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Abstract. We construct the Eisenstein measure in several variables on a
quasi-split unitary group, as a first step towards the construction of p-adic
L-functions of families of ordinary holomorphic modular forms on unitary
groups. The construction is a direct generalization of Katz’ construction
of p-adic L-functions for CM fields, and is based on the theory of p-adic
modular forms on unitary Shimura varieties developed by Hida, and on
the explicit calculation of non-degenerate Fourier coefficients of Eisenstein
series.

2000 Mathematics Subject Classification: Primary 11F33, 11R23; Sec-
ondary 14G35

Introduction

This is the first of a projected series of papers devoted to studying the relations
between p-adic L-functions for GL(n) (and unitary groups), congruences be-
tween stable and endoscopic automorphic forms on unitary groups, and Selmer
groups for p-adic representations. The goals of these papers are outlined in the
survey article [HLS]. The purpose of the present installment is to prepare the
ground for the construction of p-adic L-functions in sufficient generality for the
purposes of subsequent applications to congruences and Selmer groups.
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The first general conjectures on the construction of p-adic L-functions for or-
dinary motives were elaborated by Coates in [Co]. The conjectured p-adic
analytic functions of [Co] interpolate the quotients of normalized values of L-
functions at critical points, in the sense of Deligne. The normalization proceeds
in two steps. The critical values are first rendered algebraic, by dividing by
their Deligne periods. Next, they are p-stabilized: the Euler factors at p and
∞ are modified according to a complicated but explicit recipe. Coates’ conjec-
ture is that the resulting values are p-adically interpolated by a p-adic analytic
function of Iwasawa type, associated to a p-adic measure. In our setting, the
Deligne period is generally replaced by a certain Petersson norm or an algebraic
multiple thereof; the relation of this Petersson norm to the Deligne period is
discussed at length in [H3]. In [Pa], Panchishkin points out that Coates’ recipe
can be adapted unchanged for motives satisfying a condition weaker than ordi-
narity, which he calls admissibility and which Perrin-Riou and Greenberg have
called the Panchishkin condition. Although this is somewhat obscured by the
automorphic normalization, we work in the generality of Panchishkin’s admis-
sibility condition. Panchishkin also conjectures the existence of more general
p-adic L-functions in the absence of admissibility; we do not address this ques-
tion.

We work with automorphic forms on the unitary groups of hermitian vector
spaces over a CM field K, with maximal totally real subfield E. We assume
every prime of E dividing p splits in K; we also impose a hypothesis (1.1.2)
linking primes above p to signatures of the unitary group at real places of E.
Unitary groups, unlike GL(n), are directly related to Shimura varieties. We
show that the special values of L-functions of automorphic forms on unitary
groups satisfy the congruences needed for the construction of p-adic L-functions
by appealing to the fact that the corresponding Shimura varieties are moduli
spaces for abelian varieties of PEL type. In this our approach is directly mod-
eled on Katz’s construction [K] of p-adic L-functions for Hecke characters of
CM fields; indeed, for groups of type U(1) our results reduce to those of Katz.

The starting point of Katz’s construction is Damarell’s formula and its general-
izations due to Shimura, which relate the values of arithmetic Eisenstein series
at CM points to special values of L-functions of arithmetic Hecke characters. A
generalization of Damerell’s formula in higher dimensions is the construction of
standard L-functions of unitary groups by the doubling method. This was first
developed systematically in the article [PSR] of Piatetski-Shapiro and Rallis,
though special cases had been discovered independently by Garrett, and a more
thorough development in classical language is contained in the books [S97, S00]
of Shimura. The local theory for unitary groups was ignored in [PSR] but was
worked out in [L2] and [HKS].

Our p-adic L-functions are actually attached to Hida families of nearly ordinary
modular forms on a unitary group G = U(V ). As in [K], the main step is the
construction of an Eisenstein measure on a large unitary group H, attached to
the sum of two copies V ⊕ (−V ) of V . The hermitian form on −V has been
multiplied by −1, so thatH is quasi-split and its associated Shimura variety has
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a point boundary component, stabilized by a maximal parabolic subgroup, the
Siegel parabolic. The Eisenstein series attached to the Siegel parabolic are the
direct generalizations of the classical Eisenstein series onGL(2). The Eisenstein
measure is a p-adic measure on a product T of copies of Z×

p with values in the
algebra of p-adic modular forms on H interpolating such Eisenstein series. The
theory of p-adic modular forms on H was developed by Hida in [Hi04, Hi05].
As in [K], these forms belong to the algebra of functions on the Igusa tower,
which is a rigid analytic étale covering of the ordinary locus of the Shimura
variety attached to H. The existence of the Eisenstein measure relies crucially
on the irreducibility of the Igusa tower; this was established in some generality
by Hida, though easier arguments due to Chai and Hida himself suffice for the
case at hand (cf. [Ch, Hi06]).

The Eisenstein measure associates, by integrating over T with respect to this
measure, p-adic modular forms to continuous functions on T . The integrals
of characters of T of finite order, which determine the measure, are classical
holomorphic (Siegel) Eisenstein series on H and as such are associated to ex-
plicit functions (“sections”) belonging to degenerate principal series induced
from characters of the Siegel parabolic. These sections factor as tensor prod-
ucts of local sections over the primes of E. At almost all finite primes the local
sections are unramified and present no difficulty, and we simplify the theory by
choosing local sections at ramified primes, other than those dividing p, that are
insensitive to p-adic variation of the character of T . With our choice of data,
the Fourier coefficients of the Eisenstein series at a chosen point boundary
component also factor over primes. All the work in constructing the Eisenstein
measure then comes down to choosing local data at primes above p such that
the corresponding local coefficients satisfy the necessary Kummer congruences.
Our strategy for choosing local data follows [K] in making use of a partial
Fourier transform. Unlike in [K], our construction is systematically adelic and
isolates the local considerations at p. The Eisenstein measure is designed to
pair with Hida families – on G × G, not on G itself – and thus depends on
several variables, considerably complicating the calculations.

The doubling method was used by Böcherer and Schmidt in [BS] to construct
standard p-adic L-functions for Siegel modular forms. They do not use p-adic
modular forms; their approach is to construct the p-adic measure directly in
terms of normalized special values of complex L-functions. Their approach ap-
plies to all critical values, unlike the present paper, which avoids reference to
non-holomorphic differential operators (and their p-adic analogues). Presum-
ably their techniques work for quasi-split unitary groups as well. We have not
attempted to compare our results where they can be compared, namely in the
local analysis at the prime p, since our group is locally isomorphic to GL(2n),
in principle much simpler than a symplectic group.

As predicted by Coates, the shape of the modified Euler factor at a prime v
dividing p depends on the p-adic valuations of the eigenvalues of Frobenius at
v. On the other hand, as in [H3], the fact that a critical value of the standard
L-function is an algebraic multiple of a period of an arithmetic modular form on
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the doubled group G×G – in other words, the Petersson norm of an arithmetic
modular form on G – can be expressed in terms of Hodge numbers. Then the
Panchishkin condition, applied to the standard L-function for GL(n)K, roughly
states that, for each v dividing p, the modified Euler factor at v is given by
a natural partition of the Frobenius eigenvalues at v that corresponds to the
signature of the unitary group at real places assigned to v by Hypothesis (1.1.2).
The form of the modified Euler factor at p is thus linked to the real form of
G. This is reflected in the fact that the natural embedding of the Shimura
variety attached to G × G in that attached to H in general does not define a
map of Igusa towers. In order to pair p-adic modular forms on H with p-adic
modular forms on G × G, the natural embedding has to be replaced by a p-
adic translation (cf. (2.1.11)), which is exactly what is needed to provide the
expected modification of the Euler factor.
The main innovation of our construction concerns the zeta integral at p. As
in [K], the use of a partial Fourier transform to define local data at p with
the appropriate congruence properties to construct the Eisenstein measure is
precisely what is needed to obtain the modified Euler factor at p directly as a
local zeta integral, up to some volume factors. For U(1), this was proved by
Katz by direct computation. In general, we obtain the result as an immediate
application of the local functional equation for the Godement-Jacquet integral
representation of the standard L-function of GL(n). These calculations are
presented in Part II.

