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X0(Np3), p ≥ 5, (N, p) = 1 begun in [CMc] and compute the inertial
action on the stable reduction of X0(p
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1 Introduction

In [CMc] we found a stable model for the modular curve, X0(p
3), over the

ring of integers in Cp, for a prime p ≥ 13. The stable models of X0(p) and
X0(p

2) were previously known, due to work of Deligne-Rapoport and Edixhoven
(see [CMc, §1] for a more complete list of relevant results). Finding a stable
model for X0(p

n) for n > 3 remains an open problem, although a conjectural
stable model for X0(p

4) is given in [M2, §5].
The results and main ideas of the argument used in [CMc] are summarized

below in Section 2. Nevertheless, we still refer to [CMc] frequently, and do
recommend that it be read first. Indeed, the purpose of this paper is to refine
and extend those results. First, we prove results which enable us to define
our model over an explicit finite extension of Qp, and to compute the inertia
action on the stable reduction. More precisely, we show that a stable model for
X0(p

3) can be defined over any field over which a stable model forX0(p
2) exists,

and which contains the j-invariants of all elliptic curves whose formal groups
have endomorphism rings isomorphic to Zp[p

√−p] or Zp[p
√−Dp] for D a non-

square (mod p). Such elliptic curves, whose formal groups have endomorphism
rings bigger than Zp, are said to have fake CM. In Section 4, we show that
(real) CM points are dense in these fake CM points. Thus we are able to
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262 Coleman and McMurdy

apply the theory of CM elliptic curves when we determine, in Section 5, an
explicit field of definition for our model. Once this is done, we compute the
action of the inertia group on the stable reduction (in Section 6). This uses
the results of Sections 3-5 and the fact (which we show) that the formal groups
of elliptic curves with fake CM are relative Lubin-Tate groups as in [dS2]. As
a consequence, we show that the extension of Qnr

p found by Krir in [K], over
which the Jacobian of X0(p

3) has semi-Abelian reduction, is minimal.
We also extend the results of [CMc] in two other ways. In order to do the

explicit analysis in [CMc], it was necessary to have an approximation formula
for the forgetful map, πf : X0(p) → X(1), over some supersingular annulus.
Such a formula followed from a result of de Shalit (recalled in Section 2) for any
region corresponding to a supersingular elliptic curve A/Fp whose j-invariant,
j(A), does not equal 0 or 1728. By a result of Everett Howe (see [CMc, §10]),
one always has such an A as long as p ≥ 13. So the only nontrivial cases
which were left open were the three specific primes: p = 5, 7, and 11. This
shortcoming of our construction could be resolved by either generalizing de
Shalit’s result or by adding level structure to the more symmetric deformation
space of formal groups studied by Gross-Hopkins in [GH]. We handle the
open cases here, however, by applying explicit known formulas (in Section 7).
It is our hope that these calculations not only deal with the remaining open
cases, but also serve to make the constructions of [CMc] more concrete and
understandable. Finally, in Section 8 we extend the result of [CMc] by adding
tame level, i.e. we compute the stable reduction of X0(Np3) when (N, p) = 1.
This is done by first viewing X0(Np3) as the fiber product of X0(N) and
X0(p

3) over X(1). We construct semi-stable maps (as in [C2]) which extend
both forgetful maps, and prove a lemma which implies that the product of
semi-stable maps is semi-stable in this case. Then we compute the reductions
of the components of X0(Np3) by crossing pairs of components in X0(N) and
X0(p

3) which have the same image in X(1). Two specific examples are then
worked out in some detail.

2 Stable Reduction of X0(p
3) for p ≥ 13

In this section we summarize the content of [CMc] and in particular the
construction of the stable model of X0(p

3) for p ≥ 13. The goal will be to
present the main ideas, along with the specific details which pertain directly
to the results in this paper.

2.1 Foundations

Over Cp, we may think of points on the modular curve, X0(p
n), as cor-

responding to pairs (E,C) where E/Cp is an elliptic curve and C is a cyclic
subgroup of order pn. One way of studying the p-adic geometry of X0(p

n) is to
study regions where the pair, (E,C), has prescribed properties. The most basic
distinction which one can make is whether E has ordinary (including multi-
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plicative) or supersingular reduction, and the geometry of the ordinary region
of X0(p

n) is well understood. Indeed, if E is an elliptic curve with ordinary
reduction, we define the canonical subgroup K(E) to be the p-power torsion
of E(Cp) in the kernel of reduction. For each a, b ≥ 0 with a+ b = n, we then
have rigid subspaces of the ordinary locus of X0(p

n) given by

Xa b := { (E,C) : |C ∩K(E)| = pa }.

Then Xa b is an affinoid disk when ab = 0. Otherwise, it is shown in [C1, §1]
that Xa b is the disjoint union of two irreducible affinoids, X±

a b, which reduce
to the Igusa curve, Ig(pc), where c = min{a, b}. This curve is studied in [Ig]
and classifies pairs, (E,α), where E/Fp is an elliptic curve and α : µpc →֒ E is
an embedding.

The supersingular locus is not as well understood, but there are a number
of tools which can provide a line of attack. One of the most important is the
theory of the canonical subgroup for curves with supersingular reduction, for
which we take [B, §3, §4] as our primary reference. When E/Cp has supersin-
gular reduction, one can still define the canonical subgroup of order pn, Hn(E),
to be the cyclic subgroup of order pn which is (p-adically) closest to the origin.
For each E with supersingular reduction, however, there is a largest n for which
Hn(E) exists, and we denote this subgroup by K(E). The size of K(E) is then
completely determined by the valuation of the Hasse invariant of Ē. Denoting
this valuation by h(E), from [B, Thm 3.3, Def 3.4] we have

|K(E)| > pn ⇐⇒ h(E) < p1−n/(p+ 1).

The theory of canonical subgroups is intimately connected to the geometry
of the supersingular region of X0(p). For a fixed supersingular elliptic curve,
A/Fp2 , we let WA(p

n) be the subspace of X0(p
n) consisting of pairs (E,C)

where Ē ∼= A. It is well-known (from [DR, §VI 6.16], for example) that WA(p)
is an annulus of width i(A) = |Aut(A)|/2. Furthermore, one can choose a
parameter xA on this annulus, which identifies it with 0 < v(xA) < i(A), and
such that

v(xA(E,C)) =

{
i(A)h(E), if |C ∩K(E)| = p

i(A)(1− h(E/C)), if |C ∩K(E)| = 1.

Inside the annulus, WA(p), there are two circles of fundamental importance.
The “too-supersingular circle,” denoted TSA, is where

v(xA(E,C)) = (p/(p+ 1))i(A)

or (equivalently) K(E) is trivial. The self-dual circle, SDA, consists of all
pairs (E,C) where C is potentially self-dual, equivalently those points where
v(xA(E,C)) = i(A)/2. When A/Fp, this circle is fixed by the Atkin-Lehner
involution, w1 (recalled below), and hence can be called the “Atkin-Lehner
circle.”
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Another tool for the analysis of the supersingular region of X0(p
n) is

Woods Hole Theory [WH], which essentially says that lifting an elliptic curve
is equivalent to lifting its formal group. More precisely, if Rp ⊆ Cp is the ring
of integers, we have the following theorem.

Theorem 2.1. The category of elliptic curves over Rp is equivalent to the
category of triples (F,A, α), where F/Rp is a formal group, A/F̄p is an elliptic

curve, and α : F̄ → Â is an isomorphism. A morphism between two triples,
(F,A, α) and (F ′, A′, β), is either the 0 map or a pair (σ, τ), where σ : F → F ′

and τ : A → A′ are isogenies such that the following diagram commutes.

F̄
σ̄−−−−→ F̄ ′

α

y
yβ

Â −−−−→
τ̂

Â′

The theorem is used in two specific ways in [CMc]. First of all, for any two
supersingular elliptic curves, A and A′, there is an isogeny φ : A → A′ whose
degree is prime to p and which therefore passes to an isomorphism on formal
groups. By taking (F,A, α) to (F,A′, φ̂ ◦ α), we can define a surjection of
WA(p

n) onto WA′(pn) as long as i(A) = 1 (see [CMc, §4.1]). Note that here we
have added level structure to Theorem 2.1 in the obvious way. So this implies
that all of the supersingular regions are nearly isomorphic, which enables us
to analyze WA(p

n) under the simplifying assumptions that A/Fp and j(A) 6=
0, 1728 (as long as p ≥ 13, by the result of Howe). In particular, much of our
explicit analysis depends on an approximation formula for the forgetful map
from the annulus, WA(p), to the disk, WA(1). For A/Fp with j(A) 6= 0, 1728,
such a formula was essentially found by de Shalit in [dS1, §3]. Let πf : WA(p) →
WA(1) denote the forgetful map, and w1 : WA(p) → WA(p) the Atkin-Lehner
involution, given by πf (E,C) = E and w1(E,C) = (E/C,E[p]/C) respectively.
We reformulate de Shalit’s result as the following theorem.

Theorem 2.2. Let R = W (Fp2) and A/Fp be a supersingular curve with j(A) 6=
0, 1728. There are parameters s and t over R which identify WA(1) with the
disk B(0, 1) and WA(p) with the annulus A(p−1, 1), and series, F (T ), G(T ) ∈
TR[[T ]], such that
(i) w∗

1(t) = κ/t for some κ ∈ R with v(κ) = 1.
(ii) π∗

fs = F (t) +G(κ/t), where
(a) F ′(0) ≡ 1 (mod p), and
(b) G(T ) ≡ (F (T ))p (mod p).

The other way we use Woods Hole Theory is by letting Aut(Â) act on
WA(p

n) in the obvious way (here, as in Theorem 2.1, Â denotes the formal
group of A). From [T], we can identify EndF̄p

(Â) with B := Zp[i, j, k], where

i2 = −r (a non-residue), j2 = −p, and ij = −ji = k. When A/Fp, j can also

be identified with the Frobenius endomorphism. The action of B∗ ∼= Aut(Â)
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on WA(1) commutes with the Gross-Hopkins period map, Φ, which can be
viewed as a map from WA(1) to P

1 whenever j(A) 6= 0, 1728. Furthermore, for
α, β ∈ Zp[i] and ρ = α + jβ ∈ B∗, Gross-Hopkins show in [GH, §25] that the
action of B∗ on P

1 is given explicitly by

ρ(t) =
−pβ̄ + ᾱt

α+ βt
.

It is important to note here that the action of B∗ on WA(1) is then
only completely determined by the explicit formula of Gross-Hopkins for B∗-
invariant subspaces on which Φ is an injection. Fortunately, the Atkin-Lehner
circle, or rather πf (SDA), is such a subspace and is identified with the circle
described by v(t) = 1/2. So as an immediate consequence, the action of B∗

induces a faithful action of

B∗/Z∗
p(1 + jB) ∼= µp2−1/µp−1

on SDA (still when j(A) 6= 0, 1728). Also, on SDA the involution w1 can be
identified with j in the above sense. We use this in [CMc, §4.2] to show that an
involution on SDA can be defined by wρ := ρ◦w1, for any ρ = a+bi+dk ∈ B∗

(this subset of B∗ is called B′).

Remark 2.3. An affinoid X defined over a complete subfield of Cp has a canon-
ical reduction over the ring of integers, which is what we mean by X. Later, we
adopt the convention of un-bolding affinoid names to refer to associated com-
ponents of the stable reduction. Thus, whenever both make sense, X and X are
birational but not isomorphic.

2.2 Stable Model Construction

Our approach to constructing a stable model is purely rigid-analytic, in
the sense that we actually construct a stable covering by wide open spaces.
This equivalent notion is explained in detail in [CMc, §2]. Roughly, the wide
open subspaces in a semi-stable covering intersect each other in disjoint annuli,
and have underlying affinoids with (almost) good reduction. Each component
in the stable reduction is (almost) the reduction of one of these underlying
affinoids, and the annuli of intersection reduce to the ordinary double points
where components intersect.

With this rigid analytic reformulation in mind, our strategy for construct-
ing the stable model of X0(p

3) is basically to construct nontrivial components
explicitly and then prove that nothing else interesting can happen (this is done,
in part, with a total genus argument). In addition to the components in the
ordinary region, we use the above tools to construct three distinct types of
components in the supersingular region of X0(p

3) corresponding to any fixed
supersingular elliptic curve, A/Fp, with j(A) 6= 0 or 1728. First we consider the
affinoid, YA := π−1

ν (TSA) ⊆ WA(p
2), where πν : X0(p

2) → X0(p) is given by
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πν(E,C) = (E/C[p], C/C[p]). We show in [CMc, §5] that YA can be identified
with the rigid space,

TA := { (x, y) ∈ TSA ×TSA | x 6= y, πf (x) = πf (y) }.

