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Abstract. This paper primarily concerns Galois cohomology groups
associated to Galois representations over a complete local ring R. The
underlying Galois module and the corresponding cohomology groups
which we consider are discrete R-modules. Under certain hypotheses,
we prove that the first cohomology group is an almost divisible R-
module. We also consider the subgroup of locally trivial elements in
the second cohomology group, proving under certain hypotheses that
it is a coreflexive R-module.
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1 Introduction

Suppose that K is a finite extension of Q and that Σ is a finite set of primes of
K. Let KΣ denote the maximal extension of K unramified outside of Σ. We
assume that Σ contains all archimedean primes and all primes lying over some
fixed rational prime p. The Galois cohomology groups that we consider in this
article are associated to a continuous representation

ρ : Gal(KΣ/K)−→GLn(R)

where R is a complete local ring. We assume that R is Noetherian and com-
mutative. Let m denote the maximal ideal of R. We also assume that the
residue field R/m is finite and has characteristic p. Thus, R is compact in its
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m-adic topology, as will be any finitely generated R-module. Let T denote the
underlying free R-module on which Gal(KΣ/K) acts via ρ. We define

D = T ⊗R R̂,

where R̂ = Hom(R,Qp/Zp) is the Pontryagin dual of R with a trivial action of

Gal(KΣ/K). Thus, D is a discrete abelian group which is isomorphic to R̂n as
an R-module and which has a continuous R-linear action of Gal(KΣ/K) given
by ρ.

The Galois cohomology groups Hi(KΣ/K,D), where i ≥ 0, can be considered
as discrete R-modules too. The action of Gal(KΣ/K) on D is R-linear and
so, for any r ∈ R, the map D → D induced by multiplication by r induces
a corresponding map on Hi(KΣ/K,D). This defines the R-module structure.
It is not hard to prove that these Galois cohomology groups are cofinitely
generated over R. That is, their Pontryagin duals are finitely generated R-
modules. We will also consider the subgroup defined by

X
i
(K,Σ,D) = ker

(
Hi(KΣ/K,D) →

∏

v∈Σ

Hi(Kv,D)
)
.

Here Kv denotes the v-adic completion of K. Thus, X
i
(K,Σ,D) consists of

cohomology classes which are locally trivial at all primes in Σ and is easily
seen to be an R-submodule of Hi(KΣ/K,D). Of course, it is obvious that

X
0
(K,Σ,D) = 0. It turns out that X

i
(K,Σ,D) = 0 for i ≥ 3 too. However,

the groups X
1
(K,Σ,D) and X

2
(K,Σ,D) can be nontrivial and are rather

mysterious objects in general.

Suppose that one has a surjective, continuous ring homomorphism φ : R→ O,
where O is a finite, integral extension of Zp. Such homomorphisms exist if R
is a domain and has characteristic 0. Then Pφ = ker(φ) is a prime ideal of R.
One can reduce the above representation modulo Pφ to obtain a representation
ρφ : Gal(KΣ/K)−→GLn(O) which is simply the composition of ρ with the
homomorphism GLn(R) → GLn(O) induced by φ. Thus, ρ is a deformation of
ρφ and one can think of ρ as a family of such representations. The underlying
Galois module for ρφ is Tφ = T /PφT . This is a free O-module of rank n. Let

Dφ = Tφ⊗O Ô, where Ô is the Pontryagin dual of O with trivial Galois action.

The Pontryagin dual of R/Pφ is R̂[Pφ], the submodule of R̂ annihilated by Pφ.

Since R/Pφ ∼= O, we have R̂[Pφ] ∼= Ô. One can identifyDφ with D[Pφ]. We can
compare the cohomology of Dφ with D since one has a natural homomorphism

Hi(KΣ/K,Dφ) = Hi(KΣ/K,D[Pφ]) −→ Hi(KΣ/K,D)[Pφ].

However, unless one makes certain hypotheses, this homomorphism may fail to
be injective and/or surjective. Note also that all of the representation ρφ have
the same residual representation, namely ρ, the reduction of ρ modulo m. This
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Structure of Certain Galois Cohomology Groups 337

gives the action of Gal(KΣ/K) on Tφ/mTφ ∼= T /mT or, alternatively, on the
isomorphic Galois modules Dφ[m] ∼= D[m].

Assume that R is a domain. Let X denote the Pontryagin dual of
H1(KΣ/K,D). One can derive a certain lower bound for rankR(X) by us-
ing Tate’s theorems on global Galois cohomology groups. Let Y denote the
torsion R-submodule of X. The main result of this paper is to show that if
rankR(X) is equal to the lower bound and if R and ρ satisfy certain additional
assumptions, then the associated prime ideals for Y are all of height 1. Thus,
under certain hypotheses, we will show that X has no nonzero pseudo-null R-
submodules. By definition, a finitely generated, torsion R-module Z is said to
be “pseudo-null” if the localization ZP is trivial for every prime ideal P of R
of height 1, or, equivalently, if the associated prime ideals for Z have height at
least 2.

If the Krull dimension of R is d = m+1, where m ≥ 0, then it is known that R
contains a subring Λ such that (i) Λ is isomorphic to either Zp[[T1, ..., Tm]] or
Fp[[T1, ..., Tm+1]], depending on whether R has characteristic 0 or p, and (ii) R
is finitely generated as a Λ-module. (See theorem 6.3 in [D].) One important
assumption that we will often make is that R is reflexive as a Λ-module. We
then say that R is a reflexive domain. It turns out that this does not depend
on the choice of the subring Λ. An equivalent, intrinsic way of stating this
assumption is the following: R =

⋂
P RP , where P varies over all prime ideals

of R of height 1. HereRP denotes the localization ofR at P, viewed as a subring
of the fraction field K of R. Such rings form a large class. For example, if R is
integrally closed, then R is reflexive. Or, if R is Cohen-Macaulay, then R will
actually be a free Λ-module and so will also be reflexive. We will also say that
a finitely generated, torsion-free R-module X is reflexive if X =

⋂
P XP , where

P again varies over all the prime ideals of R of height 1 and XP = X ⊗R RP

considered as an R- submodule of the K-vector space X ⊗R K.

We will use the following standard terminology throughout this paper. If A is
a discrete R-module, let X = Â denote its Pontryagin dual. We say that A is
a cofinitely generated R-module if X is finitely generated as an R-module, A is
a cotorsion R-module if X is a torsion R-module, and A is a cofree R-module
if X is a free R-module. We define corankR(A) to be rankR(X). Similar
terminology will be used for Λ-modules. Although it is not so standard, we
will say that A is coreflexive if X is reflexive, either as an R-module or as a
Λ-module, and that A is co-pseudo-null if X is pseudo-null. For most of these
terms, it doesn’t matter whether the ring is Λ or a finite, integral extension R of
Λ. For example, as we will show in section 2, A is a coreflexive R-module if and
only if it is a coreflexive Λ-module. A similar statement is true for co-pseudo-
null modules. However, the module D defined above for a representation ρ
is a cofree R-module and a coreflexive, but not necessarily cofree, Λ-module,
assuming that R is a reflexive domain.

Assume that X is a torsion-free R-module. Then, if r is any nonzero element
of R, multiplication by r defines an injective map X → X. The corresponding
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map on the Pontryagin dual is then surjective. Thus, A = X̂ will be a divisible
R-module. Conversely, if A is a divisible R-module, then X is torsion-free. If
R is a finite, integral extension of Λ, then A is divisible as an R-module if and
only if A is divisible as a Λ-module. The kernel of multiplication by an element
r ∈ R will be denoted by A[r]. More generally, if I is any ideal of R or Λ, we
let A[I] = {a ∈ A

∣∣ ia = 0 for all i ∈ I}.

Suppose v is a prime of K. Let K,Kv denote algebraic closures of the in-
dicated fields and let GK = Gal(K/K), GKv

= Gal(Kv/Kv). We can
fix an embedding K → Kv and this induces continuous homomorphisms
GKv

→ GK → Gal(KΣ/K). Thus, we get a continuous R-linear action of
GKv

on T and on D. Define T ∗ = Hom(D, µp∞), where µp∞ denotes the group
of p-power roots of unity. Note that T ∗ is a free R-module of rank n. Choos-
ing a basis, the natural action of Gal(KΣ/K) on T ∗ is given by a continuous
homomorphism ρ∗ : Gal(KΣ/K)−→GLn(R). Consider the action of GKv

on
T ∗. The set of GKv

-invariant elements (T ∗)GKv = HomGKv
(D, µp∞) is an

R-submodule. The following theorem is the main result of this paper.

Theorem 1. Suppose that R is a reflexive domain. Suppose also that T ∗

satisfies the following two local assumptions:

(a) For every prime v ∈ Σ, the R-module T ∗/(T ∗)GKv is reflexive.

(b) There is at least one non-archimedean prime vo ∈ Σ such that
(T ∗)GKvo = 0.

Then X
2
(K,Σ,D) is a coreflexive R-module. If X

2
(K,Σ,D) = 0, then the

Pontryagin dual of H1(KΣ/K,D) has no nonzero, pseudo-null R-submodules.

The proof of this theorem will be given in section 6, but some comments about
the role of various assumptions may be helpful here. The assumption that R
is a domain is not essential. It suffices to just assume that R contains a formal
power series ring Λ over either Zp or Fp and that R is a finitely generated,
reflexive module over Λ. Then D will be a coreflexive Λ-module. In fact, it is
precisely that assumption which is needed in the argument. In particular, it
implies that if π is an irreducible element of Λ, then D[π] is a divisible module
over the ring Λ/(π). Coreflexive Λ-modules are characterized by that property.

(See corollary 2.6.1.) The assertion that X
2
(K,Σ,D) is also a coreflexive Λ-

module implies that it is Λ-divisible, but is actually a much stronger statement.
Reflexive Λ-modules are a rather small subclass of the class of torsion-free Λ-
modules.

The conclusion in theorem 1 concerning H1(KΣ/K,D) can be expressed in
another way which seems quite natural. It suffices to consider it just as a Λ-
module. The ring Λ is a UFD and so we can say that two nonzero elements of
Λ are relatively prime if they have no irreducible factor in common. We make
the following definition.

Definition. Assume that A is a discrete Λ-module. We say that A is an
“almost divisible” Λ-module if there exists a nonzero element θ ∈ Λ with the
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Structure of Certain Galois Cohomology Groups 339

following property: If λ ∈ Λ is a nonzero element relatively prime to θ, then
λA = A.

If A is a cofinitely generated Λ-module, then it is not hard to see that A is an
almost divisible Λ-module if and only if the Pontryagin dual of A has no nonzero
pseudo-null Λ-submodules. (See proposition 2.4.) Under the latter condition,
one could take θ to be any nonzero annihilator of the torsion Λ-submodule Y
of X = Â, e.g., a generator of the characteristic ideal of Y . Thus, theorem 1
asserts that, under certain assumptions, the Λ-module H1(KΣ/K,D) is almost
divisible.

The main local ingredient in the proof is to show that H1(Kv,D) is an almost
divisible Λ-module for all v ∈ Σ. Assumption (a) guarantees this. In fact,
it is sufficient to assume that T ∗/(T ∗)GKv is reflexive as a Λ-module for all
v ∈ Σ. This implies that the map H2(Kv,D[P ]) −→ H2(Kv,D) is injective for
all but a finite number of prime ideals P in Λ of height 1; the almost divisibility

of H1(Kv,D) follows from that. The hypothesis that X
2
(K,Σ,D) = 0 then

allows us to deduce that the map H2(KΣ/K,D[P ]) −→ H2(KΣ/K,D) is in-
jective for all but finitely many such P ’s, which implies the almost divisibility
of H1(KΣ/K,D).

Both assumptions (a) and (b) are used in the proof that X
2
(K,Σ,D) is a

coreflexive Λ-module. Assumption (b) obviously implies that (T ∗)Gal(KΣ/K)

vanishes. That fact, in turn, implies that the global-to-local map defining

X
2
(K,Σ,D) is surjective. Such a surjectivity statement plays an important

role in our proof of theorem 1. We will discuss the validity of the local as-
sumptions at the end of section 5. Local assumption (a) is easily verified for
archimedean primes if p is odd, but is actually not needed in that case. It is
needed when p = 2 and, unfortunately, could then fail to be satisfied. For non-
archimedean primes, the local assumptions are often satisfied simply because
(T ∗)GKv = 0 for all such v ∈ Σ. However, there are interesting examples where
this fails to be true for at least some v’s in Σ and so it is too restrictive to make
that assumption.

The hypothesis that X
2
(K,Σ,D) = 0 is quite interesting in itself.

Under the assumptions in theorem 1, X
2
(K,Σ,D) will be coreflexive,

and hence divisible, as an R-module. Therefore, the statement that

X
2
(K,Σ,D) = 0 would then be equivalent to the seemingly weaker state-

ment that corankR
(
X

2
(K,Σ,D)

)
= 0. Just for convenience, we will give a

name to that statement.

Hypothesis L: X
2
(K,Σ,D) is a cotorsion R-module.

Of course, it is only under certain assumptions that this statement implies

that X
2
(K,Σ,D) actually vanishes. We will now describe two equivalent

formulations of hypothesis L which are more easily verified in practice. To
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state the first one, let D∗ = T ∗ ⊗R R̂. Then we will show that

corankR
(
X

2
(K,Σ,D)

)
= corankR

(
X

1
(K,Σ,D∗)

)
(1)

This will be proposition 4.4. Thus, one reformulation of hypothesis L is the

assertion that X
1
(K,Σ,D∗) is a cotorsion R-module. This formulation has

the advantage that it is easier to study H1 and hence X
1
. We should mention

that even under strong hypotheses like those in theorem 1, it is quite possible

for X
1
(K,Σ,D∗) to be a nonzero, cotorsion R-module.

A second equivalent formulation can be given in terms of the R-corank of
H1(KΣ/K,D). As we mentioned before, we will derive a lower bound on
this corank by using theorems of Tate. Those theorems concern finite Galois
modules, but can be extended to Galois modules such as D in a straightfor-
ward way. The precise statement is given in proposition 4.3. It is derived
partly from a formula for the Euler-Poincaré characteristic. For i ≥ 0, we let
hi = corankR

(
Hi(KΣ/K,D)

)
. Let r2 denote the number of complex primes of

K. For each real prime v of K, let n−v = corankR
(
D/DGKv

)
. Then

h1 = h0 + h2 + δ.

where δ = r2n+
∑
v real n

−
v . The Euler-Poincaré characteristic h0 − h1 + h2 is

equal to −δ. Thus, h1 is essentially determined by h0 and h2 since the quantity
δ is usually easy to evaluate. On the other hand, one gets a lower bound on h2
by studying the global-to-local map

γ : H2(KΣ/K,D) −→ P 2(K,Σ,D),

where P 2(K,Σ,D) =
∏
v∈ΣH

2(Kv,D). The cokernel of γ is determined by
Tate’s theorems: coker(γ) ∼= H0(KΣ/K, T

∗)∧. Thus, one can obtain a certain
lower bound for h2 and hence for h1. In proposition 4.3, we give this lower
bound in terms of the ranks or coranks of various H0’s. The assertion that
h1 is equal to this lower bound is equivalent to the assertion that ker(γ) has
R-corank 0, which is indeed equivalent to hypothesis L.

The local duality theorem of Poitou and Tate asserts that the Pontryagin dual
of H2(Kv,D) is isomorphic to H0(Kv, T

∗) = (T ∗)GKv . Thus, if we assume
that (T ∗)GKv = 0 for all non-archimedean v ∈ Σ, then H2(Kv,D) = 0 for all
such v. If we also assume that p is odd, then obviously H2(Kv,D) = 0 for all
archimedean v. Under these assumptions, P 2(K,Σ,D) = 0 and Hypothesis L
would then be equivalent to the assertion that H2(KΣ/K,D) = 0.

The validity of Hypothesis L seems to be a very subtle question. We will dis-
cuss this at the end of section 6. It can fail to be satisfied if R has Krull
dimension 1. If R has characteristic 0, then, apart from simple counterexam-
ples constructed by extension of scalars, it is not at all clear what one should
expect when the Krull dimension is greater than 1. However, one can construct
nontrivial counterexamples where R has arbitrarily large Krull dimension and
R has characteristic p.
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Theorem 1 has a number of interesting consequences in classical Iwasawa the-
ory. These will be the subject of a subsequent paper. We will just give an
outline of some of them here. In fact, our original motivation for this work
was to improve certain results in our earlier paper [Gr89]. There we con-
sidered the cyclotomic Zp-extension K∞ of a number field K and a discrete
Gal(KΣ/K)-module D isomorphic to (Qp/Zp)n as a Zp-module. We obtain
such a Galois module from a vector space V of dimension n over Qp which
has a continuous Qp-linear action of Gal(KΣ/K). Let T be a Galois-invariant
Zp-lattice in V and let D = V/T . The Galois action defines a representation
ρo : Gal(KΣ/K) → AutZp

(T ) ∼= GLn(Zp). Since only primes of K lying above
p can ramify in K∞/K, we have K∞ ⊂ KΣ. One therefore has a natural
action of Γ = Gal(K∞/K) on the Galois cohomology groups Hi(KΣ/K∞, D)
for any i ≥ 0. Now Hi(KΣ/K∞, D) is also a Zp-module. One can then re-
gard Hi(KΣ/K∞, D) as a discrete Λ-module, where Λ = Zp[[Γ]], the completed
Zp-group algebra for Γ. The ring Λ is isomorphic to the formal power series
ring Zp[[T ]] in one variable and is a complete Noetherian local domain of Krull
dimension 2. The modules Hi(KΣ/K∞, D) are cofinitely generated over Λ.

Propositions 4 and 5 in [Gr89] assert that if p is an odd prime, then
H2(KΣ/K∞, D) is a cofree Λ-module, and if H2(KΣ/K∞, D) = 0, then the
Pontryagin dual of H1(KΣ/K∞, D) contains no nonzero, finite Λ-modules.
One consequence of theorem 1 is the following significantly more general re-
sult. We allow p to be any prime and K∞/K to be any Galois extension such
that Γ = Gal(K∞/K) ∼= Zmp for some m ≥ 1. For any i ≥ 0, we define

X
i
(K∞,Σ, D) to be the subgroup of Hi(KΣ/K∞, D) consisting of cocycle

classes which are locally trivial at all primes of K∞ lying above the primes
in Σ. Again, Γ acts continuously on those Galois cohomology groups and so
we can regard them as modules over the ring Λ = Zp[[Γ]]. This ring is now
isomorphic to the formal power series ring Zp[[T1, ..., Tm]] in m variables and

has Krull dimension d = m + 1. The group X
i
(K∞,Σ, D) is a Λ-submodule

of Hi(KΣ/K∞, D). All of these Λ-modules are cofinitely generated.

Theorem 2. Suppose that K∞/K is a Zmp -extension, where m ≥ 1 and p is

a prime. Then X
2
(K∞,Σ, D) is a coreflexive Λ-module. If X

2
(K∞,Σ, D)

vanishes, then the Pontryagin dual of H1(KΣ/K∞, D) has no nonzero, pseudo-
null Λ-submodules.

The results proved in [Gr89] which were mentioned above concern the case
where K∞ is the cyclotomic Zp-extension of K. For odd p, one then has

X
2
(K∞,Σ, D) = H2(KΣ/K∞, D). The assertion about cofreeness follows

since m = 1 and so a cofinitely generated Λ-module A is coreflexive if and only
if it is cofree. (See remark 2.6.2.) Also, A is co-pseudo-null if and only if it is
finite. In that special case, theorem 2 is more general only because it includes
p = 2.

The relationship to theorem 1 is based on a version of Shapiro’s lemma which
relates the above cohomology groups to those associated with a suitably defined
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Gal(KΣ/K)-module D. We can regard Γ as a subgroup of the multiplicative
group Λ× of Λ. This gives a homomorphism Γ → GL1(Λ). and hence a
representation over Λ of Gal(KΣ/K) of rank 1 factoring through Γ. We will
denote this representation by κ. Define T = T ⊗Zp

Λ. Thus, T is a free Λ-
module of rank n. We let Gal(KΣ/K) act on T by ρ = ρo ⊗ κ−1. We then

define, as before, D = T ⊗Λ Λ̂, which is a cofree Λ-module with a Λ-linear
action of Gal(KΣ/K). The Galois action is through the first factor T . We will
say that D is induced from D via the Zmp -extension K∞/K. Sometimes we will
use the notation: D = IndK∞/K(D). Of course, the ring R is now Λ which is
certainly a reflexive domain. We have the following comparison theorem.