Why the present construction is not altogether satisfactory.
The first reasons have to do with somewhat arbitrary restrictions on the scope
of our result. We have only constructed the p-adic L-function for holomorphic
automorphic forms of scalar weight. Moreover, for any fixed scalar weight,
we have only studied the p-adic interpolation of the critical values at a fixed
point s0, though we allow the inertial characters at p to vary freely. Relaxing
these restrictions would require the construction of the p-adic analogues of the
classical non-holomorphic weight-raising operators of Maass, as in [K]. There
is no doubt that Katz’s constructions can be generalized, but the paper was
already quite long without this additional generality, which is not necessary for
our intended applications to Selmer groups. Moreover, although Garrett has
determined the special values of the archimedean zeta integrals up to rational
factors in general, his method does not permit identification up to p-adic units
in general.4

As mentioned above, our choice of Eisenstein measure is insensitive to p-adic
variation at ramified primes not dividing p, and the resulting p-adic L-function
is missing its local Euler factors at the corresponding primes. A construction
taking ramification away from p into account would probably require at the very
least a p-integral version of the Godement-Jacquet theory of local zeta integrals

4Shimura calculates the archimedean zeta integrals precisely in [S97], but only for forms of
scalar weight. His scalar weights, unlike those treated here, are non-constant functions on

the set of real primes; thus he is forced to work with Maass operators.
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(at primes not dividing p), based on Vignéras’ modular representation theory
of GL(n) over local fields. We hope to return to this question in the future.
Ignoring a finite number of Euler factors at places prime to p introduces a
bounded error in expected applications to Selmer groups.
There are also local restrictions at primes dividing p. Working with general
r-dimensional Hida families, we expect the values of our p-adic L-functions at
algebraic (classical) points to be explicitly related to normalized special values
of archimedean L-functions. The normalization involves dividing by a complex
period invariant, to which we return momentarily. Our main results assert this
to be the case under certain restrictions: at algebraic points corresponding to
r-tuples of characters lying in a certain positive cone (the regular case); or when
r = 1, where the Hida family is just the family of twists by characters composed
with the determinant; or finally when r ≤ 2 but only along an “anticyclotomic”
direction. This is sufficient for our intended applications but is certainly less
than optimal, and we hope to be able to relax at least the anticyclotomic
condition in the final version of Part II. The restrictions allow us to identify
the specialization of the Hida family at an algebraic point as an explicit vector
in a principal series representation, which can then be used as a test vector in
a local zeta integral.
The most serious defect of our construction is global. The conjectures of [Co]
and [Pa] are expressed in the language of motives, and relate the special values
of the p-adic L-function to the special values of the quotient of an archimedean
L-function by a complex period invariant attached to the motive. In order
for this relation to make sense, one needs to know that this quotient is an
algebraic number, and so the statements of the conjectures of [Co] and [Pa]
require Deligne’s conjecture on the critical values of motivic L-functions as a
preliminary hypothesis.5 Our archimedean L-functions are attached to auto-
morphic forms rather than to motives, and the period invariants are defined,
as in Shimura’s work, as (suitable algebraic multiples of) Petersson norms of
arithmetic holomorphic modular forms on the appropriate Shimura varieties.
The conjectural relation of these Petersson norms to Deligne’s motivic periods,
up to rational factors, is discussed in [H3], at least when the ground field is
Q. Partial results in this direction are obtained in [H4, H5], using an elaborate
inductive argument, based on the theta correspondence, for establishing period
relations between automorphic forms on unitary groups of different signatures.
It is not beyond the realm of imagination that such techniques can eventually
provide relations between Petersson norms up to integral factors, though it may
well be beyond the limits of anyone’s patience. Even the relatively favorable
case of Shimura curves, where no products of periods are involved, required ex-
traordinary efforts on the part of Prasanna [Pr]. However, and this is the most
important point, even assuming integral period relations for Petersson norms,
we still need to compare products of Petersson norms to motivic periods. When

5The more general conjectures of Perrin-Riou concern non-critical values of motivic L-
functions, and the normalizing periods are defined by Beilinson’s conjectures; in general,

this is far beyond the scope of the automorphic theory as it presently stands.
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n = 2 and the ground field is Q, Hida realized long ago that the ratio of the
Petersson norm to the motivic period generates the congruence ideal, and is
itself the specialization of a p-adic L-function. When n > 2 we do not know
how to use the automorphic theory to study the analogous ratios.

Contents of this paper.
To keep this first paper in the series to a reasonable length we have decided to
break it into two parts. Part I, by recalling the theory of p-adic modular forms
on unitary groups and constructing the Eisenstein measure, sets up the ground
work for the construction of the p-adic L-functions.
More precisely, §1 recalls the theory of modular forms on unitary Shimura
varieties, a theory ultimately due to Shimura but presented here in the setting
of [H1]. We present the theory of p-adic modular forms on unitary Shimura
varieties in §2, following Hida’s generalization of the constructions of Deligne
and Katz for GL(2). Most of these results are at least implicitly due to Hida,
but we have highlighted some special features adapted to the embedding of
Igusa towers mentioned above. The calculation of the local coefficients at p of
Eisenstein series occupies the greater part of §3, the rest of which is concerned
with the local coefficients at the remaining places, and the relation of local
to global coefficients, due essentially to Shimura. We conclude §3 with the
construction of the Eisenstein measures.
Part II will develop Hida theory for p-adic modular forms on unitary groups
G, carry out the related zeta-integral calculations from the doubling method,
and complete the construction of p-adic L-functions. It will also establish a
dictionary between the motivic and automorphic normalizations, and in par-
ticular will verify that the modified Euler factors at p are as predicted in [Co]
and [Pa].
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0. Notation and Conventions

Let G be a reductive algebraic group over the number field F . If v is a place of
F we let Gv = G(Qv); if v is archimedean we let gv = Lie(Gv)C. We let G∞
denote

∏
v|∞Gv, the product being over all archimedean places of F , and let

g∞ =
∏

v|∞ gv. In practice we will denote by K∞ a subgroup of G∞ which is

maximal compact modulo the center of G.
We let Q denote the algebraic closure of Q in C. Thus for any number field L
we identify the set ΣL of complex embeddings of L with the set Hom(L,Q).
Let Cp denote the completion of an algebraic closure of Qp, with integer ring

OCp
. We choose once and for all an embedding inclp : Q → Cp, and let Z̄(p) =

incl−1
p (OCp

), the corresponding valuation ring. When necessary, we denote by

incl∞ the given inclusion of Q in C. Via this pair of inclusions, any embedding
τ : L → C of a number field L gives rise to an embedding τp = inclp ◦ τ :
L → Cp.

(0.1) Unitary groups over CM fields.
Let E be a totally real number field of degree d over Q and let K be a totally
imaginary quadratic extension of E, with ring of integers O. Let c ∈ Gal(K/E)
denote the non-trivial automorphism, and εK the character of the idele classes
of E associated to the quadratic extension K. We fix a CM type of K, i.e. a
subset Σ ⊂ ΣK such that Σ

∐
Σc = ΣK.

Let V be an n-dimensional K-vector space, endowed with a non-degenerate
hermitian form < •, • >V relative to the extension K/E. For each σ ∈ ΣK,
< •, • >V defines a hermitian form < •, • >σ on the complex space Vσ =
V ⊗K,σ C. We let (aσ, bσ) denote the signature of the form < •, • >σ. Note
that (acσ, bcσ) = (bσ, aσ) for all σ ∈ ΣK.
The hermitian pairing < •, • >V defines an involution c̃ on the algebra End(V )
via

(0.1.1) < a(v), v′ >V =< v, ac̃(v′) >,

and this involution extends to End(V ⊗Q R) for any Q-algebra R. We define
Q-algebraic groups U(V ) = U(V,< •, • >V ) and GU(V ) = GU(V,< •, • >V )
over Q such that, for any Q-algebra R,
(0.1.2)

U(V )(R) = {g ∈ GL(V ⊗Q R) | g · c̃(g) = 1};
GU(V )(R) = {g ∈ GL(V ⊗Q R) | g · c̃(g) = ν(g) for some ν(g) ∈ R×}.

Thus GU(V ) admits a homomorphism ν : GU(V ) → Gm with kernel U(V ).