Then by applying Theorem 2.2 we compute the reduction of YA explicitly to
be y2 = xp+1 + 1. This affinoid, YA, reduces to the supersingular component
which Edixhoven found in [E1, Thm 2.1.1]. It can also be pulled back to X0(p

3)
via πf and πν (defined as above) to obtain nontrivial components of WA(p

3)
(these pullbacks of YA are denoted by E1A and E2A). However, there are
other nontrivial components as well. Analogous to the above construction, let
ZA := π−1

1 1 (SDA) ⊆ WA(p
3), where π1 1 = πf ◦ πν . Then ZA can be identified

with
SA := { (x, y) ∈ CA ×CA | τf (x) = w1 ◦ τf (y) }.

Here CA ⊆ WA(p) is the circle whose points correspond to pairs, (E,C), where
h(E) = 1/2 and C 6= H1(E). Then τf : CA → SDA is the degree p map
which replaces C with H1(E). The above reformulation of de Shalit’s analysis
is again sufficient to explicitly compute the reduction of ZA (in [CMc, §8]),
which is given by

Xp+1 +X−(p+1) = Zp.

Finally, we show that each of the 2(p + 1) singular residue classes of ZA

contains an affinoid which reduces to the curve, y2 = xp − x. We do this by
constructing a family of involutions on ZA, given by w̃ρ(x, y) = (ρy, ρ̄x) (for
ρ ∈ B′) and compatible with the wρ’s in the sense that π1 1 ◦ w̃ρ = wρ ◦ π1 1.
Thus, fixed points of w̃ρ lie over fixed points of wρ. Each singular residue class
of ZA is shown to be a connected wide open with one end, on which one of
these involutions acts with p fixed points. To finish the argument, we show in
[CMc, §8.2] that the quotient by w̃ρ of such a residue class is a disk, in which
the images of the p fixed points are permuted by an automorphism of order p
(reducing to a translation). It is then straightforward analysis to prove that
any such wide open is basic (as in [CMc, §2]), with an underlying affinoid that
reduces to y2 = xp − x.

Remark 2.4. We show in [CMc, Prop 4.9] that the fixed points of wρ corre-
spond to pairs, (E,C), where E has fake CM by Zp[

√−p] or Zp[
√−Dp] (and

C = H1(E)). So this is where fake CM enters into the arithmetic of our stable
model.

The last step in our stable model construction is to form an admissible
covering of X0(p

3) by wide open neighborhoods of the nontrivial affinoids that
we know about. Once again, any supersingular region corresponding to j(A) =
0 or 1728, or for which j(A) /∈ Fp, is dealt with by applying an appropriate
surjection from WA′(pn) onto WA(p

n). We then total up our lower bounds
for the genera of all of these wide opens (and the Betti number of the graph
associated to our covering), and compare this with the genus of X0(p

3). Since
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the two are equal, we are able to conclude from [CMc, Proposition 2.5] that we
haven’t missed anything. Thus we have the following theorem.

Theorem 2.5. The stable reduction of X0(p
3) for p ≥ 13 consists of six ordi-

nary components (reductions of the X
±
a b) and a “necklace” of components, for

each supersingular elliptic curve A/Fp2 , whose graph is given below in Figure

1. The reductions of E1A and E2A are isomorphic to y2 = x(p+1)/i(A)+1, and
ZA has 2(p + 1)/i(A) singular residue classes with underlying affinoids that
reduce to y2 = xp − x.

ZA

✘✘✘✘✘✘✘✘✘✘✘✘✘

ordinary

E1,A

❳❳❳❳❳❳❳❳❳❳❳❳❳

..........

ordinary

E2,A

Figure 1: Partial Graph of the Stable Reduction of X0(p
3)

3 Fake CM

Let K be a complete subfield of Cp with ring of integers R. Then we

say that an elliptic curve, E/R, has fake CM if EndR(Ê) 6= Zp, and potential
fake CM if this happens over Cp. We showed in [CMc] that curves with certain
types of fake CM can be used to understand the geometry of X0(p) and X0(p

3).
In particular, let R be the set of rings of integers in quadratic extensions of
Qp, and let S ∈ R be the ring of integers in a ramified extension. Then by
[CMc, Prop 4.9], curves E with potential fake CM by S are precisely those
for which (E,H1(E)) is fixed by some involution wρ (for ρ ∈ B′, as in Section
2). Moreover, by [CMc, Prop 7.4], any fixed point of some involution, w̃ρ, is
obtained from one of these by a non-canonical p-isogeny.

In this section we further investigate properties of curves which have fake
CM by some S ∈ R. In particular, we focus on the ways in which the fake
endomorphism ring can embed into B ∼= End(Â) (via Woods-Hole theory),
when A is supersingular and E corresponds to a point of WA(1). First we
show that all subrings of B which are isomorphic to the same S ∈ R are B∗

conjugate, and hence (using results from [G]) that all the curves in WA(1) with
fake CM by the same ramified S make up a B∗ orbit. Then we suppose that
(E,C) is fixed by the involution wρ, for some ρ ∈ B′, and give alternative

characterizations of the image of End(Ê) in B in terms of ρ.
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3.1 Fake CM Curves and Orbits of B∗

With notation as in Section 2.1, we fix a supersingular elliptic curve A/Fp2

and an isomorphism between End(Â) and B = Zp[i, j, k]. Then B∗ ∼= Aut(Â)
acts on WA(1) by ρ(F, α) = (F, ρ ◦ α). It is immediate that this restricts to an
action of B∗ on the subset of WA(1) corresponding to curves E with fake CM
by a fixed S ∈ R. We want to describe the orbits of this (restricted) action.

Lemma 3.1. If S1 and S2 are subrings of B which are isomorphic to S, there
is a ρ ∈ B∗ such that S2 = ρ−1S1ρ.

Proof. We can assume without loss of generality that S1 = Zp[ι], where ι = i,
j or k. Note that for each of these ι, and for any α, we have

Tr(αι) = 0 ⇒ ια = ᾱι.

Suppose first that S1 = Zp[i]. Since S1 and S2 are isomorphic, there must
be an α ∈ S2 such that α2 = −r. Hence we have N(α) = r and Tr(α) = 0.
Now set γ = α/i ∈ B, from which it follows that N(γ) = 1 (and therefore
γ−1 = γ̄). Finally, choose ǫ = ±1 so that ρ := 1 + ǫγ is a unit. Then using
Tr(ρi) = 0 we calculate:

ρiρ̄

N(ρ)
= (ρ̄)−1ρi = (ρ̄)−1ργ−1α = (ρ̄)−1(ǫ+ γ−1)α = ǫα.

In other words, ρiρ−1 = ǫα, and therefore ρ−1S2ρ = Zp[i] = S1.
Now suppose that S1 = Zp[j]. In this case there must be an α ∈ S2 such

that α2 = −p, and hence α = bi+ cj + dk, for some b, c, d ∈ Zp such that

−b2r − c2p− d2rp = −p.

Thus, we see that p|b. So b = (ej)j for some e ∈ Zp, and α = γj where
γ := ek + c + di ∈ B. Again take ρ = 1 ± γ. The remaining case, when
S1 = Zp[k], is similar.

Corollary 3.2. When S is ramified, any two formal S-module structures,

σ1, σ2 : S → B = End(Â),

are conjugate in the sense that there is a ρ ∈ B∗ with

ρ−1σ1(s)ρ = σ2(s) ∀s ∈ S.

Proof. From Lemma 3.1, there exist γ1, γ2 ∈ B∗ such that γ−1
i σi(S)γi = Zp[ι]

where ι = j or k. Note that iιi−1 = −ι in either case. Therefore we obtain two
distinct automorphisms of S (over Qp) by taking

s → σ−1
2 (ρ−1σ1(s)ρ),

where ρ is either γ1γ
−1
2 or γ1i

−1γ−1
2 . One of these automorphisms must be the

identity, which proves the corollary.
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Theorem 3.3. Suppose that a := (E,C) and b := (E′, C ′) are points in WA(p)
such that E and E′ have (potential) fake CM by S (ramified), and such that C
and C ′ are either both canonical or both not. Then a = ρb for some ρ ∈ B∗.

Proof. Let E = (F, α) and E′ = (F ′, β). By the lemma, there is a ρ ∈ B∗ such
that

αEnd(F )α−1 = (ρβ)End(F ′)(ρβ)−1.

Moreover, by the corollary, we can choose ρ so that (F, α) and (F ′, ρ ◦ β) are
two liftings of the same formal S-module structure on Â (in the sense of [G]).
Hence by [G, Prop 2.1], we have ρ(E′) = E.

Now, if C and C ′ are canonical, it is immediate that a = ρb for this same
ρ. So suppose that C and C ′ are both non-canonical. Then the isomorphism
between (F ′, ρ◦β) and (F, α) at least takes C ′ to some non-canonical subgroup
D ⊆ F . But Aut(F ) transitively permutes the non-canonical subgroups by
Remark 4.11 of [CMc]. Therefore we may choose an automorphism σ with
σ(D) = C, and thus we have a = ρ1b for ρ1 = (α ◦ σ ◦ α−1)ρ.

Remark 3.4. If E is defined over W (Fp2), and Ē ∼= A for some supersingular
A with A defined over Fp or with j(A) 6= 0 or 1728, then E has fake CM. Indeed,
the Frobenius endomorphism of Ē over Fp2 is [±p]Ē. Since this endomorphism

lifts to E, Ê is a Lubin-Tate formal group.
For example, suppose that p = 2 and E is given by y2 + 2xy − Ay = x3,

where A3 = 1. Then in characteristic 2, we have [2](x, y) = (Ax4, y4). So if
A 6= 1, we don’t know if E has fake CM 2-adically.

3.2 Embeddings of Fake Endomorphism Rings

Now suppose that A is defined over Fp and that j(A) 6= 0, 1728. Recall (from
[CMc, §4.2]) that for any ρ ∈ B′, the involution of SDA given by wρ = ρ ◦ w1

has two fixed points. Let x = (E,C) = (F, α,C) be one of the them. As in the
previous section, Woods Hole theory gives us an embedding of End(F ) into B:

α∗End(F ) := α−1End(F )α ⊆ End(Â) = B.

In this section, we use the embedding to reprove the result that E has fake CM
by the ring of integers in a ramified quadratic extension of Qp. We also give
alternate descriptions of the embedding which depend only on ρ, in particular
showing that the fake endomorphism rings of both fixed points embed onto the
same subring of B.

Definition 3.5. For ρ = a+ bi+ cj + dk ∈ B, we let ρ′ = a− bi+ cj − dk.

Lemma 3.6. (i) For all ρ ∈ B, ρj = jρ′.
(ii) B′ = { ρ ∈ B∗ | ρρ′ ∈ Z∗

p }
(iii) If ρ1, ρ2 ∈ B∗, (ρ1ρ2)

′ = ρ′1ρ
′
2.

(iv) If ρ ∈ B′, ρρ′ = ρ′ρ.
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Proposition 3.7. Let ρ ∈ B′, and let x := (E,C) = (F, α,C) be fixed by wρ.
Then α∗End(F ) = Zp[γ], where γ = ρj and hence γ2 ∈ pZ∗

p.

Proof. This is basically proven in [CMc, Prop 4.9], although we repeat the
argument here. By Theorem 2.1 (and the fact that the only degree p endomor-
phisms of A are ±j) we can choose isogenies,

β : F/C
∼−→ Â ιC : F → F/C,

such that E/C = (F/C, β), and such that (ιC , j) represents the natural isogeny
from E to E/C. In fact, ιC can be taken to be the natural map.

Now, the fact that ρ(E/C) = E implies that there is an isomorphism,
σ : F/C → F , such that ρ ◦ β = α ◦ σ̄. So let π0 = σ ◦ ιC ∈ End(F ), and then
take γ = απ0α

−1. Then γ ∈ α∗End(F ) by definition, γ = ρj by commutativity,
and from Lemma 3.6 we have

γ2 = ρjρj = −pρρ′ ∈ −pZ∗
p.

Furthermore, since this implies that Zp[γ] is a maximal order, it must be all of
α∗End(F ).

