, as uij(m) = 0 for i > 2j + 3m.

Now for i, j ∈ Z≥0 define a polynomial uij(S) ∈ C2[S] by uij(S) = 0 if 2i < j,
uij(S) = 212ir if 2i = j, and

uij(S) =
3 · 212r(j−i)(j + 2S)28i−4j

2(2i− j)!

2i−j−1
∏

λ=1

(2j − i+ λ+ 3S)
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The 2-adic Eigencurve is Proper. 217

if 2i > j. One checks easily that evaluating uij(S) at S = m for m ∈ Z≥0 gives
uij(m), so there is no ambiguity in notation. Our goal now is to prove that for
all s ∈ C2 such that |s| < 8 and (〈·〉−12s, r) ∈ X , the matrix (uij(s))i,j≥0 is the
matrix of the U -operator acting on Mκ[r] for κ = 〈·〉−12s (with respect to the
basis of Mκ[r] that we fixed earlier).
Say s ∈ C2 with |s| < 8, define κ = 〈·〉−12s, set µ = min{v(s), 0}, and say
0 < r < 1/2 + µ/6. Then (κ, r) ∈ X . Note that v(as+ b) ≥ µ for any a, b ∈ Z,
and 3 + µ− 6r > 0.

Lemma 3.2. (a) One has v(uij(s)) ≥ (3 + µ− 6r)(2i− j) + 6rj.
(b) There is a continuous linear map U(s) :M0[r] →M0[r] with matrix uij(s).
Equivalently, there is a continuous linear map U(s) :M0[r] →M0[r] such that

U(s)
(

(212rf)j
)

=

∞
∑

i=0

uij(s)(2
12rf)i.

Proof. (a) This is a trivial consequence of our explicit formula for uij(s), the
remark about v(as+ b) above, and the fact that v(m!) ≤ m− 1 if m ≥ 1 (see
Lemma 6.2).
(b) Recall that uij(s) = 0 if 2i < j. Hence by (a) we see that |uij(s)| ≤ 1 for all
i, j. It remains to check that for all j we have limi→∞ v(uij(s)) = +∞ which
is also clear from (a).

Note that U(s) = U−12s if s = m ∈ Z≥0.
In fact the same argument gives slightly more. Choose ǫ ∈ Q with 0 < ǫ <
min{r, 1/2 + µ/6− r}. Then (κ, r + ǫ) ∈ X .

Theorem 3.3. The endomorphism U(s) of M0[r] is the composite of a contin-
uous map M0[r] →M0[r + ǫ] and the restriction M0[r + ǫ] →M0[r].

Proof. Define wij(s) = uij(s)/2
12ǫi. By the previous lemma we have

v(wij(s)) ≥ (2i− j)(3 + µ− 6r − 6ǫ) + 6j(r − ǫ)

and wij(s) = 0 if j > 2i. In particular v(wij(s)) ≥ 0 for all i, j, and moreover for
all j we have limi→∞ wij(s) = 0. The continuous linear mapM0[r] →M0[r+ǫ]
with matrix (wij(s))i,j≥0 will hence do the job.

As usual say |s| < 8, κ = 〈·〉−12s and (κ, r) ∈ X .

Corollary 3.4. The map U(s) : M0[r] → M0[r] is compact and its charac-
teristic power series is independent of r with 0 < r < 1/2 + µ/6. Furthermore
if 0 < ρ < r then any non-zero U(s)-eigenform with non-zero eigenvalue on
M0[ρ] extends to an element of M0[r].

Proof. This follows via standard arguments from the theorem; see for example
Proposition 4.3.2 of [7], although the argument dates back much further.
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Keep the notation: |s| < 8, κ = 〈·〉−12s, µ = min{v(s), 0} and 0 < r <
1/2 + µ/6, so (κ, r) ∈ X . We now twist U(s) back to weight κ and show that
the resulting compact operator is the U -operator (defined in the usual way on
power series).

Proposition 3.5. The compact endomorphism of Mκ[r] defined by φ 7→
h−sU(s)(hsφ) is the U -operator, i.e., sends

∑

anq
n to

∑

a2nq
n.

Proof. It suffices to check the proposition for φ = h−s(212rf)j for all j ∈ Z≥0,
as the result then follows by linearity. If S is a formal variable then recall that
we may think of hS as an element of 1 + 16qSO2[[8S, q]]) and in particular as
an invertible element of O2[[8S, q]]. Write h−S for its inverse. We may think of
(hS)U(h−S(212rf)j) as an element of O2[[8S, q]] (though not yet as an element
of M0[r]). Write

(hS)U(h−S(212rf)j) =
∑

i≥0

ũij(S)(2
12rf)i

with ũij(S) ∈ O2[[8S]]⊗C2 (this is clearly possible as f = q+ . . .). The propo-
sition is just the statement that the power series ũij(S) equals the polynomial
uij(S). Now there exists some integer N ≫ 0 such that both 2Nuij(S) and
2N ũij(S) lie in O2[[8S]] (as uij(S) is a polynomial). Furthermore, Lemma 3.1
shows that uij(m) = ũij(m) for all m ∈ Z≥0 and hence 2N (uij(S)− ũij(S)) is
an element of O2[[8S]] with infinitely many zeroes in the disc |8s| < 1, so it is
identically zero by the Weierstrass approximation theorem.