There is an algebraic group UE(V ) over E such that U(V )
∼−→ RE/QUE(V ),
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where RE/Q denotes Weil’s restriction of scalars functor. This isomorphism
identifies automorphic representations of U(V ) and UE(V ).
The groups U(V ) (resp. GU(V )) are all inner forms of the same quasi-split
unitary group (resp. unitary similitude group), denoted U0 (resp. GU0). The
group U0 is of the form U(D0, χ̃(∗)0) where D0 is the matrix algebra and

χ̃(∗)0 is an appropriate involution. Then U0,∞ ∼= U(n2 ,
n
2 )

[E:Q] if n is even,

U0,∞ ∼= U(n−1
2 , n+1

2 )[E:Q] if n is odd.

(0.2) Haar measures.
The bulk of this article and its companion, Part II, is devoted to calculations
involving Fourier transforms, zeta integrals, and Petersson inner products of
automorphic forms on the groups U(V ) of (0.1). The integrals are defined with
respect to local and adelic Haar measures. The natural adelic Haar measure
on G = UE(V ) is Tamagawa measure dτg, associated to an invariant top dif-
ferential ω rational over E on G. Let δ(E) denote the discriminant of E. The
adelic Tamagawa measure dτg factors up to normalization as a product of local
measures

(0.2.1) dτg = |δ(E)|− dimG
2 L(1, εK)

−1
∏

v

dτgv

where dτgv is the measure defined by ωv if v is real and by Lv(1, εK)ωv if v
is finite. The Tamagawa number τ(G) of G is vol(G(Q)\G(A), dτg) = 2. For
finite v the volume of any compact open set with respect to dτgv is always a
rational number.
An alternative measure, traditionally used in the calculation of zeta integrals,
is dg =

∏
v dgv where dgv = dτgv for archimedean v but dgv is chosen to

give volume 1 to a hyperspecial maximal compact subgroup Kv at almost all
finite primes. Let SG be the set of finite places v of E where ωv is not an
OE,v generator of the module of top differentials; in particular, the group G is
unramified at v /∈ SG and so G(Ev) has hyperspecial maximal compacts. The
relation is

(0.2.2) dτgv = Lv(1, εK) ·Av(n)dgv, Av(n) = (qv)
− dimG · |Gv(kv)|

where Gv is the smooth reductive group scheme over Spec(OE,v) associated to
the hyperspecial subgroup Kv. If for v ∈ SG (which includes the finite places
where G has no hyperspecial maximal compact) we arbitrarily set d∗gv = dgv
for v ∈ SG, then

(0.2.3) vol(G(Q)\G(A), dg))/vol(G(Q)\G(A), dτg) =

= |δ(E)| dimG
2 ·

∏

v/∈SG

Av(n)
−1 =

n∏

j=1

LSG(j, εjK)

where LSG denotes the partial L-function with the factors at SG removed.
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Given an open compact subgroup K ⊂ G(Af ), we let dµK(g) be the Haar
measure that gives each connected component of KS(G) = G(Q)\G(A)/K∞K
total volume 1, for any maximal compact subgroup K∞ ⊂ G(R). When V is
totally definite, so G(R) = K∞, dµK(g) is counting measure on the finite set

KS(G). In general,

(0.2.4) dµK(g) =
C(G,K)

2
dτg

where the class number C(G,K) = |π0(KS(G)| can be determined explicitly.

1. Automorphic forms on unitary groups

(1.1) Ordinary primes for unitary groups.

Let (V,< •, • >V ) be a hermitian pairing as in (0.1). Let p be a rational prime
which is unramified in K (hence in particular in the associated reflex field
E(V )), and such that every divisor of p in E splits completely in K. Choose
an inclusion inclp : Q →֒ Cp as above. Composition with inclp defines an

identification ΣK
∼−→ Hom(K,Cp), hence for every τ ∈ Hom(K,Cp) we can

define a signature

(1.1.1) (aτ , bτ ) = (aσ, bσ) if τ = inclp ◦ σ.

We assume the triple (Σ, inclp, (aσ, bσ)σ∈ΣK
) to be ordinary in the following

sense:

(1.1.2) Hypothesis. Suppose σ, σ′ ∈ Σ have the property that inclp ◦ σ and
inclp ◦ σ′ define the same p-adic valuations. Then aσ = aσ′ .

When aσ = n for all σ ∈ Σ – this is the definite case, to be described in detail
later – or more generally, when aσ = a for all σ ∈ Σ is constant, this comes
down to the following hypothesis, used by Katz in the case n = 1:

(1.1.3) Hypothesis. For σ, σ′ ∈ Σ, the p-adic valuations defined by inclp ◦ σ
and inclp ◦ σ′ċ are distinct.

As Katz observes in [K], our hypotheses on p guarantee that Σ’s satisfying
(1.1.2) exist.
We let Σp denote the set inclp ◦ σ | σ ∈ Σ} of Cp-embeddings of K. Complex
conjugation c acts on the set of primes of K dividing p, and the set of all such
primes of K is the disjoint union

(1.1.4) Hom(K,Cp) = Σp

∐
Σpc.

Hypothesis (1.1.2) was suggested by Fargues, who observed that it is equivalent
to the condition that the completion of the reflex field of the Shimura variety
attached to G (see §1.2) at the place defined by inclp is Qp. This is in turn
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equivalent, by a criterion of Wedhorn [We], to the condition that the ordinary
locus of the completion of the Shimura variety at inclp is non-empty (see (2.1.7),
below). We reformulate the elementary condition (1.1.2) in equally elementary

terms. We have a canonical isomorphism Vp
∼−→ ⊕w|p Vw where Vw = V ⊗K

Kw. Let Vp,Σp
and Vp,Σpc be, respectively, the preimages of the subspaces

⊕w|p,w∈Σp
Vw and ⊕w|p,w∈ΣpcVw, where the notation w ∈ Σp designates those

w such that w is the valuation determined by some σp ∈ Σp. In particular,

(1.1.5) Vp,Σp

∼−→ ⊕w|p,w∈Σp
Vw.

The fact that all primes of E above p split in K/E is equivalent to the condition
that the Qp-vector space Vp = RK/QV ⊗Q Qp decomposes Qp-rationally as
Vp = Vp,Σp

⊕ Vp,Σpc. The decomposition (1.1.5) is tautologically Qp-rational.
For any w dividing p, let

Σw = {σ ∈ ΣK | σp = w}.

Equivalent to (1.1.2) is the hypothesis:

(1.1.6) Hypothesis. There is a Qp-rational K ⊗Q Qp-submodule W (sig) ⊂
Vp,Σp

(resp. F 0Vp ⊂ Vp) such thatW (sig) = ⊕w|p,w∈Σp
W (sig)w (resp. F 0Vp =

⊕w|pF
0Vw) with dimW (sig)w = aσ for any σ ∈ Σ (resp. dimF 0Vw = aσ for

any σ ∈ Σw).

In the definite case we just have W (sig) = Vp,Σp
. Under hypothesis (1.1.2) we

write (aw, bw) = (aσ, bσ) for any σ ∈ Σw.

(1.2) Shimura varieties and automorphic vector bundles.

Let (V,< •, • >V ) be an n-dimensional hermitian space over K as above. As
in [H4], we let −V denote the space V with hermitian form < •, • >−V = − <
•, • >V and 2V denote the doubled hermitian space V ⊕ (−V ) with hermitian
form the sum of < •, • >V and < •, • >−V . We define U(2V ) and GU(2V ) as
in (1.1); in particular, GU(2V ) denotes the rational similitude group.
The stabilizer in U(2V ) of the direct sum decomposition 2V = V ⊕ (−V )
is naturally isomorphic to the product U(V ) × U(−V ), embedded naturally
in U(2V ). Similarly, the stabilizer in GU(2V ) is isomorphic to the subgroup
G(U(V )× U(−V )) ⊂ GU(V )×GU(−V ), defined by

(1.2.1) G(U(V )× U(−V )) = {(g, g′) ∈ GU(V )×GU(−V ) | ν(g) = ν(g′)}.