Corollary 3.8. Let x = (F, α,C) be fixed by wρ for ρ ∈ B′, and let K =
Qp(

√−p,
√−Dp) for D a quadratic non-residue (mod p). Then x is defined

over K, and

End(F ) = EndK(F ) ∼= Zp

[√
−ρρ′p

]
.

Proof. The fixed points of wρ are defined over K, by the explicit formula for wρ

(given in [CMc, Eq 3]). Therefore, F/C and the natural map, ιC : F → F/C,
are defined over K. Hence, the endomorphism, π0 (as in Proposition 3.7), is
defined over K.

Proposition 3.9. If ρ ∈ B′ and x := (F, α,C) is fixed by wρ, then

α∗End(F ) = Sρ := {τ ∈ B : ρτ ′ = τρ}.

Proof. One direction is easy. In particular, from the previous proposition,
everything in α∗End(F ) can be written as a+ bγ. This is in Sρ since

ρ(a+ bρj)′ = aρ+ bρρ′j = (a+ bρj)ρ.

For the other direction, Lemma 3.6 implies that Sρ is at least a ring. We want
to show that Sρ ⊆ α∗End(F ). So first choose a τ ∈ S∗

ρ . From the fact that
ρ ◦w1 = w1 ◦ ρ′ on SDA (basically just ρj = jρ′, see [CMc, Cor 4.6]), we have

wρ(τx) = ρτ ′w1x = τρw1x = τx,

which means that τx is one of the two fixed points of wρ. Suppose first that
τx = x, i.e., (F, α) ∼= (F, τ ◦ α). Then by Theorem 2.1, there is a σ ∈ End(F )
such that

α ◦ σ̄ = τ ◦ α,
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and hence τ ∈ α∗End(F ). We conclude that if τ ∈ S∗
ρ , at least τ

2 ∈ α∗End(F ).
But then, since (1± τ)2 = 1± 2τ + τ2, it follows that τ ∈ α∗End(F ). Finally,
if c ∈ Sρ, one of either 1+ c or 1− c must be in S∗

ρ . Thus, Sρ ⊆ α∗End(F ).

Corollary 3.10. If F and G are formal groups corresponding to the two fixed
points of wρ, End(F ) is canonically isomorphic to End(G).

Proof. Let x = (F, α,C) and y = (G, β,C ′) be the two fixed points of wρ. Then
from either proposition, we have

α∗End(F ) = β∗End(G).

So α∗ and β∗ identify End(F ) and End(G) with the same subring of B.

Remark 3.11. Let x = (F, α,C) and y = (G, β,C ′) be the two fixed points
of wρ, for ρ ∈ B′ (as above). Let S be the ring of integers in the ramified
quadratic extension of Qp for which End(F ) ∼= End(G) ∼= S. Then by [G, Prop
2.1], x and y are the two canonical liftings of the two S-module structures on
Â with image α∗End(F ) = β∗End(G).

4 Real CM

In this section, we shift our focus to elliptic curves E/R which have real
CM, i.e. for which EndR(E) 6= Z. Our main result is that, inside SDA, real
CM points are dense in the set of fake CM points. The strategy is to use Woods
Hole theory and the fact that End(A) is dense in End(Â). First we make B
into a topological ring in the usual way, by defining

||ρ|| = max{|h(ρ)| : h ∈ HomZp
(B,Zp)}.

Then from the explicit formula of Gross-Hopkins (see [CMc, §4.2] or Section
2.1), the action,

B∗ × SDA → SDA,

is continuous with respect to both variables.
Now assume that A/Fp, and let K = Qp(

√−p,
√−Dp) and R = OK .

Thus the fake CM curves corresponding to points of SDA are all defined and
have fake CM over R by Corollary 3.8. Then real CM points are dense in these
fake CM points in the following sense.

Theorem 4.1. Choose S ∈ R ramified. Then points of SDA corresponding to
elliptic curves, E/R, for which EndR(E)⊗Zp

∼= S are dense in those for which

EndR(Ê) ∼= S. In fact, if (F, α) has fake CM and ǫ ∈ R+, there exist ρ ∈ B∗

such that ||ρ− 1|| < ǫ and (F, ρα) 6= (F, α) has real CM.

Proof. In general, when E = (F, α) is defined over R with residue field k, E
has CM over R if and only if α∗EndR(F ) ∩ Endk(A) 6= Z in EndkÂ. In fact,

EndR(F, α) ∼= α∗EndRF ∩ EndkA.
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This follows from Theorem 2.1 if R = Rp, and an argument for more general R
can be made via crystalline cohomology. In our case, k = Fp2 , and since A/Fp

is supersingular, this guarantees that Endk(A) is dense in Endk(Â) = End(Â).
So suppose (F, α) is defined over R (as above) and has fake CM by S ∈ R

(ramified) and α∗S = Zp[γ]. Fix an ǫ > 0. Then there exists δ > 0 such that

for all g ∈ End(Â) with ||g− γ|| < δ, there exists ρ ∈ B∗ with ||ρ− 1|| < ǫ and

ρSρ−1 = Zp[g].

This follows from the construction of Theorem 3.3, since δ can be chosen so that
Zp[g] ∼= Zp[γ] for all ||g−γ|| < δ. In particular, we may then choose g ∈ End(A)

with Zp[g] 6= Zp[γ], since End(A) is dense in End(Â). Then (F, ρ ◦ α) has CM
because

(ρ ◦ α)∗EndRF = {ρ ◦ α ◦ γ ◦ (ρ ◦ α)−1 : γ ∈ EndRF} = ρSρ−1.

Therefore, g ∈ (ρ ◦ α)∗EndR(F ) ∩ End(A).

Corollary 4.2. Let A be any supersingular elliptic curve over Fp2 . Then
points corresponding to elliptic curves E with CM by an order of discriminant
pM with (p,M) = 1 fill out a µ2(p+1)/i(A) orbit of Gm

∼= SDA. Two such
curves correspond to points in the same µ(p+1)/i(A) orbit if and only if M1M2

is a square (mod p).

Proof. First suppose that A/Fp and j(A) 6= 0, 1728. Recall that curves with
fake CM by S (as above) correspond to fixed points of the involutions wρ for
ρ ∈ B′ by [CMc, Prop 4.10]. Remark 4.8 of [CMc] says that such points fill
out a µ2(p+1) orbit of Gm

∼= SDA, and that B∗ acts like µp+1. Now we have
Theorem 3.3 which says that curves with the same fake endomorphism ring are
B∗ translates. So this proves the analogous statement for fake CM curves, and
by Theorem 4.1 the statement about real CM curves then follows.

Now suppose that j(A) = 0 or 1728. Remark 4.8 is based on the explicit
formula for the action of B∗ on the deformation space, XK , for the formal
group Â. When j(A) = 0 or 1728, WA(1) can be identified with the quotient
of XK by a faithful action of Aut(A)/± 1, in a way which is compatible with
the natural embedding of Aut(A) into B∗. So basically, we can use the same
argument as above for the circle of XK which lies over SDA, and then apply
the degree i(A) map. Similarly, if A is not defined over Fp, we can choose some
A0/Fp and then apply an isomorphism between WA0

(p) and WA(p) as in [CMc,
§4.1].

Remark 4.3. When A/Fp, a canonical choice of parameter on SDA is given

by (j(E)− Teich(j(A)))/
√

pi(A).

Question: If E and E′ both satisfy the above conditions, the residue class of

j(E′)− Teich(j(A))

j(E)− Teich(j(A))
(mod

√
p)

is the residue class of a p+1
i(A) -th root of unity. Which one and when is it 1?
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4.1 Heegner Points

By a Heegner point on X0(N) we mean a pair (E,C) where E is a CM elliptic
curve and C is a cyclic subgroup of order N such that End(E) ∼= End(E/C).
Let X0(p

n) denote a stable model for X0(p
n). In this section, we discuss the

placement of Heegner points on X0(p
n), beginning with those Heegner points

which lie in the ordinary region.
Let Ri(D) denote the order of discriminant piD in Q[

√
piD] where D < 0,

and (D, p) = 1. Suppose End(E) ∼= Ri(D). Then E has ordinary reduction if
and only if (Dp ) = 1 and i is even.

In order to study ordinary Heegner points, we interpret the irreducible
affinoids, X±

a b, which make up the ordinary locus as in [C1]. Recall that Xa b

(for a, b ≥ 0 and a+ b = n) was defined in Section 2.1 as the affinoid in X0(p
n)

whose points correspond to pairs (E,C) where E is ordinary and |C∩K(E)| =
pa. The first author showed (see [C1, §2] or [CMc, §3.2]) that for a ≥ b this
is equivalent to the affinoid whose points correspond to pairs, (E,P), where
E is ordinary and P is a certain pairing from Ka(E) := K(E) ∩ E[pa] onto
µpb . Furthermore, let Ca b denote the set of isomorphism classes of pairings
from Z/paZ onto µpb (which has two elements when a ≥ b ≥ 1). Then for any

β ∈ Ca b the subspace, X
β
a b ⊆ Xa b, consisting of those pairs for which P ∈ β, is

an irreducible affinoid which reduces to Ig(pa). Now, using the Atkin-Lehner
involution, the remaining irreducible affinoids (for a < b) in the ordinary locus
can be defined by

X
β
a b = wnX

(
−1
p )β

b a .

(Note: This is a slight change from the notation of [C1].) Ordinary points of
X0(p

n) all have smooth reduction on one of these components, and we will
show that there are in fact infinitely many Heegner points on each.

Lemma 4.4. For any b ≥ 0, there are infinitely many Heegner points on Xb b.

Proof. Points of Xb b can also be thought of as triples, (E,C1, C2), where E
is an ordinary elliptic curve and Ci is a cyclic subgroup of order pb such that
C1 ∩ C2 = (0) and Ci ∩ K(E) = (0). If we let ιC denote the natural map
from E → E/C, then the triple, (E,C1, C2), just corresponds to the pair,
(E/C1, C(C1, C2)), where

C(C1, C2) := ker(ιC2
◦ ι̌C1

) ⊆ E/C1.

Now, choose any ordinary elliptic curve, E, with CM by R2i(D), and then
choose C1 and C2 (as above) so that End(E/C1) ∼= End(E/C2) ∼= R2(i+b)(D).
If i > 0, any choice of C1 and C2 (as above) will do. If i = 0, one also needs
Ci to be disjoint from the kernel of the Verschiebung lifting (which is always
possible if p > 2). Then (E/C1, C(C1, C2)) is a Heegner point on Xb b.

There are various maps between ordinary affinoids which can now be used
(along with Lemma 4.4) to construct Heegner points on every X

β
a b. First of all,
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wn takes Heegner points of Xa b to Heegner points of Xb a by definition. Sec-
ondly, the group Z∗

p acts through (Z/pbZ)∗ on Xa b via τr : (E,P) 7→ (E,Pr).

Moreover, τr fixesX
β
a b (i.e. preserves the class of the pairing in Ca b) if and only

if τr is a square. Finally, we have a natural isomorphism, αa b : Xb b → Xa b,
which takes the pair (E,P) to the pair (E,P ′) for

P ′(R,S) = P(pa−bR, pa−bS).

We now investigate the effect of these maps on Heegner points.

Lemma 4.5. Let F be a fixed ordinary elliptic curve. Then (Z/pbZ)∗ acts
transitively on the set of points of the form (F,C) which lie in Xb,b.

Proof. Let Bb(F ) denote this set. Then points of Bb(F ) correspond to triples
(E,C1, C2) as above where E = F/Kb(F ) and C1 = F [pb]/Kb(E). There are
pb−1(p − 1) such triples. The lemma follows because (Z/pbZ)∗ acts faithfully
on Bb(F ).

Lemma 4.6. If (F,C) is a Heegner point on Xb b and End(F ) = R2b(D) then
αa b(F,C) is a Heegner point.

Proof. The point (F,C) is (E/C1, C(C1, C2)), where E = F/pbC, C1 =
ιpbC(F [pb]) and C2 = ιpbC(C). In this case, (p, disc(End(E))) = 1. Let

φc : E → Eσc

be the lifting of Frobenius. Then αa b(F,C) =

(F, ker(ι
Cσa−b

2
◦ φa−b ◦ ιpbC)),

which is clearly a Heegner point.

Theorem 4.7. There are infinitely many Heegner points lying over each ordi-
nary component of X0(p

n) for n ≥ 1 and p > 2 (all with smooth reduction).