Corollary 3.6. If (κ, r) ∈ X and κ = 〈·〉−12s then U is a compact operator
on Mκ[r] and its characteristic power series coincides with the characteristic
power series of U(s) on M0[r]. Furthermore F ∈ Mκ[r] is an eigenvector for
U iff Fhs ∈M0[r] is an eigenvector for U(s).

Proof. Clear.

The utility of these results is that they allow us to measure the overconvergence
of a finite slope form F of transcendental weight by instead considering the
associated form Fhs in weight 0. This will be particularly useful to us later on
in the case when F is in the kernel of U . We record explicitly what we have
proved. By an overconvergent modular form of weight κ we mean an element
of
⋃

rMκ[r], where r runs through the r ∈ Q for which (κ, r) ∈ X .

Corollary 3.7. If (κ, r) ∈ X and f is an overconvergent modular form of
weight κ which is an eigenform for U with non-zero eigenvalue, then f extends
to an element of Mκ[r].

Proof. This follows from 3.4 and 3.5.

In fact we will need a similar result for families of modular forms, but our
methods generalize to this case. We explicitly state what we need.
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The 2-adic Eigencurve is Proper. 219

Corollary 3.8. Let A ⊆ W be an affinoid subdomain, say 0 < ρ < r < 1/2,
and assume that for all κ ∈ A(C2) we have (κ, r) ∈ X . Let F ∈ O(A)[[q]] be
an analytic family of ρ-overconvergent modular forms, such that UF = λF for
some λ ∈ O(A)×. Then F is r-overconvergent.

4 The W operator on overconvergent modular forms

We need to perform a similar analysis to the previous section with the operator
W . Because W = 2V U − Id we know that W induces a continuous linear map
V :M0[r] →M0[r] for r < 1/3 (for r in this range, U doubles and then V halves
the radius of convergence). Our goal in this section is to show that, at least
for κ = 〈·〉−12s with |s| < 8, there is an operator on weight κ overconvergent
modular forms which also acts on q-expansions in this manner, and to compute
its matrix.
We proceed as in the previous section by firstly introducing a twist of W . If
m ∈ Z≥0, if k = −12m and if φ ∈ M0[r] then the fact that h(q)/h(−q) =
(f(−q)/f(q))2 implies

hmW (h−mφ) = f−2mW (f2mφ)

and so we define the operator Wk on M0[r], r < 1/3, by Wk := f−2mWf2m :
M0[r] →M0[r].
Set g = Wf , so g(q) = f(−q) = −q + 24q2 − 300q3 + . . .. Because g =
2V Uf − f = 48Vf + 4096(Vf)2 − f , we see that the g can be regarded as
a meromorphic function on X0(4) of degree at most 4. Similarly f may be
regarded as a function on X0(4) of degree 2. Now the meromorphic function

(1 + 48f − 8192f2g)2 − (1 + 16f)2(1 + 64f)

on X0(4) has degree at most 16 but the first 1000 terms of its q-expansion can
be checked to be zero on a computer, and hence this function is identically
zero. We deduce the identity

g =
1 + 48f − (1 + 16f)

√
1 + 64f

8192f2
,

where the square root is the one of the form 1 + 32f + . . ., and one verifies
using the binomial theorem that g =

∑

i≥1 cif
i with

ci := (−1)i24i−4

(

(2i+ 2)!

(i+ 1)!(i+ 2)!
− (2i)!

i!(i+ 1)!

)

= (−1)i24(i−1) 3(2i)!

(i− 1)!(i+ 2)!

The other ingredient we need to compute the matrix of Wk is a combinatorial
lemma.
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Lemma 4.1. If j ≥ 1 and i ≥ j + 1 are integers then

i−1
∑

a=j

3(2a+ j − 1)!j(2i− 2a)!

(a− j)!(a+ 2j)!(i− a− 1)!(i− a+ 2)!
=

(2i+ j)!(j + 1)

(i− j − 1)!(i+ 2j + 2)!
.

Proof. Set k = i − 1 − a and n = i − 1 − j and then eliminate the variables i
and a; the lemma then takes the form

n
∑

k=0

F (j, n, k) = G(j, n)

and, for fixed n and k, both F (j, n, k) and G(j, n) are rational functions of j.
The lemma is now easily proved using Zeilberger’s algorithm (regarding j as
a free variable), which proves that the left hand side of the equation satisfies
an explicit (rather cumbersome) recurrence relation of degree 1; however it is
easily checked that the right hand side is a solution to this recurrence relation,
and this argument reduces the proof of the lemma to the case n = 0, where it
is easily checked by hand.

We now compute the matrix of Wk on M0[r] for r < 1/3 and k = −12m,
m ∈ Z≥0.

Lemma 4.2. For j ≥ 0 we have

Wk

(

(212rf)j
)

=

∞
∑

i=0

ηij(m)(212rf)i,

where ηij(m) is defined as follows: we have ηij(m) = 0 if i < j, ηii(m) = (−1)i,
and for i > j we define

ηij(m) =
(2i+ j − 1 + 6m)!3(j + 2m) · 2(4−12r)(i−j)(−1)i

(i− j)!(i+ 2j + 6m)!
.

