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Abstract. Let E/Q be a modular elliptic curve, and p > 3 a good
ordinary or semistable prime.

Under mild hypotheses, we prove an exact formula for the µ-invariant
associated to the weight-deformation of the Tate module of E. For exam-
ple, at ordinary primes in the range 3 < p < 100, the result implies the
triviality of the µ-invariant of X0(11).
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0. Introduction

A central aim in arithmetic geometry is to relate global invariants of a variety,
with the behaviour of its L-function. For elliptic curves defined over a number
field, these are the numerical predictions made by Birch and Swinnerton-Dyer
in the 1960’s. A decade or so later, John Coates pioneered the techniques of
Iwasawa’s new theory, to tackle their conjecture prime by prime. Together
with Andrew Wiles, he obtained the first concrete results for elliptic curves
admitting complex multiplication.

Let p be a prime number, and F∞ a p-adic Lie extension of a number field F .
From the standpoint of Galois representations, one views the Iwasawa theory of
an elliptic curve E defined over F , as being the study of the p∞-Selmer group

SelF∞
(E) ⊂ H1

(
Gal
(
F/F

)
, AF∞

)
.

Here AF∞
= Homcont

(
Tap(E)[[Gal(F∞/F )]], Q/Z

)
denotes the Pontrjagin

dual to the Gal(F∞/F )-deformation of the Tate module. The field F∞ is often
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taken to be the cyclotomic Zp-extension of F , or sometimes the anti-cyclotomic
extension. Hopefully a more complete picture becomes available over F∞ =
F
(
E[p∞]

)
, the field obtained by adjoining all p-power division points on E.

If E has no complex multiplication, then Gal
(
F∞/F

)
is an open subgroup of

GL2(Zp) by a theorem of Serre, which means the underlying Iwasawa algebras
are no longer commutative.

In this article we study a special kind of Selmer group, namely the one which is
associated to a Hida deformation of Tap(E). This object is defined by impos-
ing the local condition that every 1-cocycle lies within a compatible family of
points, living on the pro-jacobian of X̂ = lim←−r X1(Npr). There is a natural ac-
tion of the diamond operators on the universal nearly-ordinary representation,
which extends to a continuous action of Λ = Zp[[1 + pZp]] on our big Selmer
group. By the structure theory of Λ-modules, we can define an analogue of the
µ-invariant for a weight deformation, µwt say. One can also deform both the
Tate-Shafarevich group and the Tamagawa factors [E(Fν) : E0(Fν)], as sheaves
over weight-space. Conjecturally the deformation of III should be mirrored by
the behaviour of the improved p-adic L-function in [GS, Prop 5.8], which in-
terpolates the L-values of the Hida family at the point s = 1. The Λ-adic
Tamagawa factors TamΛ,l are related to the arithmetic of F∞ = F

(
E[p∞]

)
, as

follows.

For simplicity suppose that E is defined over F = Q, and is without complex
multiplication. Let p ≥ 5 be a prime where E has good ordinary reduction,
and assume there are no rational cyclic p-isogenies between E and any other
elliptic curve. Both Howson and Venjakob have proposed a definition for a
µ-invariant associated to the full GL2-extension. Presumably, this invariant
should represent the power of p occurring in the leading term of a hypothet-
ical p-adic L-function, interpolating critical L-values of E at twists by Artin
representations factoring through Gal(F∞/Q).

Recall that for a discrete p-primary Gal(F∞/Q)-module M , its Gal(F∞/Q)-
Euler characteristic is the product

χ
(
Gal(F∞/Q), M

)
:=

∞∏

j=0

(
#Hj

(
F∞/Q,M

))(−1)j

.

Under the twin assumptions that L(E, 1) 6= 0 and SelF∞
(E) is cotorsion over

the non-abelian Iwasawa algebra, Coates and Howson [CH, Th 1.1] proved that

χ
(
Gal(F∞/Q), SelF∞

(E)
)

=
∏

bad primes l

∣∣Ll(E, 1)
∣∣
p
×
(
#Ẽ(Fp)[p

∞]
)2

×
(
the p-part of the BS,D formula

)
.

Let µGL2 denote the power of p occurring above. It’s straightforward to combine
the main result of this paper (Theorem 1.4) with their Euler characteristic

Documenta Mathematica · Extra Volume Coates (2006) 301–323



Λ-Adic Euler Characteristics of Elliptic Curves 303

calculation, yielding the upper bound

µwt ≤ µGL2 +
∑

bad primes l

{
ordp

(
Ll(E, 1)

)
− ordp

(
TamΛ,l

)}
.

In other words, the arithmetic of the weight-deformation is controlled in the
p-adic Lie extension. This is certainly consistent with the commonly held
belief, that the Greenberg-Stevens p-adic L divides the projection (to the Iwa-
sawa algebra of the maximal torus) of some ‘non-abelian L-function’ living

in Zp

[[
Gal
(
Q
(
E[p∞]

)
/Q
)]]

. The non-commutative aspects currently remain

shrouded in mystery, however.

Finally, we point out that many elliptic curves E possess Λ-adic Tamagawa fac-
tors, which differ from the p-primary component of the standard factor Tam(E).
P. Smith has estimated this phenomenon occurs infrequently – a list of such
curves up to conductor < 10, 000 has been tabulated in [Sm, App’x A].

Acknowledgement: We dedicate this paper to John Coates on his sixtieth birth-
day. The author thanks him heartily for much friendly advice, and greatly
appreciates his constant support over the last decade.

1. Statement of the Results

Let E be an elliptic curve defined over the rationals. We lose nothing at all by
supposing that E be a strong Weil curve of conductor NE , and denote by ±φ
the non-constant morphism of curves φ : X0(NE) ։ E minimal amongst all
X0(NE)-parametrisations. In particular, there exists a normalised eigenform
fE ∈ S

new
2

(
Γ0(NE)

)
satisfying φ∗ωE = cMan

E fE(q)dq/q, where ωE denotes a

Néron differential on E and cMan
E is the Manin constant for φ.

Fix a prime number p ≥ 5, and let’s write N = p−ordpNENE for the tame level.
We shall assume E has either good ordinary or multiplicative reduction over
Qp,

hence f2 :=

{
fE(q)− βpfE(q

p) if p ∤ NE

fE(q) if p||NE

will be the p-stabilisation of fE

at p.

Hypothesis(RE). f2 is the unique p-stabilised newform in Sord2

(
Γ0(Np)

)
.

Throughout Λ = Zp[[Γ]] denotes the completed group algebra of Γ = 1 + pZp,
and L = Frac(Λ) its field of fractions. There are non-canonical isomorphisms
Λ ∼= Zp[[X]] given by sending a topological generator u0 ∈ Γ to the element

1+X. In fact the Zp-linear extension of the map σk : u0 7→ uk−2
0 transforms Λ

into the Iwasawa functions AZp
= Zp〈〈k〉〉, convergent everywhere on the closed

unit disk.
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Under the above hypothesis, there exists a unique Λ-adic eigenform f ∈ Λ[[q]]
lifting the cusp form f2 at weight two; furthermore

fk :=
∞∑

n=1

σk

(
an(f)

)
qn ∈ Sordk

(
Γ1(Npr)

)

is a p-stabilised eigenform of weight k and character ω2−k, for all integers k ≥ 2.
Hida and Mazur-Wiles [H1,H2,MW] attached a continuous Galois representa-
tion

ρ∞ : GQ −→ GL2(Λ) = AutΛ(T∞)

interpolating Deligne’s p-adic representations for every eigenform in the family.
The rank two lattice T∞ is always free over Λ, unramified outside of Np, and
the characteristic polynomial of ρ∞

(
Frobl

)
will be 1−al(f)x+ l

〈
l
〉
x2 for primes

l ∤ Np. If we restrict to a decomposition group above p,

ρ∞ ⊗Λ AZp

∣∣∣∣∣
GQp

∼

(
χcy < χcy >k−2 φ−1

k ∗
0 φk

)
where φk : GQp

/Ip → Z×
p

is the unramified character sending Frobp to the eigenvalue of Up at weight k.