Proof. By Lemma 4.6, it suffices to guarantee at least one Heegner point,
(F,C), on each X

β
b,b with End(F ) ∼= R2b(D). From the proof of Lemma 4.4,

such points correspond to triples (E,C1, C2) where End(E) ∼= R0(D). For a
fixed F , we must have E = F/Kb(F ) and C1 = F [pb]/Kb(E). Then we get a
point of Xb b by choosing any C2 disjoint from C1 and K(E), and a Heegner
point if C2 is also disjoint from the kernel of the Verschiebung lifting.

At this point, the argument is reduced to simple counting. We have a
total of pb−1(p− 2) Heegner points in each Bb(F ). The cardinality of Bb(F ) is

pb−1(p− 1), and from Lemma 4.5 half of these points lie in each Xβ
b b. So since

pb−1(p − 2) > pb−1(p − 1)/2 if p > 3, we are done (p = 3 can be handled by
Atkin-Lehner).

Heegner points in the supersingular region of X0(p
n) are somewhat easier to

describe.
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Lemma 4.8. Let E be a CM elliptic curve with supersingular reduction, such
that pm exactly divides the discriminant of End(E). Then we have

h(E) =

{
p1−k/(p+ 1), if m = 2k

p1−k/2, if m = 2k − 1.

Furthermore, if End(Ê) = Zp[γ] and γ2 ∈ Zp, we have Ker(γ)∩K(E) = K(E)
(which has order pk).

Proof. This is an exercise in applying [B, Thm 3.3]. The point is that if E/C ∼=
E, we must at least have h(E/C) = h(E).

Theorem 4.9. Let E be a CM elliptic curve with supersingular reduction, such
that pm exactly divides the discriminant of End(E). Then (E,C) ∈ X0(p

n) (for
n > 0) is a Heegner point if and only if m = n and K(E) ⊆ C.

Proof. This follows directly from Lemma 4.8 (and [B, Thm 3.3]). Indeed, if E
and m are as above, and C ⊆ E is any cyclic subgroup of order pn, we have

disc(End(E/C)) =
disc(End(E)) · |C|2

|K(E) ∩ C|4 ·
{
p, if m is odd and K(E) ⊆ C

1, otherwise.

Now, when n ≤ 3, the above results make it possible to be very explicit
about the placement of Heegner points on X0(p

n). On X0(p), the supersingular
Heegner points all lie on SDA for some A and have singular reduction (although
when j(A) = 1728 they have smooth reduction on the Deligne-Rapoport model
from [DR, §VI.6.16]). They also correspond to pairs, (E,C), where E has CM
by R1(D) and C = K(E). Heegner points of X0(p

2) correspond to those pairs,
(E,C), where E has CM by R2(D) (with (Dp ) = −1) and K(E) = pC. They

all have smooth reduction on the component of X0(p
2) which Edixhoven found

(and which we call YA). Finally, Heegner points on X0(p
3) correspond to pairs

where E has CM by R3(D) and K(E) = pC. This implies that they all lie on
the affinoid ZA. By Theorem 4.1, there are infinitely many which are fixed by
some w̃ρ. Hence, using the discussion at the beginning of [CMc, §8], they have
smooth reduction on each of the new components which lie in the singular
residue classes of ZA. However, there are also infinitely many supersingular
Heegner points of X0(p

3) which are not fixed by any w̃ρ, from the preceding
theorem and Proposition 7.4 of [CMc] (see also [CMc, Rem 7.5]), and it is
unclear where the reductions of these points lie on ZA.

5 Field of Definition

Suppose L/K is an unramified extension of local fields. It follows from [DM,
Thm 2.4] that an Abelian variety A over K has semi-stable reduction (i.e. has
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a model with semi-stable reduction over OK) if and only if AL has semi-stable
reduction. Also, in the special case where A is the Jacobian of a curve, C/K,
and L/K is the maximal unramified extension, A has semi-stable reduction if
and only if CL does. It is not true, however, that (in this case) C has semi-stable
reduction whenever A does. For example, the Jacobian of X0(p) has a model
with semi-stable reduction over Zp, while X0(p) may not (for example, when
p = 37). This is an important point for us, because Krir determined a field
over which the Jacobian of X0(p

n) attains stable reduction in [K, Théorème 1].
Indeed, let K = Qp(

√−p,
√−Dp) for D a quadratic non-residue. Then Krir’s

result can be stated as follows.

Theorem 5.1 (Krir). The Jacobian of X0(p
n) has stable reduction over the

class field Mn over K of the subgroup of K∗ given by

{a ∈ O∗
K : a2 ∈ 1 +

√
pn−1OK}.

By the above reasoning, it follows that X0(p
n) also has a stable model

over this same field, Mn. However, one can not conclude from this result which
extensions of Qp are sufficient for X0(p

n) to attain stable reduction (and there
may not be a minimal such field). What we do in this section is produce a finite
extension, F3 ⊇ Qp, over which our stable model for X0(p

3) can be defined,
partially using the result of Krir. Fake and real CM also play a role because of
the correspondence between wρ and w̃ρ fixed points and fake CM curves. Our
final result is the following.

Theorem 5.2. If 1 ≤ n ≤ 3, the stable model of X0(p
n) is defined over the

class field Fn over K := Qp(
√−p,

√−Dp) of the subgroup of K∗ given by

(p2an)Z{a ∈ O∗
K : abn ∈ 1 +

√
pn−1OK},

where (an, bn) = (1, 1) if n = 1, (3, 4) if n = 2, and (3, 2) if n = 3. In
particular,

([Fn : Qp], e(Fn/Qp)) =





(2, 1), if n = 1;

(6(p2 − 1), (p2 − 1)/2), if n = 2;

(12(p2 − 1)p2, (p2 − 1)p2) if n = 3.

5.1 Two Ingredients

One of the main ingredients in our field of definition is the field over which
the fixed points of our involutions, w̃ρ, are defined. This field is necessary, by
our construction, to obtain good reduction for the underlying affinoids in the
singular residue classes of ZA. As real CM curves have been shown to be dense
in these points, we are able to apply classical results on CM elliptic curves to
determine this field.
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Proposition 5.3. Let A be a supersingular curve over Fp. Let F be the small-
est field over which all the fixed points in WA(p

3) of our involutions w̃ρ are
defined. Then,

F = Qp(
√−p,

√
−Dp, j(p

√−p), j(p
√

−Dp))

where D ∈ Z+ is a quadratic non-residue. This is the class field over K :=
Qp(

√−p,
√−Dp) of the subgroup of K∗ given by

(
√
p)Zµp2−1(1 + pOK).

In particular, [F : K] = p2.

Proof. By Theorem 4.1 and Proposition 7.4 of [CMc] we see that F is the field
of definition over Qp of the set of points (E,C) where E lifts A and has CM by
an order whose discriminant is exactly divisible by p (note that here C is not
necessarily H1(E)). The proposition now follows from Theorem 5.5 of [S].

Remark 5.4. This field F is the same as that mentioned in Remark 8.1 of
[CMc].

We used a surjection from WA(p
n) onto WA′(pn), where A and A′ are super-

singular elliptic curves over Fp2 , to deal with those regions for which j(A′) = 0
or 1728, or for which A′ is not defined over Fp. The surjection can be defined
over W (Fpk) as long as A and A′ are p-prime isogenous over Fpk . Another
ingredient in our determination of a field of definition is the following theorem,
that k = 24 always suffices.

Theorem 5.5. Any two supersingular elliptic curves over Fp2 are 2-power
isogenous over Fp24 .

Proof. Suppose A and B are two supersingular elliptic curves over Fp2 . It is
well known that there exists a 2n-isogeny α : A0 := A → An := B over F̄p for
some n (see [R, Lemma 3.17]). We can factor α as

A0
α1→A1 · · ·Ai−1

αi→Ai · · ·An−1
αn→An

where Ai is an elliptic curve over F̄p and αi is a 2-isogeny. Furthermore, each
Ai is supersingular and hence can be defined over Fp2 . Thus it suffices to prove
the following lemma.

Lemma 5.6. Any two elliptic curves A and B over Fpk which are 2-isogenous
over F̄p are 2-isogenous over Fp12k .

There exists a subgroup C of A(F̄p) of order 2 so that B and A/C are isomorphic
over F̄p. Now, A → A/C is defined over Fp6k because all the points of order 2
on A are defined over the extension of Fpk of degree either 2 or 3. In particular,
B ∼= A/C over Fp12k because two elliptic curves with the same j-invariant are
isomorphic over the quadratic extension.
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5.2 Proof of Theorem 5.2

The case n = 1 follows from [DR, §VI 6.16] and the fact that all supersingular
elliptic curves in characteristic p are defined over Fp2 . The case n = 2 over Qnr

p

was handled by Edixhoven in [E1, Thm 2.1.1].
When n ∈ {2, 3}, we defined an admissible rigid open cover C0(pn) of

X0(p
n) in Theorems 5.3 and 9.2 of [CMc] and showed that it was semi-stable

over Cp. We must show that the cover is defined and semi-stable (as in [CMc,
Prop 2.5]) over Fn. In particular, we must show that (over Fn) each subspace
W in the cover is a basic wide open, and that the subspaces intersect each
other in the union of annuli.

Recall from [CMc, §3.2] that wide open neighborhoods, W±
a b, of the ordi-

nary affinoids, X±
a b, can be constructed by considering pairs (E,C) where E is

“nearly ordinary.” So we begin by showing that each W±
a b is a basic wide open

(using essentially the same argument as was used in the proofs of [CMc, Thm
5.3, 9.2]). The affinoid, X±

a b, is defined and has good reduction over Fn by
Lemma 3.6 of [CMc]. Then the intersections, W±

a b ∩WA(p
n), are shown to be

annuli over Fn by choosing an appropriate map to X0(p) and applying Lemma
2.3 about extensions of annuli. Thus each W±

a b is a basic wide open over Fn.
Furthermore, there isn’t anything else to show in the n = 2 case, since

YA = WA(p
2)−

⋃
W±

a b

is defined and has good reduction over F2 by [CMc, Prop 5.2].
Now suppose that n = 3 and fix a supersingular curve, A/Fp, with j(A) 6=

0 or 1728. By [CMc, Prop 4.2] and Theorem 5.5, it suffices to verify the
above conditions for the subspaces which cover WA(p

3) for one such A. For
convenience, we briefly recall the definitions of these subspaces. Initially, we
cover WA(p

3) with three subspaces: V1(A), V2(A), and U(A). Each one is
π−1
1 1 of some sub-annulus of WA(p), and they are chosen so that Vi(A) is a

neighborhood of Ei A while U(A) is a neighborhood of ZA. Now, in order to
deal with the singular residue classes of ZA, we then refine the cover in the
following way. Let S := S(A) be the set of singular residue classes of ZA, and
let XS be the underlying affinoid of any S ∈ S. Then we basically remove every
XS from U(A) to get a new neighborhood, Û(A), of ZA. Thus the subspaces
in C0(p3) which cover WA(p

3) are given by:

{
V1(A), V2(A), Û(A)

}
∪ S(A).

Now, much of the proof of [CMc, Thm 9.2] is still valid, as stated, over F3.
For example, by Proposition 8.7 of [CMc] and Proposition 5.3 the elements in
S(A) are basic wide opens over F3. Also, Vi(A) and U(A) are at least wide
opens over F3, because they are residue classes of affinoids which are defined
over F3 (exactly as in the proof over Cp). So the only things which we have to
justify are that the affinoids, ZA, E1A, and E2A have good reduction over F3,
and that Vi(A) ∩ U(A) is an annulus over F3. This is where we use Krir.
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By Krir’s result we know that the affinoids ZA, E1A and E2A have good
reduction over M3, and that Vi(A) ∩ U(A) is an annulus over M3. Then it
follows from Proposition 3.14 of [CMc] that Vi(A) ∩ U(A) is an annulus over
F3. Also, ZA, E1A, and E2A have good reduction over F3 because any reduced
affinoid which acquires good reduction over an unramified extension must have
good reduction. Therefore our cover can be defined and is semi-stable over F3,
and hence it corresponds by [CMc, Prop 2.7] to a semi-stable model for the
curve over F3.

6 Action of Inertia

If Y/K is a curve, and Y its stable model over Cp, there is a homomorphism
wY from

IK := Autcont(Cp/K
nr) → Aut(Y).