Theorem 3. For i ≥ 0, Hi(KΣ/K,D) ∼= Hi(KΣ/K∞, D) as Λ-modules.

There is a similar comparison theorem for the local Galois cohomology groups
which is compatible with the isomorphism in theorem 3 and so, for any i ≥ 0,
one obtains an isomorphism

X
i
(K,Σ,D) ∼= X

i
(K∞,Σ, D) (2)

as Λ-modules. In particular, one can deduce from (1) and (2) that

X
2
(K∞,Σ, D) has the same Λ-corank as X

1
(K∞,Σ, D

∗), where D∗ denotes
Hom(T, µp∞).

Both of the local assumptions in theorem 1 turn out to be automatically sat-
isfied for D and so theorem 2 is indeed a consequence of theorem 1. The
verification of those assumptions is rather straightforward. The most subtle
point is the consideration of primes that split completely in K∞/K, including
the archimedean primes of K if p = 2. For any v which does not split com-
pletely, one sees easily that (T ∗)GKv = 0. Thus, hypothesis (b) is satisfied
since at least one of the primes of K lying over p must be ramified in K∞/K;
one could take vo to be one of those primes. If v does split completely, then
one shows that (T ∗)GKv is a direct summand in the free Λ-module T ∗. This
implies that the corresponding quotient, the complementary direct summand,
is also a free Λ-module and hence reflexive.

As a consequence, we can say that X
2
(K∞,Σ, D) is a coreflexive Λ-module.

We believe that it is reasonable to make the following conjecture.

Conjecture L. Suppose that K∞ is an arbitrary Zmp -extension of a number
field K, Σ is any finite set of primes of K containing the primes lying above p
and ∞, and D is a Gal(KΣ/K)-module which is isomorphic to (Qp/Zp)n as a

group for some n ≥ 1. Then X
2
(K∞,Σ, D) = 0.

That is, hypothesis L should hold for D = IndK∞/K(D). Equivalently,

X
1
(K∞,Σ, D

∗) should be a cotorsion Λ-module. Furthermore, it turns out
that the global-to-local map γ is now actually surjective. The Λ-module
P 2(K,Σ,D) can, in general, be nonzero and even have positive Λ-corank. To
be precise, only primes v of K which split completely in K∞/K can make a
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nonzero contribution to P 2(K,Σ,D). The contribution to the Λ-corank can
only come from the non-archimedean primes. If v is a non-archimedean prime
of K which splits completely in K∞/K, then we have

corankΛ
(
H2(Kv,D)

)
= corankZp

(
H2(Kv, D)

)

and this can be positive.

As an illustration, consider the special case where D = µp∞ . In this case,
D∗ = Qp/Zp (with trivial Galois action). One then has the following concrete

description of X
1
(K∞,Σ, D

∗). Let L∞ denote the maximal, abelian, pro-p-
extension of K∞ which is unramified at all primes. Let L

′

∞ be the subfield in
which all primes of K∞ split completely. Then we have

X
1
(K∞,Σ,Qp/Zp) = Hom

(
Gal(L

′

∞/K∞),Qp/Zp)
)

It is known that Gal(L∞/K∞) is a finitely generated, torsion Λ-module. (This
is a theorem of Iwasawa if m = 1 and is proved in [Gr73] for arbitrary
m.) Hence the same thing is true for the quotient Λ-module Gal(L

′

∞/K∞).

Therefore, X
1
(K∞,Σ,Qp/Zp) is indeed Λ-cotorsion. Thus, conjecture L is

valid for D = µp∞ for an arbitrary Zmp -extension K∞/K. Note also that

corankZp

(
H2(Kv, µp∞)

)
= 1 for any non-archimedean prime v. Hence, if

Σ contains non-archimedean primes which split completely in K∞/K, then

H2(KΣ/K∞, µp∞) will have a positive Λ-corank. Since X
2
(K∞,Σ, µp∞) = 0,

as just explained, it follows that corankΛ
(
H2(KΣ/K∞, µp∞)

)
is precisely the

number of such primes, i.e., the cardinality of Υ. Therefore, the Λ-corank of
H1(KΣ/K∞, µp∞) will be equal to r1 + r2 + |Υ|. Non-archimedean primes
that split completely in a Zmp -extension can exist. For example, let K be an
imaginary quadratic field and let K∞ denote the so-called “anti-cyclotomic”
Zp-extension of K. Thus, K∞ is a Galois extension of Q and Gal(K∞/Q) is
a dihedral group. One sees easily that if v is any prime of K not lying over p
which is inert in K/Q, then v splits completely in K∞/K.

As a second illustration, consider the Galois module D = Qp/Zp with
a trivial action of Gal(KΣ/K). For an arbitrary Zmp -extension K∞/K,

it is not hard to see that X
2
(K∞,Σ, D) = H2(KΣ/K∞, D). This is

so because H2(Kv,Qp/Zp) = 0 for all primes v of K. Let MΣ
∞ de-

note the maximal abelian pro-p-extension of K∞ contained in KΣ. Then
H1(KΣ/K∞, D) = Hom

(
Gal(MΣ

∞/K∞),Qp/Zp
)
, which is just the Pontrya-

gin dual of Gal(MΣ
∞/K∞). In this case, n = 1 and n−v = 0 for all real

primes. Conjecture L is therefore equivalent to the statement that the Λ-
module Gal(MΣ

∞/K∞) has rank r2. Theorem 3 together with other remarks
we have made has the following consequence.

Theorem 4. Let p be a prime. Suppose that K∞/K is any Zmp -extension,

where m ≥ 1. Then Gal(MΣ
∞/K∞) is a finitely generated Λ-module

and rankΛ
(
Gal(MΣ

∞/K∞)
)

≥ r2. If rankΛ
(
Gal(MΣ

∞/K∞)
)

= r2, then
Gal(MΣ

∞/K∞) has no nonzero pseudo-null Λ-submodules.
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LetM∞ denote the maximal abelian pro-p-extension ofK∞ which is unramified
at all primes of K∞ not lying above p or ∞. One can show that Gal(MΣ

∞/M∞)
is a torsion Λ-module and so the equality in the above theorem is equivalent
to the assertion that the Λ-rank of Gal(M∞/K∞) is equal to r2. Note that
M∞ =MΣ

∞ if one takes Σ = {v
∣∣ v|p or v|∞}. In that case, the above theorem

is proved in [NQD]. A somewhat different, but closely related, result is proved
in [Gr78]. Theorem 1 can be viewed as a rather broad generalization of these
results in classical Iwasawa theory.

The statement that corankΛ
(
Gal(M∞/K∞)

)
= r2 is known as the Weak

Leopoldt Conjecture for K∞/K. That name arises from the fact that if one
considers a Zp-extension K∞/K and the Galois module D = Qp/Zp, the con-
jecture is equivalent to the following assertion:

Let Kn denote the n-th layer in the Zp-extension K∞/K. Let Mn be the com-
positum of all Zp-extensions of Kn. Let δn = rankZp

(
Gal(Mn/Kn)

)
− r2p

n.
Then δn is bounded as n→ ∞.

The well-known conjecture of Leopoldt would assert that δn = 1 for all n.

If a Zmp -extension K∞ of K contains µp∞ , then the Galois modules µp∞ and
Qp/Zp are isomorphic over K∞. Since conjecture L is valid for D = µp∞ , it
is then also valid for D = Qp/Zp. One deduces easily that conjecture L is
valid for D = Qp/Zp if one just assumes that K∞ contains the cyclotomic Zp-
extension of K. Thus, under that assumption, it follows unconditionally that
Gal(MΣ

∞/K∞) has no nonzero pseudo-null Λ-submodules. If K∞ is the cyclo-
tomic Zp-extension of K, then this result was originally proved by Iwasawa. It
is theorem 18 in [Iw73]. He showed that that Galois group indeed has Λ-rank
r2 and deduced the non-existence of finite Λ-submodules from that.

There is a long history behind the topics discussed in this article. We have al-
ready mentioned Iwasawa’s theorem in [Iw73]. A similar, but less general, result
is proved in his much earlier paper [Iw59]. There he assumes a special case of
Leopoldt’s conjecture. Those theorems of Iwasawa were generalized in [Gr78],
[NQD], and [Pe84] for similarly-defined Galois groups over Zmp -extensions of a
number field. The generalization to Galois cohomology groups for arbitrary Ga-
lois modules of the form D = V/T has also been considered by several authors,
e.g., see [Sch], [Gr89], and [J]. The conjecture concerning the possible vanishing
of H2(KΣ/K∞, D), and its relevance to the question of finite submodules, can
be found in those references. Perrin-Riou has a substantial discussion of these
issues in [Pe95], Appendice B, referring to that conjecture as the Conjecture de
Leopoldt faible because it generalizes the assertion of the same name mentioned
before. We also want to mention that the idea of proving the non-existence
of nonzero pseudo-null submodules under an assumption like hypothesis L was
inspired by the thesis of McConnell [McC].

Considerable progress has been made in one important special case, namely
D = E[p∞], where E is an elliptic curve defined over Q. If one takes K∞ to
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be the cyclotomic Zp-extension of Q, where p is an odd prime, then conjecture
L was verified in [C-M] under certain hypotheses. This case is now settled
completely; a theorem of Kato asserts that H2(KΣ/K∞, E[p∞]) = 0 if K∞

is the cyclotomic Zp-extension of K, K/Q is assumed to be abelian and p is
assumed to be odd. Kato’s theorem applies more generally when D = V/T
and V is the p-adic representation associated to a cuspform.

More recently, similar types of questions have been studied when K∞/K is
a p-adic Lie extension. The ring Λ is then non-commutative. Nevertheless,
Venjakob has defined the notion of pseudo-nullity and proved the non-existence
of nonzero pseudo-null submodules in certain Galois groups. We refer the
readers to [Ve] for a discussion of this situation. In [C-S], Coates and Sujatha

study the group X
1
(K∞,Σ, E[p∞]), where E is an elliptic curve defined over

K. Those authors refer to this group as the “fine Selmer group” for E over
K∞ and conjecture that it is actually a co-pseudo-null Λ-module under certain
assumptions.

Another topic which we intend to study in a future paper concerns the structure
of a Selmer group SelD(K) which can be attached to the representation ρ
under certain assumptions. This Selmer group will be an R-submodule of
H1(KΣ/K,D) defined by imposing certain local conditions on the cocycles.
Theorem 1 can then be effectively used to prove that the Pontryagin dual
of SelD(K) has no nonzero pseudo-null R-submodules under various sets of
assumptions. One crucial assumption will be that SelD(K) is a cotorsion R-
module. Such a theorem is useful in that one can then study how the Selmer
group behaves under specialization, i.e., reducing the representation ρ modulo
a prime ideal P of R.

The study of Iwasawa theory in the context of a representation ρ was initi-
ated in [Gr94]. More recently, Nekovar has taken a rather innovative point
of view towards studying large representations and the associated cohomology
and Selmer groups, introducing his idea of Selmer complexes [Nek]. It may be
possible to give nice proofs of some of the theorems in this paper from such a
point of view. In section 9.3 of his article, Nekovar does give such proofs in the
context of classical Iwasawa theory. (See his proposition 9.3.1, corollary 9.3.2
and propositions 9.3.6, 9.3.7.)

This research was partially support by grants from the National Science Foun-
dation. Part of this research was carried out during two visits to the Institut
des Hautes Études Scientifiques. The author is gratefully to IHÉS for their
support and hospitality during those visits. The author also wishes to take
this opportunity to thank John Coates for numerous valuable and stimulating
discussions over the years. They have been influential on many aspects of the
author’s research, including the topic of this paper.
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2 Some Module Theory.

Theorem 1 and some of the other theorems mentioned in the introduction
concern modules over a complete Noetherian local domain R. This section will
include a variety of module-theoretic results that will be useful in the proofs.
In particular, we will point out that several properties, such as pseudo-nullity
or reflexivity, can be studied by simply considering the modules as Λ-modules.
The main advantage of doing so is that Λ is a regular local ring and so has
the following helpful property: Every prime ideal of Λ of height 1 is principal.
This is useful in proofs by induction on the Krull dimension. Such arguments
would work for any regular, Noetherian local ring. It seems worthwhile to state
and prove various results in greater generality than we really need. However,
in some cases, we haven’t determined how general the theorems can be.

We will use the notation Specht=1(R) to denote the set of prime ideals of height
1 in a ring R. The terminology “almost all” means all but finitely many. If I is
any ideal of R, we will let V (I) denote the set of prime ideals of R containing
I.

A. Behavior of ranks and coranks under specialization. Consider a
finitely generated module X over an integral domain R. If K is the fraction
field of R, then rankR(X) = dimK(X ⊗R K). The following result holds:

Proposition 2.1. Let r = rankR(X). Then rankR/P(X/PX) ≥ r for
every prime ideal P of R. There exists a nonzero ideal I of R such
that rankR/P(X/PX) > r if and only if P ∈ V (I). In particular,
rankR/P(X/PX) = r for all but finitely many prime ideals P ∈ Specht=1(R).

Proof. We prove a somewhat more general result by a linear algebra argument.
Suppose that s ≥ r. We will show that there is an ideal Is with the property:

rankR/P(X/PX) > s ⇐⇒ P ∈ V (Is)

The ideal Is will be a Fitting ideal. Suppose that X has g generators as an
R-module. Thus X is a quotient of the free R-module F = Rg. Therefore, one
has an exact sequence of R-modules

Rh
φ

−→Rg
ψ

−→X −→ 0

The map φ is multiplication by a certain g×h matrix α. Let f denote the rank
of the matrix α. The R-rank of the image of φ is equal to f and so we have
r = g − f . By matrix theory, there is at least one f × f -submatrix (obtained
by omitting a certain number of rows and/or columns) of the matrix α whose
determinant is nonzero, but there is no larger square submatrix with nonzero
determinant.

For every prime ideal P of R, the above exact sequence induces a free presen-
tation of X/PX.

(R/P)h
φP
−→(R/P)g

ψP
−→X/PX −→ 0
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The second term is F/PF and exactness at that term follows from the fact that
the image of PF under ψ is PX. The homomorphism φP is multiplication by
the matrix αP , the reduction of α modulo P. We have

rankR/P(X/PX) = g − rank(αP).

The description of the rank in terms of the determinants of submatrices shows
that rank(αP) ≤ rank(α) for every prime ideal P of R. If g ≥ s ≥ r, let e = g−s
so that 0 ≤ e ≤ f . Let Is denote the ideal in R generated by the determinants
of all e × e submatrices of the matrix α. If e = 0, then take Is = R. Since
e ≤ f , it is clear that Is is a nonzero ideal. Then αP has rank < e if and only
if Is ⊆ P. This implies that rankR/P(X/PX) > g− e = s if and only if Is ⊆ P
as stated. Finally, we recall the simple fact that if I is any nonzero ideal in a
Noetherian domain R, then there can exist only finitely many prime ideals of
R of height 1 which contain I. �

Corollary 2.1.1. Let X1 and X2 be finitely generated R-modules. Suppose
that φ : X1 → X2 is an R-module homomorphism. Let r1 = rankR

(
ker(φ)

)

and r2 = rankR
(
coker(φ)

)
. For every prime ideal P of R, let

φP : X1/PX1 → X2/PX2

be the induced map. There exists a nonzero ideal I of R such that

rankR/P
(
ker(φP)

)
= r1, rankR/P

(
coker(φP)

)
= r2

if P /∈ V (I). These equalities hold for almost all P ∈ Specht=1(R)

Proof. Let X = coker(φ) = X2/φ(X1). The cokernel of φP is isomorphic
X/PX and so the statement about the cokernels follows from proposition 2.1.
Now the (R/P)-rank of the kernel of φP is determined by the (R/P)-ranks of
X1/PX1, X2/PX2, and coker(φP). We can apply proposition 2.1 to X, X1

and X2, which gives certain nonzero ideals of R in each case. Take I to be the
intersection of those ideals. �

Remark 2.1.2. Consider the special case whereX1 andX2 are free R-modules.
Then the map φ is given by a matrix and the behavior of the ranks of the kernels
and cokernels in the above corollary is determined by the rank of the matrix
and its reduction modulo P as in the proof of proposition 2.1. The following
consequence will be useful later.

Suppose that X1 and X2 are free R-modules. Then for every prime ideal P of
R, we have rankR/P

(
ker(φP)

)
≥ rankR

(
ker(φ)

)
.

This can also be easily deduced from the corollary. A similar inequality holds
for the cokernels of φ and φP .

Suppose that R is a complete Noetherian local domain with finite residue field.
Then X is compact and its Pontryagin dual A = X̂ is a cofinitely generated,
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discrete R-module. The Pontryagin dual of X/PX is A[P], the set of elements
of A annihilated by P. Thus, one has corankR/P(A[P]) = rankR/P(X/PX).
If A1 and A2 are two cofinitely generated R-modules and ψ : A1 → A2 is an
R-module homomorphism, then one can define the adjoint map φ of ψ, an R-
module homomorphism from X2 = Â2 to X1 = Â1. The kernel and cokernel
of ψ are dual, respectively, to the cokernel and kernel of φ. We will say that
A1 and A2 are R-isogenous if there exists an R-module homomorphism ψ such
that ker(ψ) and coker(ψ) are both R-cotorsion. We then refer to ψ as an R-
isogeny. It is easy to see that R-isogeny is an equivalence relation on cofinitely
generated R-modules.

Remark 2.1.3. The above proposition and corollary can be easily translated
into their “dual” versions for discrete, cofinitely generated R-modules. For
example,

1. If r = corankR(A), then corankR/P(A[P]) ≥ r for every prime ideal
P of R. There exists a nonzero ideal I of R with the following property:
corankR/P(A[P]) = r if and only if I 6⊆ P. The equality corankR/P(A[P]) = r
holds for almost all P ∈ Specht=1(R).

2. Suppose that A1 and A2 are cofinitely generated, discrete R-modules and that
ψ : A1 → A2 is an R-module homomorphism. Let c1 = corankR

(
ker(ψ)

)
and

c2 = corankR
(
coker(ψ)

)
. For every prime ideal P of R, let ψP : A1[P] → A2[P]

be the induced map. There exists a nonzero ideal I of R such that

corankR/P
(
ker(ψP)

)
= c1, corankR/P

(
coker(ψP)

)
= c2

if P /∈ V (I). In particular, if ψ is an R-isogeny, then ψP is an (R/P)-isogeny
if P /∈ V (I).

Remark 2.1.2 can also be translated to the discrete version and asserts that if
the above A1 and A2 are cofree R-modules, then

corankR/P
(
ker(ψP)

)
≥ c1, corankR/P

(
coker(ψP)

)
≥ c2

for every prime ideal P of R.

Remark 2.1.4. As mentioned before, if I is a nonzero ideal in a Noetherian
domain R, then there exist only finitely many prime ideals P ∈ Specht=1(R)
which contain I. This is only important if R has infinitely many prime ideals
of height 1. Suppose that R is a finite, integral extension of a formal power
series ring Λ, as we usually consider in this article. Then if the Krull dimension
of R is at least 2, the set of prime ideals of R of height 1 is indeed infinite.
This follows from the corresponding fact for the ring Λ which will have the
same Krull dimension. In fact, if Q is any prime ideal of R of height at least 2,
then Q contains infinitely many prime ideals of R of height 1. Corollary 2.5.1
provides a useful strengthening of this fact when R = Λ. It will also be useful
to point out that in the ring Λ, assuming its Krull dimension d is at least 2,
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there exist infinitely many prime ideals P of height 1 with the property that
Λ/P is also a formal power series ring. The Krull dimension of Λ/P will be
d− 1.

The ideal I occurring in proposition 2.1 is not unique. In the special case where
X is a torsion R-module, so that r = 0, one can take I = AnnR(X). That is:

Proposition 2.2. Suppose that X is a finitely generated, torsion R-module
and that P is a prime ideal of R. Then rankR/P(X/PX) > 0 if and only if
AnnR(X) ⊆ P.

Proof. This follows by a simple localization argument. Let RP denote the
localization of R at P. Then M = PRP is the maximal ideal of RP . Let k
denote the residue field RP/M. Let XP = X ⊗R RP , the localization of X at
P. Then rankR/P(X/PX) = dimk(XP/MXP). Furthermore, we have

rankR/P(X/PX) = 0 ⇐⇒ XP = MXP ⇐⇒ XP = 0,

the last equivalence following from Nakayama’s Lemma. Finally, XP = 0 if
and only if AnnR(X) 6⊆ P. �

Remark 2.2.1. Proposition 2.2 can be easily restated in terms of the discrete,
cofinitely generated, cotorsion R-module A = X̂. Note that the annihilator
ideals in R for A and for X are the same. As we will discuss below, the height
of the prime ideals P for which A[P] fails to be (R/P)-cotorsion is of some
significance, especially whether or not such prime ideals can have height 1.