Question. Can one make a Tamagawa number conjecture for the Λ-adic
form f, which specialises at arithmetic primes to each Bloch-Kato conjecture?

The answer turns out to be a cautious ‘Yes’, provided one is willing to work
with p-primary components of the usual suspects. In this article, we shall
explain the specialisation to weight two (i.e. elliptic curves) subject to a couple
of simplifying assumptions. The general case will be treated in a forthcoming
work, and includes the situation where the nearly-ordinary deformation ring
RE is a non-trivial finite, flat extension of Λ. Let’s begin by associating local
points to ρ∞...

For each pair of integers m, r ∈ N, the multiplication by pm endomorphism on
the p-divisible group Jr = jac X1(Npr) induces a tautological exact sequence

0→ Jr[p
m]→ Jr

×pm

→ Jr → 0. Upon taking Galois invariants, we obtain a long
exact sequence in GQp

-cohomology

0→ Jr(Qp)[p
m]→ Jr(Qp)

×pm

→ Jr(Qp)

∂r,m

→ H1(Qp, Jr[p
m])→ H1(Qp, Jr)[p

m]→ 0.

The boundary map ∂r,m injects Jr(Qp)
/
pm into H1(Qp, Jr[p

m]), so applying
the functors lim←−m and lim←−r yields a level-compatible Kummer map

lim←−
r,m

∂r,m : J∞(Qp)⊗̂Zp →֒ H1
(
Qp,Tap(J∞)

)
which is Hecke-equivariant;
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here J∞ denotes the limit lim←−r jac X1(Npr) induced from X1(Npr+1)
πp

։

X1(Npr).

For a compact Λ-module M , we define its twisted dual AM :=
Homcont

(
M,µp∞). Recall that Hida [H1] cuts T∞ out of the massive Galois

representation Tap(J∞) using idempotents eord = limn→∞U
n!
p and eprim living

in the abstract Hecke algebra (the latter is the projector to the p-normalised
primitive part, and in general exists only after extending scalars to L).

Definition 1.1. (a) We define X(Qp) to be the pre-image of the local points

eprim.

((
eord. lim←−

r,m
∂r,m

(
J∞(Qp)⊗̂Zp

))
⊗Λ L

)

under the canonical homomorphism H1
(
Qp,T∞

) −⊗1
−→ H1

(
Qp,T∞

)
⊗Λ L.

(b) We define the dual group XD(Qp) to be the orthogonal complement

{
x ∈ H1

(
Qp, AT∞

)
such that invQp

(
X(Qp) ∪ x

)
= 0

}

under Pontrjagin duality H1
(
Qp,T∞

)
× H1

(
Qp, AT∞

)
→ H2

(
Qp, µp∞

)
∼=

Qp/Zp.

The local condition X(Qp) will be Λ-saturated inside its ambient cohomology
group. These groups were studied by the author and Smith in [DS], and are
intimately connected to the behaviour of big dual exponential maps for the
family.

Let Σ denote a finite set containing p and primes dividing the conductor NE .
Write QΣ for the maximal algebraic extension of the rationals, unramified out-
side the set of bad places Σ ∪ {∞}. Our primary object of study is the big
Selmer group

SelQ(ρ∞) := Ker


H1

(
QΣ/Q, AT∞

) ⊕resl−→
⊕

l 6=p

H1
(
Ql, AT∞

)
⊕

H1
(
Qp, AT∞

)

XD(Qp)




which is a discrete module over the local ring Λ.

For each arithmetic point in Spec(Λ)alg, the Λ-adic object SelQ(ρ∞) interpolates
the Bloch-Kato Selmer groups associated to the p-stabilisations fk of weight
k ≥ 2. At k = 2 it should encode the Birch and Swinnerton-Dyer formulae, up
to some easily computable fudge-factors.

Documenta Mathematica · Extra Volume Coates (2006) 301–323



306 Daniel Delbourgo

Proposition 1.2. (a) The Pontrjagin dual

̂SelQ(ρ∞) = Homcont

(
SelQ(ρ∞), Q/Z

)

is a finitely-generated Λ-module;

(b) If L(E, 1) 6= 0 then ̂SelQ(ρ∞) is Λ-torsion, i.e. SelQ(ρ∞) is Λ-cotorsion.

In general, one can associate a characteristic element to SelQ(ρ∞) via

IIIQ(ρ∞) := charΛ

(
Homcont

(
SelQ(ρ∞)/

Λ-div
, Q/Z

))

where /
Λ-div

indicates we have quotiented by the maximal mΛ-divisible sub-

module; equivalently IIIQ(ρ∞) is a generator of the characteristic ideal of

TorsΛ

(
̂SelQ(ρ∞)

)
. If the L-function doesn’t vanish at s = 1 then by 1.2(b), the

Pontrjagin dual ̂SelQ(ρ∞) is already pseudo-isomorphic to a compact Λ-module
of the form

t⊕

i=1

Z
/
pµiZ ⊕

s⊕

j=1

Λ
/
F

ej
j Λ

where the Fj ’s are irreducible distinguished polynomials, and all of the µi, ej ≥
0. In this particular case IIIQ(ρ∞) will equal pµ1+···µt ×

∏s
j=1 F

ej
j modulo Λ×,

and so annihilates the whole of ̂SelQ(ρ∞).

Definition/Lemma 1.3. For each prime l 6= p and integer weight k ≥ 2, we
set

Taml(ρ∞; k) := #TorsΛ

(
H1
(
Il,T∞

))Frobl=1

⊗Λ,σk
Zp ∈ pN∪{0} .

Then at weight two,
∏

l 6=p

Taml(ρ∞; 2) divides the p-part of
∏

l 6=p

[
Cmin(Ql) : C

min
0 (Ql)

]

where Cmin/
Q

refers to the Q-isogenous elliptic curve of Stevens, for which ev-

ery optimal parametrisation X1(Np) ։ E admits a factorisation X1(Np) →
Cmin → E.

These mysterious Λ-adic Tamagawa numbers control the specialisation of our
big Tate-Shafarevich group III at arithmetic points. In particular, for the
weight k = 2 they occur in the leading term of IIIQ(ρ∞) viewed as an element
of Λ ∼= Zp[[X]]. It was conjectured in [St] that Cmin is the same elliptic curve
for which the Manin constant associated to X1(Np) ։ Cmin is ±1. Cremona
pointed out the Tamagawa factors [Cmin(Ql) : Cmin

0 (Ql)] tend to be smaller
than the [E(Ql) : E0(Ql)]’s.