It is characterized by the fact that for each P ∈ Y (Cp) and σ ∈ IK ,

P σ = wY (σ)(P ). (1)

We have something similar if Y is a reduced affinoid over K. Namely, we
have a homomorphism wY : IK → Aut(YCp

) characterized by (1). This follows
from the fact that IK preserves (YCp

)0 (power bounded elements of A(YCp
))

and A(YCp
)v (topologically nilpotent elements of A(YCp

)). Moreover, inertia
action behaves well with respect to morphisms in the following sense.

Lemma 6.1. If f : X → Y is morphism of reduced affinoids over K and σ ∈ IK ,
then wY (σ) ◦ f̄ = f̄ ◦ wX(σ).

For convenience, we let I = IQp
and let w be the inertia action (over Qp) on

∏

n≥1

Aut(X0(pn)).

Also, let mn denote the intersection of all extensions of Knr over which X0(p
n)

has semi-stable reduction. It is known that mn is the minimal such extension.
Clearly mn ⊆ Mn but Krir says the extension Mn “n’est certainement pas
minimale.” In the case of X0(81), this is confirmed in [M2, §4], where a stable
model for X0(81) is defined over an extension of Qnr

3 of degree 36 while Krir’s
field has ramification index 8 · 34. From our calculation of the inertia action,
however, it will follow that mn = Mn for n ≤ 3.

6.1 Inertial action on the ordinary components

For a, b ≥ 0, let X±
a b denote the reduction of the ordinary affinoid, (X±

a b)Cp
,

in the sense of Remark 2.3. Then since Xa b is defined over Qp, w(σ) must
preserve Xa 0, X0 b and Xa b = X+

a b

∐
X−

a b (for ab 6= 0). Also, as explained in
[C1, §1] (or the previous section on Heegner points), if a ≥ b, Xa b is naturally
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isomorphic to Xb a and to Xb b. Therefore, by Lemma 6.1, it suffices to compute
the inertial action on Xb b.

So recall first that there is an isomorphism between Xβ
b b and Ig(pb) which

can be constructed as follows. First we choose a primitive pb-th root of unity,
ζ, which represents β in the sense that whenever (E,P) ∈ X

β
b b and P generates

Kb(E) we have P(P, P ) = ζk
2

for some k ∈ (Z/pbZ)∗ (this is explained on page

5 of [C1]). Then we can define an embedding, αζ : Xβ
b b → X1(p

b), given by
αζ(E,P) = (E, pbQ), where Q ∈ E[p2b] such that there exists P ∈ Kb(E) with

ep2b(P,Q) = P(P, P ) = ζ.

This passes to an isomorphism, Xβ
b b → Ig(pb).

Now, let d be a quadratic non-residue. Identify X
+
b b with X

−
b,b by (E,P) →

(E,Pd), and correspondingly Xb b with Ig(pb)×{±1}. Suppose that σ ∈ I and

σ(ζ) = ζd
it2 , where i ∈ {0, 1} and t ∈ (Z/pbZ)∗. Then we have σ(E,P) =

(Eσ,Pσ), where

Pσ(σ(A), σ(B)) = σ(P(A,B)).

So if P(P, P ) = ζ, it follows that

ep2b(σ(P )/t, σ(Q)/T ) = Pσ(σ(P )/t, σ(P )/t) = ζd
i

,

where T ∈ Z/p2bZ and T ≡ t (mod pb). Identify (the obvious subgroup of)
Aut(Ig(pn)) with (Z/pnZ)∗. Then we see that w(σ) acts on Xb b as follows.

Proposition 6.2. The inertial action on the ordinary components of X0(p
n)

is given by

w(σ)|Xb b
= (t−1, (−1)i).

Corollary 6.3. The field Qnr
p (µp[n/2]) is contained in mn.

6.2 Action of Inertia on X0(p2)

Suppose A is a supersingular elliptic curve over Fp2 . Inside the corresponding
residue class, WA(p

2) ⊆ X0(p
2), we have an affinoid YA defined over W (Fp2)⊗

Qp such that YA := YA ⊗ Cp is the set of non-singular points in a component
of the stable reduction of X0(p

2). Now we determine the action of I on YA.
First assume that A is defined over Fp and that j(A) 6= 0 or 1728 (general

case will follow from Lemma 6.1). Let κ be as in Theorem 2.2. We know there
are series F (T ), G(T ) ∈ TZp[[T ]] such that YA is the affinoid

Max (Qp〈a, a−1, b, b−1, x, y〉/M)

where M is the ideal generated by κpa = xp+1, κpb = yp+1 and

(F (x) +G(κ/x)− F (y)−G(κ/y)).
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Suppose αp+1 = κ. Then if K = Qp(α), (YA)K is

Max
(
K〈u, v, u−1, v−1〉/(F (αp/u) +G(κu/αp)− F (αp/v)−G(κv/αp))

)
,

where u = αp/x and v = αp/y. It follows that YA has the equation,

uv(v − u)p−1 = 1,

or sp+1 = (r2 − 1)/4, if we let s = 1/(v − u) and r = (u+ v)/(v − u). Now, on
one hand we have σ(u(P )) = u(P ). On the other, if σ(α) = ζα for a p + 1-st
root of unity, ζ, we have σ(u(P )) = ζpu(σ(P )). Thus, on YA, w(σ) is the
automorphism (u, v) → (ζu, ζv), or equivalently (r, s) → (r, ζ−1s).

Since we have a finite morphism from YA to YA′ over W (F̄p) ⊗ Q for
arbitrary supersingular A′ (an isomorphism when j(A′) 6= 0 or 1728) we know
by Lemma 6.1 the action of I on YA′ for all A′ as long as p ≥ 13. In general,
YA has the equation

s(p+1)/i(A) = (r2 − 1)/4

and w(σ) is the automorphism (r, s) → (r, ζ−i(A)s). This also determines
the action on Ei A, i ∈ {1, 2}, since as explained in Remark 9.3 of [CMc] we
have finite degree p morphisms E1A → YA and E2A → YAFrob with purely
inseparable reduction.

Remark 6.4. It follows from the above and Corollary 6.3 that Knr(µp, α) ⊆
m2. Therefore, since

Gal(Knr(µp, α)/K
nr) ∼= O∗

K/{a ∈ O∗
K : a2 ∈ 1 +

√
pOK},

we see that M2 = m2.

6.3 Action of Inertia on X0(p3)

Suppose A is a supersingular elliptic curve over Fp with B = End(Â). Suppose
ρ ∈ B′ and x is a fixed point of wρ. Then we know wρ has a unique fixed
point x̃ := (F, ι, C) in SD(Cp) above x. Let Cx be the smooth locus of the
corresponding component of the stable reduction of X0(p

3) (which is affine and
hyper-elliptic, with equation y2 = xp − x). By Proposition 7.4 of [CMc] the
fixed points Fx of the hyper-elliptic involution τx of Cx are naturally in 1-1 cor-
respondence with the p non-canonical subgroups of F [p]. So Aut(F ) acts on Fx.

If L is a finite extension of Qp, let ArtL denote the Artin map from L∗

to Gal(Lab/L). Let D ∈ Z+ be a quadratic non-residue mod p and K =
Qp(

√−p,
√−Dp).

Theorem 6.5. Let NF denote the norm from K∗ to Qp ⊗ EndF . If b ∈ O∗
K

and Q ∈ Fx, then
w(ArtK(b))Q = NF (b

−1)Q.
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This makes sense because EndF maps naturally into K. Also, if M3 is the
class field over K of the subgroup of K∗ given by (

√
p)Zµp2−1(1 + pOK), then

the non-canonical subgroups of F [p] are defined over M3 by Proposition 5.3.

Proposition 6.6. Suppose K is an imaginary quadratic field and p is a prime
ideal of OK . If E is an elliptic curve with good reduction over the ring of
integers R of a finite unramified extension L of Kp with CM in K then the
formal group of E over R is a relative Lubin-Tate group as defined by de Shalit
in [dS2].

Lemma 6.7. Suppose E and L are as above and σ is the Frobenius automor-
phism of L/Kp. Then there is an isomorphism of E′ := E/ ker(p∩EndE) with
Eσ so that the reduction of the natural map α : E → E′ is Frobenius.

Proof. This follows from [S, Thm 5.4]. Indeed, identify C with Cp, and take σ
to be an automorphism of C which restricts to [s,K] on Kab where sl = 1 for
l 6= p and (sp) = p(OK)p. Then Shimura’s theorem implies that there exists

an isomorphism, ξ : E′ ∼−→ Eσ, such that if P is a torsion point on E of order
prime to p, ξ(α(P )) = P σ. Because σ is a lifting of Frobenius and the points
of order prime to p reduce to infinitely many distinct points of E mod p, the
lemma follows.

Proof. (of proposition) Let β : E → Eσ be the isogeny of the above lemma. If T
is a parameter at the origin on E, let f(T ) = β∗T σ and f(T ) = π′T+· · · . Then
f ∈ FNL/K(π′) (notation as in [dS2]), and if p1 and p2 are the natural projections

of E ×E onto E, with X = p∗1T and Y = p∗2T , then Ê(X,Y ) = Ff (X,Y ).

Proposition 6.8. If E/R has fake CM, then Ê is a relative Lubin-Tate group.

Proof. Suppose S ∈ R, E = (F, α) and EndRF ∼= S. Then, by Theorem 4.1,
we know ∃ρ ∈ B∗, such that (F, ρα) has CM.

The theorem now follows from (6.4) of [Iw].

Corollary 6.9. M3 = m3.

Proof. It follows from Corollary 6.3 and the remarks at the end of §6.2 that
M2 = Knr(µp, p

1/(p+1)) ⊆ m3. (In general, it follows from Lemma 2 and
Theorem 6 of [BLR, §6] that mn ⊆ mn+1.) The theorem implies that (1 +√
pOK)/(1+pOK) injects into Gal(m3/K) via the Artin map. Indeed, if K1 =

Qp(
√
p) and K2 = Qp(

√
pD), the map (NK

K1
, NK

K2
) from (1+

√
pOK)/(1+pOK)

to
(1 +

√
pOK1

)/(1 + pOK1
)× (1 +

√
pDOK2

)/(1 + pOK2
)

is an isomorphism.

Remark 6.10. This implies the existence of a weight 2 newform on X0(p
3)

whose corresponding representation is wildly ramified at p, which has been in-
dependently verified by Jared Weinstein.
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Let Dx be the wide open residue class above x in SDA (recall that x is a
fixed point of wρ) and D̃x the residue class above Dx in ZA. Let s : Dx → X1(p)
be a section of X1(p) → X0(p) on the image of Dx as in Lemma 8.6 of [CMc].
For ζ ∈ µp we defined an automorphism S̃s,ζ of D̃x. For b ∈ O∗

K , let ν(b) = 0
if b is a square and 1 otherwise.

Corollary 6.11. Suppose x̃ = (E,C). Then there exists an nx ∈ {0, 1} such
that for b ∈ O∗

K

w(ArtK(b))
∣∣
Cx

= S̃s,e1(P,Q)τ
ν(b)nx
x ,

where s(E,C) = (E,P ), Q ∈ E[p]\C, e1( , ) is the Weil pairing on E[p] and
(P +Q) = NF (b

−1)(Q).

This follows from the theorem and the following lemma whose proof we leave
as an exercise for the reader.

Lemma 6.12. The automorphism group of the affine curve y2 = xp−x has order
2(p− 1)p and is generated by α : (x, y) 7→ (x+ 1, y) and βb : (x, y) 7→ (ax, by),

where a ∈ F∗
p and b2 = a. These satisfy αp = β

2(p−1)
b = 1 and βbαβ

−1
b = αa.

In particular, there is only one p-Sylow subgroup, and its centralizer is Abelian
and generated by α and β−1.

We will show that nx = 1. Suppose σ ∈ I and σ(
√
p) = −√

p. Then w(σ)
on the bridging component above A, which has the equation

X(p+1)/i(A) +X−(p+1)/i(A) = Zp,

is X → (−1)
i(A)

X. When j(A) 6= 0 or 1728, this follows from Equation (4) of
[CMc, §8]. The general case then follows from Lemma 6.1. As in the proof of
Proposition 8.3 of [CMc], the involutions w̃ρ are

(X,Z) → (ζ/X,Z),

where ζ runs over the (p + 1)/i(A)-th roots of unity (X−p may be identified
with a parameter U on SDA so that the involutions wρ are U → ζ/U). The
fixed points of wρ on SDA are the solutions x of U(x)2 ≡ ζ. We now label the
fixed points of the involutions wρ by the 2(p+1)/i(A)-th roots of unity. So for

each such root of unity ξ, there is a component Cξ of X0(p3). It follows from
the above that w(σ) restricts to an isomorphism from Cξ to C(−1)i(A)ξ.