Proof. We firstly deal with the case m = 0, by induction on j. The case j = 0
is easily checked as ηi0(0) = 0 for i > 0, and the case j = 1 follows from
the fact that ci2

12r(1−i) = ηi1(0) for i ≥ 1, as is easily verified. For j ≥ 1
we have W (f j+1) = f(−q)j+1 = g · W (f j) = (

∑

t≥1 ctf
t)W (f j), and so to

finish the m = 0 case it suffices to verify that for j ≥ 1 and i ≥ j + 1 we
have ηi j+1(0) = 212r

∑i−1
a=0 ci−a2

−12r(i−a)ηaj(0), which quickly reduces to the
combinatorial lemma above.
Finally we note that because ηi+2mj+2m(0) = ηij(m), the general case follows
easily from the case m = 0 and the fact that Wk = f−2mWf2m.

As before, we now define polynomials ηij(S) by ηij(S) = 0 if i < j, ηii(S) =
(−1)i, and

ηij(S) =
3(j + 2S)2(4−12r)(i−j)(−1)i

(i− j)!

i−j−1
∏

λ=1

(i+ 2j + λ+ 6S)
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for i > j. We observe that ηij(S) specializes to ηij(m) when S = m ∈ Z≥0.
Now if |s| < 8 and κ = 〈·〉−12s, and we set λ = min{v(2s), 0} > −2, then we
check easily that v(ηij(s)) ≥ (3− 12r+ λ)(i− j) + 1, so for 12r < 3+ λ we see
that (ηij(s))i,j≥0 is the matrix of a continuous endomorphism W (s) of M0[r].
Moreover, arguments analogous to those of the previous section show that if
furthermore (κ, r) ∈ X (so Mκ[r] is defined), then the endomorphism of Mκ[r]
defined by sending φ to h−sW (s)(hsφ) equals the W operator as defined on
q-expansions. Note that if |s| ≤ 4 then 12r < 3 + λ implies (κ, r) ∈ X .

5 Strategy of the proof.

We have proved in Corollary 3.7 that overconvergent modular forms f such
that Uf = λf with λ 6= 0 overconverge “a long way”. Using the W -operator
introduced in the previous section we will now prove that overconvergent mod-
ular forms f = q + · · · such that Uf = 0 cannot overconverge as far. We
introduce a definition and then record the precise statement.

Definition 5.1. If x ∈ C2 then set β = β(x) = sup{v(x − n) : n ∈ Z2},
allowing β = +∞ if x ∈ Z2, and define ν = ν(x) as follows: ν = β if β ≤ 0,
ν = β/2 if 0 ≤ β ≤ 1, and in general

ν =

n
∑

k=1

1/2k + (β − n)/2n+1

if n ≤ β ≤ n+ 1. Finally define ν = 1 if β = +∞.

The meaning of the following purely elementary lemma will become apparent
after the statement of Theorem 5.3.

Lemma 5.2. Say s ∈ C2 with |s| < 4 and furthermore assume 2s 6∈ Z×
2 . Then

for all s′ ∈ C2 with |s− s′| ≤ 1, we have 0 < 3+ν(2s)
12 < 1

2 + µ(s′)
6 .

Proof. We have ν(2s) > −1 and so certainly 3+ν(s)
12 > 0. The other inequality

can be verified on a case-by-case basis. We sketch the argument.
If |s| > 2 then |s′| = |s| > 2 and ν(2s)−1 = v(s) = v(s′) = µ(s′); the inequality
now follows easily from the fact that µ(s′) > −2.
If |s| ≤ 2 but 2s 6∈ Z2 then 0 < β(2s) < ∞ and ν(2s) < 1; now |s′| ≤ 2 and

hence µ(s′) ≥ −1, thus 3+ν(2s)
12 < 1

3 ≤ 1
2 + µ(s′)

6 .

Finally if 2s ∈ Z2 then we are assuming 2s 6∈ Z×
2 and hence s ∈ Z2 so |s| ≤ 1

and hence |s′| ≤ 1. Hence µ(s′) = 0 and we have 3+ν(2s)
12 = 1

3 <
1
2 + µ(s′)

6 .

Again say |s| < 4 and 2s /∈ Z×
2 . Write κ = 〈·〉−12s, and ν = ν(2s). Let

G = q + · · · be an overconvergent form of weight κ (by which we mean an
element of Mκ[ρ] for some ρ ∈ Q>0 sufficiently small). The theorem we prove
in the next section (which is really the main contribution of this paper) is
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Theorem 5.3. If G = q + · · · satisfies UG = 0, then F := hsG ∈ M0[ρ] does
not extend to an element of M0[r] for r =

3+ν
12 . Equivalently, G 6∈Mκ[r].

Note that by Lemma 5.2 we have (κ, r) ∈ X so the theorem makes sense.
Furthermore, by Corollary 3.7, overconvergent eigenforms of the form q+ · · · in
the kernel of U overconverge less than finite slope overconvergent eigenforms.
Note also that if 2s ∈ Z×

2 then ν(2s) = 1 and for κ, r as above we have
(κ, r) 6∈ X . We deal with this minor annoyance in the last section of this
paper.

6 The Kernel of U

In this section we prove Theorem 5.3. We divide the argument up into several
cases depending on the value of s. We suppose that |s| < 4 and 2s 6∈ Z×

2 ,
and we set κ = 〈·〉−12s. Define ν = ν(2s) as in the previous section, and set
r = 3+ν

12 . For simplicity we drop the s notation from ηij(s) and write

ηij =
3(j + 2s)2(4−12r)(i−j)(−1)i

(i− j)!

i−j−1
∏

t=1

(i+ 2j + t+ 6s)

=
3(j + 2s)2(1−ν)(i−j)(−1)i

(i− j)!

i−j−1
∏

t=1

(i+ 2j + t+ 6s).