Let (W,< •, • >W ) be any hermitian space over K. To the group G = GU(W )
one can canonically attach a Shimura datum (G,X), and hence a Shimura
variety Sh(W ) = Sh(G,X), as follows. For each σ ∈ Σ, let (aσ, bσ) denote
the signature of the hermitian form induced by < •, • >W on the complex
space Wσ = W ⊗K,σ C. Let GU(aσ, bσ) = GU(Wσ) denote the real unitary
similitude group, and let Xaσ,bσ denote the GU(aσ, bσ)(R)-conjugacy class of
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homomorphisms RC/RGm,C → GU(aσ, bσ) defined in [H4, p. 143]. The prod-

uct X = X(W ) =
∏

σ∈ΣX
aσ,bσ is naturally a G(R)-conjugacy class of homo-

morphisms RC/RGm,R → GR, and the pair (G,X) satisfies the axioms of [D]
defining a Shimura variety – unless Wσ is definite for all σ, in which case one
can attach a zero-dimensional Shimura variety to (G,X) all the same, as in
[H3]. We recall that the complex-valued points of Sh(G,X) are given by

(1.2.2) Sh(G,X)(C) = lim←−
K

G(Q)\X ×G(Af )/K,

where K runs over open compact subgroups of G(Af ). We let KSh(G,X)
denote the associated variety whose complex points are given by G(Q)\X ×
G(Af )/K.
If W ′ is a second hermitian space, the above construction applies to groups
of the form G(U(W ) × U(W ′)), defined by analogy with (1.2.1), yielding a
Shimura datum (G(U(W )×U(W ′)), X(W,W ′)). With the above conventions,
it is immediate that the natural map G(U(W ) × U(W ′)) → GU(W ⊕ W ′)
defines a map of Shimura data (G(U(W ) × U(W ′)), X(W,W ′)) → G(U(W ⊕
W ′)), X(W ⊕W ′)), hence a morphism of Shimura varieties

(1.2.3) Sh(W,W ′) = Sh((G(U(W )× U(W ′)), X(W,W ′))) → Sh(W ⊕W ′).

When E = Q, this is worked out in detail in [H4]. In particular, we obtain a
map

(1.2.4) Sh(V,−V ) → Sh(2V ).

The group GU(2V ) is always quasi-split; in particular, up to isomorphism, it
does not depend on the choice of V of dimension n. The corresponding Shimura
variety always has a canonical model over Q. The more general Shimura vari-
eties Sh(W ), Sh(W,W ′) are defined over reflex fields E(W ), E(W,W ′), respec-
tively, of which one can only say in general that they are contained in the Galois
closure of K over Q. It is easy to see, however, that E(V,−V ) = E(V ), and the
general theory of canonical models implies that the map (1.2.4) is rational over
E(V ). If E = Q then K is a quadratic imaginary field, and E(V ) = K unless V
is quasi-split, in which case E(V ) = Q. When V is a definite hermitian space,
E(V ) is the reflex field E(K,Σ) of the CM type (K,Σ).
We will be working with holomorphic automorphic forms on G, when G is of
the form G = GU(W ) or GU(W,W ′). These are constructed as follows; for
details, see [H1]. Let K∞ ⊂ G(R) be the stabilizer of a point x ∈ X (= X(W )
or X(W,W ′)); thus K∞ contains a maximal connected compact subgroup of
G(R), as well as the real points of the center ZG of G. In fact, K∞ is the
group of real points of an algebraic subgroup, also denoted K∞, of G, the
centralizer of the torus x(RC/RGm,C). Moreover, the derived subgroup of G is
simply connected, hence K∞ is connected. Hence one can speak of algebraic
representations of K∞ and their extreme weights. If τ : K∞ → GL(Wτ ) is an
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algebraic representation, then there exists a holomorphic vector bundle [Wτ ]
on Sh(G,X); more precisely, there exists a canonical holomorphic structure on
the C∞ vector bundle

(1.2.5) [Wτ ] = lim←−
K

G(Q)\G(R)×Wτ ×G(Af )/K∞K,

where K∞ acts on the right on G(R) and on the left on Wτ , yielding a natural
map to

lim←−
K

G(Q)\G(R)×G(Af )/K∞K = lim←−
K

G(Q)\X ×G(Af )/K = Sh(G,X)(C).

A holomorphic automorphic form on G of type τ is a global section f ∈
H0(Sh(G,X), [Wτ ]); when G contains a rational normal subgroup isogenous
to SL(2)Q one needs to add a growth condition at infinity. The representation
τ is included in the notation for [Wτ ], but is superfluous; [Wτ ] can be defined
without reference to a choice of K∞ (or, equivalently, a choice of p ∈ X),
and has a canonical model rational over a number field E(Wτ ), containing the
reflex field E(G,X), and attached canonically to the set of extreme weights
of Wτ . In particular, the space H0(Sh(G,X), [Wτ ]) has a canonical rational
structure over E(Wτ ). However, since we have chosen K∞, we can also realize
holomorphic automorphic forms of type τ as Wτ -valued functions on the adèle
group of G via (1.2.5). Let A(G) denote the space of automorphic forms on
G(Q)\G(A). Then
(1.2.6)

H0(Sh(G,X), [Wτ ])
∼−→ Ahol,τ (G) := {f ∈ (A(G)⊗Wτ )

K∞ | p−f = 0},

canonically. Here

(1.2.7) g∞ = Lie(K∞)C ⊕ p− ⊕ p+

is the Harish-Chandra decomposition, and the choice a base point x ∈ X, and
hence K∞ and the decomposition (1.2.7), is implicit in the notation Ahol,τ (G).
We also write the right-hand side of (1.2.6) as

(A(G)⊗Wτ )
K∞ [p−],

the p−-torsion in (A(G)⊗Wτ )
K∞ .

If X = X(V,−V ) with V a definite hermitian space, then K∞ =
GU(V,−V )(R). If X = X(2V ), with V again definite, we can take K∞ to
be GU(V,−V )(R) ⊂ GU(2V ). With this choice, the Harish-Chandra decom-
position (1.2.7) is rational over E(V,−V ) = E(V ) = E(K,Σ).
Restricting forms.

Let G = GU(V,−V ), X = X(V,−V ), G′ = GU(2V ), and X ′ = X(2V ). Pick
x ∈ X(V,−V ). This determines a base point in X ′ and hence K ′

∞ ⊆ G′
∞
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in addition to K∞, with K∞ being identified with a subgroup of K ′
∞ via the

canonical embedding of G into G′.
Suppose τ is a one-dimensional representation of K ′

∞. This then deter-
mines a one-dimensional representation of K∞ by restriction, and we obtain
holomorphic vector bundles [Wτ ] and [W ′

τ ] on Sh(V,−V ) = Sh(G,X) and
Sh(2V ) = Sh(G′, X ′), respectively, having canonical models over the respec-
tive fields E(Wτ ) and E(W ′

τ ). There is canonical map from the pull-back of
[W ′

τ ] under the morphism (1.2.4) to [Wτ ] and therefore a homomorphism:

(1.2.8) resV,τ : H0(Sh(2V ), [W ′
τ ])→ H0(Sh(V,−V ), [Wτ ]).

This is rational over E(Wτ ). Over the complex numbers (1.2.8) is compatible
in the obvious way with the isomorphisms in (1.2.6) and the restriction of forms
in Ahol,τ (G

′) to G(A), which gives forms in Ahol,τ (G).

Connected components.

We let G = GU(V ). Let C denote the algebraic group G/Gder over Q. Let
G(R)+ denote the identity component of G(R), G(Q)+ = G(Q) ∩ G(R)+.
For any open compact subgroup K ⊂ G(Af ), the set π0(KSh(G,X)(C)) of

connected components of KSh(G,X)(C) is given by G(Q)+\G(Af )/K, where

G(Q)+ denotes the closure of G(Q)+ in G(Af ). Let CK ⊂ C(Af ) denote
the image of K under the natural map; let C+ ⊂ C(Af ) denote the image
of G(Q)+. Now Gder is an inner form of the simply-connected group SL(n),
hence satisfies strong approximation. It follows (cf. [D, (2.1.3.1)]) that

(1.2.9) π0(KSh(G,X)(C)) = C(K)
def.
= C(Af )/CK · C+.

We can define a Shimura datum (C,X(C)) to be the quotient of (G,X) by Gder.
The corresponding Shimura variety Sh(C,X(C)) also has a modular interpre-
tation in terms of level structures on certain direct factors of rank one over K
of certain tensor powers of the Tate modules of abelian varieties with CM by
K. The tensor power in question depends on the signatures (aσ, bσ). The nat-
ural map KSh(G,X)(C) → C(K) = π0(KSh(G,X)(C)) becomes a morphism
of moduli spaces. This interpretation will not be used in the sequel.