The group B∗ acts on the part of stable model over A. If α ∈ B∗, let h(α)
be the corresponding automorphism of that part of the reduction. If σ ∈ I,
because the action of B∗ is defined over Qnr

p (and by Lemma 6.1), we have

w(σ) ◦ h(α) = h(α) ◦ w(σ). (2)

Using Lemma 3.6, we see that if α ∈ B′ and α2 ∈ Z∗
p, then

0 = α2 − (α′)2 = (α− α′)(α+ α′),
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and thus α = ±α′. In particular, we have αx̃ = α′x̃. So

wρ(αx̃) = ρw(α′x̃) = ραw(x̃),

which equals αx̃ if αρ = ρα and doesn’t equal x̃ if α /∈ Aut(A)Z∗
p(1 + jB). (So

for example, if ρ ∈ Zp[i] and α = i and j(A) 6= 1728.) Suppose this to be the
case (i.e. α satisfies these conditions). Then if x̃ ∼ (F, ι, C), the other fixed
point of wρ is αx̃ ∼ (F, αι, C). (This implies Corollary 3.10 in this case.) Let
x′ = αx. Then h(α) takes Cx to Cx′ and vice-versa.

Let Xξ = Cξ

∐
C−ξ. For τ ∈ I, identifying Cξ with C−ξ via h(α) and

using (2), we can write

w(τ)|Xξ
= (a(τ), s(τ)) ∈ Aut(Cξ)× {±1}

where s(τ) = τ(
√
p)/

√
p. If τ = ArtK(v), it follows that s(τ) = 1. Suppose

s(σ) = −1. Then on Xξ, on one hand we have

w(σ)w(τ)w(σ−1) = w(στσ−1) = (a(τ−1), 1),

and on the other we have

w(σ)w(τ)w(σ−1) = (a(σ)a(τ)a(σ−1), 1).

It follows that a(σ) is not in the commutative subgroup (α, β−1) of Aut(y
2 =

xp − x). This implies a(σ)2 /∈ (α) so nx = 1. Thus, in particular, there exists
σ such that s(σ) = −1, a(σ) = βǫ, where ǫ2 = −1.

Suppose now that j(A) = 1728. Let ξ be a (p+ 1)/2-th root of unity and
X = Cξ. It follows that if σ ∈ I, w(σ)(X) = X. Let L = EndF⊗Qp. We know
X is a double cover of P1 and its branch points correspond to non-canonical
subgroups of F [p]. Moreover, if Q is such a subgroup and b ∈ O∗

L, we have

w(ArtL(b))Q = b−1Q.

In particular, w(ArtL(Z
∗
p(1+pOL))) is the identity. Now suppose that σ|L 6= id.

Then
σArtL(b) = ArtL(b̄)σ.

So if τ = ArtL(b), then

w(σ)w(τ)w(σ)−1 = w(τ)−1.

It follows from the theorem and Lemma 6.12 that if the order of w(σ) is prime
to p, w(σ2) = w(σ)2 = τx and thus nx = 1.

7 Stable Model of X0(p
3) when p < 13

Recall from Section 2 that the argument which we used in [CMc] to com-
pute the stable model of X0(p

3) does not only apply when p < 13. The reason
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for this is that in these cases there is no supersingular region where one can
apply analysis of de Shalit, as restated in Theorem 2.2, which approximates
the forgetful map from X0(p) to X(1). In this section, we recall in greater
detail how the theorem is used to construct components in the supersingular
regions of X0(p

2) and X0(p
3) when p ≥ 13. We then use explicit equations for

X0(p) when p = 5, 7, and 11, to derive formulas analogous to Theorem 2.2,
and subsequently construct the analogous stable reduction components. This
should serve not only to extend the result of [CMc] to p > 3, but also to make
the construction more understandable and concrete.

7.1 Explicit Analysis of a “Good” Supersingular Region

Suppose that p > 13, and hence by the result of Howe that there is a
supersingular A/Fp with j(A) 6= 0, 1728. All of the information from Theorem
2.2 which we need to do the explicit analysis of [CMc] can be summarized
as follows. First of all, we have parameters, t and s, on WA(p) and WA(1)
(respectively), which identify these regions with the annulus, 0 < v(t) < 1, and
the disk, v(s) > 0. Moreover, in terms of these parameters, the maps πf and
w1 satisfy

w1(t) =
κ

t
and s = πf (t) ≡ t+

(κ
t

)p

(mod p),

for some κ ∈ W (Fp2) with v(κ) = 1. Finally, the three special circles inside
WA(p), namely TSA, SDA, and CA, are described by v(t) = p

p+1 , v(t) = 1
2 ,

and v(t) = 1− 1
2p (respectively).

Using the above information, we now recall briefly how to explicitly cal-
culate the reduction of the affinoid, YA := π−1

ν (TSA) ⊆ WA(p
2). First of all,

we show in [CMc, Lemma 5.1] that YA is isomorphic to the rigid space:

TA := { (x, y) ∈ TSA ×TSA | x 6= y, πf (x) = πf (y) }.

Then we take u, v = αp/t as parameters on two copies of TSA, for any α with
v(α) = 1

p+1 . With these parameters, the condition that πf (x) = πf (y) leads to
the following congruence.

u−1 − v−1 ≡ (vp − up)(κ/αp+1)p (mod α).

By making the change of variables s = 1/(v − u) and r = (v + u)/(v − u), we
disregard the u = v component and arrive at an isomorphism between YA and
an affine curve of the form sp+1 = c(r2 − 1). Note that this equation also ends
up describing the reductions of the affinoids, E1A,E2A ⊆ WA(p

3), which lie
over YA via πf and πν (see [CMc, Remark 9.3]).

Similarly, we compute the reduction of ZA := π−1
1 1 (SDA) ⊆ WA(p

3) by
first identifying it with the rigid space:

SA := { (x, y) ∈ CA ×CA | τf (x) = w1 ◦ τf (y) }
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(this is done in [CMc, Prop 7.1]). Recall that τf : CA → SDA is the map
which takes (E,C) to (E,H1(E)), and hence that πf ◦ τf = πf . Therefore, in
terms of the parameter t from above, it is easy to show that

τf (t) ≡ t+ (κ/t)p (mod p).

Now we may proceed as before, taking U = t/
√
κ as a parameter on SDA (note

that w1(U) = 1/U), and taking X,Y = t/α as parameters on two copies of
CA, for any α with v(α) = 1− 1

2p . With a careful choice of α (see [CMc, Prop

8.2]), the definition of SA translates into the following congruence.

(X−p + αX/
√
κ)(Y −p + αY/

√
κ) ≡ 1 (mod

√
p)

Finally, after a second change of variables of the form, Z = c(XY − 1), we
obtain the following equation for ZA.

Xp+1 +X−(p+1) = Zp

Once again, when p < 13, the preceding calculations do not apply because
there is no such A. So for the specific primes, p = 5, 7, and 11, we will now
derive a formula which is analogous to Theorem 2.2 for each supersingular
region, and then use it to compute the reductions of YA and ZA (as above).
In each case, we do arrive at equations which are consistent with Theorem 2.5.
Our claim is that the rest of the argument of [CMc] (as summarized in Section
2) is completely analogous for these primes, and need not be repeated. As a
final note, we do not address X0(8) and X0(27) primarily because both have
good reduction. Additionally, complications arise from the fact that j = 0 and
j = 1728 lie in the same residue disk of X(1) in both cases.

7.2 X0(5
3)

Borrowing directly from [M1, §4], we can choose a parameter on the genus 0
curve, X0(5), by taking t = η61/η

6
5 . The only supersingular j-invariant is j = 0,

and the corresponding annulus is described by 0 < v(t) < 3. Furthermore, from
[M1, Table 3], the formulas for the forgetful map and Atkin-Lehner involution
are then given by

π∗
f j =

(t2 + 2 · 53t+ 55)3

t5
and w∗

1t = 125/t.

The circles SD and C are described by v(t) = 1.5 and v(t) = 2.7 (respectively),
and the too-supersingular circle, TS, is where v(t) = 2.5.

First we compute the reduction of the affinoid, Y := π−1
ν (TS) ⊆ X0(25),

by embedding it into TS×TS as above. For parameters on two copies of TS,
we may choose X,Y = t/(25

√
5). Then plugging these parameters into the

equation, πf (x) = πf (y), we quickly arrive at the congruence:

(X2 + 1)3/X5 ≡ (Y 2 + 1)3/Y 5 (mod
√
5).
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From the definition of TA, we are interested only in the component where
X 6= Y , and by letting X = s/(r − 1)3 and Y = s/(r + 1)3 we see that this is
isomorphic to the affine curve:

s2 = r2 − 1. (3)

Now we compute the reduction of Z := π−1
1 1 (SD) ⊆ X0(125) by means of

the embedding into C×C. We need an approximation for τf : C → SD, and
from the above formula for πf , it is easy to show that

τf (t) ≡
515

t5
+

3 · 510
t3

(mod 52).

As in [CMc, §8.1], we need to work over a larger extension of Z5 to define
and compute the reduction of Z. In particular, it suffices to work over R :=
Z5[β,

√
5], where β ∈ C5 is chosen so that β25 ≡ 5 (mod 5

√
5). For parameters

on SD and (both copies of) C, we then choose the functions U = t/(5
√
5)

and X,Y = t/(25β5
√
5). Using these parameters and our formula for τf , the

equation τf (x) = w1 ◦ τf (y) then leads to the following congruence.

(
1

X5
+

3β10

X3

)(
1

Y 5
+

3β10

Y 3

)
≡ 1 (mod

√
5)

After making the substitution, Z = (XY − 1)/(3β2), we arrive at our final
equation for Z.

X2 +X−2 = Z5 (4)

Remark 7.1. Note that Equations (3) and (4), describing Y and Z, are con-
sistent with Theorem 2.5, since p = 5 and i(A) = 3 in this case.

7.3 X0(7
3)

This is very similar to the previous example, as X0(7) also has genus 0 and
only one supersingular annulus corresponding to j = 1728. If we take t = η41/η

4
7

as a parameter (see [M1, §2]), the supersingular annulus is the region described
by 0 < v(t) < 2, and the formulas for the forgetful map and Atkin-Lehner
involution are as follows.

π∗
f (j − 1728) =

(t4 − 10 · 72t3 − 9 · 74t2 − 2 · 76t− 77)2

t7
w∗

1t =
49

t

The circles, SD and C, are now given by v(t) = 1 and v(t) = 13/7 (respec-
tively), and TS is the circle where v(t) = 7/4.

We begin by embedding Y := π−1
ν (TS) ⊆ X0(49) into TS × TS, taking

X,Y = αt/49 as parameters on both copies of TS, where α4 = −7. With these
parameters, the equation πf (x) = πf (y) yields the congruence:

(X4 + 1)2/X7 ≡ (Y 4 + 1)2/Y 7 (mod α).
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Then the substitution, X = s/(r − 1)2 and Y = s/(r + 1)2, defines an isomor-
phism between the component with X 6= Y and the genus 1 affine curve:

s4 = r2 − 1. (5)

Likewise we compute the reduction of Z by embedding it into C×C. This
time the approximation formula for τf : C → SD, which we derive from the
formula for πf , is as follows.

τf (t) ≡
714

t7
− 2 · 77

t3
(mod 7

√
7)

Working over the extension given by R = Z7[β] with β49 ≡ 7 (mod 7
√
7), we

take X,Y = β7t/49 as parameters on two copies of C. We also take U = t/7
as our parameter on SD. Then the equation τf (x) = w1 ◦ τf (y) gives us the
congruence:

(
1

X7
− 2β21

X3

)(
1

Y 7
− 2β21

Y 3

)
≡ 1 (mod

√
7).

To complete the calculation, we make the substitution, Z = (1 −XY )/(2β3),
which results in our final equation for Z.

X4 +X−4 = Z7 (6)

Remark 7.2. Once again, note that Equations (5) and (6) are consistent with
Theorem 2.5, as p = 7 and i(A) is now 2.