A contrasting situation occurs when X is a torsion-free R-module. We then
have the following simple result.

Proposition 2.3. Assume that X is a finitely generated, torsion-free R-
module and that P is a prime ideal of R of height 1 which is also a principal
ideal. Then rankR/P(X/PX) = rankR(X). In particular, if R is a regular local
ring, then rankR/P(X/PX) = rankR(X) for all P ∈ Specht=1(R).

Proof. The assumption about P implies that the localization RP is a discrete
valuation ring and hence a principal ideal domain. Therefore XP is a free
RP -module of finite rank. Letting k = RP/M again, it is then clear that
dimk(XP/MXP) = rankRP (XP). The above equality follows from this. �

If X is a free R-module, then the situation is better. One then has the obvious
equality rankR/P(X/PX) = rankR(X) for all prime ideals P of R.

B. Associated prime ideals and pseudo-nullity. Assume that X is
a finitely generated, torsion R-module. A prime ideal P of R is called an
associated prime ideal for X if P = AnnR(x) for some nonzero element x ∈ X.
Assuming that R is Noetherian, there are only finitely many associated prime
ideals for X. We say that X is a pseudo-null R-module if no prime ideal of R
associated with X has height 1. If R has Krull dimension 1, then every nonzero
prime ideal has height 1 and so a pseudo-null R-module must be trivial. If R
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is a local ring of Krull dimension 2 and has finite residue field, then X is a
pseudo-null R-module if and only if X is finite.

If R is a finite, integral extension of a Noetherian domain Λ, then an R-module
X can be viewed as a Λ-module. We say that a prime ideal P of R lies over a
prime ideal P of Λ if P = P ∩Λ. The height of P in R will then be the same as
the height of P in Λ. For a given prime ideal P of Λ, there exist only finitely
many prime ideals P lying over P . It is clear that if P is an associated prime
ideal for the R-module X and if P lies over P , then P is an associated prime
ideal for the Λ-module X. Conversely, if P is an associated prime ideal for the
Λ-module X, then there exists at least one prime ideal P of R lying over P
which is an associated prime ideal for the R-module X. To see this, consider
the R-submodule Y = X[P ] which is nonzero. Suppose that the associated
prime ideals of R for Y are P1, ...,Pt. Let Pi = Pi capΛ for 1 ≤ i ≤ t. Thus,
each Pi is an associated prime ideal for the Λ-module Y and so P ⊆ Pi for each
i. There is some product of the Pi’s which is contained in AnnR(Y ) and the
corresponding product of the Pi’s is contained in AnnΛ(Y ) = P . Thus, Pi ⊆ P
for at least one i. This implies that Pi = P and so, indeed, at least one of the
prime ideals Pi lies over P . These observations justify the following statement:

1. X is pseudo-null as an R-module if and only if X is pseudo-null as a Λ-
module.

The ring Λ is a UFD. Every prime ideal of height 1 is generated by an irreducible
element of Λ. One can give the following alternative definition of pseudo-nullity:

2. A finitely generated Λ-module X is pseudo-null if and only if Ann(X) con-
tains two relatively prime elements.

Another equivalent criterion for pseudo-nullity comes from the following obser-
vations. If Q is an associated prime ideal of X, then X[Q] 6= 0 and so X[P ] 6= 0
for every ideal P ⊆ Q. If Q has height ≥ 2, then Q contains infinitely many
prime ideals P of height 1. On the other hand, if the associated prime ideals
for X all have height 1, then X[P ] = 0 for all the non-associated prime ideals
P of height 1. To summarize:

3. A finitely generated Λ-module X has a nonzero pseudo-null Λ-submodule if
and only if there exist infinitely many prime ideals P ∈ Specht=1(Λ) such that
X[P ] 6= 0.

If A = X̂, then X[P ] 6= 0 if and only if PA 6= A. Hence, the above remarks
imply the following result.

Proposition 2.4. Suppose that A is a cofinitely generated, discrete Λ-module.
The following three statements are equivalent:

(a) PA = A for almost all P ∈ Specht=1(Λ).

(b) The Pontryagin dual of A has no nonzero pseudo-null Λ-submodules.
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(c) A is an almost divisible Λ-module.

As mentioned before, if P has height 1, then P = (π) where π is an irreducible
element of Λ. The statement that PA = A means that πA = A, i.e., A
is divisible by π. Let Y denote the torsion Λ-submodule of X = Â. Then,
assuming statement (b), one has PA = A if and only if P 6∈ Supp(Y ). In the
definition of “almost divisible,” one can take θ to be any nonzero element of Λ
divisible by all irreducible elements π which generate prime ideals in Supp(Y ),
e.g., θ could be a generator of the characteristic ideal of the Λ-module Y .

One can ask about the behavior of pseudo-null modules under specialization.
Here is one useful result.

Proposition 2.5. Suppose that the Krull dimension of Λ is at least 3 and
that X is a finitely generated, pseudo-null Λ-module. Then there exist in-
finitely many prime ideals P ∈ Specht=1(Λ) such that X/PX is pseudo-null as
a (Λ/P )-module.

Proof. One can consider Λ as a formal power series ring Λo[[T ]] in one variable,
where the subring Λo is a formal power series ring (over either Zp or Fp) in
one less variable. One can choose Λo so that X is a finitely generated, torsion
module over Λo. (See Lemma 2 in [Gr78] if Λ has characteristic 0. The proof
there works if Λ has characteristic p.) Since the Krull dimension of Λo is at
least 2, there exist infinitely many prime ideals Po of Λo of height 1. The
module X/PoX will be a finitely generated, torsion (Λo/Po)-module for all but
finitely many such Po’s. Now Po = (πo), where πo is an irreducible element of
Λo. Clearly, πo is also irreducible in Λ. The ideal P = πoΛ is a prime ideal of
height 1 in Λ. Since X/PX is finitely generated and torsion over Λo/Po, and
Λ/P ∼= (Λo/Po)[[T ]], it follows that X/PX is a pseudo-null (Λ/P )-module. �

One surprising consequence concerns the existence of infinitely many height 1
prime ideals of a different sort.

Corollary 2.5.1. Suppose that Λ has Krull dimension at least 2 and that X
is a finitely generated, pseudo-null Λ-module. Then there exist infinitely many
prime ideals P ∈ Specht=1(Λ) such that P ⊂ AnnΛ(X).

Proof. We will argue by induction. If Λ has Krull dimension 2, the the result
is rather easy to prove. In that case, one has mnΛ ⊂ AnnΛ(X) for some n > 0.
It suffices to prove that mnΛ contains infinitely many irreducible elements which
generate distinct ideals. First consider Λ = Zp[[T ]]. There exist field extensions
of Qp of degree ≥ n. For any such extension F , choose a generator over
Qp which is in a large power of the maximal ideal of F . Then its minimal
polynomial over Qp will be in mnΛ and will be an irreducible elements of Λ. By
varying the extension F or the generator, one obtains the desired irredicible
elements of Λ. The same argument works for Fp[[S, T ]] since the fraction field
of Fp[[S]] also has finite, separable extensions of arbitrarily high degree.
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In the proof of proposition 2.5, it is clear that we can choose the Po’s so that
Λo/Po is also a formal power series ring. The same will then be true for Λ/P .
Now assume that the Krull dimension of Λ is at least 3. Choose two elements
θ1, θ2 ∈ Ann(X) such that θ1 and θ2 are relatively prime. The Λ-module
Y = Λ/(θ1, θ2) is then pseudo-null. Choose P so that Λ = Λ/P is a formal
power series ring and so that Y = Y/PY is a pseudo-null Λ-module. Let θ1
and θ2 denote the images of θ1 and θ2 in Λ. Then Y = Λ/(θ1, θ2) and the fact
that this is pseudo-null means that θ1 and θ2 are relatively prime in that ring.
Clearly, the ideal AnnΛ(Y ) in Λ is generated by θ1 and θ2. We assume that this
ideal contains infinitely many prime ideals of Λ of height 1. Any such prime
ideal has a generator of the form α1θ1+α2θ2, where α1, α2 ∈ Λ are the images
of α1, α2 ∈ Λ, say. Let η = α1θ1 + α2θ2. Then η ∈ AnnΛ(X) and is easily seen
to be an irreducible element of Λ. We can find infinitely many distinct prime
ideals (η) ⊂ AnnΛ(X) in this way. �

C. Reflexive and coreflexive modules. Let m ≥ 0. Suppose that
the ring Λ is either Zp[[T1, ..., Tm]] (which we take to be Zp if m = 0) or
Fp[[T1, ..., Tm+1]], so that the Krull-dimension of Λ is m + 1. Suppose that X
is a finitely generated, torsion-free Λ-module. Let L denote the fraction field
of Λ. Let ΛP be the localization of Λ at P . We can view the localization
XP = X ⊗Λ ΛP as a subset of V = X ⊗Λ L which is a vector space over L of
dimension rankΛ(X). The reflexive hull of X is defined to be the Λ-submodule

of V defined by X̃ =
⋂
P XP , where this intersection is over all prime ideals

P ∈ Specht=1(Λ) and ΛP is the localization of Λ at P . Then X̃ is also a

finitely generated, torsion-free Λ-module, X ⊆ X̃, and the quotient X̃/X is a
pseudo-null Λ-module. Furthermore, suppose that X ′ is any finitely generated,
torsion-free Λ-module such that X ⊆ X ′ and X ′/X is pseudo-null. Since X ′/X
is Λ-torsion, one can identify X ′ with a Λ-submodule of V containing X. Then
X ′ ⊆ X̃. We say that X is a reflexive Λ-module if X̃ = X. This is equivalent
to the more usual definition that X is isomorphic to its Λ-bidual under the
natural map. We will make several useful observations.

Suppose that R is a finite, integral extension of Λ. Let K denote the fraction
field of R. We can define the notion of a reflexive R-module in the same way as
above. IfX is any finitely generated, torsion-free R-module, the R-reflexive hull
of X is the R-submodule of the K-vector space X⊗RK defined by X̃ =

⋂
P XP ,

where P runs over all the prime ideals of R of height 1. This is easily seen to
coincide with the Λ-reflexive hull of X as defined above. One uses the fact that,
with either definition, X̃ is torsion-free as both an R-module and a Λ-module,
X̃/X is pseudo-null as both an R-module and a Λ-module, and X̃ is maximal
with respect to those properties. We can define X to be a reflexive R-module
if X̃ = X. But our remarks justify the following equivalence:

1. An R-module X is reflexive as an R-module if and only if it is reflexive as
a Λ-module.

Thus, it suffices to consider Λ-modules. Suppose that X is a reflexive Λ-
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module and that Y is an arbitrary Λ-submodule of X. Both are torsion-free
Λ-modules, but, of course, the quotient R-module X/Y may fail to be torsion-
free. However, one can make the following important observation:

2. The Λ-module Y is reflexive if and only if X/Y contains no nonzero pseudo-
null Λ-submodules.

This is rather obvious from the properties of the reflexive hull. Since X is as-
sumed to be reflexive, we have Ỹ ⊆ X. Hence Ỹ /Y is the maximal pseudo-null
Λ-submodule of X/Y . Every pseudo-null Λ-submodule of X/Y is contained in

Ỹ /Y . The observation follows from this.

The above observation provides a rather general construction of reflexive Λ-
modules. To start, suppose that X is any reflexive Λ-module and that
rank(X) = r, e.g., X = Λr. If Y is a Λ-submodule of X such that X/Y
is torsion-free, then X/Y certainly cannot contain a nonzero pseudo-null Λ-
submodule. Thus Y must be reflexive. Consider the L-vector space V defined
before. It has dimension r over L. Let W be any L-subspace of V. Let
Y = X∩W. Then rankΛ(Y ) = dimL(W). It is clear that X/Y is a torsion-free
Λ-module and so the Λ-module Y will be reflexive. To see this, first note that
X/Y is a torsion-free Λ-module. Here is one important type of example.

3. Suppose that a group G acts Λ-linearly on a reflexive Λ-module X. Then
Y = XG must also be reflexive as a Λ-module.

This is clear since G will act L-linearly on V and, if we let W denote the
subspace VG, then Y = X ∩W.

Suppose thatm = 0. Then Λ is either Zp or Fp[[T ]]. Both are discrete valuation
rings and have just one nonzero prime ideal, its maximal ideal, which has height
1. The module theory is quite simple, and every finitely generated, torsion-free
Λ-module is free and hence reflexive. However, suppose that m ≥ 1. Then Λ
has infinitely many prime ideals of height 1. They are all principal since Λ is
a UFD. We then have the following useful result. We always take the term
reflexive to include the assumption that the module is finitely generated and
torsion-free.

Proposition 2.6. Assume that m ≥ 1 and that X is a finitely generated
Λ-module.

(a) If X is a reflexive Λ-module and if P ∈ Specht=1(Λ), then X/PX is a
torsion-free (Λ/P )-module.

(b) If X/PX is a torsion-free (Λ/P )-module for almost all P ∈ Specht=1(Λ),
then X is a reflexive Λ-module.

Proof. Suppose first that X is reflexive and that P is any prime ideal of
height 1 in Λ. Then we have P = (π), where π is an irreducible element of
Λ. Therefore, PX = πX is isomorphic to X and hence is also a reflexive
Λ-module. As observed above, it follows that X/PX contains no nonzero
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pseudo-null Λ-submodules. But any finitely generated, torsion (Λ/P )-module
will be pseudo-null when considered as a Λ-module. This is clear because the
annihilator of such a (Λ/P )-module will contain π as well as some nonzero
element of Λ which is not divisible by π. Therefore, X/PX must indeed be a
torsion-free as a (Λ/P )-module, proving part (a).

Now, under the assumptions of (b), we first show that X must be a torsion-free
Λ-module. For if Y is the Λ-torsion submodule of X and if P = (π) is any
height 1 prime ideal, then the snake lemma implies that there is an injective
map Y/PY → X/PX. But, if Y is nonzero, so is Y/PY . Also, if λ ∈ Λ is
a nonzero annihilator of Y , then Y/PY is a torsion (Λ/P )-module for all but
the finitely many prime ideals P of height 1 which contain λ. It follows that
Y = 0. There are infinitely many such P ’s.

Let Z = X̃/X. Then Z is a pseudo-null Λ-module. Assume Z is nonzero.
Then there exist infinitely many prime ideals P = (π) of Λ of height 1 such
that Z[π] is nonzero too. Clearly, Z[π] is a torsion (Λ/P )-module. Consider
the exact sequence

0 → X → X̃ → Z → 0

By the snake lemma, together with the fact that X̃ is a torsion-free Λ-module,
one obtains an injective map Z[π] → X/PX. Therefore, for infinitely many P ’s,
X/PX fails to be torsion-free as a (Λ/P )-module, contradicting the hypothesis.
Hence Z = 0 and X is indeed reflexive. �

The first part of proposition 2.6 is quite trivial for free modules. In fact, if R
is any ring and X is a free R-module, then X/PX is a free (R/P)-module and
will certainly be torsion-free if P is any prime ideal of R.

We often will use proposition 2.6 in its discrete form.

Corollary 2.6.1. Suppose that m ≥ 1 and that A is a cofinitely generated
Λ-module.

(a) If A is a coreflexive Λ-module, then A[P ] is a divisible (Λ/P )-module for
every prime ideal P of Λ of height 1.

(b) If A[P ] is a divisible (Λ/P )-module for almost all P ∈ Specht=1(Λ), then
A must be coreflexive as a Λ-module.

Remark 2.6.2. One simple consequence concerns the case where the Krull-
dimension is 2, i.e. Λ is either Zp[[T ]] or Fp[[S, T ]]. Suppose thatX is a reflexive
Λ-module. The ring Λ/(T ) is isomorphic to either Zp or Fp[[S]], both principal
ideal domains. Since X/TX is a finitely-generated, torsion-free module over
Λ/(T ), it is therefore a free module. Let r = rankΛ(X). Proposition 2.3 implies
that the rank of X/TX over Λ/(T ) is also equal to r. Hence X/TX can be
generated as a Λ/(T )-module by exactly r elements. By Nakayama’s lemma,
X can be generated by r elements as a Λ-module and so it is a quotient of Λr.
It follows that X ∼= Λr. Therefore, we have the following well-known result:
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If Λ has Krull dimension 2, then every reflexive Λ-module is free.

It follows that every coreflexive Λ-module is cofree when Λ has Krull dimension
2.

Remark 2.6.3. One can use proposition 2.6 to give examples of reflexive
Λ-modules which are not free if the Krull dimension of Λ is at least 3. A
torsion-free Λ-module of rank 1 will be isomorphic to an ideal in Λ and it
is known that a reflexive ideal must be principal and hence free. Thus, our
examples will have rank at least 2. We take X = Λr. Let Y be a Λ-submodule
of X with the property that Z = X/Y is a torsion-free Λ-module. Thus, as
observed before, Y will be Λ-reflexive. Suppose that P = (π) is any prime ideal
of Λ of height 1. Then we have an exact sequence

0 −→ Y/PY −→ X/PX −→ Z/PZ −→ 0

of (Λ/P )-modules. We can choose P so that Λ/P is also a formal power se-
ries ring. Assume that Y is actually a free Λ-module. Then both Y/PY and
X/PX would be free (Λ/P )-modules and hence reflexive. Therefore, the quo-
tient module Z/PZ would contain no nonzero pseudo-null (Λ/P )-submodules.
However, it is easy to give examples of torsion-free Λ-modules Z which fail to
have that property. As one simple example, suppose that Z is the maximal
ideal mΛ of Λ. Then Λ/Z is annihilated by π and so we have

πZ ( πΛ ⊂ Z

Thus, πΛ/πZ is a (Λ/P )-submodule of Z/PZ, has order p, and will be a
pseudo-null (Λ/P )-module since that ring has Krull dimension at least 2. Take
r to be the number of generators of Z as a Λ-module and take X as above.
Then one has a surjective Λ-module homomorphism X → Z. If we let Y denote
the kernel of this homomorphism, then Y is a reflexive Λ-module, but cannot
be free.

One can view this remark from the point of view of homological algebra.
Nakayama’s Lemma implies easily that projective Λ-modules are free. Let
d denote the Krull dimension of Λ. Thus, as we just explained, the Λ-module
mΛ cannot have projective dimension 1 if d ≥ 3. In fact, one can show that mΛ

has projective dimension d− 1.

D. Reflexive domains. In general, if R is any commutative integral domain,
we will say that R is a reflexive domain if

R =
⋂

P

RP ,

where P varies over all prime ideal of R of height 1 and RP denotes the local-
ization of R at P. If R contains Λ as a subring and is finitely generated as a
Λ-module, then R is reflexive in the above sense precisely when R is reflexive
as a Λ-module. This is implied by the following result. Note that K = R⊗Λ L
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is the fraction field of R. We define R̃ =
⋂

P RP , where P varies over all prime

ideals of R of height 1. Thus, R̃ is a subring of K containing R and R is a
reflexive domain if and only if R = R̃.

Proposition 2.7. R̃ is the reflexive hull of R as a Λ-module.

Proof. Let P be a prime ideal of Λ of height 1. Let P1, ...,Pg be the prime
ideals P of R such that P ∩ Λ = P . We let RP = R ⊗Λ ΛP , which is the ring
of fractions of R corresponding to the multiplicative set Λ− P . Then RP is a
subring of K. The maximal ideals of RP are PiRP , 1 ≤ i ≤ g . The localization
of RP at PiRP is clearly RPi

and so we have

RP =
⋂

1≤i≤g

RPi

If P is any height 1 prime ideal of R, then P = P
⋂

Λ is a height 1 prime ideal
of Λ. The proposition follows immediately. �

Since R̃ is also a finitely generated Λ-module, and hence an integral extension
of Λ, we get the following corollary (which is actually a standard theorem; see
corollary 11.4 in [E]).

Corollary 2.7.1. If R is integrally closed, then R is reflexive.