To state the simplest version of our result, we shall assume the following:
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Hypothesis(Frb). Either (i) p ∤ NE and ap(E) 6= +1,

or (ii) p||NE and ap(E) = −1

or (iii) p||NE and ap(E) = +1, p ∤ ordp
(
qTate(C

min)
)
.

Note that in case (iii), the condition that p does not divide the valuation of the
Tate period qTate(C

min) ensures the p-part of [Cmin(Qp) : C
min
0 (Qp)] is trivial.

Theorem 1.4. Assume both (RE) and (Frb) hold. If L(E, 1) 6= 0, then

σ2

(
IIIQ(ρ∞)

)

≡ Lwt
p (E) × [E(Qp) : E0(Qp)]

∏

l 6=p

[E(Ql) : E0(Ql)]

Taml(ρ∞; 2)
×

#IIIQ(E)

#E(Q)2

modulo Z×
p , where the Lwt-invariant at weight two is defined to be

Lwt
p (E) :=

∫
E(R)

ωE∫
Cmin(R)

ωCmin

×
#Cmin(Q)

#AT∞
(Q)Γ

.

In particular, the Γ-coinvariants of AT∞
(Q) = H0

(
QΣ/Q, AT∞

)
are always

finite, and the denominator #AT∞
(Q)Γ divides into #Cmin(Q)[p∞].

This equation is a special case of a more general Tamagawa number formal-
ism. Whilst none of the assumptions (RE), (Frb) and L(E, 1) 6= 0 are actually
necessary, the full result requires a weight-regulator term, the relative covol-
ume of X(Qp) and various other additional factors – we won’t consider these
complications here.

Example 1.5. Consider the modular curve E = X0(11) given by the equation

E : y2 + y = x3 − x2 − 10x − 20 .

The Tamagawa number of E at the bad prime 11 equals 5, whereas elsewhere
the curve has good reduction. Let’s break up the calculation into three parts:
(a) Avoiding the supersingular prime numbers 19 and 29, one checks for every
good ordinary prime 7 ≤ p ≤ 97 that both of the hypotheses (RE) and (Frb)
hold true (to check the former, we verified that there are no congruences modulo
p between fE and any newform at level 11p). Now by Theorem 1.4,

σ2

(
IIIQ(ρ∞)

)
≡

Lwt
p (E) × 5 × #IIIQ(E)

Tam11(ρ∞; 2) × 52
≡ 1 modulo Z×

p

since the Lwt
p -invariant is a p-adic unit, and the size of IIIQ(E) is equal to one.

(b) At the prime p = 11 the elliptic curve E has split multiplicative reduction.
The optimal curve Cmin is X1(11) whose Tamagawa number is trivial, hence so
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is Tam11(ρ∞; 2). Our theorem implies σ2

(
IIIQ(ρ∞)

)
must then be an 11-adic

unit.

(c) When p = 5 the curve E fails to satisfy (Frb) as the Hecke eigenvalue
a5(E) = 1. Nevertheless the deformation ring RE

∼= Λ, and E has good
ordinary reduction. Applying similar arguments to the proof of 1.4, one can
show that

∣∣∣σ2

(
IIIQ(ρ∞)

)∣∣∣
−1

5
divides

#X̃1(11)(F5)[5
∞] × #IIIQ

(
X1(11)

)
[5∞]

#AT∞
(Q)Γ × #X1(11)(Q)[5∞]

.

The right-hand side equals one, since X1(11)(Q) and the reduced curve

X̃1(11)(F5) possess a non-trivial 5-torsion point. As the left-hand side is 5-

integral, clearly #AT∞
(Q)Γ = 1 and it follows that σ2

(
IIIQ(ρ∞)

)
is a 5-adic

unit.

Corollary 1.6. For all prime numbers p such that 5 ≤ p ≤ 97 and
ap
(
X0(11)

)
6= 0,

the µwt-invariant associated to the Hida deformation of SelQ
(
X0(11)

)
[p∞] is

zero.

In fact the µwt-invariant is probably zero at all primes p for which X0(11) has
good ordinary reduction, but we need a more general formula than 1.4 to prove
this.

2. Outline of the Proof of Theorem 1.4

We begin with some general comments.

The rank two module T∞ ⊗Λ,σ2
Zp is isomorphic to the dual of H1

ét

(
E,Zp

)
,

in general only after tensoring by Qp. Consider instead the arithmetic pro-

variety X̂ = lim←−r≥1 X1(Npr) endowed with its canonical Q-structure. The

specialisation (σ2)∗ : T∞ ։

(
T∞

)
Γ
→֒ Tap

(
jac X1(Np)

)
is clearly induced

from X̂
proj
−→ X1(Np). It follows from [St, Th 1.9] that T∞⊗Λ,σ2

Zp
∼= Tap(C

min)
on an integral level, where Cmin denotes the same elliptic curve occurring as a
subvariety of jac X1(Np), alluded to earlier in 1.3.

Taking twisted duals of 0 → T∞
u0−1
→ T∞ → Tap(C

min) → 0, we obtain a
corresponding short exact sequence

0 → Homcont

(
Tap(C

min), µp∞

)
→ AT∞

u0−1
→ AT∞

→ 0

of discrete Λ-modules. The Weil pairing on the optimal curve Cmin implies

that Homcont

(
Tap(C

min), µp∞

)
∼= Cmin[p∞]. We thus deduce that Tap(C

min) 6∼=

Tap(E) if and only if there exists a cyclic pn-isogeny defined over Q, between
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the two elliptic curves E and Cmin (note this can only happen when the prime
p is very small).
Let G denote either Gal(QΣ/Q), or a decomposition group Gal(Ql/Ql) at some
prime number l. For indices j = 0, 1, 2 there are induced exact sequences

0 → Hj
(
G,AT∞

)
⊗Λ,σ2

Zp → Hj+1
(
G, Cmin[p∞]

)
→ Hj+1

(
G,AT∞

)Γ
→ 0

and in continuous cohomology,

0 → Hj
(
G,T∞

)
⊗Λ,σ2

Zp → Hj
(
G,Tap(C

min)
)
→ Hj+1

(
G,T∞

)Γ
→ 0 .

From now on, we’ll just drop the ‘ σ2
’ from the tensor product notation alto-

gether.

Remark: Our strategy is to compare SelQ(ρ∞) with the p-primary Selmer
group for Cmin over the rationals. We can then use the Isogeny Theorem to
exchange the optimal curve Cmin with the strong Weil curve E.

For each prime l 6= p, we claim there is a natural map

δl :
H1
(
Ql, C

min[p∞]
)

H1
nr

(
Ql, Cmin[p∞]

) −→ H1
(
Ql, AT∞

)Γ
;

here H1
nr

(
Ql, C

min[p∞]
)
denotes the orthogonal complement to the p-saturation

of H1
(
Frobl,Tap(C

min)Il
)
inside H1

(
Ql,Tap(C

min)
)
. To see why this map ex-

ists, note that H1
(
Ql,T∞

)
is Λ-torsion, hence H1

(
Ql,T∞

)
⊗ΛZp is p∞-torsion

and must lie in any p-saturated subgroup of H1
(
Ql,Tap(C

min)
)
. Consequently

the Γ-coinvariants

H1
(
Ql,T∞

)
Γ
→֒ the p-saturation of H1

(
Frobl,Tap(C

min)Il
)
,

and then dualising we obtain δl.