(1.3) PEL structures.

Let G = GU(V ). Notation is as in the previous section. Write

K ⊗Q Q = ⊕σ∈ΣK
Qσ,

and let eσ ∈ K ⊗Q Q be the corresponding orthogonal idempotents. We de-

compose V ⊗Q Q as a K⊗QQ-module as V ⊗Q Q = VΣ⊕VΣc, where VΣ is the

sum of the spaces Vσ = eσ(V ⊗Q Q) for σ ∈ Σ, and similarly for VΣc. Inside

V ⊗Q Q we consider a variable K ⊗Q Q- submodule F 0V satisfying
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(1.3.0) Property. For any σ ∈ ΣK, the projection F 0Vσ = eσF
0V of F 0V

on Vσ is of dimension aσ.

Let T be an indeterminate and, for x ∈ K, let P0(x, T ) ∈ Q[T ] denote the
characteristic polynomial of x, acting on F 0V . It follows from the definition
of the reflex field E(V ) that PΣ(x, T ) ∈ E(V )[T ], independently of the choice
of F 0V . Indeed, Shimura defined E(V ) to be the field generated by traces of
elements of K acting on F 0V .
Choose a purely imaginary element ג ∈ K, i.e. an element such that TrK/E(ג) =
0. The form < •, • >V,ג= ·ג < •, • >V is skew-hermitian. When we fix a prime
p we will always assume ג to be a unit at p. Fix a compact open subgroup
K ⊂ GU(V )(Af ). We consider the following functor from the category of
schemes over E(V ) to the category of sets:

(1.3.1) S 7→ KAV (S) = KAV,ג(S) = {(A, λ, ι, α)}

where

(1.3.1.1) A is an abelian scheme over S, viewed as an abelian scheme up to
isogeny;

(1.3.1.2) λ : A → Â is a polarization;
(1.3.1.3) ι : K → EndS(A)⊗Q is an embedding of Q-algebras;

(1.3.1.4) α : V (Af )
∼−→ V f (A) is an isomorphism of K-spaces, modulo K.

Here V f (A) =
∏

ℓ Tℓ(A) ⊗ Q is the adelic Tate module, viewed as a ind-pro-
étale sheaf over S; it’s K-structure comes from (1.2.1.3). The level K structure
of (1.3.1.4) is understood in the sense of Kottwitz [Ko]. These data satisfy the
usual compatibility conditions:

(1.3.1.5) The Rosati involution on EndS(A)⊗Q defined by λ fixes ι(K) and acts
as complex conjugation;

(1.3.1.6) The isomorphism α identifies the Weil pairing on V f (A) with an Af
×-

multiple of the skew-symmetric pairing on V (Af ) defined by trK/Q <
•, • >V,ג.

Finally, the action induced by ι on LieA/S satisfies Shimura’s trace condi-
tion, which we state here in the equivalent formulation due to Kottwitz.
Let Pι(x, T ) ∈ OS [T ] denote the characteristic polynomial of x, acting on
Lie(A/S). We view E(V )[T ] as a subalgebra of OS [T ]. The Shimura-Kottwitz
condition is

(1.3.1.7) Pι(x, T ) = P0(x, T ) ∈ OS [T ], ∀x ∈ K.

Two quadruples (A, λ, ι, α) and (A′, λ′, ι′, α′) are identified if and only if there
is an isogeny φ : A → A′, commuting with ι′, prime to the level K in the
obvious sense and taking α to α′, and identifying λ′ with a positive rational
multiple of λ.
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(1.3.2) Theorem (Shimura). For K sufficiently small, the functor (1.3.1)
is representable by a quasi-projective scheme over E(V ), and this is precisely
the canonical model of KSh(V ). As K varies, the natural maps between these
functors induce the natural maps between the various KSh(V ). The action of
GU(V )(Af ) on the tower KSh(V ) preserves the E(V )-rational structure.

For U ⊂ GU(V )(Af ) a closed compact subgroup, we write USh(V ) =
lim←−K⊃U KSh(V ), asK runs over compact open subgroups of GU(V )(Af ). This
is simply a shorthand for referring to the full tower of the KSh(V ) for K ⊂ U ,
and we will not need to worry about the nature of the projective limit.
The above theory applies in particular to the Shimura varieties Sh(2V )
and Sh(V ) × Sh(−V ). The Shimura variety Sh(V,−V ) is defined as the
subvariety of Sh(V ) × Sh(−V ), which parametrizes pairs of quadruples
((A, λ, ι, α), (A−, λ−, ι−, α−)), determined by compatibility of polarizations in
the obvious sense. As a subvariety of Sh(2V ), Sh(V )×Sh(−V ) is then the set
of quadruples (B,µ, ι2, β) which decompose as a product

(B,µ, ι2, β)
∼−→ (A×A−, λ× λ−, ι× ι−, α× α−).

In particular, β respects the AK,f -decomposition 2V (Af ) = V (Af ) ⊕
(−V )(Af ). The most important level structures β for our purposes do not,
however, respect this decomposition. In other words, in the applications, we
will not be working with the Shimura variety Sh(V,−V ) via its natural em-
bedding in Sh(2V ), but rather with a translate of the latter, cf. (2.1.11).
For the remainder of this section, let G = GU(V ), X = X(V ), Sh = Sh(G,X).
We identify

GU(V )(Qp) = U(V )(Qp)×Qp
× ∼−→ UE(V )(E ⊗Q Qp)×Qp

×,

where the map to Qp
× is the similitude factor and UE(V ) is as in (0.1). The

ordinarity hypothesis (1.1.2) allows us to define subspaces Vp,Σp
and Vp,c·Σp

of
Vp as in (1.1.5). The hermitian pairing

Vp × Vp → E ⊗Qp

determines, and is determined by, a perfect duality Vp,Σp
⊗Vp,c·Σp

→ E⊗Q (Qp)

of free E⊗QQp
∼−→ ∏

w∈Σp
Kw-modules. There is thus a natural isomorphism

(1.3.3) G(Qp)
∼−→ GL(Vp,Σp

)×Qp
× ∼−→

∏

w,Σw⊂Σp

GL(n,Kw)×Q×
p

The indexing by w such that Σw ⊂ Σp is a reminder of the fact that several
elements of Σp can correspond to the same divisor w of p. This is just a way
of saying, somewhat more carefully than usual, that the unitary group at a
split place is isomorphic to a general linear group. We identify GQp

with the
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product of algebraic groups G0 × GL(1), where G0 = GL(Vp,Σp
) as algebraic

groups and the map to GL(1), as before, is the similitude factor ν.
Fix a compact open subgroupK = Kp×Kp ⊂ G(Af ), withKp ⊂ G(Qp), K

p ⊂
G(Ap

f ), and let KSh denote the Shimura variety at level K. Our hypotheses

imply that GQp
is an unramified group over Qp, hence that G(Qp) contains

hyperspecial maximal compact subgroups; we assume that Kp is one such.
Then Kp is the group of Zp-points of an extension of G to a smooth group
scheme, also denoted G, over Spec(Zp). The choice of Kp is equivalent to
the choice of a self-dual O ⊗ Zp-lattice MV ⊂ Vp. Let MV,Σp

⊂ Vp,Σp
be the

projection of MV . We can extend G0 to a group scheme over Zp as G0 =
GL(MV,Σp

). Then there are isomorphisms

(1.3.4) Kp = G(Zp)
∼−→ G0(Zp)×GL(1,Zp) =

∏

w,Σw⊂Σp

GL(n,Ow)× Z×
p

compatible with the factorization (1.3.3). We also assume Kp is sufficiently
small, in a sense we will make precise later.
When G = G(2V ) ⊃ G(V,−V ), we choose Kp so that M2V =MV ⊕M−V with
MV ⊂ V ⊗ Qp and M−V ⊂ (−V ) ⊗ Qp self-dual lattices; this is equivalent to
the assumption that Kp ∩ G(V,−V )(Qp) is a hyperspecial maximal compact
subgroup of G(V,−V )(Qp). In (2.1) we will impose additional conditions on
the choice of MV in the general case.

(1.4) Automorphic vector bundles on unitary Shimura varieties,
again.