Suppose that R is a finite integral extension of Λ. Then it is known that R is
a free Λ-module if and only if R is Cohen-Macaulay. (See proposition 2.2.11 in
[B-H].) Any free Λ-module is reflexive, Thus, if R is Cohen-Macaulay, then R
is reflexive. One simple type of example is R = Λ[θ], where θ is integral over
Λ. Also, if R is regular or Gorenstein, then R is Cohen-Macaulay.

The first part of proposition 2.6 is valid for R-modules if R is assumed to be a
reflexive domain. That is, if X is a finitely generated, reflexive R-module and
P ∈ Specht=1(R), then X/PX is a torsion-free (R/P)-module. The same proof
works once one notes that any prime ideal P of height 1 in a reflexive domain
R must be reflexive as an R-module. This is easily verified.

Suppose that R is a complete Noetherian local ring, but is not necessarily a
domain. We will say that R is a reflexive ring if it has the following properties:
(i) R contains a subring Λ which is isomorphic to a formal power series ring
over either Zp or Fp and (ii) R is a finitely generated, reflexive module over
Λ. One important example arises from Hida theory. The universal ordinary
Hecke algebra h for a given level contains a natural subring Λ isomorphic to the
formal power series ring Zp[[T ]] in one variable and is actually a free Λ-module
of finite rank. Thus this ring h is reflexive, but is not necessarily a domain. In
general, suppose that R satisfies (i) and R is a torsion-free Λ-module. Then R

is a subring of the L-algebra R⊗ΛL and the reflexive hull R̃ of R as a Λ-module
will be a reflexive ring.

E. Different choices of D. In the introduction we considered a free R-
module T and defined D = T ⊗R R̂, a cofree R-module, which we will now
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denote by DR. This construction behaves well under specialization at any ideal
I of R in the following sense. Consider the free (R/I)-module T /IT . Applying
the construction, we get

(T /IT )⊗R/I (̂R/I) ∼= T ⊗R (R̂[I]) ∼= DR[I].

Another construction which will be useful later is to define DΛ = T ⊗Λ Λ̂.
Both constructions can be applied to an arbitrary R-module T . To see the
relationship, note that DΛ

∼= T ⊗R Λ̂R where Λ̂R = R ⊗Λ Λ̂, the R-module
obtained from Λ̂ by extending scalars from Λ to R. We have Λ̂R ∼= R̂ if R is
free as a Λ-module. In that case, it would follow that DR and DΛ are isomorphic
as R-modules. In general, one can only say that DR and DΛ are R-isogenous.
Their R-coranks are equal to rankR(T ).

The Λ-module DΛ is always coreflexive. To see this, let P = (π) be any prime
ideal of height 1 in Λ. Consider the exact sequence induced by multiplication
by π.

0 −→ Λ̂[P ] −→ Λ̂
π

−→ Λ̂ −→ 0

Tensoring over Λ by T , one gets a surjective homomorphism

(T /PT )⊗Λ/P (Λ̂[P ]) −→ DΛ[P ] (3)

Since Λ̂[P ] is (Λ/P )-divisible, so is (T /PT )⊗Λ/P (Λ̂[P ]) and that implies that
DΛ[P ] is a divisible (Λ/P )-module. Corollary 2.6.1 then implies that DΛ is
coreflexive. We also remark that if T is assumed to be a torsion-free Λ-module,
then proposition 2.3 implies that rankΛ/P (T /PT ) and corankΛ/P (DΛ[P ]) are
both equal to rankΛ(T ) and so the map in (3) must be a (Λ/P )-isogeny.

Suppose that T1 and T2 are finitely generated R-modules. Let D1 = T1 ⊗R R̂
and D2 = T2 ⊗R R̂. We then have the following result.

Proposition 2.8. Suppose that φ : T1 → T2 is an R-module homomorphism.
Let ψ : D1 → D2 be the R-module homomorphism determined by

ψ(x⊗ y) = φ(x)⊗ y

for x ∈ T1, y ∈ R̂. Then corankR
(
ker(ψ)

)
= rankR

(
ker(φ)

)
. A similar

equality holds for the cokernels of ψ and φ.

Proof. Let T3 denote the cokernel of φ. Let D3 = T3⊗R R̂. We then have exact
sequences:

T1
φ

−→T2 −→ T3 −→ 0, D1
ψ

−→D2 −→ D3 −→ 0

The second exact sequence follows from the first by tensoring each term with
R̂. Since corankR(Di) = rankR(Ti) for each i, the stated equalities follow
immediately. �

The proposition is also valid if Di is defined to be Ti ⊗Λ Λ̂ instead.
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3 Cohomology Groups.

We consider a rather general situation. Suppose that R is a complete Noethe-
rian local ring with maximal ideal m and finite residue field k of characteristic
p. Suppose that D is a cofinitely generated R-module and that G is a profi-
nite group which acts continuously and R-linearly on D. Then the cohomol-
ogy groups Hi(G,D) are also R-modules. Now D[m] is a finite dimensional
representation space for G over k and hence over Fp. Denote the distinct,
Fp-irreducible subquotients by α1, ..., αt. We will assume throughout that the
cohomology groups Hi(G,αk) are finite for all i ≥ 0 and for all k, 1 ≤ k ≤ t.
This is so if (i) G = GKv

, where Kv is the v-adic completion of a number field
K at any prime v, or if (ii) G = Gal(KΣ/K), where Σ is any finite set of primes
of K.

A. Properties inherited from D. First we prove the following result which
will be useful in subsequent arguments.

Proposition 3.1. Let C = D1/D2, where D1 and D2 are G-invariant R-
submodules of D. Then every Fp-irreducible subquotient of C[m] is isomorphic
to one of the αk’s.

Proof. First note that C is a cofinitely generated R-module, and so C[m] is finite.
Also, D =

⋃
n≥0 D[mn]. It follows that C[m] is a subquotient of D[mn] for some

n. Hence it is enough to prove that the composition factors for the G-module
D[mn] are isomorphic to the αk’s. It suffices to verify this for D[mj+1]/D[mj ]
for all j ≥ 0. Let λ1, ..., λg be a set of generators for the ideal mj . Then one can
define an injective G-homomorphism D[mj+1]/D[mj ] → D[m]g by mapping the
coset of x ∈ D[mj+1] to (λ1x, ..., λgx). The assertion about the composition
factors follows from this. �

Corollary 3.1.1. Let i ≥ 0. If Hi(G,αk) = 0 for all k, 1 ≤ k ≤ t, then
Hi(G, C) = 0 for every subquotient C of D as an R[G]-module.

Proof. The hypothesis implies that Hi(G, C[mn]) = 0 for all n ≥ 0. Since
C = Lim

−→
n

C[mn], it follows that Hi(G, C) = 0 as stated. �

Note that H0(G,D) = DG is just an R-submodule of D, and so is also a
cofinitely generated R-module. More generally, we have

Proposition 3.2. For any i ≥ 0, Hi(G,D) is a cofinitely generated R-module.

Proof. We prove this by induction on the minimal number of generators of the
maximal ideal m. Let λ be one element of such a generating set for m. Consider
the two exact sequences

0 → D[λ] → D → λD → 0, 0 → λD → D → D/λD → 0
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The first is induced by multiplication by λ; the second is obvious. If m is prin-
cipa1, thenD[λ] = D[m] andD/λD = D/mD are both finite, and the hypothesis
that the Hi(G,αk)’s are finite implies that Hi(G,D[λ]) and Hi−1(G,D/λD)
are both finite. Thus the kernels of the two maps

Hi(G,D) → Hi(G,λD), Hi(G,λD) → Hi(G,D)

are both finite. But the composite map D → λD → D is multiplication by λ,
and so the kernel of the composite map Hi(G,D) → Hi(G,λD) → Hi(G,D)
is just Hi(G,D)[λ], which is therefore finite. Thus, Hi(G,D)[m] is finite, and
hence, by Nakayama’s lemma (the version for compact R-modules), Hi(G,D)
is cofinitely generated as a R-module.

If a minimal generating set for m requires g generators, where g > 1, then the
maximal ideal of R/(λ) requires g − 1 generators. The R/(λ)-modules D[λ]
and D/λD are both cofinitely generated. And so, by induction, we can assume
that the R/(λ)-modules Hi(G,D[λ]) and Hi−1(G,D/λD) are also cofinitely
generated. The above argument then shows that theR/(λ)-moduleHi(G,D)[λ]
is cofinitely generated, and hence so is Hi(G,D)[m]. Nakayama’s lemma then
implies that the R-module Hi(G,D) is cofinitely generated. �

Various other properties of D are inherited by the Galois cohomology groups
under certain hypotheses. Some are quite obvious. We assume in the rest of
this section that R is a domain.

If D is R-cotorsion, then so is Hi(G,D).

If D is a co-pseudo-null R-module, then so is Hi(G,D).

As for the properties of divisibility or coreflexivity, these are also inherited
under certain rather stringent hypotheses. We have the following result.

Proposition 3.3. Suppose that i ≥ 0. Suppose that Hi+1(G,αk) = 0 for
1 ≤ k ≤ t.

(a) If D is a divisible R-module, then so is Hi(G,D).

(b) If D is a coreflexive R-module, then so is Hi(G,D).

Note that the hypothesis that the Hi+1(G,αk)’s vanish is true if G has p-
cohomological dimension equal to i. In particular, this hypothesis is true when
i = 2 for G = GKv

, where v is any non-archimedean prime of K, and for
G = Gal(KΣ/K) when p is an odd prime.

Proof. The ring R is a finitely generated module over a formal power series ring
Λ. A finitely generated R-module X is torsion-free as an R-module if and only
if it is torsion-free as a Λ-module. Also, X is reflexive as an R-module if and
only if it is reflexive as a Λ-module. Thus, we may prove the proposition by
using only the Λ-module structure. Prime ideals of Λ of height 1 are principal.
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First we consider divisibility. Let λ ∈ Λ be nonzero. Then we have the exact
sequence

0 → D[λ] → D → D → 0

induced by multiplication by λ. Hence we get an exact sequence

Hi(G,D) → Hi(G,D) → Hi+1(G,D[λ])

The hypothesis in corollary 3.1.1 is satisfied for the index i+ 1 for the module
C = D[λ], and so we have Hi+1(G,D[λ]) = 0. Thus multiplication by λ is
surjective on Hi(G,D), proving part (a) of the proposition.

Now we consider coreflexivity. Let P = (π) be any prime ideal of height 1 in
Λ. It suffices to show that Hi(G,D)[P ] is a divisible (Λ/P )-module for all such
P . Then one can apply corollary 2.6.1 to get the conclusion. Now since D is
Λ-divisible, we get an exact sequence

0 → D[P ] → D → D → 0

induced by multiplication by π. The corresponding cohomology sequence then
gives a surjective map Hi(G,D[P ]) → Hi(G,D)[P ] of (Λ/P )-modules. Corol-
lary 2.6.1 implies that D[P ] is (Λ/P )-divisible, and hence, by part (a), so is
Hi(G,D[P ]). It follows thatHi(G,D)[P ] is indeed divisible as a (Λ/P )-module,
proving part (b). �

B. Behavior under specialization. If I is any ideal of R, then one has an
obvious (R/I)-module homomorphism

Hi(G,D[I]) −→ Hi(G,D)[I] (4)

We will discuss the kernel and cokernel. Since D[I]G = DG[I], this homomor-
phism is an isomorphism when i = 0. If i ≥ 1, the simplest case to study is
when I is a principal ideal and D is a divisible R-module. If I = (ξ), then we
consider the exact sequence induced by multiplication by ξ.

0 −→ D[I] −→ D
ξ

−→D −→ 0

The corresponding map on the cohomology groups is also induced by multipli-
cation by ξ. This gives the exact sequence

0 → Hi−1(G,D)/ξHi−1(G,D) → Hi(G,D[I]) → Hi(G,D)[I] → 0 (5)

Thus, when I is principal and D is divisible, the map (5) will at least be surjec-
tive. It suffices just to assume that D is divisible by the element ξ generating
I. Here is one rather general and useful result for arbitrary ideals, valid even
when D is not assumed to be divisible.

Proposition 3.4. Suppose that D is a cofinitely generated R-module. Let
i ≥ 0. If i > 0, assume that Hi−1(G,αk) = 0 for 1 ≤ k ≤ t. Suppose that I is
any ideal of R. Then the map

Hi(G,D[I]) −→ Hi(G,D)[I]
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is an isomorphism.

Proof. We’ve already remarked that the map is an isomorphism when i = 0.
If i > 0, the assumption implies that Hi−1(G, C) = 0 for every subquotient
C of D as an R[G]-module. Therefore, if D′ is an R[G]-submodule of D, then
Hi−1(G,D/D′) = 0 and so the induced map Hi(G,D′) → Hi(G,D) will be
injective.

Suppose first that I = (λ) is a principal ideal. Multiplication by λ gives an
exact sequence

0 −→ D[λ]
a

−→D
b

−→λD −→ 0

Let α : Hi(G,D[λ]) → Hi(G,D) and β : Hi(G,D) → Hi(G,λD) be the maps
induced from a and b. The map α is injective and its image is the kernel of the
map β. But the map γ : Hi(G,λD) → Hi(G,D) is also injective and so the
maps β and γ ◦β have the same kernel. The map γ ◦β : Hi(G,D) → Hi(G,D)
is just multiplication by λ. Therefore, the image of α is indeed Hi(G,D)[λ],
which proves the proposition if I is principal - an ideal with one generator.

We will argue by induction on the minimum number of generators of I. Sup-
pose that λ1, ..., λg is a minimal generating set for I, where g > 1. Let
J = (λ1, ..., λg−1). Assume that the map Hi(G,D[J ]) → Hi(G,D)[J ] is an
isomorphism. Then so is the map

Hi(G,D[J ])[λg] → (Hi(G,D)[J ])[λg] = Hi(G,D)[I]

Now D[J ][λg] = D[I] and so, applying the proposition to D[J ] and the principal
ideal (λg), as we may, it follows that the map

Hi(G,D[I]) → Hi(G,D[J ])[λg]

is an isomorphism. Composing these isomorphisms, we get the isomorphism
stated in the proposition for I. �

Remark 3.4.1. For i = 1, the assumption in proposition 3.4 is that the
trivial Fp-representation of G is not a composition factor in the Fp[G]-module
D[m]. Assuming this is satisfied, we have H1(G,D[P]) ∼= H1(G,D)[P] for every
prime ideal P of R. Let r = corankR

(
H1(G,D)

)
. Applying remark 2.1.3 to

A = H1(G,D), we see that corankR/P
(
H1(G,D[P ])

)
≥ r for all P and that

equality holds for all P /∈ V (I), where I is some nonzero ideal of R. A similar
statement is true for any i under the assumptions of proposition 3.4.

Remark 3.4.2. Suppose now that R = Λ and that D is a cofree Λ-module.
Assume that P is a regular prime ideal of Λ, i.e., that the local ring Λ/P
is regular. The ideal P can be generated by a regular sequence λ1, ..., λg of
elements of Λ. (See proposition 2.2.4 in [B-H].) Define P0 = (0) and, for
1 ≤ j ≤ g, define Pj = (λ1, ..., λj). Then Pj is a prime ideal for j ≥ 0 and
D[Pj ] is cofree and hence divisible as a (Λ/Pj)-module. Note that if j ≥ 1, then
D[Pj ] = (D[Pj−1])[λj ] and multiplication by λj defines a surjective map on
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D[Pj−1]. The induced map Hi(G,D[Pj ]) −→ Hi(G,D[Pj−1])[Pj ] is surjective.
Hence

corankΛ/Pj

(
Hi(G,D[Pj ])

)
≥ corankΛ/Pj

(
Hi(G,D[Pj−1])[Pj ]

)

On the other hand, remark 2.1.3 implies that

corankΛ/Pj

(
Hi(G,D[Pj−1])[Pj ]

)
≥ corankΛ/Pj−1

(
Hi(G,D[Pj−1])

Since D[P0] = D, we have proved that

corankΛ/P
(
Hi(G,D[P ])

)
≥ corankΛ

(
Hi(G,D)

)

for all regular prime ideals of Λ. In particular, suppose that Λ/P ∼= Zp. Then

corankΛ
(
Hi(G,D)

)
≤ corankZp

(
Hi(G,D[P ])

)
≤ dimFp

(
Hi(G,D[mΛ])

)
.

In the following proposition, we consider D just as a Λ-module and take I = P
to be a prime ideal of height 1. However, the result can be extended to a more
general class of rings R as explained in remark 3.5.2 below.

Proposition 3.5. Suppose that D is a cofinitely generated Λ-module. Let
i ≥ 0. Then, for almost all P ∈ Specht=1(Λ), the kernel and cokernel of the
map

Hi(G,D[P ]) −→ Hi(G,D)[P ]

are cotorsion (Λ/P )-modules and hence Hi(G,D[P ]) and Hi(G,D)[P ] will have
equal (Λ/P )-coranks.

Proof. As already mentioned, the result is obvious for i = 0. We assume
first that D is Λ-divisible. Suppose that i ≥ 1. The map in question is sur-
jective. Let π be a generator of P , which is a principal ideal. Since we are
assuming that D is Λ-divisible, we can use (5) for I = P . As a Λ-module,
Hi−1(G,D)/πHi−1(G,D) is a quotient of the cofinitely generated, cotorsion
Λ-module A = Hi−1(G,D)/Hi−1(G,D)Λ−div. Let J = AnnΛ(A). Then it is
clear that if P does not contain J , then Hi−1(G,D)/πHi−1(G,D) is a cotorsion
(Λ/P )-module. If D is not Λ-divisible, then one notes that D is Λ-isogenous to
DΛ−div and so one can easily reduce to the Λ-divisible case. �

Remark 3.5.1. A similar result holds for the cohomology groups associated
to a finitely generated Λ-module T . We assume that G acts continuously
and Λ-linearly on T and that the cohomology groups Hi(G,α) are finite for
every simple subquotient α of the G-module T /mΛT . The G-module T is now
compact and so we consider the continuous cohomology groups. A discussion of
their properties can be found in [NSW], chapter II, §3. Since T = Lim

←−
n

T /mnT ,

an inverse limit of finite Galois modules, we have

Hi
cts(G, T ) = Lim

←−
n

Hi(G, T /mnT )
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This follows from corollary 2.3.5 in [NSW]. Note that our assumption that the
Hi(G,α)’s are finite is needed for this. It is not hard to show that Hi

cts(G, T )
is a finitely generated Λ-module. If P is a prime ideal of Λ, one has a natural
map Hi

cts(G, T ) → Hi
cts(G, T /PT ). Suppose that P is a prime ideal of height

1. Then we have the following compact version of proposition 3.5.

The kernel and cokernel of the map

Hi
cts(G, T )/PHi

cts(G, T ) −→ Hi
cts(G, T /PT )

are torsion (Λ/P )-modules for almost all P ∈ Specht=1(Λ).

The argument is analogous to that given above. Suppose that P = (π). As-
suming first that T is a torsion-free Λ-module, one considers the exact sequence

0 −→ T
π

−→T −→ T /PT −→ 0

induced by multiplication by π. The map in question is induced by this exact
sequence. It is injective and its cokernel is isomorphic to Hi+1

cts (G, T )[π], which
is a Λ-submodule ofHi+1

cts (G, T )Λ−tors, the torsion Λ-submodule ofHi+1
cts (G, T ).

Therefore, this cokernel is indeed (Λ/P )-torsion for all but the finitely many
P ∈ Specht=1(Λ) containing the annihilator of Hi+1

cts (G, T )Λ−tors. As before,
one easily reduces the general case to the case where T is torsion-free.

Remark 3.5.2. Suppose that D is a cofinitely generated R-module, where
R is a finite, integral extension of Λ. Let K be the field of fractions for R, a
finite extension of the field of fractions L of Λ. We will assume that K/L is a
separable extension. One can prove that the kernel and cokernel of the map

Hi(G,D[P]) −→ Hi(G,D)[P]

will be cotorsion (R/P)-modules for almost all P ∈ Specht=1(R) as follows.
Assume that P ∈ Specht=1(Λ) satisfies the conclusion of proposition 3.5 and is
also unramified for the extension K/L in the following sense: For all P lying
over P , the maximal ideal in the localization RP is generated by P . Fix one
such P. Consider the following commutative diagram

Hi(G,D[P])
α

//

β

��

Hi(G,D)[P]

β′

��

Hi(G,D[P ])
α′

// Hi(G,D)[P ]

The horizontal maps α and α′ are defined in the obvious way. Both ker(α′)
and coker(α′) are (Λ/P )-cotorsion by assumption. Thus, they are annihilated
by some element λ ∈ Λ − P . The inclusion D[P] → D[P ] induces the map
β. Since P is assumed to be unramified, P ⊂ PRP and hence there exists an
element γ ∈ R − P such that γP ⊆ PR. This implies that γD[P ] ⊆ D[P] and
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so γ annihilates D[P ]/D[P]. It follows that ker(β) and coker(β) are annihilated
by γ. It is also clear that β′ is injective and coker(β′) is annihilated by γ. A
diagram chase then implies that ker(α) and coker(α) are annihilated by λγ.
Since this element of R is not in P, it follows that the kernel and cokernel of α
are cotorsion (R/P)-modules. This is true for all P lying over P .