Let’s now consider what happens when l = p. In [DS, Th 2.1] we identified the
family of local points X(Qp) with the cohomology subgroup

H1
G

(
Qp,T∞

)
:= Ker

(
H1

cont

(
Qp,T∞

) (−⊗1)⊗1
−→ H1

cont

(
Qp,T∞ ⊗ BdR

)
⊗Λ L

)

where BdR denotes Iovita and Stevens’ period ring. In particular, we showed
that

X(Qp)Γ = H1
G

(
Qp,T∞

)
⊗Λ Zp →֒ H1

g

(
Qp,Tap(C

min)
)
∼= Cmin(Qp)⊗̂Zp

the latter isomorphism arising from [BK, Section 3]. Dualising the above yields

δp :
H1
(
Qp, C

min[p∞]
)

Cmin(Qp)⊗Qp/Zp
−→

(
H1
(
Qp, AT∞

)

XD(Qp)

)Γ

because H1
g

(
Qp,Tap(C

min)
)⊥ ∼= Cmin(Qp)⊗Qp/Zp and X(Qp)

⊥ = XD(Qp).
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Lemma 2.1. For all prime numbers l ∈ Σ, the kernel of δl is a finite p-group.

We defer the proof until the next section, but for l 6= p it’s straightforward.
This discussion may be neatly summarised in the following commutative dia-
gram, with left-exact rows:

0 → SelQ(C
min)[p∞] → H1

(
QΣ/Q, Cmin[p∞]

)
λ0−→

⊕

l∈Σ

H1
(
Ql, C

min[p∞]
)

H1
⋆

(
Ql, Cmin[p∞]

)

α

y β

y ⊕δl

y

0 → SelQ(ρ∞)Γ → H1
(
QΣ/Q, AT∞

)Γ λ∞−→
⊕

l∈Σ

(
H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

)
)Γ

.

Figure 1.

At primes l 6= p the notation H1
⋆ represents H1

nr. When l = p we have
written H1

⋆

(
Ql, C

min[p∞]
)
for the points Cmin(Qp) ⊗ Qp/Zp, and analogously

H1
⋆

(
Ql, AT∞

)
in place of our family of local points XD(Qp).

Applying the Snake Lemma to the above, we obtain a long exact sequence

0 → Ker(α) → Ker(β) → Im(λ0) ∩

(
⊕

l∈Σ

Ker(δl)

)
→ Coker(α) → 0

as the map β is surjective. The kernel of β equals H0
(
QΣ/Q, AT∞

)
⊗ΛZp i.e.,

the Γ-coinvariants H1
(
Γ, H0

(
QΣ/Q, AT∞

))
. As Γ is pro-cyclic and AT∞

is

discrete,

#H1
(
Γ, H0

(
QΣ/Q, AT∞

))
≤ #H0

(
QΣ/Q, H0(Γ, AT∞

)
)

= #H0
(
QΣ/Q, Homcont

(
T∞ ⊗Λ Zp , µp∞

))

= #H0
(
QΣ/Q, Cmin[p∞]

)
= #Cmin(Q)[p∞] .

In other words, the size of Ker(β) is bounded by #Cmin(Q)[p∞]. By a well-
known theorem of Mazur on torsion points, the latter quantity is at most 16.

Remarks: (i) Let’s recall that for any elliptic curve A over the rational num-
bers, its Tate-Shafarevich group can be defined by the exactness of

0 → A(Q)⊗Q/Z → H1(Q, A) → IIIQ(A) → 0 .

(ii) Lemma 2.1 implies every term occurring in our Snake Lemma sequence is

finite, and as a direct consequence SelQ(C
min)[p∞]

α
−→ SelQ(ρ∞)Γ is a quasi-

isomorphism. The coinvariants
(

̂SelQ(ρ∞)
)
Γ
must then be of finite type over
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Zp, Nakayama’s lemma forces ̂SelQ(ρ∞) to be of finite type over Λ, and Propo-
sition 1.2(a) follows.

(iii) Assume further that L(E, 1) 6= 0. By work of Kolyvagin and later Kato
[Ka], both E(Q) and IIIQ(E) are finite. Since Cmin is Q-isogenous to E, clearly
the Mordell-Weil and Tate-Shafarevich groups of the optimal curve must also
be finite. Equivalently #SelQ(C

min) <∞, whence

rankΛ

(
̂SelQ(ρ∞)

)
≤

≤ corankZp

(
SelQ(ρ∞)Γ

)
= corankZp

(
SelQ(C

min)[p∞]
)

= 0.

It follows that SelQ(ρ∞) is Λ-cotorsion, and Proposition 1.2(b) is established.
The special value of IIIQ(ρ∞) at σ2 is determined (modulo p-adic units) by the
Γ-Euler characteristic of SelQ(ρ∞), namely

χ
(
Γ, SelQ(ρ∞)

)
:=

∞∏

j=0

(
#Hj

(
Γ, SelQ(ρ∞)

))(−1)j

=
#H0

(
Γ, SelQ(ρ∞)

)

#H1
(
Γ, SelQ(ρ∞)

)

as Γ has cohomological dimension one.
After a brisk diagram chase around Figure 1, we discover that

χ
(
Γ, SelQ(ρ∞)

)
=

#SelQ(C
min)[p∞] × #

(
Im(λ0) ∩

(⊕
l∈Σ Ker(δl)

) )

#Ker(β) × #H1
(
Γ, SelQ(ρ∞)

)

=
#IIIQ(C

min)[p∞] ×
∏

l∈Σ #Ker(δl)

#AT∞
(Q)Γ × #H1

(
Γ, SelQ(ρ∞)

)
×
∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

] .

Proposition 2.2.

(a) #Ker(δl) =
∣∣∣
[
Cmin(Ql) : C

min
0 (Ql)

]∣∣∣
−1

p
×
∣∣∣Taml(ρ∞; 2)

∣∣∣
p
if l 6= p;

(b) #Ker(δp) = 1 and
∣∣∣
[
Cmin(Qp) : Cmin

0 (Qp)
]∣∣∣

p
= 1 if Hypothesis(Frb) holds

for E.

Proposition 2.3. If L(E, 1) 6= 0, then

#H1
(
Γ, SelQ(ρ∞)

)
×
∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

]
= #Cmin(Q)[p∞] .

The former result is proved in the next section, and the latter assertion in §4.
Substituting them back into our computation of the Γ-Euler characteristic,

χ
(
Γ, SelQ(ρ∞)

)
≈

#IIIQ(C
min) ×

∏
l∈Σ

[
Cmin(Ql) : C

min
0 (Ql)

]

#AT∞
(Q)Γ × #Cmin(Q) ×

∏
l∈Σ−{p} Taml(ρ∞; 2)
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where the notation x ≈ y is employed whenever x = uy for some unit u ∈ Z×
p .

Setting Lwt,†
p (E) := #Cmin(Q)

/
#AT∞

(Q)Γ , the above can be rewritten as

Lwt,†
p (E)∏

l∈Σ−{p} Taml(ρ∞; 2)
×

#IIIQ(C
min) ×

∏
l∈Σ

[
Cmin(Ql) : C

min
0 (Ql)

]

#Cmin(Q)2
.