Say G = q + · · · as in Theorem 5.3 is ρ-overconvergent for some 0 < ρ < r, so
F = hsG ∈M0[ρ]. If we expand F as

F =
∑

j≥1

ãj(2
12ρf)j

then it follows that ã1 6= 0. Recall also that ãj → 0 as j → ∞. On the other
hand, F = −W (s)F , and so

ãi = −
∞
∑

j=1

ãj η̃i,j ,

where η̃ij denotes the matrix of W (s) on M0[ρ] (so ηij = η̃ij2
12(r−ρ)(j−i)). We

deduce from this that if we define ai = ãi2
12(ρ−r)i then F =

∑

j≥1 aj(2
12rf)j

and

ai = −
∑

j≥1

ajηij .

Note in particular that the sum converges even if W (s) does not extend to
a continuous endomorphism of M0[r] or if F does not extend to an element
of M0[r]. In fact our goal is to show that the ai do not tend to zero, and in
particular that F does not extend to an element of M0[r].
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Lemma 6.1. Suppose F is as above. Suppose also that there exist constants c1
and c3 ∈ R, an infinite set I of positive integers, and for each i ∈ I constants
N(i) and c2(i) tending to infinity as i→ ∞ and such that

(i) v(ηi1) ≤ c1, for all i ∈ I.

(ii) v(ηij) ≥ c2(i) for all i ∈ I and 2 ≤ j ≤ N(i).

(iii) v(ηij) ≥ c3 for all i ∈ I and j ∈ Z≥0.

Then the ai do not tend to zero as i → ∞, and hence F does not extend to a
function on M0[r].

Proof. Assume ai → 0. Recall that we assume a1 6= 0. By throwing away the
first few terms of I if necessary, we may then assume that for all i ∈ I we have

(1) c2(i) > v(a1) + c1 −min{v(aj) : j ≥ 1}, and

(2) min{v(aj) : j > N(i)} > v(a1) + c1 − c3.

We now claim that for all i ∈ I we have v(a1ηi1) < v(ajηij) for all j > 1. The
reason is that if j ≤ N(i) the inequality follows from equation (1) above, and
if j > N(i) it follows from (2). Now from the equality

ai = −
∞
∑

j=1

ajηij

we deduce that v(ai) = v(a1ηi1) is bounded for all i ∈ I, contradicting the fact
that ai → 0.

The rest of this section is devoted to establishing these inequalities for suitable
I and r. We start with some preliminary lemmas.

Lemma 6.2. 1. If m ≥ 1 then v(m!) ≤ m− 1, with equality if and only if m
is a power of 2.

2. If m ≥ 0 then v(m!) ≥ (m− 1)/2, with equality if and only if m = 1, 3.

3. If n ≥ 0 and 0 ≤ m < 2n then setting t = 2n −m we have m− v(m!) ≥
n− (t/2).

Proof. 1 and 2 follow easily from

v(m!) = ⌊m/2⌋+ ⌊m/4⌋+ ⌊m/8⌋+ . . . .

For 3, we have m!(m+1)(m+2) . . . (2n−1)(2n) = (2n)! and for 0 < d < 2n we
have v(d) = v(2n−d), so v((m+1)(m+2) . . . (2n−1)) = v((t−1)!) ≥ (t−2)/2
by 2. Finally v((2n)!) = 2n − 1 by 1. Hence v(m!) ≤ 2n − 1− n− (t− 2)/2 =
2n − n− (t/2) and so m− v(m!) ≥ 2n − t− (2n − n− (t/2)) = n− (t/2).
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Lemma 6.3. Let m ∈ Z be arbitrary and set β = β(x) and ν = ν(x) as in
Definition 5.1.

1. If β ≤ 0 then v(x+n) = ν for all n ∈ Z, hence the valuation of
∏N

t=1(x+
m+ t) is Nν.

2. If 0 < β <∞ and if N is a power of 2 with N ≥ 2⌈β⌉ then the valuation
of

N
∏

t=1

(x+m+ t)

is exactly Nν.

3. If 0 < β <∞ and if N ≥ 0 is an arbitrary integer then the valuation of

N
∏

t=1

(x+m+ t)

is v, where |v −Nν| < β.

4. If β = ∞ and if N ≥ 0 is an arbitrary integer then the valuation of
∏N

t=1(x+m+ t) is at least v(N !).

Proof. (1) is obvious and (2) is easy to check (note that v(x + n) is periodic
with period 2⌈β⌉). For part (3), say n = ⌊β⌋. Now about half of the terms in
this product are divisible by 2, about a quarter are divisible by 4, and so on.
More precisely, this means that the largest possible power of 2 that can divide
this product is

⌈N/2⌉+ ⌈N/4⌉+ . . .+ ⌈N/2n⌉+ (β − n)⌈N/2n+1⌉
<(N/2 + 1) + (N/4 + 1) + . . .+ (N/2n + 1) + (β − n)(N/2n+1 + 1)

=Nν + β.

A similar argument shows that the lowest possible power of 2 dividing this
product is strictly greater than Nν − β.
For part (4), if β = ∞ then x ∈ Z2 and by a continuity argument it suffices to
prove the result for x a large positive integer, where it is immediate because
the binomial coefficient

(

x+m+N
N

)

is an integer.