The conclusion of proposition 3.5 is true for almost all P ∈ Specht=1(Λ). It
remains to show that almost all P ∈ Specht=1(Λ) are unramified in K/L. Let
S denote the integral closure of R in K. Then it is known that S is finitely
generated as a Λ-module. (See theorem 6.4 in [D].) Let ω1, ..., ωn be a fixed
basis for K over L contained in R. Then for almost all P ∈ Specht=1(Λ), the
localizations RP and SP coincide and are free ΛP -modules with basis ω1, ..., ωn.
Assume that P has this property. Now ΛP is a discrete valuation ring and
RP = SP is a Dedekind ring. Since K/L is separable, the discriminant of this
extension for the fixed basis is nonzero, and the prime ideal P is unramified if
it doesn’t contain this discriminant. It clearly follows that only finitely many
P ∈ Specht=1(Λ) can be ramified in K/L.

C. Almost divisibility. Suppose that i ≥ 1 and that P = (π) is a prime ideal
of Λ of height 1. Then, according to (5), the map Hi(G,D[P ]) −→ Hi(G,D)[P ]
will be injective if and only if Hi−1(G,D)/πHi−1(G,D) = 0, assuming that D
is divisible by π. Thus, we have the following useful equivalence.

Proposition 3.6. Suppose that D is an almost divisible, cofinitely generated
Λ-module. Let i ≥ 1. Then the Λ-module Hi−1(G,D) is almost divisible if and
only if the map

Hi(G,D[P ]) −→ Hi(G,D)[P ]

is injective for almost all P ∈ Specht=1(Λ).

Here is one important special case.

Proposition 3.7. Suppose that D is a coreflexive Λ-module on which G acts.
Let i ≥ 0. Assume that Hi+2(G,αk) = 0 for 1 ≤ k ≤ t. If Hi+1(G,D) = 0,
then Hi(G,D) is an almost divisible Λ-module.

Proof. By proposition 3.6, it certainly suffices to show that Hi+1(G,D[P ]) = 0
for almost all P ∈ Specht=1(Λ). This follows if we show that Hi+1(G,D[P ]) is
both (Λ/P )-cotorsion and (Λ/P )-divisible. Since Hi+1(G,D) = 0, proposition
3.5 implies the first statement for all but finitely many height 1 prime ideals
P . By corollary 2.6.1, D[P ] is a divisible (Λ/P )-module, and proposition 3.3
then implies the (Λ/P )-divisibility of Hi+1(G,D[P ]) for every height 1 prime
ideal P of Λ. �

D. Replacing R by its reflexive closure. Now suppose that T is a
free R-module of rank n and that G is a group which acts continuously and
R-linearly on T . Then G acts continuously and R̃-linearly on T̃ = T ⊗R R̃. If
R is a finite extension of Λ, then the above proposition implies that T̃ is the
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reflexive hull of T as a Λ-module. Both R and R̃ are complete Noetherian local
rings. As in the introduction, we define discrete G-modules D = T ⊗R R̂ and

D̃ = T̃ ⊗R̃
̂̃
R. Then D is an R-module, D̃ is an R̃-module, both are cofinitely

generated Λ-modules, D is a divisible Λ-module, D̃ is a coreflexive Λ-module,
and there is a surjective G-equivariant Λ-module homomorphism D̃ → D whose
kernel C is a co-pseudo-null Λ-module.

The hypothesis in proposition 3.3 for D and for D̃ are equivalent. To explain
this, let mΛ denote the maximal ideal of Λ, m̃ the maximal ideal of R̃. Then
we can regard D[mΛ] as a finite-dimensional representation space for G over

the residue field Λ/mΛ
∼= Fp and D[m̃] as such a representation space over R̃/m̃

and hence over Fp. We then have the following observation.

Proposition 3.8. The Fp-representations spaces D[m], D̃[m̃], D[mΛ], and

D̃[mΛ] for G have the same irreducible subquotients.

Proof. First note that D is a quotient of D̃. Also, for any nonzero λ ∈ Λ, one
has D̃/D̃[λ] ∼= D̃. One can choose λ so that C ⊆ D̃[λ]. Since D̃/C ∼= D, it is

clear that D̃ is isomorphic to a subquotient of D. Hence proposition 3.1 implies
that D[m] and D̃[m] have the same irreducible subquotients.

Now mΛ ⊆ m and so D[m] ⊆ D[mΛ]. Also, the fact that R/mΛR is finite
implies that mt ⊆ mΛR for some t ≥ 1. Hence D[mΛ] ⊆ D[mt]. Proposition
3.1 again implies that D[mΛ] and D[m] have the same irreducible subquotients.

The same argument applies to D̃[mΛ] and D̃[m̃]. The proposition follows from
these observations. �

The surjective homomorphism D̃ → D induces a map Hi(G, D̃) → Hi(G,D)
for any i ≥ 0. Since Hi(G, C) and Hi+1(G, C) are co-pseudo-null, the same will
be true for both the kernel and the cokernel of that induced map. Proposition
3.3 then has the following consequence.

Proposition 3.9. Suppose that i ≥ 0. Suppose that Hi+1(G,αk) = 0 for

1 ≤ k ≤ t. Then the map Hi(G, D̃) → Hi(G,D) is surjective, Hi(G,D) is

Λ-divisible, Hi(G, D̃) is Λ-coreflexive, and the Pontryagin dual of Hi(G, D̃) is
precisely the reflexive hull of the Pontryagin dual of Hi(G,D).

Proof. Note that Hi+1(G, C) = 0 by proposition 3.8 and corollary 3.1.1.
This implies the surjectivity. The divisibility of Hi(G,D) and coreflexivity

of Hi(G, D̃) follow from propositions 3.8 and 3.3. The Pontryagin dual of
Hi(G,D) is a torsion-free Λ-module which is mapped injectively into the Pon-

tryagin dual ofHi(G, D̃). The corresponding quotient Λ-module is a submodule
of the Pontryagin dual of Hi(G, C), and so it is pseudo-null. The final state-
ment follows from this. �

Remark 3.9.1. If D is not coreflexive, then Hi(G,D) would often fail to be
coreflexive too. Suppose, for example, that i = 1 and that both H0(G,αk) and
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H2(G,αk) vanish for all k, 1 ≤ k ≤ t. Then, if H1(G,D[m]) 6= 0, it follows

that H1(G, C) 6= 0 and that the map Hi(G, D̃) → Hi(G,D) will have a nonzero
kernel. In that case, proposition 3.9 implies that Hi(G,D) is non-reflexive.

E. Relationship between Hi(G,D) and Hi
cts(G, T ). Consider an arbi-

trary finitely generated R-module T on which a group G acts continuously
and R-linearly. We assume that Hi(G,α) is finite for all i ≥ 0 and all simple

subquotients α of the finite G-module T /mT . Let D = T ⊗R R̂.

Proposition 3.10. We have rankR
(
Hi
cts(G, T )

)
= corankR

(
Hi(G,D)

)
for all

i ≥ 0.

Proof. The statement concerns D = DR. Note that the simple subquotients
α of the G-module D[m] are among those for T /mT and so the corresponding
cohomology groups are finite. To prove the equality, it is enough to consider
the rank and corank over the subring Λ of R. We replace DR by DΛ = T ⊗Λ Λ̂.
This module is R-isogenous to DR and so the corresponding cohomology groups
will have the same coranks.

If Λ has Krull dimension 1, then the argument is straightforward. The maximal
ideal mΛ of Λ is then principal. Letting An = T /mnΛT , we have An ∼= D[mnΛ] for
any n ≥ 0. One can relate the rank or corank in question to the growth of the
finite groups Hi(G,An) as n→ ∞. If Λ has Krull dimension > 1, there are in-
finitely many prime ideals of Λ of height 1. We then use an induction argument
on the Krull dimension. Let r = corankΛ

(
Hi(G,D)

)
and s = rankΛ

(
Hi(G, T )

)
.

According to proposition 3.5, the (Λ/P )-corank of Hi(G,D[P ]) will be equal
to r for almost all P ∈ Specht=1(Λ). As pointed out in part E of section 2, one
has a surjective (Λ/P )-homomorphism

(T /PT )⊗Λ/P (̂Λ/P ) → D[P ]

For almost all P ’s, the (Λ/P )-coranks of these modules will be equal, the kernel

will therefore be (Λ/P )-cotorsion, and hence Hi
(
G, (T /PT )⊗Λ/P (̂Λ/P )

)
will

also have (Λ/P )-corank equal to r. We can choose such a P so that Λ/P is
also a formal power series ring. The Krull dimension will be reduced by 1 and
so we assume, inductively, that the (Λ/P )-rank of Hi(G, T /PT ) is equal to
r too. This will be true for an infinite set of P ’s in Specht=1(Λ). However,
according to remark 3.5.1, Hi(G, T /PT ) will have (Λ/P )-rank equal to s for
all but finitely many such P ’s. Therefore, r = s. �

Remark 3.10.1. We want to mention another argument for the case i = 0
based on proposition 2.8. Let D = DR. We will assume that G is topologically
finitely generated. Let g1, ..., gt ∈ G generate a dense subgroup of G. Consider
the map φ : T −→ T t defined by φ(x) =

(
(g1 − 1)x, ..., (gt − 1)x

)
for all

x ∈ T . The induced map ψ : D −→ Dt, as defined in proposition 2.8, is
given by the same formula, but for x ∈ D instead. This definition implies that
ker(φ) = H0(G, T ) and that ker(ψ) = H0(G,D). Proposition 2.8 then implies
the equality of the R-rank and R-corank for these two R-modules.
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A similar argument implies that the R-rank of TG is equal to the R-corank
of DG. These modules are the maximal quotients on which G acts trivially.
Consider the map φ′ : T t −→ T defined by φ′(x1, ..., xt) =

∑t
i=1(gi − 1)xi for

all x ∈ T t. The induced map ψ′ : Dt −→ D is again given by the same formula.
It is easy to see that coker(φ′) = TG and coker(ψ′) = DG. The stated equality
follows from proposition 2.8.

Remark 3.10.2. One can apply remark 2.1.2 to obtain a useful consequence
if we assume that T is a free R-module. Then T t is also a free R-module. Let
φ be the map defined above. If P is a prime ideal of R, then φP is defined by
the same formula as φ. It follows that rankR/P

(
(T /PT )G

)
≥ rankR

(
T G

)
for

every prime ideal P of R. According to proposition 2.1.1, equality holds on a
nonempty Zariski-open subset of Spec(R). Also, note that if (T /PT )G = 0 for
some prime ideal P, then it follows that T G = 0.

4 Coranks.

In this section we will prove theorems concerning Euler-Poincaré characteris-
tics, lower bounds on the R-coranks ofH1 andH2, and the relationship between

the R-coranks of X
1
and X

2
. Assume that R is a finite, integral extension of

Λ. IfX is a finitely generated R-module, then rankΛ(X) = rankR(X)rankΛ(R).
Hence we can derive the formulas for ranks or coranks by considering the var-
ious R-modules as Λ-modules. This simplifies the arguments since the prime
ideals of height 1 in Λ are principal. Thus, we will formulate all the results for
a discrete, cofinitely generated Λ-module D which has a Λ-linear action of the
appropiate Galois groups. Proposition 3.2 implies that the Galois cohomology
groups Hi(KΣ/K,D) and Hi(Kv,D) are also cofinitely generated Λ-modules.
Thus, we can consider their Λ-coranks.

A. Euler-Poincaré characteristics. We assume that D has a Λ-linear
action of Gal(KΣ/K). We will prove the following result.

Proposition 4.1. Let m = corankΛ(D), m−
v = corankΛ(D/D

GKv ) for each
real prime v of K, and let r2 denote the number of complex primes of K. Then

2∑

i=0

(−1)icorankΛ
(
Hi(KΣ/K,D)

)
= −δΛ(K,D)

where δΛ(K,D) = r2m+
∑
v realm

−
v .

For i ≥ 3, we have Hi(KΣ/K,D) = 0 except possibly when p = 2. In fact, the
global-to-local restriction maps induces an isomorphism for i ≥ 3

Hi(KΣ/K,D) ∼=
∏

v|∞

Hi(Kv,D)
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(See [NSW], (8.6.13, ii).) This justifies our remark in the introduction that

X
i
(K,Σ,D) = 0 for i ≥ 3. The right-hand side is trivial if p is an odd prime.

But suppose that p = 2. In that case, if v|∞, then Hi(Kv,D) is of exponent
2 and hence can be regarded as a module over Λ/(2) for any such v. Thus, if
Λ has characteristic 0, then Hi(KΣ/K,D) is a cotorsion Λ-module for i ≥ 3.
However, if Λ is a formal power series ring over F2, then Hi(KΣ/K,D) can
have positive Λ-rank.

We will also state a formula for a local Euler-Poincaré characteristic for every
non-archimedean prime v of K. The cofinitely generated Λ-module D is just
assumed to have a Λ-linear action of GKv

.

Proposition 4.2. Let m = corankΛ(D). Let v be any non-archimedean prime
of K.

(a) If v lies over p, then
∑2
i=0(−1)icorankΛ

(
Hi(Kv,D)

)
= −m[Kv : Qp].

(b) If v does not lie over p, then
∑2
i=0(−1)icorankΛ

(
Hi(Kv,D)

)
= 0.

Both of these propositions will be proved by a specialization argument, reducing
to the case where the Krull dimension of Λ is 1. That case is then rather easy,
derived from the Poitou-Tate formula for the Euler-Poincaré characteristic of
a finite Galois module. The Euler-Poincaré characteristic is additive for an
exact sequence 0 → D1 → D2 → D3 → 0. For any D, we let DΛ−div denote
its maximal Λ-divisible Λ-submodule. Then D/DΛ−div is Λ-cotorsion. Also,
the Euler-Poincaré characteristic for a Λ-cotorsion module is 0. Thus, we can
assume for the proof that D is Λ-divisible. The proofs of the two propositions
are virtually the same and so we will just give the proof of proposition 4.1.

Proof. If the Krull dimension of Λ is 1, then either Λ = Zp or Λ = Fp[[T ]]. In
the first case, the result is known. One determines the Zp-corank by reducing
to the case of the finite modules D[pn], n ≥ 0. In the second case, the argument
would be similar, reducing to the case of the finite modules D[Tn], n ≥ 0. If
the Krull dimension is at least 2, then there are infinitely many prime ideals P
of height 1 such that (Λ/P ) is also a formal power series ring, but with Krull
dimension reduced by 1. By remark 2.1.3, we can choose such a P so that
corankΛ/P (D[P ]) = corankΛ(D) and corankΛ/P (D[P ]GKv ) = corankΛ(D

GKv )
for all archimedean primes v of K. Then δΛ/P (K,D[P ]) = δΛ(K,D) for all such
P . By proposition 3.5 and remark 2.1.3, we can also assume that P has the
property that corankΛ/P

(
Hi(G,D[P ])

)
= corankΛ

(
Hi(G,D)

)
for i = 0, 1, and

2. Choosing a P with all of these properties reduces the proof of proposition
4.1 to the corresponding result for D[P ] considered as a module over the formal
power series ring (Λ/P ). By induction, we are done. �

B. Lower bound on the Λ-corank of H1(KΣ/K,D). We will derive a
lower bound in terms of various local and global H0’s. First we do this for the
Λ-corank of H2(KΣ/K,D). Then applying proposition 4.1 gives a lower bound
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for the Λ-corank of H1(KΣ/K,D). The theorems of Poitou-Tate determine the
cokernel of the map

γ : H2(KΣ/K,D) → P 2(K,Σ,D)

where P 2(K,Σ,D) =
∏
v∈ΣH

2(Kv,D). Usually these theorems are stated for
finite Galois modules. See [NSW], (8.6.13, i) for a complete statement in this
case. But D is a direct limit of the finite Galois modules D[mn] as n→ ∞, and
one can therefore extend these theorems easily. In particular, we have

coker(γ) ∼= H0(KΣ/K, T
∗)∧, (6)

where T ∗ = Hom(D, µp∞). This module is the inverse limit of the finite Ga-
lois modules Hom(D[mnΛ], µp∞) as n → ∞. One can also extend Tate’s local
duality theorem ([NSW], (7.2.6) ), usually stated for finite Galois modules, to
D obtaining, for example, the isomorphisms H2(Kv,D) ∼= H0(Kv, T

∗)∧ for
every non-archimedean prime v of K. When Λ has characteristic 2, it is also
necessary to consider the real archimedean primes since H2(Kv,D) could then
have a positive Λ-corank. If v is such a prime, then the Pontryagin dual of
H2(Kv,D) is Ĥ0(Kv, T

∗) = (T ∗)GKv /(1 + σv)T
∗, where σv is the nontrivial

element of Gv.

We will use the following abbreviations for various ranks and coranks over
Λ. For i ≥ 0, let hi(KΣ/K,D) = corankΛ

(
Hi(KΣ/K,D)

)
. If i = 0, we will

usually write K in place of KΣ/K since the group is then just the GK -invariant
elements. We let h0(K, T

∗) and h0(Kv, T
∗) denote the Λ-ranks of H0(K, T ∗)

and H0(Kv, T
∗), respectively. If v is archimedean, we will let ĥ0(Kv, T

∗)

denote the Λ-rank of Ĥ0(Kv, T
∗). With this notation, we get the following

lower bound for corankΛ
(
H2(KΣ/K,D)

)
:

h2(KΣ/K,D) ≥
∑

v|∞

ĥ0(Kv, T
∗) +

∑

v∈Σ,v∤∞

h0(Kv, T
∗) − h0(K, T

∗) (7)

Equality occurs precisely when X
2
(K,Σ,D) = ker(γ) has Λ-corank equal to

0.

The terms in the quantity δΛ(K,D) (defined in proposition 4.1) are mostly
Λ-ranks of H0’s. For a complex prime v, one obviously has m = h0(Kv, T

∗).
For a real prime v, one sees easily that m−

v = h0(Kv, T
∗) if the characteristic

of Λ is not 2. This is not necessarily so if Λ has characteristic 2. However, in
all cases, one has the following result.

Proposition 4.3. Let b1Λ(K,Σ,D)=h0(K,D)+
∑
v∈Σ h0(Kv, T

∗)−h0(K, T
∗).

Then we have the inequality h1(KΣ/K,D) ≥ b1Λ(K,Σ,D). Equality holds if

and only if X
2
(K,Σ,D) is Λ-cotorsion.

Of course, one can similarly define all the quantities in terms of R-ranks and
coranks. The corresponding lower bound will be denoted by b1R(K,Σ,D).
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Proof. Assume first that either p is odd or, if p = 2, that Λ has characteristic
0. Note that the sum is over all v ∈ Σ, finite and infinite. The contribution to
this sum from the infinite primes is just δΛ(K,D). Indeed, each complex prime
contributes an m. To check the contribution when v is a real prime, let σv be
a generator of Gv. Let βv = 1 + σv, the norm map. Then (T ∗)GKv /βvT

∗ has
exponent 2 and is therefore a torsion Λ-module. Hence (T ∗)GKv and βvT

∗ have
the same Λ-ranks. Since σv acts by inversion on µp∞ , βvT

∗ is the Pontryagin
dual of D/DGKv as a Λ-module. Thus, the contribution from v will be m−

v . It
follows that the contribution from the infinite primes is just δΛ(K,D) and so
the stated inequality then follows from proposition 4.1 together with (7). The

fact that ĥ0(Kv, T
∗) = 0 implies that equality holds if and only if it holds in

(7) and that is equivalent to the vanishing of the Λ-corank of X
2
(K,Σ,D).