Cassels’ Isogeny Theorem allows us to switch Cmin with the isogenous curve E,

although this scales the formula by the ratio of periods
∫
E(R)

ωE

/∫
Cmin(R)

ωCmin .

Observing that σ2

(
IIIQ(ρ∞)

)
≈ χ

(
Γ, SelQ(ρ∞)

)
, Theorem 1.4 is finally

proved.

3. Computing the Local Kernels

We now examine the kernels of the homorphisms δl for all prime numbers l ∈ Σ.
Let’s start by considering l 6= p. By its very definition, δl is the dual of

δ̂l : H1
(
Ql,T∞

)
⊗Λ Zp →֒ H1

nr

(
Ql,Tap(C

min)
)

where H1
nr(· · · ) denotes the p-saturation of H1

(
Frobl,Tap(C

min)Il
)

∼=
Tap(C

min)Il

(Frobl−1) .

The key term we need to calculate is

#Ker(δl) = #Coker
(
δ̂l
)

=
[
H1

nr

(
Ql,Tap(C

min)
)
: H1

(
Ql,T∞

)
⊗Λ Zp

]
.

Firstly, the sequence 0 → T Il
∞ ⊗Λ Zp → Tap(C

min)Il → H1
(
Il,T∞

)Γ
→ 0

is exact, and T Il
∞ ⊗Λ Zp coincides with

(
T∞ ⊗Λ Zp

)Il = Tap(C
min)Il since

the Galois action and diamond operators commute on T∞. As a corollary

H1
(
Il,T∞

)Γ
must be zero.

The group Gal
(
Qunr

l /Ql

)
is topologically generated by Frobenius, hence

H1
(
Frobl,T Il

∞

)
Γ

∼=

(
T Il
∞

(Frobl − 1).T Il
∞

)
⊗Λ Zp

=

( (
T∞ ⊗Λ Zp

)Il

(Frobl − 1).
(
T∞ ⊗Λ Zp

)Il

)
∼= H1

(
Frobl,Tap(C

min)Il
)
.

Since the local cohomology H1
(
Ql,T∞

)
is always Λ-torsion when the prime

l 6= p, inflation-restriction provides us with a short exact sequence

0 → H1
(
Frobl,T Il

∞

)
infl
→ H1

(
Ql,T∞

) rest
→ TorsΛ

(
H1
(
Il,T∞

)Frobl

)
→ 0 .
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The boundary map TorsΛ

(
H1
(
Il,T∞

)Frobl

)Γ
→ H1

(
Frobl,T Il

∞

)
Γ
trivialises be-

cause H1
(
Il,T∞

)Γ
= 0, so the Γ-coinvariants H1

(
Frobl,T Il

∞

)
Γ

inject into

H1
(
Ql,T∞

)
Γ
under inflation.

We deduce that there is a commutative diagram, with exact rows and columns:

0 0
y

y

H1
(
Frobl,T Il

∞

)
Γ

infl
→֒ H1

(
Ql,T∞

)
Γ

rest
։ TorsΛ

(
H1
(
Il,T∞

)Frobl

)
Γ∣∣∣

∣∣∣
y θ

y

H1
(
Frobl,Tap(C

min)Il
)

infl
→֒ H1

nr

(
Ql,Tap(C

min)
) rest
։ H1

(
Il,Tap(C

min)
)Frobl [p∞]

y
y

H2
(
Ql,T∞

)Γ ∼= Coker(θ)
y

y
0 0

Figure 2.

Remark: Using Figure 2 to compute indices, general nonsense informs us that

#Ker(δl) =
[
H1

nr

(
Ql,Tap(C

min)
)
: H1

(
Ql,T∞

)
Γ

]
= #Coker(θ)

=
#H1

(
Il,Tap(C

min)
)Frobl

[p∞]

#TorsΛ

(
H1
(
Il,T∞

)Frobl

)
Γ

≈

[
Cmin(Ql) : C

min
0 (Ql)

]

Taml(ρ∞; 2)
.

In one fell swoop this proves Proposition 2.2(a), Lemma 1.3 and half of Lemma
2.1.
Let’s concentrate instead on l = p. The kernel of δp is dual to the cokernel of

δ̂p : H1
G

(
Qp,T∞

)
⊗Λ Zp →֒ H1

g

(
Qp,Tap(C

min)
)
.

Clearly the Zp-rank of H1
G

(
Qp,T∞

)
⊗Λ Zp is bounded below by the Λ-rank of

H1
G

(
Qp,T∞

)
which equals one, thanks to a specialisation argument in [DS, Th

3]. On the other hand

rankZp

(
H1

g

(
Qp,Tap(C

min)
))

= dimQp

(
Cmin(Qp) ⊗̂ Qp

)
= 1

because the formal group of Cmin/
Zp

has semistable height one. We conclude that

#Ker(δp) = #Coker
(
δ̂p
)

=
[
H1

g

(
Qp,Tap(C

min)
)
: H1

G

(
Qp,T∞

)
Γ

]
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must be finite, which completes the demonstration of Lemma 2.1.

Remarks: (i) For any de Rham GQp
-representation V , Bloch and Kato [BK]

define a dual exponential map

exp∗V : H1
(
Qp, V

)
−→ Fil0DdR(V ) :=

(
V ⊗Qp

B+
dR

)GQp

whose kernel is H1
g

(
Qp, V

)
. If V equals the p-adic representation Tap(C

min)⊗Zp

Qp, then the cotangent space Fil0DdR(V ) ∼= Qp ⊗Q H1
dR

(
Cmin

/
Q) is a Qp-line,

generated by a Néron differential ωCmin on the optimal elliptic curve.

(ii) Applying exp∗V above and then cupping with the dual basis ω∗
Cmin , we obtain

a homomorphism

exp∗ω :
H1
(
Qp,Tap(C

min)
)

H1
g

(
Qp,Tap(Cmin)

) −→
(
Tap(C

min)⊗Zp
B+

dR

)GQp − ∪ ω∗

Cmin

−→ Qp

which sends Kato’s zeta element [Ka, Th 13.1] to a non-zero multiple of
LNp(C

min,1)

Ω+

Cmin

. In particular LNp(C
min, 1) = LNp(E, 1) 6= 0, so the image of

the composition exp∗ω must be a lattice pn1Zp ⊂ Qp say. Let’s abbreviate the
quotient H1/H1

g by H1
/g. Notice also that the Zp-rank of H1

/g

(
Qp,Tap(C

min)
)

equals one and the module is p∞-torsion free, hence exp∗ω is injective.

In [De, Th 3.3] we showed the existence of a big dual exponential map

EXP∗
T∞

: H1
(
Qp,T∞

)
−→ Λ[1/p] , Ker

(
EXP∗

T∞

)
= H1

G

(
Qp,T∞

)

interpolating the standard exp∗’s at the arithmetic points (we skip over the
details). At weight two, EXP∗

T∞
modulo u0 − 1 coincides with exp∗ω up to

a non-zero scalar. The weight-deformation of Kato’s zeta-element lives in

locp

(
H1
(
Q,T∞

))
, and via

H1
(
Qp,T∞

) mod u0−1
−→ H1

(
Qp,T∞

)
Γ

proj
։

H1
(
Qp,T∞

)
Γ

H1
(
Qp,T∞

)
Γ
∩H1

g

exp∗
ω

→֒ Qp

is sent to the L-value
LNp(C

min,1)

Ω+

Cmin

× (a Λ-adic period). In this case, the image

of H1
(
Qp,T∞

)
Γ
under exp∗ω will be a lattice pn2Zp ⊂ Qp for some n2 ≥ n1.