Now set x = 2s and let β = β(2s), ν = ν(2s). Note that if β ≤ 0 then µ = β−1,
and if β ≥ 1 then µ = 0.
Recall ηij = 0 if i < j, ηii = (−1)i, and if i > j we have

ηij =
3(j + 2s)2(1−ν)(i−j)(−1)i

(i− j)!

i−j−1
∏

t=1

(i+ 2j + t+ 6s).
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In particular, for i > j we have

(∗) v(ηi,j) = (1−ν)(i−j)−v((i−j)!)+v(j+2s)+v

(

i−j−1
∏

t=1

(i+ 2j + t+ 6s)

)

.

We shall continually refer to (∗) in what follows.

Proposition 6.4. Say β ≤ 0 (and hence ν = β).

1. If j ≥ i then v(ηij) ≥ 0, and if j < i then v(ηij) = i− j − v((i− j)!) ≥ 1.

2. If i = 2n +1 then v(ηi1) = 1 and if 1 < j < i then v(ηij) ≥ n− (j− 1)/2.

Proof. 1 is immediate from (∗) and Lemma 6.3(1). Now 2 can be deduced from
1, using part 1 of Lemma 6.2 for the first part and part 3 of Lemma 6.2 for the
second.

We now prove:

Lemma 6.5. Theorem 5.3 is true if −1 < β ≤ 0 (i.e., if 2 ≤ |s| < 4).

Equivalently, if 2 ≤ |s| < 4 and κ = 〈·〉−12s, and if G = q + . . . is a non-zero
weight κ overconvergent form in ker(U), then F = hsG does not converge as
far as M0[1/4 + ν/12], where ν = ν(2s) as above.

Proof. This will be a direct application of lemma 6.1. We set I = {2n + 1 :
n ∈ Z>0}, and if i = 2n + 1 we define c2(i) = (n + 1)/2 and N(i) = n. We
set c1 = 1 and c3 = 0. Now assumptions (i) and (ii) of Lemma 6.1 follow from
Proposition 6.4(2), and (iii) follows from Proposition 6.4(1).

Let us now consider the case when 0 < β <∞.

Proposition 6.6. Let 0 < β <∞.

1. If j < i then v(ηi,j)−
(

(i− j)− v((i− j)!)− ν
)

∈ [−β, 2β].

2. If j < i then
v(ηij) ≥ 1− β − ν.

If i = 2n + 1 then
v(ηi1) ≤ 2β − ν + 1

and if 1 < j < i then

v(ηij) ≥ n− (j + 1)/2− ν − β.

Proof. From the definition of β, the valuation of j+2s lies in [0, β]. The result
then follows from (∗) and lemma 6.3, part 3. Part 2 follows from part 1 and
Lemma 6.2, parts (1) and (3), applied to (i− j)!.
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Lemma 6.7. Theorem 5.3 is true if 0 < β <∞, that is, if |s| ≤ 2 and 2s 6∈ Z2.

Proof. Again this is an application of lemma 6.1. Set I = {2n + 1 : n ∈ Z>0},
c1 = 2β − ν + 1, c3 = min{0, 1 − β − ν}, and if i = 2n + 1 then set N(i) = n
and c2(i) = (n + 1)/2 − ν − β. Conditions (i)–(iii) of Lemma 6.1 hold by
Proposition 6.6(2).

The only cases of Theorem 5.3 left to deal with are those with β = +∞, that
is, 2s ∈ Z2. Because the theorem does not deal with the case 2s ∈ Z×

2 we may
assume from now on that 2s ∈ 2Z2, so s ∈ Z2. We next deal with the case
s ∈ Z2 and 6s 6∈ N, where N = {1, 2, 3, . . .} is the positive integers. In this case,
we shall again use Lemma 6.1 with i of the form i = 2n + 1. However, it will
turn out that only certain (although infinitely many) n will be suitable.

Since we assume s ∈ Z2 we have β = +∞, so ν = 1 and hence

(∗∗) ηij =
3(j + 2s)(−1)i

(i− j)!

i−j−1
∏

t=1

(i+ 2j + t+ 6s).

Let u ∈ Z2. Define functions fn(u) as follows:

fn(u) = (2n + u)(2n + u+ 1) · · · (2n+1 − 1 + u) =

2n−1
∏

τ=0

(2n + u+ τ).

Lemma 6.8. For any u ∈ Z2 there exist infinitely many values of n for which

vn(f(u)) = v((2n)!) or v((2n)!) + 1.

Proof. For each n, define an integer 0 < un ≤ 2n by setting u ≡ un mod 2n.
If 0 ≤ τ ≤ 2n − 1 and τ 6= 2n − un, then

v(2n + u+ τ) = v(un + τ).

Since τ takes on every equivalence class modulo 2n, It follows from the definition
of fn that

v(fn(u)) = v((2n − 1)!) + v(2n+1 + u− un).

If u 6≡ un mod 2n+1 then v(2n+1 + u − un) = v(2n) and v(fn(u)) = v((2n)!).
There are infinitely many n satisfying this condition unless u ≡ un mod 2n+1

for all sufficiently large n. Yet this implies un = un+1 for all sufficiently large n,
and subsequently that u = un. In this case we have v(2n+1+u−un) = v(2n+1),
and v(fn(u)) = v((2n)!) + 1.