Now assume that Λ has characteristic 2. For the complex primes and finite
primes, everything is the same as before. If v is a real prime, then it is still
true that βvT

∗ is the Pontryagin dual of D/DGKv as a Λ-module. Thus, the

Λ-rank of βvT
∗ is m−

v . It follows that h0(Kv, T
∗) = m−

v + ĥ0(Kv, T
∗). Using

that observation, the inequality in proposition 4.3 follows from proposition 4.1
and (7). Equality is again equivalent to the validity of hypothesis L. �

Remark 4.3.1. One can express all the quantities occurring in the in-
equality of the above proposition in terms of the discrete Λ-modules D and
D∗ = T ∗ ⊗Λ Λ̂. Then we have h0(Kv, T

∗) = corankΛ
(
H0(Kv,D

∗)
)
for each

v ∈ Σ and h0(K, T
∗) = corankΛ

(
H0(K,D∗)

)
. These equalities follow from

proposition 3.10 or remark 3.10.1. Note that GKv
is topologically finitely gen-

erated and that the action of Gal(KΣ/K) on T ∗ factors through a quotient
group G satisfying that property.

In theorem 1, we assume that H0(Kvo , T
∗) = 0 for at least one non-

archimedean vo ∈ Σ. Since T ∗ is torsion-free Λ-module in that theorem, an
equivalent assumption would be that h0(Kv, T

∗) = 0 for some such vo. Note
that this assumption obviously implies that H0(K, T ∗) = 0 or, equivalently,
that h0(K, T

∗) = 0.

C. The coranks of X
1
and X

2
. Another part of the Poitou-Tate du-

ality theorems gives a perfect pairing between X
2
for a finite Galois mod-

ule A and X
1
for the “Kummer dual” A∗ = Hom(A,µN ), where N = |A|.

See [NSW], (8.6.8). Taking direct and inverse limits gives a perfect pairing

between X
2
(K,Σ,D) and X

1
(K,Σ, T ∗). As discussed in the introduction,

both groups might be zero in important cases. We prefer to consider X
1
for a

discrete module D∗, but this may often be nonzero even if X
1
(K,Σ, T ∗) = 0.

We can only prove a relationship between the Λ-coranks. It is not even quite
clear how one should define D∗. We have some freedom because the Λ-corank of
X

i
is not changed by a Λ-isogeny of the coefficient module, as we show below.

For the purpose of the following proposition, we define D∗ = T ∗⊗Λ Λ̂, although
this may differ from D∗, as defined in the introduction, by a Λ-isogeny.
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Proposition 4.4. The Λ-coranks of X
2
(K,Σ,D) and X

1
(K,Σ,D∗) are

equal.

We will use the following lemma which is the analogue of proposition 3.5 for

X
i
.

Lemma 4.4.1. Suppose that D is a cofinitely generated Λ-module. Let i ≥ 1.
Then, for almost all P ∈ Specht=1(Λ), both the kernel and the cokernel of the
map

X
i
(K,Σ,D[P ]) −→ X

i
(K,Σ,D)[P ]

will be cotorsion as (Λ/P )-modules. Hence X
i
(G,D[P ]) and X

i
(G,D)[P ]

will have the same (Λ/P )-coranks.

Proof. Applying proposition 3.5 to the global and local cohomology groups
shows that the kernels and cokernels of the maps

Hi(KΣ/K,D[P ]) −→ Hi(KΣ/K,D)[P ], P i(K,Σ,D[P ]) −→ P i(K,Σ,D)[P ]

are Λ-cotorsion for all but finitely many P ’s of height 1. A straightforward
application of the snake lemma implies the result. One uses the fact that the
kernels of both maps and the cokernel of the first map are Λ-cotorsion. �

Now we show that the Λ-corank of X
i
is unchanged by Λ-isogenies. Assume

that D1 and D2 are cofinitely generated Λ-modules with a Λ-linear action of
Gal(KΣ/K) and that φ : D1 → D2 is a Gal(KΣ/K)-equivariant Λ-isogeny.
Then φ induces maps on both the global and local cohomology groups and one
has a commutative diagram

0 // X
i
(K,Σ,D1)

//

α

��
✤

✤

✤

Hi(KΣ/K,D1) //

κ

��

P i(K,Σ,D1)

λ

��

0 // X
i
(K,Σ,D2)

// Hi(KΣ/K,D2)
σ

// P i(K,Σ,D2)

The maps κ and λ are Λ-isogenies. It is clear that the image of X
i
(K,Σ,D1)

under the map κ is contained in the kernel of σ and so the map α corresponding
to the dashed arrow making the diagram commutative does exist. The fact that
κ and λ are Λ-isogenies implies that α is a Λ-isogeny.

Let s2 = corankΛ
(
X

2
(K,Σ,D)

)
, s∗1 = corankΛ

(
X

1
(K,Σ,D∗)

)
. We prove

the equality by induction. If the Krull dimension of Λ is 1, then proposition
4.4 is, as before, rather straightforward to derive from the Poitou-Tate duality
theorems for finite Galois modules. In that case, let V = T ⊗ΛL, V

∗ = T ∗⊗ΛL,
where L is the fraction field for Λ. Thus, L = Qp or L = Fp((T )). One

then verifies that s2 = dimL

(
X

2
(K,Σ,V)

)
and s∗1 = dimL

(
X

1
(K,Σ,V∗)

)
.

Also, the duality theorem asserts that X
2
(K,Σ,V) and X

1
(K,Σ,V∗) are

dual vector spaces, and so the equality s2 = s∗1 follows.
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If the Krull dimension d of Λ is at least 2, we reduce to the case of Krull di-
mension d− 1 by using remark 2.1.3 and the above lemma. These imply that

s2 = corankΛ/P
(
X

2
(K,Σ,D[P ])

)
and s∗1 = corankΛ/P

(
X

1
(K,Σ,D∗[P ])

)

for all but finitely many P of height 1. We may assume, inductively, that

s2 = corankΛ/P
(
X

1
(K,Σ,D[P ]∗)

)
. We can also assume that D is Λ-divisible,

replacing D by its maximal Λ-divisible submodule if necessary. This doesn’t
change s2. Then T ∗ will be a torsion-free Λ-module. Also, D∗ and s∗1 will be
unchanged.

To prove that s∗1 = s2, it is now enough to show that D∗[P ] is (Λ/P )-isogenous
to D[P ]∗. Now Hom(D[P ], µp∞) is isomorphic to T ∗/PT ∗ and so, by definition,

D[P ]∗ ∼= (T ∗/PT ∗)⊗Λ/P (Λ̂/P )

According to (3), we therefore have a surjective map D[P ]∗ → D∗[P ]. The
remark following (3) implies that this map is actually a (Λ/P )-isogeny. �

The most interesting case is as described in the introduction. A somewhat
different proof of proposition 4.4 works nicely in that case, which we will sketch
here. Assume that T is a free R-module and that D = T ⊗R R̂. As above, let
T ∗ = Hom(D, µp∞). We now take D∗ = T ∗ ⊗ R̂. Then, one can verify that D∗

is canonically isomorphic to Hom(T , µp∞). Hence the theorems of Poitou and
Tate can be applied to the dual pair D∗ and T .

One can define X
2
(K,Σ, T ) for the compact R-module T as the kernel of the

homomorphism
γcpt : H

2
cts(KΣ, T ) −→ P 2

cts(K,Σ, T )

where P 2(K,Σ, T ) =
∏
v∈ΣH

2
cts(Kv, T ). The cokernel of γcpt is isomorphic to

H0(K,D∗)∧. If one applies proposition 3.10 to all the global and local terms,
one deduces that the R-rank of ker(γcpt) is equal to the R-corank of ker(γ).
That is,

rankR
(
X

2
(K,Σ, T )

)
= corankR

(
X

2
(K,Σ,D)

)

Now X
1
(K,Σ,D∗) is isomorphic to the Pontryagin dual of X

2
(K,Σ, T ) as

an R-module and so its R-corank must indeed be equal to the R-corank of

X
2
(K,Σ,D).

5 Local Galois cohomology groups.

Suppose that v is a prime of K and that p is any prime number. We assume
that D is a cofinitely generated Λ-module with a Λ-linear action of GKv

. Let
T ∗ = Hom(D, µp∞). We will consider first the local H2 and then various
properties for the local H1. Most results will be for non-archimedean primes.
We discuss the archimedean primes at the end of this section.

A. The structure of H2(Kv,D). If v is non-archimedean, then it is known
that the p-cohomological dimension of GKv

is equal to 2. (See theorem (7.1.8)
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in [NSW].) Proposition 3.3 therefore has the following immediate consequence:

Proposition 5.1. Let v be a non-archimedean prime of K. If D is Λ-divisible,
then H2(Kv,D) is Λ-divisible. If D is Λ-coreflexive, then H2(Kv,D) is Λ-
coreflexive.

The fact that the Λ-module H2(Kv,D) is coreflexive when D is coreflexive can
also be seen as follows. Since the Λ-module T ∗ is reflexive, it follows that
(T ∗)GKv is also reflexive, as observed in section 2, part C. But the Pontryagin
dual of (T ∗)GKv = H0(Kv, T

∗) is H2(Kv,D).

Remark 5.1.1. It is not difficult to give an example where H2(Kv,D) fails to
be Λ-cofree even if D is assumed to be Λ-cofree. This is based on the example
described in remark 2.6.3. We will use the same notation. There we exhibited
a reflexive, but non-free, Λ-submodule Y of X = Λr for some r assuming that
the Krull dimension of Λ is at least 3. Suppose that Λ = Zp[[T1, T2]]. Recall
that Y was the kernel of a Λ-module homomorphism X → Z where Z was
torsion-free and of rank 1. If we choose any injective Λ-module homomorphism
Z → X, then we can regard Y as the kernel of a Λ-module homomorphism
τ : X → X. Choose a basis for the Λ-module X. We will identify τ with the
corresponding matrix. Multiplying τ by an element of Λ, if necessary, we can
assume that τ has entries in mΛ. The kernel will still be Y . Thus, σ = 1 + τ
will be an invertible matrix over Λ. The closed subgroup < σ > of GLr(Λ)
generated topologically by σ will be a pro-p group, either isomorphic to Zp or
to a finite cyclic group of p-power order. In either case, we can easily define
a continuous, surjective homomorphism GKv

→ < σ >. Thus, GKv
acts Λ-

linearly on X. If we let D = Hom(X,µp∞), then D has the desired properties.
Note that this example arises from a representation of GKv

over Λ of rank r.
It is also easy to arrange for this representation to be the restriction to GKv

of
such a representation of Gal(KΣ/K) if v ∈ Σ.

The next result holds for any prime of K, archimedean or non-archimedean.

Proposition 5.2. Let v be any prime of K. Let D be a cofinitely gen-
erated Λ-module. Assume that T ∗/(T ∗)GKv is Λ-reflexive. For almost all
P ∈ Specht=1(Λ), the map

H2(Kv,D[P ]) → H2(Kv,D)

is injective.

Proof. First assume that v is non-archimedean. We take P to be a prime ideal
of height 1 in Λ. To prove injectivity of the map in question, we consider the
adjoint map on the Pontryagin duals: H0(Kv, T

∗) −→ H0(Kv, T
∗/PT ∗). If

we let X = T ∗, then we must prove that the map XGKv −→ (X/PX)GKv is
surjective for all but finitely many P ’s. Let Y = XGKv , the Pontryagin dual
of H2(Kv,D).
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According to proposition 3.5, both the kernel and cokernel of the map in ques-
tion will be (Λ/P )-cotorsion for all but finitely many P ’s. Therefore, the same
will be true for the adjoint map Y/PY → (X/PX)GKv . Let Z = X/Y . By
assumption, Z is a reflexive Λ-module. Now we have an exact sequence of
(Λ/P )-modules:

0 → Y/PY → X/PX → Z/PZ → 0 (8)

and the image of (X/PX)GKv in Z/PZ is (Λ/P )-torsion. Since Z/PZ is a
torsion-free (Λ/P )-module, it is clear that this image must be trivial, i.e. the
map Y/PY → (X/PX)GKv is surjective as we needed to prove.

Suppose now that v is a real prime of K. We again must prove the surjectivity
of the adjoint map: Ĥ0(Kv, T

∗) −→ Ĥ0(Kv, T
∗/PT ∗), involving the modified

H0’s. But these Λ-modules are quotients of the Λ-modules H0(Kv, T
∗) and

H0(Kv, T
∗/PT ∗) considered above. It follows that the adjoint maps will again

be surjective for all but finitely many P ∈ Specht=1(Λ). �

Remark 5.2.1. The assumption that T ∗/(T ∗)GKv is a reflexive Λ-module is
important. In the notation of the above proof, let’s assume that X = T ∗ is
itself reflexive, but that Z = X/Y is not. Thus, the Krull dimension of Λ is

at least 2. Let Z̃ be the reflexive hull of the torsion-free Λ-module Z. Then
U = Z̃/Z is nonzero. Corollary 2.5.1 asserts that there are infinitely many
prime ideals P = (π) of Λ such that U [P ] = U . Since U is pseudo-null as
a Λ-module, U is then a torsion (Λ/P )-module. Multiplication by π induces

an isomorphism U = Z̃/Z → πZ̃/πZ which is a (Λ/P )-submodule of Z/PZ.

Also, Z/πZ̃ is a submodule of the (Λ/P )-module Z̃/πZ̃, which is torsion-free
by proposition 2.6. Thus, the maximal torsion (Λ/P )-submodule of Z/PZ is

isomorphic to U . Let Z ′ = πZ̃ and let X ′ be the inverse image in X of Z ′

under the surjective map X → Z. Then Z ′/PZ ∼= U and we have an exact
sequence derived from (8)

0 → Y/PY → X ′/PX → Z ′/PZ → 0

Since X/PX is a torsion-free (Λ/P )-module (by proposition 2.6) and the image
of Y/PY is contained in (X/PX)GKv , it follows that X ′/PX ⊂ (X/PX)GKv .
Furthermore, if we exclude only finitely many P ’s, we can then assume that the
(Λ/P )-ranks of Y/PY and (X/PX)GKv are both equal to rankΛ(Y ). Then we
have X ′/PX = (X/PX)GKv . It follows that the map Y → (X/PX)GKv will
not be surjective for such P ’s. The cokernel will be isomorphic to U . These
considerations imply the following statement.

If T ∗ is reflexive, but T ∗/(T ∗)GKv is not reflexive as Λ-modules, then there
exist infinitely many prime ideals P ∈ Specht=1(Λ) such that the map
H2(Kv,D[P ]) → H2(Kv,D) has a nonzero kernel.

The kernel of the map will be isomorphic to Û for infinitely many P ’s.
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B. Almost divisibility of H1(Kv,D). Proposition 3.7 has the following
consequence.

Proposition 5.3. Suppose that v is a non-archimedean prime. If D is
Λ-coreflexive and H2(Kv,D) = 0, then H1(Kv,D) is an almost divisible Λ-
module.

Here is a more general result. It follows from proposition 5.2 together with
proposition 3.6.

Proposition 5.4. Suppose that v is any prime of K. Assume that
T ∗/(T ∗)GKv is reflexive as a Λ-module. If D is an almost divisible Λ-module,
then H1(Kv,D) is an almost divisible Λ-module.

Remark 5.2.1 makes it clear that the assumption concerning T ∗/(T ∗)GKv is cru-
cial. The following proposition makes this more precise when D is Λ-coreflexive
and v is non-archimedean.

Proposition 5.5. Let v be a non-archimedean prime. Assume that D is a core-
flexive Λ-module. Then the maximal pseudo-null Λ-submodule of H1(Kv,D)∧

is isomorphic to Z̃/Z, where Z̃ denotes the reflexive hull of the Λ-module
Z = T ∗/(T ∗)GKv .

Proof. Let U = Z̃/Z. Let U ′ denote the maximal pseudo-null Λ-submodule of
H1(Kv,D)∧. There is nothing to prove unless Λ has Krull dimension at least
2. Applying corollary 2.5.1 to the pseudo-null Λ-module U × U ′, we see that
there exist prime ideals P = (π) of Λ such that πU = 0 and πU ′ = 0. We
can also assume that P is not an associated prime for the Λ-torsion submodule
of H1(Kv,D)∧. It follows that H1(Kv,D)∧[P ] = U ′. We therefore have an
isomorphism

H1(Kv,D)/πH1(Kv,D) ∼= ker
(
H2(Kv,D[P ]) −→ H2(Kv,D)[P ]

)

since D is assumed to be Λ-divisible. The choice of P implies that the first
group is precisely the Pontryagin dual of U ′ and, as explained in remark 5.2.1,
the second group is the Pontryagin dual of U . Thus, indeed, U ∼= U ′. �

C. Divisibility of H1(Kv,D). It is rather common for H1(Kv,D) to be
a divisible Λ-module. Proposition 3.3 gives sufficient conditions. The as-
sumption that H2(Kv, α) = 0 for a GKv

-irreducible subquotient α of the
Fp-representation space D[mΛ] means that H0(Kv,Hom(α, µp)) = 0, or, equiv-
alently, that α 6∼= µp. Thus, we need just assume that µp is not a subquotient
of D[mΛ] for the action of GKv

to apply that proposition.

Proposition 5.6. Suppose that v is non-archimedean. Assume that µp is
not a GKv

-subquotient of D[mΛ] and that D is Λ-divisible. Then H1(Kv,D) is
Λ-divisible.

Even if µp is a subquotient of D[mΛ], one can prove divisibility under other
assumptions. Here is one such result.
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Proposition 5.7. Suppose that v is non-archimedean. Assume that D is Λ-
coreflexive. Let D∗ = T ∗ ⊗Λ Λ̂. Assume that H0(Kv,D

∗) is a co-pseudo-null
Λ-module. Then H1(Kv,D) is a divisible Λ-module.

Note that the assumption about H0(Kv,D
∗) implies that H0(Kv, T

∗) = 0
according to proposition 3.10, and hence that H2(Kv,D) = 0. Therefore, we
already know that H1(Kv,D) is an almost divisible Λ-module.

Proof. Let P = (π) be any prime ideal of Λ of height 1. Since H2(Kv,D) = 0,
we must show that H2(Kv,D[P ]) = 0 in order to conclude that H1(Kv,D) is
divisible by π. (See (6) for I = P, i = 2.) Now D[P ] is (Λ/P )-divisible and
hence so is H2(Kv,D[P ]). It therefore suffices to prove that its (Λ/P )-corank
is 0. The Pontryagin dual of this group is (T ∗/PT ∗)GKv . By proposition 3.10,
the rank of this (Λ/P )-module is equal to the corank of the (Λ/P )-module(
(T ∗/PT ∗) ⊗Λ/P (Λ̂/P )

)GKv . As pointed out at the end of section 2, part

E, the map (T ∗/PT ∗) ⊗Λ/P (Λ̂/P ) → D∗[P ] is a (Λ/P )-isogeny and so the
submodules of GKv

-invariant elements have the same (Λ/P )-coranks. Finally,
note that D∗[P ]GKv = (D∗)GKv [P ]. The (Λ/P )-corank of this module is equal
to 0 because the Pontryagin dual of the Λ-module (D∗)GKv has no associated
prime ideals of height 1. �

D. Coreflexivity of H1(Kv,D). Proposition 3.3 immediately gives one
simple sufficient condition for coreflexivity.

Proposition 5.8. Suppose that v is a non-archimedean prime and that µp is
not a GKv

-subquotient of D[mΛ]. If D is Λ-coreflexive, then H1(Kv,D) is also
Λ-coreflexive.

A more subtle result is the following.

Proposition 5.9. Suppose that v is non-archimedean. Assume that D is Λ-
cofree. Let D∗ = T ∗ ⊗Λ Λ̂. Assume that every associated prime ideal for the
Λ-module H0(Kv,D

∗)∧ has height at least 3. Then H1(Kv,D) is a coreflexive
Λ-module.

Proof. Let d denote the Krull dimension of Λ. Let P ∈ Specht=1(Λ) be fixed.
We will denote Λ/P by R′ and D[P ] by D′. Thus, D′ is a cofree R′-module.
Since P is a principal ideal, the ring R′ is a complete intersection and is there-
fore a Cohen-Macaulay ring. (See section 2.3 in [B-H].) It follows that R′

contains a subring Λ′ such that: (i) Λ′ is isomorphic to a formal power series
ring and (ii) R′ is a free, finitely generated Λ′-module. The Krull dimension of
Λ′ is d− 1. Note that D[P ] is cofree and hence coreflexive as a Λ′-module. We
will apply proposition 5.7 to this Λ′-module. For that purpose, the role of T ∗

is played by T ′∗ = T ∗/PT ∗ and D∗ by D′∗ = T ′∗ ⊗Λ′ Λ̂′.