Notation is as in the previous sections: G = GU(2V ), resp. GU(V,−V ),
X = X(2V ), resp. X(V,−V ), and [Wτ ] is an automorphic vector bundle on
Sh(G,X).
In (1.2) we have fixed the stabilizer K∞ ⊂ G(R) of a point x ∈ X. Choose a
maximal torus T∞ ⊂ K∞, an algebraic subgroup over R necessarily containing
the image of x. Then T∞ is also a maximal torus in G. A specific choice of
pair (T∞,K∞) can be obtained as follows. Decompose (V,< •, • >V ) as an
orthogonal direct sum of one-dimensional hermitian spaces over K:

(1.4.1) (V,< •, • >V ) = ⊕n
i=1(Vi, < •, • >i).

We assume the Vi are numbered so that, for any σ ∈ Σ, Vi,σ = Vi ⊗K,σ C has
signature (1, 0) for i ≤ rσ and signature (0, 1) for i > rσ. Let −Vi denote Vi
with the hermitian form − < •, • >i. Let GU⊕i(V,−V ) denote the subgroup
of the torus

∏
iGU(Vi)×

∏
iGU(−Vi) defined by equality of similitude factors.

We obtain embeddings of Shimura data
(1.4.2)

(GU⊕i(V,−V ),
∏

i

(Xi×X ′
i)) →֒ (GU(V,−V ), X(V,−V )) →֒ (GU(2V ), X(2V ))
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where
∏

i(Xi×X ′
i) is an appropriate product of point symmetric spaces deter-

mined by the signatures of each Vi and −Vi. We write

Sh⊕i(V,−V ) = Sh(GU⊕i(V,−V ),
∏

i

(Xi ×X ′
i)),

the superscript ⊕i serving as a reminder of the choice of direct sum
decomposition above. Define (GU⊕i(V ),

∏
iXi) ⊂ (GU(V ), X(V )),

GU⊕i(−V ),
∏

iX
′
i) ⊂ (GU(−V ), X(−V )) analogously. The groups GU⊕i(V ),

GU⊕i(−V ), and GU⊕i(V,−V ), defined over Q, are maximal R-elliptic tori
in GU(V ), GU(−V ), and GU(V,−V ) or GU(2V ), and we take T∞ to be
the group of real points of one of these tori. We can of course find K∞
containing T∞, though K∞ will in general not be defined over Q. The Shimura
data (GU⊕i(V ),

∏
iXi), etc., define CM points of the corresponding unitary

Shimura varieties.
The group T∞ is a maximal torus in a reductive group of type A, and we
parametrize its roots in the usual way. In the case G = GU(V ), GC is natu-
rally isomorphic to

∏
σ∈ΣGL(n,C)×GL(1,C), the last term coming from the

similitude factor. Thus the group X(T∞) of characters λ of the algebraic torus
T∞ consists of d-tuples (a1,σ, . . . , an,σ)σ∈Σ of n-tuples of integers, indexed by
σ ∈ Σ, together with a single integer a0 for the similitude factor. The (aj,σ) are
given by the restriction of the character λ to T∞ ∩ U(V ), whereas a0 is given
by the restriction of λ to the maximal R-split torus in T∞ ∩ZG: if tIn ∈ G(R)
is a real central element then λ(tIn) = ta0 . The parameters satisfy the relation

(1.4.3) a0 ≡
∑

j,σ

aj,σ (mod 2).

Given an ordering on the roots of the maximal torus T∞ ⊂ G, the dominant
weights are then the characters parametrized as above, with ai,σ ≥ ai+1,σ,
for all σ and i = 1, . . . , n − 1. We choose a set of positive roots con-
taining the roots in p−. The n-tuple corresponding to σ will often be
written with a semi-colon (a1,σ, . . . , aaσ,σ;−bbσ,σ, . . . ,−b1,σ) or occasionally
(a1,σ, . . . , aaσ,σ;−bbσ,σ, . . . ,−b1,σ; a0) when the term a0 needs to be stressed,
in such a way that it gives a dominant weight of the σ-factor of K∞ ∩U(V )∞,
U(V )∞ ≡

∏
σ U(aσ, bσ) if and only if

(1.4.4) a1,σ ≥ · · · ≥ aaσ,σ, b1,σ ≥ · · · ≥ bbσ,σ

The parametrization in G = GU(2V ) is the same as above, except that n is
replaced by 2n and aσ = bσ = n. For G = GU(V,−V ), we place the parameters
for GU(V ) and GU(−V ) side by side.
If K is sufficiently small, KSh(V ) carries a universal abelian scheme KA en-
dowed with PEL structure of the appropriate type. Let pK : KA → KSh(V )
denote the structure map and put

ω = ωV = pK,∗Ω
1
KA/KSh(V ).
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This is a locally-free sheaf on KSh(V ) of rank dn = [E : Q] dimK V with
a natural action of O

KSh(V ) ⊗Q K, the K-action coming from (1.3.1.3). If
we extend the ground field to contain E, then ω breaks up as ω = ⊕σ∈Σωσ

corresponding to the canonical decomposition E ⊗Q K = ⊕σ∈ΣK. Each ωσ

is a locally-free O
KSh(V )-sheaf of rank n. The sheaf ⊗σ∈Σωσ is the canonical

bundle associated to (0, ..., 0; 1, 0, ..., 0; 1)σ∈Σ.
The canonical bundles for other τ ’s can be constructed as follows, again assum-
ing the ground field contains E. Let Fl(ωσ)KSh(V ) be the scheme representing
the functor

S 7→ (E1 = ωσ/S ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 = 0 ;

φi : Ei/Ei+1
∼−→ OS , i = 1, ..., n).

There is an obvious action of Dσ = Gn
m/KSh(V ) on FL(ωσ): d = (d1, ...., dn)

acts by multiplying φi by di. Let πσ : FL(ωσ) → KSh(V ) be the structure
map. For each τσ ∈ X(Dσ) we define a locally-free sheaf ρτσ on KSh(V ) by
H0(U, ρτσ ) = H0(π−1

σ (U),OFL(ωσ))[τσ], where the [τσ] signifies the submodule
on which Dσ acts through τσ. We identify each τσ with an n-tuple of integers
(m1,σ, ....,mn,σ) in the usual way and say that such a τσ is dominant if m1,σ ≥
· · · ≥ mn,σ. Given a d-tuple τ = (τσ)σ∈Σ of dominant characters, let ρτ =
⊗σ∈Σρτσ . Then we can naturally identify ρτ with [Wτ ], where the character of
T∞ associated to τ is (m1,σ, ...,maσ ,σ;maσ+1,σ, ...,mn,σ). These identifications
respect the maps in (1.2.8) in the obvious way.

(1.5) Fourier expansions of modular forms.

In this section we consider the Shimura datum (GU(2V ), X(2V )). The symmet-
ric domainX(2V ) is holomorphically isomorphic to the product of [E : Q] = |Σ|
copies of the irreducible tube domain Xn,n of dimension n2 attached to the
group U(n, n). Let P = P∆ ⊂ G be the maximal parabolic defined in §1.5.
The group of real points of P stabilizes the 0-dimensional boundary compo-
nent of this product of tube domains. Fourier expansion with respect to U(R)
defines the q-expansion of a holomorphic automorphic form on X relative to
a congruence subgroup of GU(2V,Q). By work of Fujiwara [F], extending the
results of Chai and Faltings, one can also define q-expansions for sections of the
automorphic vector bundles [Wτ ] over KS when Kp is hyperspecial. In [Hi04,
Hi05], Hida defined q-expansions on the closed Igusa tower. We will formulate
this theory in an adelic version analogous to the characteristic zero formulation
in [H1, §6] and [P].
In [H1, §6] we attach a Shimura datum (GP , XP ) to the rational parabolic
subgroup P ⊂ GU(2V ). The domain XP is a version of the point boundary
component mentioned above, and GP is a torus; specifically, GP is contained
in the center of the standard Levi component of P . Recall the definition of
GP : the standard rational representation of G on RK/Q(2V ) carries a family
of Hodge structures of type (−1, 0) + (0,−1), corresponding to the family of
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abelian varieties of PEL type over Sh(2V ). In a neighborhood of the bound-
ary component corresponding to P , this family degenerates to a mixed Hodge
structure of type (0, 0) + (−1,−1).
Actually, the formulation in [H1] is not quite correct: in general the boundary
Shimura datum should be defined as in [Pink], where XP is a homogeneous
space for GP (R) finitely fibered over a GP (R) conjugacy class of homomor-
phisms RC/R → GP,R. In the present case, GP (R) has two connected compo-
nents, corresponding to upper and lower hermitian half-spaces, andXP consists
of two points. The Shimura variety Sh(GP , XP ) is zero-dimensional, and one
easily verifies it is of PEL type.
Indeed, it parametrizes pairs (αΣ, αm) where αΣ is a complete level structure
on the abelian variety with complex multiplication type (K,Σ), and αm is an
isomorphism

αm :
∏

q

Qq/Zq
∼−→

∏

q

µq∞

Thus as long as one works in finite level KP prime to p, there is no difficulty
defining an integral model KP

S(GP ) of KP
Sh(GP , XP ). For general level KP ,

there is a unique normal integral model, and we define this to be KP
S(GP ).