Corollary 6.9. There are infinitely many n such that if i = 2n + 1 then
v(ηi1) ∈ {0, 1}.
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Proof. Let i = 2n + 1 and j = 1, and assume n ≥ 1. By (∗∗) we have

ηi1 =
3(1 + 2s)(−1)

(2n)!

2n−1
∏

t=1

(2n + 3 + t+ 6s).

Let u = 6s+ 4 ∈ 2Z2 and set τ = t− 1. Then

ηi1 =
(1− u)

(2n)!

2n−2
∏

τ=0

(2n + u+ τ) =
fn(u)

(2n)!
· 1− u

u− 1 + 2n+1

and the result follows from Lemma 6.8 and the fact that u ∈ 2Z2.

Let us now turn to estimating ηij for general i, j.

Lemma 6.10. If i, j ∈ Z≥0 then v(ηij) ≥ 0.

Proof. By continuity, it suffices to verify the result for 6s a large positive even
integer. It is clear if i ≤ j so assume i > j. Now because the product of N
successive integers is divisible by N ! we see (putting one extra term into the
product) that both x1 := i+2j+6s

3(j+2s) ηij and x2 := 2i+j+6s
3(j+2s) ηij are integers. The

result now follows as ηij = 2x1 − x2.

Set I0 = {i = 2n + 1 : v(ηi1) ∈ {0, 1}}. Then I0 is infinite by Corollary 6.9.
We will ultimately let I be a subset of I0. We must analyze ηij for i ∈ I0 and
1 < j small. Note that if i = 2n + 1 and j ≥ 2, then

ηi,j
ηi,1

= 2n · (j + 2s)

(1 + 2s)
·
j−2
∏

t=1

(i− j + t) ·
∏j−1

t=1 (2i+ t+ 6s)
∏2j−2

t=1 (i+ 2 + t+ 6s)

Since 6s /∈ −N, 3 + 6s + t 6= 0. Thus for any N there exists n0 depending on
N such that for all n ≥ n0 we have v(i + 2 + 6s + t) = v(3 + 6s + t) for all
t ≤ 2N −2. In particular, for fixed N and sufficiently large n (with i = 2n+1),

v(ηij) ≥ n− v

(

2j−2
∏

t=0

(3 + 6s+ t)

)

+ v(ηi1).

Lemma 6.11. For any constants c2 ∈ R and N ∈ Z≥1, there exists n1 =
n1(c2, N) such that for all n ≥ n1 such that i = 2n+1 ∈ I0, we have v(ηij) ≥ c2
for 2 ≤ j ≤ N .

Proof. SetM = v(
∏2N−2

t=0 (3+6s+t)) and choose n1 such that n1−M ≥ c2.

We may now prove:

Lemma 6.12. Theorem 5.3 is true if s ∈ Z2 and 6s 6∈ −N.

Documenta Mathematica · Extra Volume Coates (2006) 211–232



228 Kevin Buzzard and Frank Calegari

Proof. We apply lemma 6.1 as follows. Set c1 = 1 and c3 = 0. We build I as
follows. As m runs through the positive integers, set N = c2 = m, define n1
as in Lemma 6.11, choose n ≥ n1 such that i := 2n + 1 ∈ I0 and such that i
is not yet in I; now add i to I and define N(i) = c2(i) = t. The conditions of
lemma 6.1 are then satisfied.

The final case in our proof of Theorem 5.3 is the case 6s ∈ −2N, which corre-
sponds to weight k = −12s ∈ 4N. We shall not use Lemma 6.1 in this case,
but give a direct argument.
Because our level structure is so small it is convenient to temporarily augment
it to get around representability issues. Choose some auxiliary odd integer
N and consider the compact modular curve Y over Q2 whose cuspidal points
parameterize elliptic curves with a subgroup of order 2 and a full level N
structure (note that this curve is not in general connected). There is a sheaf ω
on Y , and classical modular forms of weight k and level 2 are, by definition,
GL2(Z/NZ)-invariant global sections of ω⊗k on Y .
For 0 < r ≤ 2/3 let Y [r] denote the pre-image of X[r] via the forgetful functor.
Recall that there is a compact operator U on H0(Y [r], ω⊗k) for r < 2/3 and
k ∈ Z.

Lemma 6.13. If k ∈ Z and f ∈ H0(Y [1/3], ω⊗k) is in the kernel of U , then
f = 0.

Remark 6.14. The lemma is not special to p = 2; the proof shows that non-zero
p-adic modular forms in the kernel of U are never 1/(p+ 1)-overconvergent.

Proof. Say f ∈ H0(Y [1/3], ω⊗k) is arbitrary. If E is an elliptic curve over a
finite extension of Q2, equipped with with a subgroup C of order 2 and a full
level N structure L, and such that the corresponding point (E,C,L) ∈ Y is
in Y [1/3], then one can regard f(E,C,L) as an element of H0(E,Ω1)⊗k. Now
define g ∈ H0(Y [2/3], ω⊗k) by

g(E,L) =
∑

D 6=C

(pr)∗f(E/D,C,L),

where the sum is over the subgroups D 6= C of E of order 2, pr denotes the
projection E → E/D, and a bar over a level structure denotes its natural push-
forward. An easy calculation using Tate curves (see for example Proposition 5.1
of [1]) shows that g = 2Uf , and hence if Uf = 0 then g = 0. In particular if E is
an elliptic curve with no canonical subgroup and we fix a full level N structure
L on E, then then (E,C,L) ∈ Y [2/3] for all C, and g(E,C,L) = 0 for all C im-
plies that

∑

D 6=C(pr)
∗f(E/D,E[2]/D,L) = 0 for all C. Summing, one deduces

that
∑

D(pr)∗f(E/D,E[2]/D,L) = 0 and hence that f(E/D,E[2]/D,L) = 0
for all D of order 2. This implies that f is identically zero on the “boundary”
of Y [1/3] and hence that f is identically zero.