Since T ∗ is Λ-free, the discussion at the beginning of section 2, part E, shows
that T ′∗ ⊗R′ R̂′ is isomorphic to D∗[P ] as an R′-module. Since R′ is free as a

Λ′-module, T ′∗ ⊗R′ R̂′ is isomorphic to T ′∗ ⊗Λ′ Λ̂′ and so D′∗ and D∗[P ] are
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isomorphic. The isomorphisms are GKv
-equivariant. The assumption about

H0(Kv,D
∗) implies that H0(Kv,D

′∗) = H0(Kv,D
∗)[P ] is co-pseudo-null as an

R′-module, and hence as a Λ′-module. Therefore, proposition 5.7 implies that
H1(Kv,D

′) is Λ′-divisible, and hence R′-divisible. That is, H1(Kv,D[P ]) is a
divisible (Λ/P )-module.

Now we have a surjective homomorphism H1(Kv,D[P ]) → H1(Kv,D)[P ].
Therefore, for all P ∈ Specht=1(Λ), the (Λ/P )-module H1(Kv,D)[P ] is also
divisible. Corollary 2.6.1 implies that H1(Kv,D) is indeed coreflexive as a Λ-
module. �

Remark 5.9.2. An example that we have in mind in propositions 5.7 and
5.9 arises from classical Iwasawa theory over the local field Kv. Suppose that
K∞,v/Kv is a Zmp -extension where m ≥ 1. Let Λ = Zp[[Gal(K∞,v/Kv]]. If
v ∤ p, then one can only have m = 1, but if v|p, then m could be as large
as [Kv : Qp] + 1. If D = V/T is a GKv

-module isomorphic to (Qp/Zp)n, let
D = IndK∞,v/Kv

(D). There is a comparison theorem just as stated in the
introduction, but for a local field. We have that H0(Kv,D

∗) is isomorphic as
a Λ-module to H0(K∞,v, D

∗) = D∗(K∞,v). This module has finite Zp-corank
and is often even finite.

Assume first that D∗(K∞,v) is finite. Then the only associated prime ideal
will be mΛ. In that case, propositions 5.7 and 5.9 imply that H1(K∞,v, D) is
a divisible Λ-module for m ≥ 1 and even coreflexive for m ≥ 2. If D∗(K∞,v) is
infinite, then H1(K∞,v, D) is Λ-divisible if m ≥ 2 and Λ-coreflexive if m ≥ 3.

This is not a new result. See lemma 5.4 in [O-V], which even applies to non-
abelian p-adic Lie extensions of a local field. Also, for the case m = 1, more
precise results can be found in section 3 of [Gr89].

E. Cofreeness of H1(Kv,D). We can prove cofreeness under suitable as-
sumptions. Let Z/pZ denote the one-dimension Fp-vector space with trivial
Galois action.

Proposition 5.10. Suppose that v is a non-archimedean prime and that nei-
ther Z/pZ nor µp are GKv

-subquotients of D[mΛ]. If D is a cofree Λ-module,
then H1(Kv,D) is also a cofree Λ-module.

Proof. We can apply proposition 3.4 to conclude that the map

H1(Kv,D[mΛ]) −→ H1(Kv,D)[mΛ]

is an isomorphism. The hypothesis about Z/pZ nor µp means that for ev-
ery GKv

-irreducible subquotient α of the Fp-representation space D[mΛ], we
have H0(Kv, α) = H2(Kv, α) = 0. Hence, by corollary 3.1.1, it follows that
H0(Kv,D) = 0 and H2(Kv,D) = 0. We can then apply proposition 4.2 to de-
termine the Λ-corank of H1(GKv

,D), which will be either equal to 0 if v ∤ p or
equal to [Kv : Qp]corankΛ(D) if v|p. However, we also have H0(Kv,D[mΛ]) = 0
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and H2(Kv,D[mΛ]) = 0. The Euler-Poincaré characteristic formula for the fi-
nite GKv

-module D[mΛ] determines the Fp-dimension of H1(Kv,D[mΛ]). It
will either equal 0 if v ∤ p or equal [Kv : Qp]dimFp

(D[mΛ]) if v|p.

If D is a cofree Λ-module, then corankΛ(D) = dimFp
(D[mΛ]). Thus, the above

observations show that

corankΛ
(
H1(GKv

,D)
)
= dimFp

(
H1(Kv,D[mΛ])

)
= dimFp

(
H1(Kv,D)[mΛ]

)

We now use Nakayama’s lemma. Let r = corankΛ
(
H1(GKv

,D)
)
. Let X be

the Pontryagin dual of H1(GKv
,D). Then X is a finitely generated Λ-module

of rank r and the minimum number of generators of X is dimFp
(X/mΛX),

which is also equal to r. Thus, there is a surjective Λ-module homomorphism
Λr → X. Comparing ranks, it is clear that this map is an isomorphism. Thus,
X is free and so H1(GKv

,D) is indeed cofree as a Λ-module. �

Remark 5.10.1. If v ∤ p, then one could just assume that D is Λ-divisible.
The assumption about Z/pZ and µp implies that Hi(GKv

,D) = 0 for i = 0
and i = 2. Proposition 4.2 then implies that H1(GKv

,D) is Λ-cotorsion. By
proposition 5.6, H1(GKv

,D) is also Λ-divisible and so we haveH1(GKv
,D) = 0,

which is trivially Λ-cofree.

It is worthwhile to point out that the above proof applies with virtually no
change if one assumes that D is a cofree R-module over a complete Noetherian
local domain R. One concludes that, for any non-archimedean v, H1(GKv

,D)
is a cofree R-module under the same hypothesis about Z/pZ nor µp.

F. Local assumptions (a) and (b). Assume now that we are in the situation
described in the introduction. Thus, T is a free R-module of rank n, D = DR
is R-cofree, and T ∗ is R-free. We have several comments about the important
assumption that T ∗/(T ∗)GKv is also R-free. For many results proven in this
section, it suffices to assume that T ∗/(T ∗)GKv is Λ-reflexive, but we don’t know
how to verify such an assumption in itself. Freeness is more accessible.

As a first observation, note that if T ∗/(T ∗)GKv is a free R-module, then it fol-
lows that T ∗ ∼= (T ∗)GKv ⊕ (T ∗/(T ∗)GKv ) as R-modules. Hence, (T ∗)GKv is a
projective R-module and therefore must also be free. Let r = rankR

(
(T ∗)GKv

)
.

It follows, furthermore, that the image of (T ∗)GKv in T ∗/mT ∗ will have di-
mension r over the residue field k = R/m. Conversely, if (T ∗)GKv is free of
rank r and its image in T ∗/mT ∗ has dimension r, then (T ∗)GKv will be a di-
rect summand of T ∗ and the complementary summand, which is isomorphic to
T ∗/(T ∗)GKv will also be R-free.

An important case to consider is D = IndK∞/K(D), where K∞/K is a Zmp -
extension and D = V/T is a Galois module isomorphic to (Qp/Zp)n for some
n ≥ 1. In this case, T is a free Zp-module of rank n and T ∗ ∼= T ∗⊗Zp

Λ, a free Λ-
module of rank n. We take R = Λ. The action of Gal(KΣ/K) on Λ in the tensor
product is given by a homomorphism κ : Gal(KΣ/K) → Γ → Λ× as described
in the introduction. Now if v is a prime of K which splits completely in K∞/K,
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including, in particular, all archimedean primes, then κ|GKv
is trivial. Thus,

the action of GKv
on T ∗ is via the first factor T ∗ in the tensor product. One

sees easily that

(T ∗)GKv ∼= (T ∗)GKv ⊗Zp
Λ, T ∗/(T ∗)GKv ∼=

(
T ∗/(T ∗)GKv

)
⊗Zp

Λ .

Since T ∗/(T ∗)GKv is a torsion-free Zp-module, it is Zp-free. This implies that
T ∗/(T ∗)GKv is indeed a free Λ-module and hence local assumption (a) is sat-
isfied if v splits completely. If v doesn’t split completely in K∞/K, then one
can use remark 3.10.2 to verify that (T ∗)GKv = 0.

In some cases, assumption (a) can be verify by considering just the residual
representation ρ. We illustrate this when n = 2. Thus, ρ is a 2-dimensional
representation over the residue field k. There is nothing to show unless
rankR

(
(T ∗)GKv

)
= 1 and so we assume this is the case. Suppose that ρ|GKv

is
reducible and that the two k×-valued characters that occur are distinct. Then
the same is true for ρ∗ and so it follows that the k-subspace (T ∗/mT ∗)GKv

of T ∗/mT ∗ has dimension 1 and that the action of GKv
on the corresponding

quotient is by a nontrivial character η : GKv
→ k×. One deduces easily that

there exists a finite cyclic subgroup ∆ of GKv
such that p ∤ |∆| and η|∆ is still

nontrivial. Considering just the action of ∆ on T ∗, we see that we have a direct
sum decomposition

T ∗ = (T ∗)ηo ⊕ (T ∗)η

as R-modules, where ηo is the trivial character and η is a “lifting” of η, both
characters of ∆ having values in R×. Since (T ∗)GKv ⊆ (T ∗)∆ = (T ∗)ηo and
T ∗/(T ∗)GKv is a torsion-free R-module, it follows that (T ∗)GKv = (T ∗)ηo ,
which is indeed a direct summand, verifying assumption (a).

Note that if Gv acts on T ∗ through a finite quotient group ∆ whose order is
not divisible by p, then one has (T ∗)GKv = (T ∗)∆, which is again obviously
a direct summand of T ∗. The idempotent eo for the trivial character ηo of
∆ is in the group ring Zp[∆]. One has (T ∗)GKv = eoT

∗ and the complemen-
tary direct summand is (1 − eo)T

∗. In particular, assumption (a) is satisfied
for archimedean primes if p is odd - an unimportant case because the groups
Ĥi(Kv,D) are then trivial.

Now suppose that v is a real prime of K and that p = 2. Otherwise, the
corresponding cohomology groups are all trivial. Let σv denote the nontrivial
element of GKv

. Note that σv(ζ) = ζ−1 for ζ ∈ µp∞ . First assume that
R has characteristic 0. Let αv = σv − 1 which we consider as an R-module
endomorphism of T ∗. Thus ker(αv) = (T ∗)GKv and so assumption (a) is
equivalent to the statement that im(αv) = αv(T

∗) is R-free.

Let βv = σv + 1 be the norm map on T ∗. The Pontryagin dual of H1(Kv,D)
is H1(Kv, T

∗) = ker(βv)/im(αv), a consequence of the local duality theorem
but also easily verified directly from the definitions of these groups. Assume
now that R is a finite, integral extension of Λ and is reflexive. Then T ∗ is a
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reflexive Λ-module. Since T ∗/ ker(βv) is a torsion-free Λ-module, it follows that
ker(βv) is reflexive and that im(αv) is reflexive if and only if ker(βv)/im(αv)
has no nonzero pseudo-null Λ-submodules. That is, T ∗/(T ∗)GKv is a reflexive
Λ-module if and only if H1(Kv,D) is an almost divisible Λ-module. Since
this group has exponent 2, one can simply take θ = 2 in the definition of
almost divisibility, which then simply means that H1(Kv,D) is divisible when
considered as a Λ/(2)-module.

It is easy to give an example where assumption (a) is not satisfied. Suppose
that R = Λ = Z2[[S]] and that T ∗ ∼= Λ2. Suppose that σv acts on T ∗ by the

matrix

[
−1 S
0 1

]
. Then im(αv) is isomorphic to mΛ and is not reflexive. Note

that H1(Kv,D) ∼= Λ/mΛ
∼= F2 in this example. We have just specified the

action of GKv
, but it is not hard to contrive a global representation ρ over Λ

where GKv
acts in this way.

Now assume that R has characteristic 2. Then αv = σv − 1 = βv and α2
v is

the zero-map. We have H1(Kv, T
∗) ∼= ker(αv)/im(αv). Also, im(αv) is the

orthogonal complement of DGKv under the pairing D × T ∗ → µ2. Therefore,
using the notation from the introduction, we have

n−v = corankR(D/D
GKv ) = rankR

(
im(αv)

)
.

If we define n+v = corankR
(
DGKv

)
, then n = n+v +n−v . Since im(αv) ⊆ ker(αv),

it follows that n−v ≤ n+v and H1(Kv, T
∗) has R-rank equal to n+v −n−v . Almost

anything could occur subject to these constraints. One could simply define αv
so that im(αv) ⊆ ker(αv). It could be any R-submodule of T ∗ which has a
generating set of n elements and has R-rank at most n/2. This submodule
could certainly fail to be R-free or Λ-reflexive. Note that (1 + αv)

2 is the
identity map and so we can define an action of GKv

on T ∗ (and hence on D)
by letting σv = 1 + αv.

Finally, we will discuss the verification of assumption (b). Suppose that vo
is a non-archimedean prime in Σ. Since T ∗ is a torsion-free R-module, so is
(T ∗)GKvo . Hence (T ∗)GKvo = 0 if and only if its rank over R is equal to 0.
According to remark 3.10.2, we have the inequality

rankR
(
(T ∗)GKvo

)
≤ rankRP

(
(T ∗/PT ∗)GKvo

)

for every prime ideal P of R. Therefore, it suffices to find just one P such
that (T ∗/PT ∗)GKvo has (R/P)-rank equal to 0, or equivalently, such that
D∗[P]GKvo has (R/P)-corank equal to 0. For example, this may occur for
P = m. In that case, one would have (D∗)GKvo = 0. If the Krull dimension d
of R is at least 2, then there are infinitely many prime ideals P of R of height
d− 1. Then R/P has Krull dimension 1. If DGKvo is indeed R-cotorsion, then
remark 2.1.3 implies that D[P]GKvo = DGKvo [P] is finite for infinitely many
such P’s. Exhibiting one such P is sufficient to verify assumption (b).
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6 Global Galois cohomology groups.

Assume that D is a cofinitely generated Λ-module and that Gal(KΣ/K) acts
Λ-linearly on D, where Σ is a finite set of primes of K containing all primes
above p and ∞. Let T ∗ = Hom(D, µp∞). This section will contain the proof
of theorem 1. It will be a consequence of somewhat more general theorems.
The heart of the matter is to study H2(KΣ/K,D) and certain Λ-submodules
obtained by requiring local triviality at some of the primes in Σ. The almost
divisibility assertion in theorem 1 for H1(KΣ/K,D) will follow easily.

A. The structure of H2(KΣ/K,D) and certain submodules. As-
sume first that p is an odd prime. It is then known that Gal(KΣ/K) has
p-cohomological dimension 2 and so propositions 3.3 has the following imme-
diate consequence.

Proposition 6.1. Assume that p is an odd prime. If D is Λ-divisible, then
H2(KΣ/K,D) is Λ-divisible. If D is Λ-coreflexive, then H2(KΣ/K,D) is Λ-
coreflexive.

We will prove a more general result. The arguments depend on the fundamental
commutative diagram below. We assume that D is a cofinitely generated,
divisible Λ-module. Suppose that Σ′ is any subset of Σ. We make the following
definition:

Hi
Σ′(KΣ/K,D) = ker

(
Hi(KΣ/K,D) →

∏

v∈Σ′

Hi(Kv,D)
)

for i ≥ 1. Since Hi
Σ′(KΣ/K,D) is clearly a Λ-submodule of Hi(KΣ/K,D),

it must also be cofinitely generated. Note that if we take Σ′ = Σ, then

Hi
Σ′(KΣ/K,D) = X

i
(K,Σ,D). However, we will now assume from here on

that there is at least one non-archimedean prime vo in Σ which is not in Σ′.
Thus Σ′ will be a proper subset of Σ. We will also always make the assumption
that D is a cofinitely generated, divisible Λ-module. Here is the fundamental
diagram, where we take P to be any prime ideal of Λ of height 1.

0 // H2
Σ′(KΣ/K,D[P ]) //

δ

��
✤

✤

✤

H2(KΣ/K,D[P ])
σ
//

κ

��

∏
v∈Σ′ H

2(Kv,D[P ]) //

λ

��

0

0 // H2
Σ′(KΣ/K,D) //

ϕ

��

H2(KΣ/K,D) //

χ

��

∏
v∈Σ′ H

2(Kv,D) //

ψ

��

0

0 // H2
Σ′(KΣ/K,D) //

ǫ

��

H2(KΣ/K,D) //

��

∏
v∈Σ′ H

2(Kv,D) //

��

0

0 // H3(KΣ/K,D[P ])
τ
//
∏
v∈Σ′ H

3(Kv,D[P ]) // 0
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The 2nd and 3rd columns of maps in this diagram are induced by the exact
sequence

0 −→ D[P ] −→ D
π

−→D −→ 0

where we have chosen a generator π for P . Thus, those columns are certainly
exact. The maps ϕ, χ and ψ are all just multiplication by π. As for the rows,
the exactness of the last row is part of the Poitou-Tate theorems. (See [NSW],
(8.6.13).) For the other rows, the only issue is the surjectivity of the global-
to-local maps. This follows from the following general lemma since we are
assuming that Σ− Σ′ contains at least one non-archimedean prime vo.

Lemma 6.2. Let vo be any non-archimedean prime in Σ. Then the map

H2(KΣ/K,D) −→
∏

v∈Σ,v 6=vo

H2(Kv,D)

is surjective.

Proof. First consider the case where D, and hence T ∗ = Hom(D, µp∞), are just
finite Gal(KΣ/K)-modules. One has an exact sequence

H2(KΣ/K,D)
γ

−→P 2(K,Σ,D)
α

−→H0(KΣ/K, T
∗)∧,

where P 2(K,Σ,D) =
∏
v∈ΣH

2(Kv,D). The map γ is just the global-to-
local restriction map. Let G denote its image. Let Hvo denote the factor
H2(Kvo ,D) in the product P 2(K,Σ,D). The assertion to be proved is that
GHvo = P 2(K,Σ,D). The map α is the adjoint of the “diagonal” map

β : H0(KΣ/K, T
∗) → P 0(K,Σ, T ∗)

where P 0(K,Σ, T ∗) =
∏
v|∞ Ĥ0(Kv, T

∗) ×
∏
v∈Σ,v∤∞H0(Kv, T

∗). Since G is
the kernel of the map α, its orthogonal complement is the image of β. The
orthogonal complement of Hvo is just the kernel of the natural projection map
πvo : P 0(K,Σ, T ∗) → H0(Kvo , T

∗). The assertion means that the intersection
of these orthogonal complements is trivial. Since vo is non-archimedean, the
map H0(KΣ/K, T

∗) → H0(Kvo , T
∗) is injective. That is, the composite map

πvo ◦ β is injective. This implies that im(β′) ∩ ker(πvo) = 0 which proves the
assertion. In general, D =

⋃
n≥0 D[mnΛ], a union of finite Galois modules, and

the surjectivity therefore follows in general. �

It remains to discuss the maps δ and ǫ. Under the assumptions that we are
making, the equality im(ϕ) = ker(ǫ) is established. It amounts to proving
Λ-divisibility.

Proposition 6.3. If D is a divisible Λ-module, then H2
Σ′(KΣ/K,D) is a

divisible Λ-module.
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Proof. We must show that ϕ is surjective. Applying the snake lemma to the
2nd and 3rd rows gives an exact sequence

ker(χ)
a

−→ ker(ψ) −→ coker(ϕ) −→ coker(χ)
b

−→ coker(ψ)

Since σ is surjective, it follows that the map a is surjective too. Now τ is
injective and so it follows that the map b is also injective. The exact sequence
then implies that coker(ϕ) = 0 as we want. �

Finally, we consider the map δ in the fundamental diagram. The first two rows
in that diagram can be rewritten as follows. We use the letters d, k and l for
the vertical maps corresponding to δ, κ, and λ.

0 // H2
Σ′(KΣ/K,D[P ]) //

d

��

H2(KΣ/K,D[P ])
σ
//

k

��

∏
v∈Σ′ H

2(Kv,D[P ]) //

l

��

0

0 // H2
Σ′(KΣ/K,D)[P ] // H2(KΣ/K,D)[P ] //

∏
v∈Σ′ H

2(Kv,D)[P ]

The maps k and l are surjective. Since k is surjective, the snake lemma gives
us an exact sequence ker(l) −→ coker(d) −→ 0. We can now apply proposition
5.2 to deduce that d is at least sometimes surjective. If so, the first column of
maps in the fundamental diagram will then be exact.

Proposition 6.4. Assume that T ∗/(T ∗)GKv is a reflexive Λ-module for all
v ∈ Σ′. Then, for almost all P ∈ Specht=1(Λ), we have im(δ) = ker(ϕ).