Key Claim: There is a commutative diagram, with exact rows

0→ H1
G

(
Qp,T∞

)
Γ

ε
−→ H1

(
Qp,T∞

)
Γ

exp∗(−) ∪ ω∗

Cmin

−→ pn2Zp → 0
y nat

y id

y

0→ H1
g

(
Qp,Tap(C

min)
)
−→ H1

(
Qp,Tap(C

min)
) exp∗(−) ∪ ω∗

Cmin

−→ pn1Zp → 0.
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To verify this assertion, we need to prove the injectivity of the top-left map ε.

Recall that H1
G

(
Qp,T∞

)
= X(Qp) is Λ-saturated inside the local H1, thus the

quotient H1
/G

(
Qp,T∞

)
is Λ-free. In particular, both H1

G and H1 share the same

Λ-torsion submodules, so at weight two H1
G

(
Qp,T∞

)
Γ
and H1

(
Qp,T∞

)
Γ
must

have identical Zp-torsion. It follows from the invariants/coinvariants sequence

0 → H1
G

(
Qp,T∞

)Γ
→ H1

(
Qp,T∞

)Γ
→ H1

/G

(
Qp,T∞

)Γ

∂
→ H1

G

(
Qp,T∞

)
Γ

ε
→ H1

(
Qp,T∞

)
Γ
→ H1

/G

(
Qp,T∞

)
Γ
→ 0

that ε fails to be injective, if and only if the image of ∂ has Zp-rank at least
one. However,

rankZp
Im(∂) =

= rankZp

(
H1

G

(
· · ·
)
Γ

)
− rankZp

(
H1
(
· · ·
)
Γ

)
+ rankZp

(
H1

/G

(
· · ·
)
Γ

)

≤ rankZp

(
H1

G

(
· · ·
)
Γ

)
− rankZp

(
H1
(
· · ·
)
Γ

)
+ rankZp

(
pn2Zp

)

as the rank of H1
/G

(
· · ·
)
Γ
is bounded by the rank of H1

(
· · ·
)
Γ

/(
H1
(
· · ·
)
Γ
∩

H1
g

)
. The right-hand side above is equal to zero, hence rankZp

Im(∂) is forced to
be zero. The non-triviality of the boundary map ∂ can therefore never happen,
and the injectivity of ε follows as well.

Remark: Using our Key Claim to calculate
[
H1

g

(
· · ·
)
: H1

G

(
· · ·
)
Γ

]
, we find

that

#Ker(δp) = p−(n2−n1) ×
[
H1
(
Qp,Tap(C

min)
)
: H1

(
Qp,T∞

)
Γ

]

= p−(n2−n1) ×#H2
(
Qp,T∞

)Γ
= p−(n2−n1) ×#H0

(
Qp, AT∞

)
Γ

where the very last equality arises from the non-degeneracy of the local pairing
H2
(
Qp,T∞

)
×H0

(
Qp, AT∞

)
→ Qp/Zp.

By an argument familiar from §2,

#H0
(
Qp, AT∞

)
Γ

≤ #H0
(
Qp, A

Γ
T∞

)
= #H0

(
Qp,Homcont

(
T∞ ⊗Λ Zp, µp∞

))

= #H0
(
Qp,Homcont

(
Tap(C

min), µp∞

))
= #Cmin(Qp)[p

∞]

again due to the pro-cyclicity of Γ. Because n2 − n1 ≥ 0, we get an upper
bound

#Ker(δp) ≤ p−(n2−n1)#Cmin(Qp)[p
∞] ≤ #Cmin(Qp)[p

∞] ;
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we proceed by showing that the right-hand side is trivial under Hypothe-
sis(Frb).
Case (i): p ∤ NE and ap(E) 6= +1.

Here E and the isogenous curve Cmin have good ordinary reduction at the prime
p; in particular, the formal group of Cmin

/Zp
possesses no points of order p since

p 6= 2. It follows that Cmin(Qp)[p
∞] injects into the subgroup of Fp-rational

points on C̃min, the reduced elliptic curve. Moreover

#C̃min(Fp) = p+ 1− ap(E) 6≡ 0 (mod p ) as ap(E) 6≡ +1,

meaning Cmin(Qp)[p
∞] ∼= C̃min(Fp)[p

∞] is the trivial group.

Case (ii): p||NE and ap(E) = −1.

Both E and Cmin have non-split multiplicative reduction at p. The Tamagawa
factor [Cmin(Qp) : C

min
0 (Qp)] is either 1, 2, 3 or 4, all of which are coprime to

p ≥ 5. We thus have an isomorphism Cmin(Qp)[p
∞] ∼= Cmin

0 (Qp)[p
∞]. Again the

formal group is p-torsion free, so Cmin
0 (Qp)[p

∞] coincides with the p∞-torsion

in the group of non-singular points C̃min(Fp)−{node}. But these non-singular
points look like F×

p which has no points of order p, so neither does Cmin(Qp).

Case (iii): p||NE and ap(E) = +1, p ∤ ordp
(
qTate(C

min)
)
.

This last situation corresponds to our elliptic curves being split multiplica-
tive at p. The group of connected components Cmin(Qp)

/
Cmin
0 (Qp) ∼=

Z
/
ordp

(
qTate(C

min)
)
Z has order coprime to p, by assumption. Again

Cmin(Qp)[p
∞] ∼= Cmin

0 (Qp)[p
∞], and an identical argument to case (ii) estab-

lishes that the p-part of Cmin(Qp) is trivial.

4. Global Euler-Poincaré Characteristics

It remains to give the proof of Proposition 2.3, i.e. to demonstrate why

#H1
(
Γ, SelQ(ρ∞)

)
×
∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

]
= #Cmin(Q)[p∞]

whenever the analytic rank of E is zero.
Let’s start by writing down the Poitou-Tate sequence for the optimal curve.

It is an easy exercise to verify that H1
(
Ql, C

min[p∞]
)/

H1
⋆

(
Ql, C

min[p∞]
)
is

isomorphic to H1
(
Ql, C

min
)
[p∞] where ‘⋆ = nr’ if l 6= p, and ‘⋆ = g’ if l = p.

The exactness of the sequence

0 → SelQ
(
Cmin

)
[p∞] → H1

(
QΣ/Q, Cmin[p∞]

)
λ0→
⊕

l∈Σ

H1
(
Ql, C

min
)
[p∞]

→ Homcont

(
Cmin(Q)⊗̂Zp , Q/Z

)
→ H2

(
QΣ/Q, Cmin[p∞]

)
→ · · ·

is then an old result of Cassels.
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Lemma 4.1. If SelQ
(
Cmin

)
[p∞] is finite, then H2

(
QΣ/Q, Cmin[p∞]

)
= 0.

The proof is well-known to the experts. It’s a basic consequence of the cy-
clotomic Iwasawa theory of elliptic curves, e.g. see Coates’ textbook on the
subject.