We deduce
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Lemma 6.15. Theorem 5.3 is true for 6s ∈ −2N.

Proof. If G ∈ Mk[1/3] then G = hk/12F and, because k = −12s ∈ 4N, we
know that hk/12 is a classical modular form of level 2 and hence an element of
H0(Y [1/3], ω⊗(k/12)). Thus the preceding lemma applies to G and we conclude
that G = 0.

Theorem 5.3 now follows from Lemmas 6.5, 6.7, 6.12 and 6.15.

7 There are not too many holes in the eigencurve.

We begin with a simple rigid-analytic lemma that forms the basis to our ap-
proach. Let X be a connected affinoid variety, and let V be a non-empty
admissible open affinoid subdomain of X. Let B = Sp(C2〈T 〉) denote the
closed unit disc, and let A = Sp(C2〈T, T−1〉) denote its “boundary”, the closed
annulus with inner and outer radii both 1.

Lemma 7.1. If f is a function on V × B and the restriction of f to V × A
extends to a function on X ×A, then f extends to a function on X ×B.

Proof. We have an inclusion O(X) ⊆ O(V ), as X is connected, and we know
f ∈ O(V )〈T 〉 and f ∈ O(X)〈T, T−1〉. But the intersection of these two rings
is O(V )〈T 〉.

Let E denote the 2-adic eigencurve of tame level 1, and let W denote 2-adic
weight space. We recall that because 2 is a regular prime, E is a disjoint
union EEis

∐ Ecusp, and the natural map from the Eisenstein component EEis

to weight space is an isomorphism. One can also check from the definition of
the eigencurve in [2] that the cuspidal component Ecusp of E represents the
functor on rigid spaces over W sending a rigid space Y → W to the set of
normalized overconvergent finite slope cuspidal eigenforms of “weight Y ”, that
is, formal power series

∑

anq
n ∈ O(Y )[[q]] with a1 = 1 and a2 a unit, which

are eigenforms for all the Hecke operators and, when divided by the pullback
of the Eisenstein family to Y , become overconvergent functions on Y ×X[0].
Let B denote the closed unit disc and let B× denote B with the origin removed.
Suppose we have a map φ : B× → E such that the induced map B× → W
extends (necessarily uniquely) to a map B → W. Let κ0 ∈ W(C2) denote the
image 0 ∈ B(C2) under this map. The theorem we prove in this section is

Theorem 7.2. If κ0 /∈ {〈·〉−12s : 2s ∈ Z×
2 } then the map φ : B× → E extends

to a map B → E.

Proof. If the image of φ is contained in EEis then the theorem is automatic, be-
cause the projection EEis → W is an isomorphism. Hence we may assume that
φ : B× → Ecusp. If |κ0(5)− 1| > 1/8 then we are finished by the main theorem
of [4]. Assume from now on that |κ0(5)−1| ≤ 1/8. Then the map φ corresponds
to a family

∑

anq
n of overconvergent eigenforms over B×. Furthermore, the
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supremum norm of each an is at most 1 (because Hecke operators on over-
convergent p-adic modular forms have eigenvalues with norm at most 1) and,
analogous to the analysis of isolated singularities of holomorphic functions, one
checks easily that this is enough to ensure that each an extends to a function
on B. Our task is to analyze the “limiting” power series

∑

an(0)q
n.

More precisely, we now have a formal power series
∑

n≥1 anq
n in O(B)[[q]].

To prove the theorem we must check that this formal power series is a finite
slope overconvergent form of weight B. We are assuming |κ0(5) − 1| ≤ 1/8
and hence κ0 = 〈·〉−12s with |s| < 4. Now assume also that 2s 6∈ Z×

2 . Set

r = 3+ν(2s)
12 . After shrinking B if necessary, we may assume that for all b ∈ B

we have κb = 〈·〉−12s′ with |s − s′| ≤ 1. By Lemma 5.2 we have (κb, r) ∈ X
for all b ∈ B, and by Corollary 3.8 we see that on the boundary of B our
function

∑

anq
n is r-overconvergent, it being a finite slope eigenform for U

here. Moreover, the coefficients an are all bounded by 1 on all of B. Now
applying Lemma 7.1 with X = X[r] and V a small disc near infinity such such
that q (the q-expansion parameter) is a well-defined function on V , we deduce
that

∑

anq
n is r-overconvergent on all of B.

All that we need to show now is that a2 ∈ O(B)×. It suffices to prove that
a2(0) 6= 0, as we know that a2(b) 6= 0 for all 0 6= b ∈ B. But

∑

an(0)q
n = q+. . .

is an r-overconvergent form of weight κ0, so by Theorem 5.3 (note that this is
where all the work is) we deduce a2(0) 6= 0. Hence a2 ∈ O(B)× and

∑

anq
n is

an overconvergent cuspidal finite slope eigenform of weight B, which induces
the map B → Ecusp which we seek.