7.4 X0(11
3)

When p = 11, X0(p) has genus 1 and two supersingular annuli correspond-
ing to j = 0 and j = 1728. In order to work out formulas for the forgetful map
on these supersingular regions, we must choose an appropriate model for the
overall curve. One convenient model relates the following two functions.

t =

(
η1
η11

)12

x =
dt/t

(η1η11)2

The first function has divisor 5(0)−5(∞), and the second is a degree 2 function
with a simple pole at each cusp. Since w1 interchanges the two cusps, it follows
that x is actually a parameter on the genus 0 quotient, X0(11)

+ := X0(11)/w1.
Therefore, t must be quadratic over x, and indeed by comparing q-expansions
we have the equation:

t2 +
1

55
(x5 + 170x4 + 9345x3 + 167320x2 − 7903458)t+ 116 = 0.
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This model is singular, but we can normalize by adjoining a square root of the
discriminant. In particular, the following gives a nonsingular model for X0(11).

y =
2 · 55t+ (x5 + 170x4 + 9345x3 + 167320x2 − 7903458)

(x+ 47)(x2 + 89x+ 1424)

y2 = f(x) = (x− 8)(x3 + 76x2 − 8x+ 188)

Remark 7.3. Since x is invariant under w1, the formulas for the Atkin-Lehner
involution are given by w∗

1t = 116/t and w∗
1y = −y.

Note that there are two pairs of branch points in the degree two extension
from X0(11)

+ up to X0(11), and they lie in the two residue disks where v(x−
2) > 0 and v(x + 3) > 0. It follows that the regions lying over these residue
disks are annuli. In fact, from [DR, §VI 6.16] (or the explicit calculations which
follow) these are precisely the two supersingular annuli.

7.4.1 j = 0

Let r1, r2 be the two roots of f(x) close to x = −3, and let s1, s2 be those
close to x = 2. Then the following map defines an isomorphism (over Q11)
between the annulus, 0 < v(z) < 3, and the subspace of X0(11) which lies over
the residue disk, v(x− 2) > 0.

x = z +
(s1 + s2)

2
+

(s1 − s2)
2

16z
≡ z + 310 − 212

(

113

z

)

(mod 11
3
)

y =

(

−z +
(s1 − s2)

2

16z

)

√

(x(z) − r1)(x(z) − r2)

≈

(

−z − 212

(

113

z

))

(

· · · + 484

(

113

z

)3

+ 363

(

113

z

)2

+

393

(

113

z

)

+ 775 + 243z + 484z
2
+ 968z

3
+ · · ·

)

To obtain an approximation formula for πf over the annulus, we begin with
the following explicit formula (easily verified by q-expansions).

π∗
f j =

(60y + 61x2 + 864x− 2016)3

56t

Over the whole annulus, 60y + 61x2 + 864x − 2016 is well approximated by
5z − 1111/z3, in the sense that the error is always strictly smaller than the
larger of these two terms. Similarly, t is always close to −4z2. From this we
may conclude that v(j) > 0 over the whole annulus (as claimed).

Now we are able to embed Z ⊆ X0(11
3) into C×C and explicitly compute

its reduction. We know that the circles, SD and C, are described by v(z) = 3/2
and v(z) = 63/22 (respectively). So our formula for πf leads to the following
approximation for τf : C → SD in terms of z.

τf (z) ≡
−3 · 1133

z11
+

1122

z7
(mod 112).
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Also, from the fact that x(z) must be fixed by w1, we see that

w1(z) =
(s1 − s2)

2

16z
≡ −3 · 113

z
.

At this point our analysis closely parallels that of the two previous exam-
ples. In particular, let R = Z11[

√
−11, β] where β ∈ C11 satisfies β121 ≡ −11

(mod 11
√
−11), and choose the following functions as parameters on SD and

(two copies of) C.

U =
2z

11
√
−11

X,Y =
−2z

121β44
√
−11

In terms of these new parameters, the relation τf (x) = w1 ◦ τf (y) leads to the
following congruence.

(
1

X11
+

3β55

X7

)(
1

Y 11
+

3β55

Y 7

)
≡ 1 (mod

√
−11)

Finally, with the substitution, Z = (XY − 1)/(3β5), we obtain the desired
equation for the reduction of Z over R.

X4 +X−4 = Z11

Similarly, the equation for the (j = 0) supersingular component of X0(11
2)

follows directly from the embedding of Y into TS×TS (where TS is now the
circle, v(z) = 11/4). The approximating formula for πf on that circle is

j = πf (z) ≡
(5z − 1111/z3)3

56(−4z2)
(mod 113).

So now let α2 =
√
−11 and take as parameters on both copies of TS the

functions X,Y = αz/(5 · 113). Then the relation πf (x) = πf (y) reduces to

(X4 + 1)3/X11 ≡ (Y 4 + 1)3/Y 11 (mod α).

The irreducible component of this curve where X 6= Y is then isomorphic to
the genus 1 curve, s4 = r2 − 1, by the following map.

X = s/(r − 1)3 Y = s/(r + 1)3

Remark 7.4. These equations match those of Theorem 2.5 when p = 11 and
i(A) = 3.

7.4.2 j = 1728

The supersingular annulus of X0(11) corresponding to j = 1728 is the
region which lies over the residue disk, v(x + 3) > 0. To see this, we first
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parameterize the region using the annulus, 0 < v(z) < 2, and the following
map.

x = z +
(r1 + r2)

2
+

(r1 − r2)
2

16z
≡ z + 2318 + 12356

(

112

z

)

(mod 11
4
)

y =

(

−z +
(r1−r2)2

16z

)

√

(x(z) − s1)(x(z) − s2)

≈

(

−z + 12356

(

112

z

))

(

· · · + 5324

(

112

z

)3

+ 3993

(

112

z

)2

+

4370

(

112

z

)

+ 6001 + 11980z + 5324z
2
+ 3993z

3
+ · · ·

)

Then we choose an explicit formula for the forgetful map which is convenient
for analysis near j = 1728, in particular

π∗
f (j − 1728) =

(665x3 + 666xy + 22680x2 + 2592y − 120960x+ 22680)2

56t
.

Over the entire annulus, the cubic function in the numerator is well approxi-
mated (in the above sense) by 5z2 − 3 · 1111/z4, and t is well approximated by
−3z3. Therefore by counting valuations it follows that v(j − 1728) > 0 over
the entire annulus, as claimed.

As in the previous examples we now compute the equations for the bridging
component of X0(11

3) and supersingular component of X0(11
2) corresponding

to j = 1728. By approximating πf on C (where v(z) = 21/11) and SD (where
v(z) = 1), we find the following formula for τf in terms of z.

τf (z) ≡ 3

(
112

z

)11

+ 11

(
112

z

)5

(mod 11
√
11)

After an appropriate choice of parameters on C and SD, this leads to the
equation,

X6 +X−6 = Z11,

which describes the bridging component. Then on the too-supersingular circle,
where v(z) = 11/6, we approximate πf by

j − 1728 = πf (z) ≡
(5z2 − 3 · 1111/z4)2

56(−3z3)
(mod 112).

After making an appropriate change of variables, this leads to the equation
which one should expect for Y:

s6 = r2 − 1.
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8 Stable Model of X0(Np3)

Intuitively, one might expect the stable model of X0(Np3) (when (N, p) =
1) to follow fairly directly from the stable model of X0(p

3). Indeed, X0(Np3)
is birational to X0(p

3) ×X(1) X0(N), and X0(N) has good reduction. Using
semi-stable maps (as in [C2]) to make this line of reasoning precise, we are able
to show the following (compare with Theorem 2.5).

Theorem 8.1. The stable reduction of X0(Np3) has six ordinary components:
two isomorphic to X0(N) and four isomorphic to (the normalization of) Ig(p)×
X0(N). Also, for each supersingular point P of X0(N), there is a “necklace”
of components whose graph is given below in Figure 2. Set i(P ) = 2 or 3 if P
is elliptic and j(P ) = 1728 or 0 (respectively). Set i(P ) = 1 otherwise. Then
E2,P and E1,P are isomorphic to y2 = x(p+1)/i(P ) + 1, while ZP is crossed by
2(p+ 1)/i(P ) components isomorphic to y2 = xp − x.

ZP

✘✘✘✘✘✘✘✘✘✘✘✘✘

ordinary

E1,P

❳❳❳❳❳❳❳❳❳❳❳❳❳

. ............

ordinary

E2,P

Figure 2: Partial Graph of the Stable Reduction of X0(Np3)

Corollary 8.2. The stable reduction of the p-new part of the Jacobian of
X0(Np3) has cN (p2 − 1)/6 copies of the Jacobian of y2 = xp − x, where
cN = [Γ : Γ0(N)].

8.1 Semi-stable Maps

We begin by giving the definition of semi-stable map, and by proving the
lemma which will form the blueprint for our overall construction.

Definition 8.3. Let K ⊆ Cp be a complete subfield with ring of integers R.
Then f : X → Y is a semi-stable map over R, if X/R and Y/R are semi-stable
(as in [CMc, Definition 2.6]) and f is finite. In this case we say that f extends
the restriction map, fK : XK → YK , on generic fibers.

Lemma 8.4. Let f : X → Z and g : Y → Z be semi-stable maps over R.
Suppose that the following conditions hold.
(i) X̄ and Ȳ have (only) smooth components.
(ii) f and g take singular points to singular points (and vice-versa).
(iii) For each pair, (xi, yi), of singular points in X̄ and Ȳ with f(xi) = g(yi),
Axi

×Ayi
is the disjoint union of annuli (over K), where AP = red−1(P ).
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(iv) For each pair, (Xi, Yi), of components of X̄ and Ȳ with f(Xi) = g(Yi),
Xi × Yi is irreducible, and smooth away from all the points from (iii).
Then f × g : X × Y → Z is a semi-stable map (over R), and in particular
X × Y is semi-stable.

Proof. Choose any pair (Xi, Yi) of irreducible components of X̄ and Ȳ with
f(Xi) = g(Yi). Let Wi = red−1(Xi) × red−1(Yi) and Ai = red−1(Xns

i ) ×
red−1(Y ns

i ). Then (i)-(iv) guarantee that each Wi is a basic wide open (as in
[CMc, §2]. Furthermore, the Wi’s forms a semi-stable covering of XK × YK ,
and then it follows from [CMc, Prop 2.7] that X ×Y is semi-stable. Finiteness
of f × g is immediate.

Remark 8.5. We will apply Lemma 8.4 to semi-stable extensions of the for-
getful maps from X0(p

3) and X0(N) to X(1), but with one caveat. Technically,
condition (iv) will fail at all points of the form (P,Q) ∈ X0(p

3)×X0(N) where
P and Q lie over j = 0 (or j = 1728) and both ramify. This issue can basically
be ignored, however, as these singularities are resolved in X0(Np3).

8.2 Semi-stable Extensions of the Forgetful Map

We begin by constructing a semi-stable map which extends πf : X0(p
3) →

X(1) (as in the main theorem of [C2]). This can be done by starting with the
stable models for X0(p

3) and X(1) (say, Spec(Zp[j])) and performing a series
of blow-ups. At each step, we choose a component of X0(p

3) which has finite
image in X(1). There is a unique minimal way to blow-up our models for X(1)
and X0(p

3) so that this component no longer has finite image and so that πf

still extends. After finitely many steps, the process terminates and we have
our semi-stable map. A partial picture of this map (showing one supersingular
region only) is given below in Figure 3, and the components in the final models
for X0(p

3) and X(1) can be described in words as follows.