If we mimic the same approach Λ-adically, the Poitou-Tate exact sequence
reads as

0→ SelQ(ρ∞)→

→ H1
(
QΣ/Q, AT∞

)
λ†
∞−→
⊕

l∈Σ

H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

) → ̂SelQ(T∞)→ · · ·

where the compact Selmer group is defined to be

SelQ(T∞) :=

:= Ker


H1

(
QΣ/Q, T∞

) ⊕resl−→
⊕

l 6=p

H1
(
Ql,T∞

)

H1
(
Ql, AT∞

)⊥ ⊕
H1
(
Qp,T∞

)

X(Qp)


 .

In fact H1
(
Ql, AT∞

)
is orthogonal to all of H1

(
Ql,T∞

)
under Pontrjagin du-

ality, so the local conditions at l 6= p are completely redundant.

Proposition 4.2. If L(E, 1) 6= 0, then the compact version SelQ(T∞) is zero.

The proof is rather lengthy – we postpone it till the end of this section.

As a corollary, the restriction map λ†
∞ must be surjective at the Λ-adic level.

Taking Γ-cohomology, we obtain a long exact sequence

0 −→ SelQ(ρ∞)Γ −→ H1
(
QΣ/Q, AT∞

)Γ λ∞−→
⊕

l∈Σ

(
H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

)
)Γ

−→ H1
(
Γ, SelQ(ρ∞)

)
−→ H1

(
Γ, H1

(
QΣ/Q, AT∞

))
.

The right-most term is zero, since it is contained inside H2
(
QΣ/Q, Cmin[p∞]

)

which vanishes by Lemma 4.1. We can then compare the cokernels of λ0 and
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λ∞ via the commutative diagram, with exact columns:

...
...

y
y

H1
(
QΣ/Q, Cmin[p∞]

)
β
−→ H1

(
QΣ/Q, AT∞

)Γ

λ0

y λ∞

y

⊕

l∈Σ

H1
(
Ql, C

min
)
[p∞]

⊕δl−→
⊕

l∈Σ

(
H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

)
)Γ

y
y

Homcont

(
Cmin(Q)⊗̂Zp , Q/Z

)
99K H1

(
Γ, SelQ(ρ∞)

)

y
y

0 0 .

Figure 3.

Remark: Focussing momentarily on the homomorphisms δl and λ0, one de-
duces

[
Ker

(
⊕ δl

)
: Ker

(
⊕ δl

)
∩ Im(λ0)

]
=

[⊕
l∈Σ H1

(
Ql, C

min
)
[p∞] : Im(λ0)

]

[
Im
(
⊕ δl

)
: ⊕δl

(
Im(λ0)

)]

upon applying the Snake Lemma to the diagram

0 −→ Ker
(
⊕ δl

)
−→ H1

(
Ql, C

min
)
[p∞]

⊕δl−→ Im
(
⊕ δl

)
−→ 0

⋃ ⋃ ⋃

0 −→ Ker
(
⊕ δl

)
∩ Im(λ0) −→ Im(λ0)

⊕δl−→ ⊕δl
(
Im(λ0)

)
−→ 0 .

The numerator above equals #Homcont

(
Cmin(Q)⊗̂Zp,Q/Z

)
, which has the

same size as the p-primary subgroup of Cmin(Q). Casting a cold eye over
Figure 3, one exploits the surjectivity of ⊕δl to conclude the denominator term
is #Coker(λ∞). Equivalently,

∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

]
=

#Cmin(Q)[p∞]

#Coker(λ∞)

which finishes off the demonstration of 2.3.
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The proof of Proposition 4.2:
There are three stages. We first show that the compact Selmer group is Λ-
torsion. Using a version of Nekovár̃’s control theory along the critical line
(s, k) ∈ {1} × Zp, we next establish its finiteness. Lastly, we embed Sel inside
a tower of rational points, whose structure is narrow enough to imply the Selmer
group is zero.

Examining the behaviour of our big dual exponential EXP∗
T∞

from [De, Th
3.3], there is a tautological sequence of Λ-homomorphisms

0 −→ SelQ(T∞) −→ H1
(
QΣ/Q, T∞

) locp(−) mod X(Qp)
−→

H1
(
Qp,T∞

)

X(Qp)

EXP∗
T∞

y
Λ[1/p]

which is exact along the row. A global Euler characteristic calculation shows
that

rankΛ

(
H1
(
QΣ/Q,T∞

))
= rankΛ

(
H2
(
QΣ/Q,T∞

))
+ 1

≤ rankZp

(
H2
(
QΣ/Q,Tap(C

min)
))

+ 1

by Kato
= 0 + 1

– the final equality lies very deep, and follows from [Ka, Th 14.5(1)].
On the other hand, the weight-deformation of Kato’s zeta-element will
generate rank one Λ-submodules inside both of H1

(
QΣ/Q, T∞

)
and

H1
(
Qp,T∞

)/
X(Qp). To verify this claim, observe that EXP∗

T∞
modulo u0−1

sends the zeta-element to a multiple of
LNp(C

min,1)

Ω+

Cmin

, which is non-zero. This

means the image of EXP∗
T∞
◦ locp is not contained in the augmentation ideal,

and so is abstractly isomorphic to Λ.

Remark: In summary, we have just shown that the global H1 has Λ-rank

one. Because the quotient H1
(
Qp,T∞

)/
X(Qp) is Λ-torsion free and also

has rank one, we may identify SelQ(T∞) with the Λ-torsion submodule of
H1
(
QΣ/Q, T∞

)
.

Question. Does SelQ(T∞) contain any pseudo-summands of the form
Λ
/
F

ej
j Λ

for some irreducible distinguished polynomial Fj and for ej ∈ N?

To provide an answer, we will need to specialise at arithmetic points of
Spec(Λ)alg. For any de Rham Gal

(
QΣ/Q

)
-lattice T, the Selmer group H1

g,SpecZ
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is defined by

H1
g,SpecZ

(
Q,T

)
:= Ker


H1

(
QΣ/Q,T

) ⊕resl−→
⊕

l 6=p

H1
(
Il,T

)
⊕

H1
(
Qp,T

)

H1
g

(
Qp,T

)


 .

Control Theorem. [Sm, Th 5.1] For all bar finitely many integral weights
k ≥ 2, the induced specialisation

SelQ(T∞)⊗Λ,σk
Zp −→ H1

g,SpecZ

(
Q , T∞ ⊗Λ,σk

Zp

)

has finite kernel and cokernel, bounded independently of the choice of σk : Λ ։

Zp.

Kato’s Theorem. [Ka, Th 14.2] For all integral weights k ≥ 3, the Bloch-

Kato compact Selmer group H1
f,SpecZ

(
Q , T∞ ⊗Λ,σk

Zp

)
is finite.

Actually Kato proves this result for discrete Selmer groups, but they are
equivalent statements. Note that T∞ ⊗Λ,σk

Zp is a lattice inside V ∗
fk
, the

contragredient of Deligne’s GQ-representation attached to the eigenform fk ∈
Sordk

(
Γ0(Npr), ω2−k

)
. The non-vanishing of the L-value L(fk, 1) forces these

Selmer groups to be finite.

Corollary 4.3. For almost all k ≥ 2, the order of SelQ(T∞) ⊗Λ,σk
Zp is

bounded.