We let UP denote the unipotent radical of P , and let U∗ = Hom(UP (Q),Q).
This is the vector space denoted g−2(Q)∗ in [H1, ]. The space U∗⊗R contains
a self-adjoint cone, homogeneous under P (R)/UP (R), and denoted C in [H1,
5.1]; we let U∗(C) = U∗ ∩ C. Let [Wτ ] be an automorphic vector bundle over
S̄, as above. There is an automorphic vector bundle [WτP ] over Sh(GP , XP ),
and a map

(1.5.1) F.J.P,0 : Γ(Sh(2V ), [Wτ ]) →
⊕̂

β∈U∗

Γ(Sh(GP , XP ), [WτP ])

defined, with slightly different notation, in [H1, (6.3.3)], and in [Pink, §12].
Here

⊕̂
is understood as the subset (fβ) of the direct product over β ∈ U∗

such that fα = 0 for all but finitely many β /∈ U∗(C). If F.J.P,0(f) = (fβ) for
some f ∈ Γ(Sh(2V ), [Wτ ]), then the usual Fourier expansion is written

∑
fβq

β .
The Koecher principle asserts that, for n > 0, F.J.P,0 is supported on U∗(C),
and even for n = 0 one takes care only to consider f with that property.
Since C is self-adjoint, it can also be viewed as a cone in UP (R). One obtains
a more reassuring variant of the q-expansion in the following way. Let N =
dimUP , and let

(1.5.2) Λ = Λ(Kp) = UP (Q) ∩K(U,m) ⊂ UP (Q).

Note that Λ is a lattice in UP (Q) and does not depend on m. We choose a
polyhedral cone c ⊂ C generated by a basis {λ1, . . . , λN} of Λ:

c = {
N∑

i=1

aiλi | ai ≥ 0}
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and let c∗ ⊃ U∗(C) be the dual cone:

c∗ = {v ∈ U∗(C) | v(λi) ≥ 0, i = 1, . . . N}.

Let Λ∗ = Hom(Λ,Z), viewed as a subgroup of U∗(C). Let R be a Ov-algebra
and M a free R-module. The intersection Λ∗ ∩ c∗ is a free monoid on N
generators βi, i = i, . . . , N , and the ring of formal series

(1.5.3) R[[qΛ
∗∩c

∗

]] = {
∑

β∈Λ∗∩c
∗

fβq
β},

with fβ ∈ R, and with the usual multiplication rule qβ · qβ′

= qβ+β′

, is then

isomorphic to R[[qβ1 , . . . qβN ]]. We define the R[[qΛ
∗∩c

∗

]]-module

M[[qΛ
∗∩c

∗

]] =M⊗R R[[q
Λ∗∩c

∗

]] = {
∑

β∈Λ∗∩c
∗

fβq
β}

where now fβ ∈M for all β. Taking

M0 =M0([WτP ],KP (m)) = Γ(KP (m)S(GP ), [WτP ])

for appropriate m, F.J.P,0 can be regarded as a map

(1.5.4) F.J.P,0 : Γ(K(U,m)Sh(2V ), [Wτ ]) → M0([WτP ],KP (m))[[qΛ
∗∩c

∗

]].

LettingKp run over a fundamental set of open subgroups of G(Ap
f ) corresponds

to letting Λ∗ grow to a Z(p)-lattice in UP (Q), or equivalently to adding nth roots

of the generators qβi of R[[qΛ
∗∩c

∗

]] for all n prime to p.

(1.5.5) One-dimensional τ ’s.

In the present article we will mainly consider Wτ of dimension one. More
precisely, [WτP ] is the automorphic vector bundle associated to an algebraic
character, say τP , of the torus GP . Fix a base point x ∈ KP (m)S(GP )(C); for
instance, we can take x to be the image of the element 1 ∈ GU(2V )(A) under

the isomorphism GP (Q)\GP (A)/KP (m)
∼−→ KP (m)S(GP )(C). LetWτP be the

stalk at x of [WτP ]. Then H
0(S(GP ), [WτP ]) can be canonically identified with

the spaceM(WτP (C),KP (m)) of WτP (C)-valued automorphic forms on GP of
infinity type τ−1

P ; i.e., the space of functions

c : GP (Q)\GP (A)/KP (m) → WτP (C)

such that c(g∞g) = τP (g∞)−1c(g) for all g ∈ GP (A) and all g∞ ∈ GP (R).
Choosing a basis of WτP (C) identifiesM(WτP (C),KP (m)) with the space

(1.5.5.1) XτP (GP ;KP (m)) =

= {c : GP (Q)\GP (A)/KP (m) → C | c(g∞g) = τP (g∞)−1c(g)}
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spanned by C-valued Hecke characters of the indicated infinity type. This in
turn identifies the Fourier expansion of a holomorphic modular form with an
element of XτP (GP ;KP (m))[[qΛ

∗∩c
∗

]]. In this notation we can regard C as a
Ov-algebra or, more prudently, regard both C and Ov as algebras over the ring
of integers of some number field.

(1.5.6) Comparison with the transcendental theory

Let ψ : A/Q → C× be a non-trivial additive character, with local component
ψv at the place v of Q, such that ψ∞(x) = e2πix. For any β ∈ U∗(Q) we define
the character

(1.5.6.1) ψβ : U(Q)\U(A) → C× | ψβ(u) = ψ(β(u)), u ∈ U(A).

A section f ∈ Γ(Sh(2V ), [Wτ ]) can be identified with a Wτ (C)-valued auto-
morphic form on GU(2V )(A), belonging to the space on the right-hand side
of (1.2.6), which This automorphic form will again be denoted f . We as-
sume we are given an isomorphism of Wτ (C) with C, so that f is viewed as
a complex-valued automorphic form. The Fourier coefficients of such an f are
then defined, classically, as functions on GU(2V,A) by

(1.5.6.2) fβ(h) =

∫

U(Q)\U(A)

f(uh)ψ−β(u)du

For h = (h∞, hf ) ∈ GU(2V,A), the holomorphy of f implies a factorization
fβ(h) = fβ,∞(h∞)fβ,f (hf ) where fβ,∞ depends only on τ and β. Explicitly, if
we write h∞ = p∞k∞ with p∞ ∈ P (R) and k∞ ∈ K∞, we have

(1.5.6.3) fβ,∞(p∞k∞) = τ(k∞)−1e2πiβ(Z(p∞))

where Z(p∞) = p∞(x) ∈ U(C), with x the fixed point of K∞ in X(2V ) and
X(2V ) is realized as the tube domain U(C) over the self-adjoint cone C in
U(R) and the action of P (R) on the tube domain is the standard one. For
more details, see [H1, II].
We write qβ(h∞) = fβ,∞(h∞). The function f can be recovered from the
Fourier coefficients by Fourier inversion, to which we add Koecher’s principle:

(1.5.6.4) f(h) =
∑

β∈U∗∩C

fβ(h) =
∑

β∈U∗∩C

qβ(h∞)fβ,f (hf ).

It follows that the finite parts fβ,f of fβ , as β varies, suffice to deter-
mine the form f . Suppose f is invariant under the compact open subgroup
K ⊂ GU(2V )(Af ). Now the derived subgroup GU(2V )der is simply-connected,
hence strong approximation is valid, and it follows that the coefficients fβ,f are
uniquely determined by their values on any subset C ′ ⊂ GU(2V )(Af ) which
maps surjectively onto the quotient C(K) defined as in (1.2). Let LP ⊂ P
be the standard Levi component, the centralizer of GP . Then we can take
C ′ = LP (A

p
f ). It follows that
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(1.5.6.5) Transcendental q-expansion principle. A form f ∈
Ahol,τ (GU(2V )) is determined by the values fβ,f (hf ) for hf ∈ LP (A

p
f ).