8 There are no holes in the eigencurve

In the previous section we showed that if there are any holes in the eigencurve,
then they lie above weights of the form {〈·〉−12s : 2s ∈ Z×

2 }. To show that in fact
there are no holes in the eigencurve, we redo our entire argument with a second,
even more non-standard, twist and show that using this twist we may deduce
that the only holes in the eigencurve lie above the set {〈·〉2−12s : 2s ∈ Z×

2 }.
Because there is no s ∈ 1

2Z
×
2 such that 12s−2

12 ∈ 1
2Z

×
2 this finishes the argument.

We sketch the details.

Let E2 = 1+ 24q + 24q2 + 96q3 + . . . denote the holomorphic Eisenstein series
of weight 2 and level Γ0(2). We define X ′ = {(κ〈·〉2, r) : (κ, r) ∈ X}. If |s| < 8
then set κ′ = 〈·〉2−12s. If r is such that (κ′, r) ∈ X ′, we define M ′

κ′ [r] to be
the vector space of formal q-expansions F ∈ C2[[q]] such that Fhs/E2 is the
q-expansion of an element of M0[r]. For r > 0 sufficiently small this definition
is easily checked to coincide with the usual definition. We shall be using this
definition with r quite large and again we neglect to verify whether the two
definitions coincide in the generality in which we use them. We give M ′

κ′ [r]
the Banach space structure such that multiplication by hs/E2 is an isometric
isomorphism M ′

κ′ [r] → M0[r], and endow M ′
κ′ [r] once and for all with the

orthonormal basis {E2h
−s, E2h

−s(212rf), E2h
−s(212rf)2, . . .}. Note that the
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reason that this definition gives us more than our original definition of Mκ[r]
is that if k is an even integer with 2||k then (k, 1/3) 6∈ X but (k, 1/2− ǫ) ∈ X ′,
so we can “overconverge further” for such weights.
If θ = q(d/dq) is the operator on formal q-expansions, then one checks that
Uθ = 2θU . Moreover, it is well-known that θf = fE2 and hence θf j = jf jE2

for any j ≥ 0. Hence our formulae for the coefficients of U acting on M0[r]
will give rise to formulae for the coefficients of U acting on M ′

2[r], which was
the starting point for the arguments in section 3. We give some of the details
of how the arguments should be modified. If m ∈ Z≥0 and k′ = 2− 12m then
we define a continuous operator U ′

k′ on M0[r] by U
′
k′(φ) = E−1

2 hmU(E2h
−mφ).

One checks that this is indeed a continuous operator by verifying that it has
a basis (u′ij(m))i,j≥0 defined by u′ij(m) = 0 for 2i < j or 2j − i + 3m < 0,
u′00(0) = 1, and

u′ij(m) =
3(i+ j + 3m− 1)!(i+m)28i−4j+12r(j−i)

(2i− j)!(2j − i+ 3m)!

otherwise. One checks that for i, j fixed there is a polynomial u′ij(S) in-
terpolating u′ij(m) and that for |s| < 8 with µ = min{v(s), 0} we have

v(u′ij(s)) ≥ (µ+3− 6r)(2i− j)+6rj as before. Hence for |s| < 8, κ′ = 〈·〉2−12s

and r ∈ Q such that (κ′, r) ∈ X ′, the matrix (u′ij(s))i,j≥0 defines a compact

operator U ′(s) on M0[r]. Furthermore we have U ′(s)(φ) = E−1
2 hsU(E2h

−sφ),
and in particular U : M ′

κ′ [r] → M ′
κ′ [r] is well-defined and compact. Moreover,

U ′(s) increases overconvergence and any eigenvector for U ′(s) on M0[r] with
non-zero eigenvalue extends toM0[r

′] for any r′ such that 0 < r′ < 1/2+µ(s)/6.
Finally, these arguments also work for families of modular forms and the ana-
logue of Corollary 3.8 remains true in this setting.
Similar arguments work in section 4. One checks that 2V θ = θV and hence
V Uθ = 2V θU = θV U . Hence θ commutes with W and one now deduces from
our explicit formulae for W in weight −12m that in weight 2−12m the matrix
for W is given by Wk = [η′ij ], where:

η′ij =
(2i+ j − 1 + 6m)!3(i+ 2m) · 2(4−12r)(i−j)(−1)i

(i− j)!(i+ 2j + 6m)!
.

We remark that the only difference in this formula is that (j + 2m) has been
replaced by (i+ 2m). One finds that the arguments at the end of this section
apply mutatis mutandis in this case.
The analogue of Theorem 5.3 is that if |s| < 4 and 2s 6∈ Z×

2 and κ′ = 〈·〉2−12s

then an overconvergent infinite slope form of weight κ′ is not r-overconvergent,

for r = 3+ν(2s)
12 . The proof follows the same strategy, although some of the

lemmas in section 6 need minor modifications; for example in Lemma 6.10
we set x1 = i+2j+6s

3(i+2s) η
′
ij and x2 := 2i+j+6s

3(i+2s) η
′
ij , and the result follows as η′ij =

2x2 − x1. Note that E2 can be regarded as an element of H0(Y [1/3], ω⊗2) so
that Lemma 6.13 does not need modification.
We deduce our main theorem:
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Theorem 8.1. If φ : B× → E and the induced map B× → W extends to a
map ψ : B → W, then φ extends to a map B → E.

Proof. If ψ(0) 6∈ {〈·〉−12s : 2s ∈ Z×
2 } then we use Theorem 7.2, and if it is then

we use the modification explained above.
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