Proof: We first observe that H1
g,SpecZ(Q, V ∗

fk
) coincides with H1

f,SpecZ(Q, V ∗
fk
)

unless the local condition H1
g (Qp, V

∗
fk
) is strictly larger than H1

f (Qp, V
∗
fk
). How-

ever,

dimQp

(
H1

g/f (Qp, V
∗
fk
)
)

= dimQp

(
Dcris

(
Vfk

(1)
)/

(ϕ− 1)
)
by [BK, Cor 3.8.4]

and an argument involving slopes of the Frobenius ϕ shows this dimension is
zero.

By Kato’s theorem H1
f,SpecZ is finite, so it lies in H1

(
QΣ/Q,T∞⊗Λ,σk

Zp

)
[p∞];

the latter torsion is identified with H0
(
QΣ/Q,

(
T∞ ⊗Λ,σk

Zp

)
⊗ Q/Z

)
via a

standard technique in continuous cohomology. It follows from the Control
Theorem, that

SelQ(T∞)⊗Λ,σk
Zp

nat
→ H1

f,SpecZ

(
Q,T∞⊗Λ,σk

Zp

)
→֒
((

T∞⊗Λ,σk
Zp

)
⊗Q/Z

)GQ

has kernel killed by a universal power pν1 say, independent of the weight k.
Let us choose a prime l ∤ Np. By definition 1−al(fk).Frobl+ l < l >k−2 .Frob2l

is zero on V ∗
fk
, and 1−al(fk)+l < l >k−2 must kill off

((
T∞⊗Λ,σk

Zp

)
⊗Q/Z

)GQ
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because Frobenius acts trivially on the GQ-invariants. We claim that there are
infinitely many choices of l for which 1− al(fk) + l < l >k−2 6= 0. If not,

1−al(fk)l
−s+ l < l >k−2 l−2s =

(
1− l−s

)(
1−ω2−k(l)lk−1−s

)
for all l 6∈ S

where S is some finite set containing Σ. Proceeding further down this
cul-de-sac, we obtain an equality of incomplete L-functions LS(fk, s) =
ζS(s)LS(ω

2−k, s+1−k) which is patently ridiculous, as fk is not an Eisenstein
series!
If k ≡ k′ mod (p− 1)pc, then

1− al(fk) + l < l >k−2 ≡ 1− al(fk′) + l < l >k′−2 modulo pc+1 .

For each class τ modulo p−1, we can cover weight-space by a finite collection of
open disks Dτ

1 , . . . , D
τ
n(τ) upon which ordp

(
1−al(fk)+ l < l >k−2

)
is constant

for every k ∈ Dτ
j , k ≡ τ(mod p − 1). Setting ν2 equal to the non-negative

integer

max
τ mod p−1

{
max

1≤j≤n(τ)

{
ordp

(
1− al(fk) + l < l >k−2

)
with k ∈ Dτ

j , k ≡ τ
}}

,

clearly pν2 annihilates all the
((

T∞ ⊗Λ,σk
Zp

)
⊗ Q/Z

)GQ

’s. We deduce that

pν1+ν2 kills off SelQ(T∞) ⊗Λ,σk
Zp for almost all k ≥ 3, and the corollary is

proved.

Remark: The answer to the question posed above is therefore negative, i.e.
there can exist no pseudo-summands of the shape Λ

/
F

ej
j Λ lying inside of

SelQ(T∞) (otherwise the specialisations SelQ(T∞) ⊗Λ,σk
Zp would have un-

bounded order for varying weights k ≥ 2, which violates Corollary 4.3). The
compact Selmer group is of finite-type over the local ring Λ, and it follows from
the structure theory that SelQ(T∞) must be a finite abelian p-group, of order
dividing pν1+ν2 .

Let us recall the definition of the degeneration maps between modular curves.
For integers d ≥ 1 and m,n ≥ 5 with dm

∣∣n, the finite map πd : X1(n)→ X1(m)
operates on the affine curves Y1(−) by the rule

πd

(
A, µn

θ
→֒ A[n]

)
=

(
A′, µm

θ′

→֒ A′[m]

)

where A′ = A
/
θ(µd), and the injection θ′ : µm →֒ µn/d

d
∼
← µn/µd

θmod µd

→֒

A
/
θ(µd).
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Hida [H1] identified the Γpr−1

-coinvariants of T∞, with the Tate module of a
p-divisible subgroup of jac X1(n) at level n = Npr. The natural composition

H1
(
QΣ/Q,T∞

)
∼= lim←−

r≥1

H1
(
QΣ/Q,

(
T∞

)
Γpr−1

)
→֒ lim←−

πp ∗

H1
(
QΣ/Q,Tap(Jr)

ord
)

injectsSelQ(T∞) into the projective limit lim←−πp ∗

(
H1
(
QΣ/Q,Tap(Jr)

ord
)
[p∞]

)
.

Again it’s continuous cohomology, so the Zp-torsion in H1
(
QΣ/Q,Tap(Jr)

ord
)

is then isomorphic to H0
(
QΣ/Q,Tap(Jr)

ord ⊗Q/Z
)

= Jord
r (Q)[p∞] as finite

groups.

Lemma. (Nekovár̃) [NP, 1.6.6] (i) π1 ∗

(
eord.Tap(Jr+1)

)
⊂ p

(
eord.Tap(Jr)

)
;

Let 1
pπ1 ∗ : Tap(Jr+1)

ord → Tap(Jr)
ord denote the map satisfying p

(
1
pπ1 ∗

)
=

π1 ∗.

(ii)
(

1
pπ1 ∗

)
◦ π∗

1 = multiplication by p on eord.Tap(Jr);

(iii) π∗
1 ◦
(

1
pπ1 ∗

)
=
∑

γ∈Γr/Γr+1
〈γ〉 on eord.Tap(Jr+1) where Γr = Γpr−1

;

(iv) πp ∗ = Up ◦
(

1
pπ1 ∗

)
on eord.Tap(Jr+1).

We shall use these facts directly, to show the triviality of the compact Selmer
group. Because it is finite of order dividing pν1+ν2 , for large enough r ≫ 1 we
can realise SelQ(T∞) as a subgroup Sr of jac X1(Npr)ord(Q)[pν1+ν2 ].

The sequence of Sr’s is compatible with respect to the degeneration maps πp ∗

and π∗
1 : jac X1(Npr)(Q)[p∞] −→ jac X1(Npr+1)(Q)[p∞], so for any e ≥ 0

Sr =
(
πp ∗

)e(
Sr+e

)
∼=

(
πp ∗

)e
◦
(
π∗
1

)e(
Sr
)
.

By part (iv) of this lemma
(
πp ∗

)e
coincides with

(
Up ◦

(
1
pπ1 ∗

))e
, and the

covariant action of the Up-operator is invertible on the ordinary locus. Conse-
quently

Sr ∼= ap(f)
e ×

(
1

p
π1 ∗

)e

◦
(
π∗
1

)e(
Sr
)

by (ii)
= ap(f)

e × pe
(
Sr
)

and picking e ≥ ν1+ν2, we see that SelQ(T∞) ∼= Sr ⊂ Jr[p
ν1+ν2 ] must be zero.

The proof of Proposition 4.2 is thankfully over.
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