Proof. The assumption concerning T ∗ implies that ker(l) = 0 for almost all
prime ideals of Λ of height 1. It would then follow that coker(d) = 0 and so d
is indeed surjective for those P ’s. �

We can apply this proposition to obtain the following important result.

Proposition 6.5. Assume that T ∗/(T ∗)GKv is a reflexive Λ-module for all
v ∈ Σ′. If D is a coreflexive Λ-module, then H2

Σ′(KΣ/K,D) is also a coreflexive
Λ-module.

Proof. Excluding just finitely many prime ideals P ∈ Specht=1(Λ), the stated
assumptions imply the following statements: The map d will be surjective and
D[P ] will be a cofinitely generated, divisible (Λ/P )-module. Proposition 6.3
implies that H2

Σ′(KΣ/K,D[P ]) is (Λ/P )-divisible for all those P ’s. There-
fore, its image H2

Σ′(KΣ/K,D)[P ] under the map d will also be (Λ/P )-divisible.
Corollary 2.6.1 implies that H2

Σ′(KΣ/K,D) is coreflexive. �

The assumption about T ∗/(T ∗)GKv in theorem 1 is due primarily to our need
for that assumption in propositions 6.5. Since we assume that R is a cofree
Λ-module, the assumption that T ∗/(T ∗)GKv is R-free implies that this module
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is also Λ-reflexive. The other local assumption in theorem 1 is made for the
following simple reason. If (T ∗)GKvo = 0 for some non-archimedean prime
vo ∈ Σ, then we have H2(Kvo ,D) = 0. If we then let Σ′ = Σ − {vo}, it

is clear that X
2
(K,Σ,D) = H2

Σ′(KΣ/K,D). We then can apply the above
propositions to get the following result.

Proposition 6.6. Assume that T ∗/(T ∗)GKv is Λ-reflexive for all v ∈ Σ and
that (T ∗)GKvo = 0 for at least one non-archimedean prime vo ∈ Σ. If D

is Λ-divisible, then X
2
(K,Σ,D) is Λ-divisible. If D is Λ-coreflexive, then

X
2
(K,Σ,D) is Λ-coreflexive.

Thus, all but the final statement is theorem 1 has been proven.

It is interesting to consider the case where Σ′ is as small as possible - just
the set of archimedean primes of K. We will then denote H2

Σ′(KΣ/K,D) by
H2

∞(KΣ/K,D). For any real prime v of K, we let σv denote the nontrivial
element of GKv

. Then propositions 6.3 and 6.5 give the following result. The
content is the same as proposition 6.1 when p 6= 2. Note that the assumption
about (1+σv)D is true when p is odd and is equivalent to the assumption that
T ∗/(T ∗)GKv is reflexive when p = 2.

Proposition 6.7. If D is a divisible Λ-module, then H2
∞(KΣ/K,D) is a

divisible Λ-module. If D is a coreflexive Λ-module and if (1 + σv)D is also
coreflexive for every real prime v of K, then H2

∞(KΣ/K,D) is a coreflexive
Λ-module.

B. The cokernel of γ. The duality theorems of Poitou and Tate have
some interesting and useful consequences concerning the cokernel of the map

γ : H2(KΣ/K,D) −→ P 2(K,Σ,D), the map whose kernel is X
2
(K,Σ,D).

According to (6), coker(γ)∧ ∼= (T ∗)Gal(KΣ/K) which is a Λ-submodule of T ∗.
If T ∗ is Λ-reflexive, then so is (T ∗)Gal(KΣ/K). (See part C in section 2.) Fur-
thermore, proposition 3.10 implies that the Λ-rank of (T ∗)Gal(KΣ/K) is equal to
the Λ-corank of H0(KΣ/K,D

∗). These remarks give us the following results.

Proposition 6.8. If D is Λ-divisible, then coker(γ) is also Λ-divisible. If D
is Λ-coreflexive, then coker(γ) is also Λ-coreflexive.

Proposition 6.9. Assume that D is Λ-divisible and that H0(KΣ/K,D
∗) is

Λ-cotorsion. Then γ is surjective. In general, H0(KΣ/K,D
∗) and coker(γ)

have the same Λ-corank.

One simple case where γ is surjective is if H0(KΣ/K,D
∗[mΛ]) = 0. Then,

of course, H0(KΣ/K,D
∗)[mΛ] = 0, and Nakayama’s lemma implies that

H0(KΣ/K,D
∗) = 0. Another important case is if D is induced from some

D = V/T via a Zmp -extension K∞/K, where m ≥ 1. Then

H0(KΣ/K,D
∗) = H0(KΣ/K∞, D

∗) = D∗(K∞)
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has finite Zp-corank and so is clearly Λ-cotorsion since the Krull dimension of
Λ is greater than 1. More generally, if assumption (b) in theorem 1 holds, then,
as we pointed out in the introduction, it follows that H0(KΣ/K, T

∗) = 0 and
hence that γ is surjective.

C. The structure of H1(KΣ/K,D). We now complete the proof of theorem
1. The hypotheses are somewhat broader and so we state this as a proposition.

Proposition 6.10. Assume that D is Λ-coreflexive, that T ∗/(T ∗)GKv is Λ-
reflexive for all v ∈ Σ, that (T ∗)GKvo = 0 for some non-archimedean vo ∈ Σ,

and that X
2
(K,Σ,D) = 0. Then H1(KΣ/K,D) is an almost divisible Λ-

module.

Proof. The assertion will follow from proposition 3.6 if we show that κ is an
injective map for almost all P ∈ Specht=1(Λ). We have an exact sequence

0 −→ ker(δ) −→ ker(κ) −→ ker(λ)

Proposition 5.2 implies that ker(λ) = 0 for almost all P ∈ Specht=1(Λ). Thus
it suffices to prove the same statement for ker(δ).

If Σ′ = Σ − {vo}, then we have H2
Σ′(KΣ/K,D) = X

2
(K,Σ,D) = 0. Hence,

ker(δ) = H2
Σ′(KΣ/K,D[P ]). Now D[P ] is a divisible (Λ/P )-module for all

P ∈ Specht=1(Λ) and hence proposition 6.3 implies that H2
Σ′(KΣ/K,D[P ]) is

also (Λ/P )-divisible. Therefore, it suffices to prove that the (Λ/P )-corank of
ker(δ) is equal to 0 for almost all P ∈ Specht=1(Λ). It will then follow that
ker(δ) = 0 and hence that κ is injective. Proposition 3.5 implies that the
(Λ/P )-corank of ker(κ) is 0 for almost all P ∈ Specht=1(Λ) and therefore the
same must be true for the submodule ker(δ) = 0. This argument proves that,
under the stated assumptions, H1(KΣ/K,D) is indeed an almost divisible Λ-
module. �

It is worth pointing out that H1(KΣ/K,D) is not necessarily a divisible Λ-
module as the following proposition shows. It is not hard to find examples
satisfying the hypotheses and where at least one of the local factors H1(Kv,D)
for v ∈ Σ′ fails to be Λ-divisible.

Proposition 6.11. Assume that D is Λ-divisible, that p is odd, that
H2(Kv,D) = 0 for all nonarchimedean v ∈ Σ′, and that H2(KΣ/K,D) = 0.
Then the natural map

H1(KΣ/K,D)/H1(KΣ/K,D)Λ−div −→
∏

v∈Σ′

H1(Kv,D)/H1(Kv,D)Λ−div

is surjective.
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If A is a discrete Λ-module, then AΛ−div denotes the maximal Λ-divisible sub-

module of A. If X = Â, then the Pontryagin dual of A/AΛ−div is isomorphic
to the torsion Λ-submodule of X.

Proof. Applying the snake lemma to the two-row commutative diagram above,
it follows that the map ker(k) → ker(l) is surjective. That is, we have a
surjective homomorphism

H1(KΣ/K,D)/PH1(KΣ/K,D) −→
∏

v∈Σ′

H1(Kv,D)/PH1(Kv,D)

for all P ∈ Specht=1(Λ). In general, suppose that A and B are two cofinitely
generated, cotorsion Λ-modules and that ψ : A → B is a Λ-module homomor-
phism with the property that the induced map A/PA → B/PB is surjective
for all P ∈ Specht=1(Λ). This means that ψ(A) + PB = B for all such P ’s.
Let C = coker(ψ), which is also a cotorsion Λ-module. It follows that πC = C
for all irreducible elements of Λ. Thus C is a divisible Λ-module and so C = 0.
This proves the proposition. �

D. A discussion of hypothesis L.One natural way to verify hypothesis L for
a given Galois module D is to show that the inequality in proposition 4.3, which
gives a lower bound b1Λ(K,Σ,D) on the Λ-corank of H1(KΣ/K,D), is actually
an equality. One can often verify this by specialization. For example, suppose
that Λ is a formal power series over Zp inm variables, wherem ≥ 1. Consider a
cofree, cofinitely generated Λ-module D with Λ-corank n. Suppose that P is a
prime ideal such that Λ′ = Λ/P is isomorphic to a formal power series ring over
Zp or Fp in m′ variable, where 0 ≤ m′ ≤ m. (If m′ = 0, we mean that Λ′ ∼= Zp
or Fp. In the latter case, P = mΛ.) Since Λ′ is a regular local ring, remark 3.4.2
can be applied. If the equality corankΛ′

(
H1(KΣ/K,D[P ])

)
= b1Λ(K,Σ,D) can

be verified for one such prime ideal P , then hypothesis L for D would follow.
Of course, it may happen b1Λ′(K,Σ,D[P ]) > b1Λ(K,Σ,D), in which case, the
equality would be impossible. However, remark 3.10.2 implies that there exists
a nonzero ideal I of Λ such that b1Λ′(K,Σ,D[P ]) = b1Λ(K,Σ,D) for all P /∈ V (I).

We will discuss various special cases and give examples where hypothesis L fails
to be true. But it will be clear that these examples are rather special.

Elliptic curves. Suppose that E is an elliptic curve defined over K and that
the Mordell-Weil group E(K) has rank r > [K : Q]. Let sK = r− [K : Q]. Let
p be any prime number and let Σ be a finite set of primes of K containing all
primes lying above p or ∞ and the primes where E has bad reduction. The
Kummer map defines an injective homomorphism

E(K)⊗Z (Qp/Zp) → H1(KΣ/K,E[p∞])

It follows that corankZp

(
H1(KΣ/K,E[p∞])

)
≥ r. In the notation of propo-

sition 4.1, we have δZp
(K,E[p∞]) = [K : Q]. The Euler-Poincaré charac-

teristic formula then implies that corankZp

(
H2(KΣ/K,E[p∞])

)
> 0. But
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H2(Kv, E[p∞]) = 0 for every non-archimedean prime v of K and is fi-
nite for the archimedean primes (trivial if p > 2). Hence it follows that

corankZp

(
X

2
(K,Σ, E[p∞])

)
> 0. Thus hypothesis L fails if R = Zp and

D = E[p∞]. This example corresponds to the representation ρ giving the ac-
tion of Gal(KΣ/K) on the Tate module T = Tp(E).

In this example, the Krull dimension of R is 1. However, one can simply extend
scalars to obtain a “constant” deformation of Tp(E) where R has arbitrary Krull
dimension and hypothesis L still fails to be valid. For example, suppose that
T = Tp(E)⊗Zp

Λ, where Λ is a formal power series ring over Zp in m variables.

We assume that the Galois action on Λ is trivial. Define D = T ⊗Λ Λ̂. If
m ≥ 1, there are infinitely many homomorphism φ : Λ → Zp and one has
Tφ ∼= Tp(E), Dφ

∼= E[p∞] for all such φ. It follows easily (by using lemma 4.4.1

for example) that corankΛ
(
X

2
(K,Σ,D)

)
= corankZp

(
X

2
(K,Σ, E[p∞])

)
.

One natural non-constant deformation to consider was described in the in-
troduction. Suppose that K∞/K is a Zmp -extension, where m ≥ 1, and let

D = IndK∞/K(E[p∞]). It is known in certain cases that rank
(
E(K ′)

)
is un-

bounded as K ′ varies over the finite extensions of K contained in K∞. One can
find a discussion of this phenomenon in [M], [M-R], [Va], and [C], for example.
To produce an example where Hypothesis L fails based on the above discussion,
one would need sK′ = rank

(
E(K ′)

)
− [K ′ : Q] to be unbounded above as K ′

varies. No such examples are known. It is hard to imagine that they could
exist.

Suppose that R = Λ ∼= Zp[[T1, ..., Tm]] and that D[P ] ∼= E[p∞] for some
prime ideal P of Λ, as in the example in the previous paragraph. Note that
both b1Λ(K,Σ,D) and b1Zp

(K,Σ, E[p∞]) equal [K : Q]. Suppose further that

corankZp

(
H1(KΣ/K,E[p∞])

)
= [K : Q], i.e., that hypothesis L holds for D[P ].

Thus, by our initial remarks, hypothesis L would then hold for D. One example
where this happens is if K = Q, E(Q) has rank 1, and the p-primary subgroup
of the Tate-Shafarevich group for E/Q is finite. (See [M-C] for a discussion of
this case.)

As another example, suppose instead that D[P ] ∼= IndKcyc
∞ /K(E[p∞]) for

some prime ideal P of Λ, where Kcyc
∞ denotes the cyclotomic Zp-extension

of K. Assume also that E has ordinary reduction at all the primes of
K lying above p. A conjecture of Mazur asserts that the p-Selmer group
SelE(K

cyc
∞ ) for E over Kcyc

∞ is a cotorsion module over Zp[[Gal(Kcyc
∞ /K)]].

SinceX
1
(Kcyc

∞ ,Σ, E[p∞]) ⊆ SelE(K
cyc
∞ ), Mazur’s conjecture would imply that

X
1
(Kcyc

∞ ,Σ, E[p∞]) is also cotorsion. Now E[p∞]∗ ∼= E[p∞] and so it would
follow that conjecture L holds for D[P ]. It then would hold for D. One special
case is D = IndK∞/K(E[p∞]), where K∞ is a Zmp -extension of K containing
Kcyc

∞ .

A twist of Qp/Zp. Let K denote the maximal real subfield of Q(µp). Assume
that p = 37, an irregular prime. Let Σ be the set of primes of K lying above
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p and ∞. Let M∞ be the maximal abelian pro-p-extension of Kcyc
∞ which is

unramified outside of Σ. Then it is known that X = Gal(M∞/K
cyc
∞ ) ∼= Zp.

The action of Γ = Gal(Kcyc
∞ /K) on X is given by a nontrivial homomorphism

φ : Γ → 1 + pZp. We define ρ : Gal(KΣ/K) → GL1(Zp) to be the composition
of φ with the restriction map Gal(KΣ/K) → Γ. Thus the corresponding Galois
module D is isomorphic to Qp/Zp and Gal(KΣ/K) acts via ρ. We denote this
D by (Qp/Zp)(ρ). Then we have

H1(KΣ/K,D) ∼= H1(KΣ/K
cyc
∞ ,D)Γ ∼= Qp/Zp

The Zp-corank is 1. We have δZp
(K,D) = 0 and so it follows that

corankZp

(
H2(KΣ/K,D)

)
> 0. We again have H2(Kv,D) = 0 for all v ∈ Σ and

so, as in example 1, X
2
(K,Σ,D) fails to be a cotorsion module over R = Zp.

Just as before, one can form a constant deformation of ρ over an arbitrary R
to construct additional examples where hypothesis L also fails to hold. How-
ever, if instead one considers D = IndKcyc

∞ /K((Qp/Zp)(ρ)), a cofree module over
R = Zp[[Γ]] of corank 1, then H1(KΣ/K,D) ∼= Hom(X, (Qp/Zp)(ρ)), which is
isomorphic to Qp/Zp as a group and is a cotorsion R-module. Hypothesis L
holds in this case.

Consider an arbitrary number field K. Let K∞ denote the compositum of all
Zp-extensions of K. Let Γ = Gal(K∞/K), which is isomorphic to Zmp for some
m ≥ 1. Let D = IndK∞/K(D), where D = µp∞ . Thus D is simply the twist of
Qp/Zp by the cyclotomic character χ and D is a cofree module over Λ = Zp[[Γ]]
with corank 1. As we pointed out in the introduction, hypothesis L is true for

D and X
1
(K,Σ,D∗) is essential just the Pontryagin dual of the Galois group

Y = Gal(L
′

∞/K∞). It is conjectured that Y is a pseudo-null module over Λ.

Thus, X
1
(K,Σ,D∗) should even be a co-pseudo-null Λ-module. However, this

module can be nontrivial and it is conceivable that examples where hypothesis
L fails can arise by specialization.

Suppose that P is a prime ideal of Λ which is an associated prime ideal for Y .

Then X
1
(K,Σ,D∗)[P ] will have positive corank over Λ/P . Consider the map

X
1
(K,Σ,D∗[P ]) −→ X

1
(K,Σ,D∗)[P ]

Thus, for such a P , either the cokernel of this map or X
1
(K,Σ,D∗[P ]) will

have a positive (Λ/P )-corank. If it is the latter, then hypothesis L would fail
to be true for the (Λ/P )-module D[P ]. Virtually nothing is known about the
associated prime ideals of Y in general. One can construct examples where Y
has an associated prime ideal P such that Λ/P is of characteristic 0 and has
arbitrarily large Krull dimension. However, the construction is an imitation of
classical genus theory and it is probably the cokernel of the above map which
has positive (Λ/P )-corank. This example illustrates the subtlety of hypothesis
L.

Characteristic p. Let R be a formal power series ring over Fp in any number
of variables. Let Σ′ be a finite set of primes of K containing the primes above
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p and ∞. Suppose that we have a representation ρ : Gal(KΣ′/K) → GLn(R).
Let D be the cofree R-module of corank n with Galois action given by ρ.
We will make the following assumption: there exist infinitely many primes v
of K such that (i) ρ|GΣ′

v
is trivial and (ii) µp ⊂ Kv. Here GΣ′

v denotes the

decomposition subgroup of Gal(KΣ′/K) for any prime of KΣ′ lying above v.
For any prime v satisfying (i) and (ii), it is clear that GKv

acts trivially on
T ∗ = Hom(D, µp). Thus, the R-rank of H0(Kv, T

∗) is n and so the R-corank
of H2(Kv,D) is equal to n. Suppose that Υ = {v1, ...., vt} is a set consisting of
such primes. Let Σ = Σ′ ∪Υ. Then, by (7), we have the following inequality:

corankR
(
H2(KΣ/K,D)

)
≥ (t− 1)n

If we assume that H0(KΣ′/K, T
∗) is a torsion R-module, then we get the

better lower bound tn instead. In either case, it follows that the lower bound
b1R(K,Σ,D) for the R-corank of H1(KΣ/K,D) is unbounded as t→ ∞.

Now let c′ denote the R-corank of
∏
v∈Σ′ H

1(Kv,D). The definition of
H1

Σ′(KΣ/K,D) gives the following inequality:

corankR
(
H1

Σ′(KΣ/K,D)
)

≥ b1R(K,Σ,D)− c′

We can make this corank positive by choosing a sufficiently large set Υ. We will
assume that the primes in Υ do not lie over p. The elements of H1

Σ′(KΣ/K,D)
are locally trivial at all v ∈ Σ′, but could be nontrivial at the primes v ∈ Υ.
However, for each v ∈ Υ, GKv

acts trivially on D. This module is just a vector
space over Fp - a direct sum of copies of the trivial Galois module Z/pZ. Let
Lv denote the maximal abelian extension of Kv such that Gal(Lv/Kv) has
exponent p. Thus [Lv : Kv] = p2. Every element of H1(Kv,Z/pZ) becomes
trivial when restricted to GLv

and so the same thing is true for the elements
of H1(Kv,D).

Choose a finite extension F of K such that, for each v ∈ Υ and for every
prime η lying over v, the completion Fη contains Lv. We will also assume
that F is chosen so that F ∩ KΣ = K. Such a choice is easily seen to be
possible. Suppose that σ ∈ H1

Σ′(KΣ/K,D). Let σ|F denote the image of σ
under the restriction map H1(KΣ/K,D) → H1(FΣF

/F,D). Here ΣF denotes
the set of primes of F lying over those in Σ. This restriction map is easily
seen to be injective. Then σ|F is locally trivial at all primes η ∈ ΣF . That is,

σ|F ∈ X
1
(F,ΣF ,D). It follows that corankR

(
X

1
(F,ΣF ,D)

)
will be positive

and so we do get examples where hypothesis L fails.
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