First of all, the ordinary regions of X0(p
3) and X(1) are unchanged. In

other words, the final model for X0(p
3) still has six ordinary components cor-

responding to the six ordinary affinoids, X±
a b (defined in §2), and these all map

onto the same component of X(1). For each supersingular elliptic curve, A, the
special fiber of X(1) also contains a “necklace” of trivial components. More
specifically, each necklace contains a chain of four components which corre-
spond to the circles (and disk) where h(E) = 1

p(p+1) , h(E) = 1
2p , h(E) = 1

p+1 ,

and h(E) ≥ p
p+1 (as in §2.1). Intersecting the second of these we also have

2(p+ 1)/i(A) components which correspond to residue classes within that cir-
cle. The components in our final model for X0(p

3) can be given similar de-
scriptions, i.e. we can describe the components within a fixed supersingular
region by describing points of the corresponding affinoids in moduli-theoretic
terms. Remember that these affinoids should map onto the ones which were
just described for X(1) via the forgetful map.
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E2,A = { (E,C) | h(E) = 1
p(p+1) , pC = K2(E) }

ZA = { (E,C) | h(E) = 1
2p , pC = K2(E) }

(with its 2(p+ 1)/i(A) nontrivial residue classes)

E1,A = { (E,C) | h(E) = 1
p+1 , p2C = K1(E) }

W±
1,2 ⊇ { (E,C) | h(E) = 1

2p , |C ∩K2(E)| = p }
(also blow-up 2(p+ 1)/i(A) residue classes)

⊇ { (E,C) | h(E) = 1
p(p+1) , |C ∩K2(E)| = p }

W0,3 ⊇ { (E,C) | h(E) = p
p+1 } (so E is too-ss)

⊇ { (E,C) | h(E) = 1
p+1 , |C ∩K1(E)| = 1 }

⊇ { (E,C) | h(E) = 1
2p , |C ∩K2(E)| = 1 }

(also blow-up 2(p+ 1)/i(A) residue classes)

⊇ { (E,C) | h(E) = 1
p(p+1) , |C ∩K2(E)| = 1 }

Remark 8.6. Recall that W±
a b is a wide open neighborhood of the ordinary

affinoid, X±
a b, which extends into the supersingular locus (see [CMc, §3.2]).

In order to apply Lemma 8.4, we also need to construct a semi-stable map
extending πf : X0(N) → X(1) (involving the same model for X(1)). Basically,
we start with the good reduction model for πf : X0(N) → X(1). Then every
time we blow-upX(1) (as above), this forces a blow-up ofX0(N) so that πf still
extends. Again the ordinary locus of X0(N) is unchanged. To understand the
supersingular regions, consider πf : X0(N) → X(1) first as a map of smooth
curves over Fp, and let P be a point of X0(N) such that πf (P ) is supersingular.
If P does not ramify, πf must restrict to an isomorphism on the corresponding
residue class of X0(N). The only other option is that either e(P ) = 3 and
j(πf (P )) = 0, or e(P ) = 2 and j(πf (P )) = 1728. There are two key points to
make in either case. First of all, the corresponding residue class of X0(N) (over
Cp) is an extension of a disk which is ramified (totally) at exactly one point
(degree 2 if j = 1728, degree 3 if j = 0). Hence, the extension can be generated
analytically by adjoining either

√
j − 1728 or 3

√
j. Secondly, when j = 0 or

1728 is supersingular, it is necessarily too-supersingular. Hence it reduces to
a smooth point on the innermost component of its residue class in our final
model for X(1). Therefore, like its image in X(1), the residue class of X0(N)
corresponding to such a P contains a chain of 4 components on which πf is
given locally by t → t2 or t → t3. The “bridging component” then intersects
2(p + 1) copies of P1, which map 2 : 1 or 3 : 1 onto analogous components of
X(1).

To summarize the semi-stable extensions of both forgetful maps to X(1),
a picture of the special fibers is now given below in Figure 3. Once again, the
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graph shows the entire ordinary locus, but only one supersingular region for
each curve.

❅❅

πf

>

∨
πf

�
��

❅❅

❅❅ ........

X(1)

❅
❅

❅

......

E2,A

X−

2,1X+
2,1X3,0

ZA

X0(p
3)

.........

❅
❅

❅

X0,3X−

1,2X+
1,2

❅
❅

❅

......E1,A

......

❅❅

�
��

X0(N)........

Figure 3: Partial Graph of Semi-Stable Maps from X0(p
3) and X0(N) to X(1)

8.3 Crossing the Semi-Stable Maps

At this point the proof comes down to verifying the hypotheses of Lemma
8.4 and computing the products of irreducible components with common image.
The first two hypotheses follow immediately from the construction. To verify
condition (iii), we first observe that πf : X0(N) → X(1) can only ramify over
j = 0, 1728, or ∞, all of which have smooth reduction on our model for X(1).
Furthermore, each supersingular residue class of X0(N) maps with total degree
at most 3. Therefore, for any pair of double points, (x, y) (as in the lemma),
the corresponding product of annuli, Ax × Ay, is an unramified extension of
some annulus of X0(p

3) with degree less than p. Hence it can only be the
disjoint union of annuli by [CMc, Lemma 3.3].

Now we compute the products of the irreducible components, starting with
the ordinary locus. When we cross X0(N) with the reduction of X3,0, we are
essentially crossing with P

1 trivially (as πf has degree 1 on X3,0). So we
simply get a copy of X0(N). When we cross X0(N) with the reduction of X±

2,1,
we get the curve Ig(p) × X0(N) which is at least irreducible from [E1, Thm
2.1.2]. Recall that Ig(p)/X(1) is a degree (p− 1)/2 extension which is totally
ramified over supersingular points, ramified with index 3 or 2 when j = 0 or
1728 is ordinary, and unramified elsewhere. Hence the only singular points
of Ig(p) × X0(N) can be ignored as a result of Remark 8.5. The remaining
ordinary components can be dealt with by applying an appropriate Atkin-
Lehner involution.

Documenta Mathematica · Extra Volume Coates (2006) 261–300



296 Coleman and McMurdy

Next we consider a fixed supersingular region corresponding to a point P
of X0(N) (as above). If j(P ) 6= 0, 1728, or if P is an elliptic point, there’s
nothing to do, since πf : X0(N) → X(1) must be an isomorphism on the
residue class corresponding to P . But now suppose that j(P ) = 0 or 1728, and
P is not elliptic. By [E2, 2.3.1] we can choose parameters on E2,A so that it
has the equation,

y2 = x
p+1
i(A) + 1.

Furthermore, the two infinite points are where E2,A meets X3,0 and ZA, and
(0,±1) are the points where E2,A meets X±

2,1. The forgetful map induces a
degree p map on E2,A which has ramification indices of 1, (p− 1)/2, and p at
the intersections with X3,0, X

±
2,1, and ZA. Therefore, if t is a parameter on the

image of E2,A in X(1), with t = 0 and ∞ at the double points, it follows that

π∗
f t =

cx
p−1
2

(y − x
p+1
2i(A) )i(A)

.

Now, we have already seen that the extension from X(1) up to X0(N) is equiv-
alent to adjoining an i(A)-th root of t in this case. Hence one can show that
the extension of E2,A can be obtained by adjoining an i(A)-th root of x. Subse-
quently, by a change of coordinates, the component lying over E2,A in X0(Np3)
will have the equation, y2 = xp+1 + 1. The argument for the remaining com-
ponents is very similar. For example, on the bridging component, ZA, we may
choose a parameter x such that it meets E1,A and E2,A at 0 and ∞, and such
that πf is given by t = xp. Adjoining an i(A)-th root of t then generates the
same extension as adjoining an i(A)-th root of x. Thus we obtain a bridging
component, ZP , as in the statement of the theorem, which is crossed by 2(p+1)
components that lie i(A) : 1 over their counterparts on ZA. At this point the
remaining components can be computed in a similar manner, or dealt with by
applying an appropriate Atkin-Lehner involution. Thus all the supersingular
components of X0(Np3) are as claimed, and the theorem is proved. One final
remark is that when P ramifies over j = 0 or j = 1728 and is supersingular, we
do technically get singularities in X0(N)×X0(p

3) which lie over the (smooth)
reduction of j = 0 or 1728. These singularities can be ignored, however, by
Remark 8.5.

8.4 Examples

It is now fairly straightforward to generate complete graphs with genera
for the stable reduction of X0(Np3). First we determine the supersingular
values mod p, and the ramification of πf : X0(N) → X(1) over j = 0 and
j = 1728. The latter can be derived from [S, Prop 1.43], which gives both
the degree and number of elliptic points of each type. The components in the
supersingular region then follow directly from Theorem 8.1. The only things
which remain to be computed are the genera of X0(N) and Ig(p) × X0(N).
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The genus of X0(N) can be computed with [S, Prop 1.40]. Then Riemann-
Hurwitz can be applied to the forgetful map from X0(N) × Ig(p) to X0(N).
By way of illustration, we now describe the stable reductions of X0(Np3) in
two examples: X0(3 · 113) and X0(7 · 133).

Example 1: X0(3 · 113)

Only j = 0 and j = 1728 are supersingular mod 11. In the degree 4 ex-
tension from X0(3) → X(1), j = 0 splits into two points with e = 1 and
e = 3, while j = 1728 splits into two points with e = 2. So we have a total
of four supersingular necklaces. For the one corresponding to the unique
elliptic point, there are 8 genus 5 components along the bridging component,
and two outer components which meet the ordinary locus and have genus 1.
The other three supersingular regions have 24 genus 5 components along the
bridging component, and two outer components which also have genus 5. Now
we compute the genera of the ordinary components. X0(3) has genus 0, and
by Riemann-Hurwitz the genus of Ig(11) × X0(3) is then 4. Indeed, it lies
over X0(3) with degree 5, and is totally ramified over 4 points and unramified
elsewhere. This implies a total genus of:

2(0) + 4(4) + 1[2(1) + 8(5)] + 3[2(5) + 24(5)] + (4− 1)(6− 1) = 463,

which can easily be verified with [S, Prop 1.40].

Example 2: X0(7 · 133)

The unique supersingular j-invariant for p = 13 is j = 5. Since this is
neither 0 nor 1728, we simply get 8 supersingular regions which are all isomor-
phic to the supersingular region of X0(13

3). In particular, each necklace has
28 genus 6 components along the bridging component and then 2 more genus
6 components which meet the ordinary locus. Now we compute the genera
of X0(7) and X0(7) × Ig(13). The first has genus 0, and for the second we
again apply Riemann-Hurwitz. The degree is 6, and we have total ramification
over the 8 supersingular points. There are also two elliptic points of X0(7)
lying over j = 0, each of which must split into two points with e = 3 in
X0(7) × Ig(13). So the genus of Ig(13) ×X0(7) is 19. That means if we add
up the total genus of X0(7 · 133) we get

2(0) + 4(19) + 8[2(6) + 28(6)] + (8− 1)(6− 1) = 1551,

which again can be easily verified with [S, Prop 1.40].
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9 Index of Important Notation

K(E), canonical subgroup of E §2.1
Hn(E), canonical subgroup of E of order pn

X
±
a b, ordinary affinoids

Ig(pn), level pn Igusa curve
h(E), valuation of Hasse invariant of E
WA(p

n), wide open subspace of X0(p
n) where Ē ∼= A

i(A) := |Aut(A)|/2
TSA, SDA, too-supersingular and self-dual circles inside WA(p)
wn, Atkin-Lehner involution on X0(p

n)
(F,A, α), Woods Hole representation of an elliptic curve
πf , forgetful map
W (Fpn), Witt vectors of Fpn

B, quaternionic order over Zp isomorphic to End(Â)
B′, special subset of B∗

Φ, Gross-Hopkins period map
wρ, generalized Atkin-Lehner involution of SDA for ρ ∈ B′

YA, nontrivial affinoid in WA(p
2) §2.2

πν , moduli-theoretic map taking (E,C) to (E/C[p], C/C[p])
E1,A, E2,A, two pullbacks of YA to X0(p

3)
π1 1 := πf ◦ πν

ZA, affinoid in WA(p
3) corresponding to “bridging component”

CA, τf , special circle of WA(p) and map to SDA

w̃ρ, generalized Atkin-Lehner involution of ZA for ρ ∈ B′

R, maximal orders in the quadratic extensions of Qp §3
α∗, embedding of End(F ) into B when (F, α) has fake CM §3.2
X0(p

n), stable model of X0(p
n) §4.1

P, pairing on Ka(E) onto µpb which distinguishes X±
a b

Mn, field found by Krir over which J0(p
n) has stable reduction §5

Fn, field over which our stable model for X0(p
n) is defined (n ≤ 3)

W±
a b, wide open neighborhood of X±

a b §5.2
Vi(A), U(A), wide open neighborhoods of Ei,A and Z(A)
S(A), singular residue classes of ZA

Û(A), basic wide open refinement of U(A)
I = IQp

, w = wX , inertia group and inertia action on X = X0(p
n) §6

mn, minimal extension of Qnr
p over which X0(p

n) has stable reduction
Cx, component of X0(p

3) corresponding to a wρ fixed point §6.3
τx, Fx, hyper-elliptic involution on Cx, and its p fixed points
Dx, D̃x, residue classes of SDA and ZA

S̃s,ζ , order p automorphism of D̃x
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