To simplify the comparison of the algebraic and transcendental theories, we
introduce the “Shimura variety” Sh(LP , XP ) attached to LP :

(1.5.6.6) Sh(LP , XP ) = Sh(GP , XP )×GP (Af ) LP (Af ).

This can be interpreted as an inductive limit of profinite schemes over
E(GP , XP ) = Q, with natural LP (Af )-action. The normal integral model
S(GP ) extends similarly to an LP (Af )-equivariant normal integral model SP
of Sh(LP , XP ). The automorphic vector bundles [WτP ] on Sh(GP , XP ) extend
trivially to L(Af )-equivariant vector bundles on Sh(LP , XP ). As in (1.5.5), we
can write

M =M([WτP ],KL(P )(m)) = Γ(KL(P )(m)SP , [WτP ])

for an appropriate compact open subgroup KL(P )(m) ⊂ LP (Af ), and identify
the latter with

(1.5.6.7) XτP (LP ;KLP
(m)) =

= {c : GP (Q)\GP (R) · LP (Af )/KL(P )(m) → C | c(g∞h) = τP (g∞)−1c(h)}

where now h ∈ LP (Af ) but g∞ ∈ GP (R). Ignoring the level structure, the
Fourier expansion (1.5.6.4), with hf restricted to LP (A

p
f ), then corresponds to

a map

(1.5.6.8) F.J.P : Γ(Sh(2V ), [Wτ ]) →
⊕̂

β∈U∗

Γ(Sh(LP , XP ), [WτP ])

defined over Q. By (1.5.6.5), this map is injective.

(1.5.7) Trivializations.

A good choice of basis ofWτP is provided by the theory of degenerating abelian
varieties of type K(U,m)A2V (1.3.1); cf. [K, p. 212 ff.], [H1, Lemma 6.6], and
[Pink,12.20]. The automorphic vector bundle WτP is some power, say the kth,
of the relative canonical sheaf (bundle of top differentials) on the universal
degenerating abelian scheme over the toroidal compactification. Its natural
basis is then the product

(1.5.7.1) (

N∧

j=1

dqβj/qβj )⊗k = (2πi)Nk(
∧

j

dzj)
k,

where the tube domain coordinate zj on X(2V ) is defined by qβj = e2πizj .
This basis is defined over Z(p) because the coordinates qβj are used to define
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the toroidal compactification over Z(p) in [F]. Thus the trivialization (1.5.7.1)
is compatible with the theory of p-adic modular forms, just as in [K], and allows
us to identify

(1.5.7.2) F.J.P (f)β(h) = qβ(h∞)fβ,f (hf ), h = (h∞, hf ) ∈ LP (A)

where the left-hand term is (1.5.6.8) and the right-hand expression is from
(1.5.6.4).

(1.6) p-integral models and p-integral sections.

Let p be a rational prime, and assume hypothesis (1.1.2) is satisfied. Let L′ be
a finite extension of Q containing E(V ) and let O′ be the ring of integers of L′.
For simplicity we will assume that L′ also contains E. Fix a sufficiently small
compact open subgroup K = Kp ×Kp ⊂ G(Af ), as in §1.3. Then it is known
(cf. [Ko]) that KSh(G,X) admits a smooth integral model KS = KS(G,X)
over the valuation ring O′

(p) that is a moduli space for abelian varieties with

additional structure of PEL type (the moduli problem is that of (1.3.1) but with
ι now an embedding O(p) → EndS(A) ⊗ Z(p)). Moreover, if L′ also contains
E(Wτ ) for every τ (a finite set of τ suffices) then the automorphic vector
bundles [Wτ ] extend naturally to locally free sheaves over KS. In particular, the
construction of the ρτ ’s from §1.4 can be carried out over KS; these then provide
integral structures on the various [Wτ ]’s. Both KS and the integral structures
on the [Wτ ]’s are functorial with respect to change of the level subgroup Kp

away from p. In particular, we occasionally drop the notation K in what
follows.
By our hypotheses on p, and by an elementary approximation argument, the
decomposition (1.4.1) can be taken integral over O(p). We assume that K

is so defined so that Kp ∩ GU⊕i(V,−V )(Qp) is again a maximal compact.
Then KSh

⊕i(V,−V ) (where the subscript K has the obvious meaning) also
has a model over O′

(p), which we denote KS⊕i = KS⊕i(V,−V ). The natural

map KSh
⊕i(V,−V ) → KSh(G,X) (which is just the inclusion of certain CM

points) extend to a map KS⊕i → KS, which can be uses to detect p-integrality
of sections of the [Wτ ]’s, as we now explain.

Let AΣ be an abelian variety over Q, of dimension 2d, with complex multiplica-
tion by K of type Σ, and assume End(AΣ)⊗ZZ(p) = O(p). In other words, O(p)

acts on the object “AΣ ⊗Z Z(p)” defined by AΣ in the category of abelian va-
rieties up to prime-to-p isogeny. One knows AΣ extends to an abelian scheme,
also denoted AΣ, over the valuation ring Z̄(p), also with action by O(p) up to
prime-to-p isogeny. There is a decomposition

(1.6.1) H1
DR(AΣ/Z̄(p))

∼−→ ⊕σ∈ΣK
Ω(Σ)σ,

with each Ω(Σ)σ a free Z̄(p)-module of rank one. Choose Z̄(p)-generators
ωσ, σ ∈ ΣK of Ω(Σ)σ. On the other hand, the topological (Betti) homology
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H1(AΣ(C), Z̄(p)) is a free rank one O ⊗Z Z̄(p)-module, hence admits a decom-
position

(1.6.2) H1(AΣ(C), Z̄(p))
∼−→ ⊕σ∈ΣK

(Z̄(p))σ

where (Z̄(p))σ is the submodule of H1(AΣ(C), Z̄(p)), isomorphic to Z̄(p), on

which O acts via σ. Choose Z̄(p)-generators γσ′ ∈ (Z̄(p))σ′ , for σ′ ∈ ΣK. The
natural pairing (integration)

Int : H1
DR(AΣ/Z̄(p))⊗H1(AΣ(C), Z̄(p)) → C

defines invariants

(1.6.3) pK(σ,Σ) = Int(ωσ, γ), σ ∈ ΣK, γ ∈ H1(AΣ(C), Z̄(p))

where γ is taken to be a free O ⊗Z Z̄(p) generator of H1(AΣ(C), Z̄(p)). It is

easy to see that Int(ωσ, γ) depends only on the projection of γ on (Z̄(p))cσ,
hence that the complex number pK(σ,Σ) is well defined up to multiplication
by units in (Z̄(p))

×. Indeed, both H1(AΣ(C), Z̄(p)) and H1
DR(AΣ/Z̄(p)) are

invariants of the prime-to-p isogeny class of AΣ, so the invariants pK(σ,Σ) are
independent of the choice of base point in the prime-to-p isogeny class of AΣ,
up to (Z̄(p))

×-multiples. It is well-known that any two choices of AΣ can be

related by a prime-to-p isogeny (concretely, any idèle class of K mod K×
∞ can

be represented by an idèle trivial at p). Thus the pK(σ,Σ) can be considered
well-defined invariants of Σ, once a base point in the isogeny class is chosen.
Now the elements of ΣK generate the character group of the torus RK/QGm,
hence their restrictions to the subtorus GU(Vi), for any Vi as above, generate
the character group of the latter. We only consider characters of RK/QGm

trivial on the Zariski closure of a sufficiently small congruence subgroup of the
units in K. These are characters of the Serre group, and can be identified with
the formal linear combinations

∑
σ∈ΣK

nσσ with nσ ∈ Z such that nσ + nσc is
independent of σ. For such characters we define

(1.6.4) pK(
∑

σ

nσσ,Σ, Vi) =
∏

σ

pK(σe(i, σ),Σ)
nσ

where e(i, σ) = 1 if i ≤ aσ and e(i, σ) = c otherwise. More generally, if κ is a
character of

∏
iGU(Vi)×

∏
iGU(−Vi), written as an n-tuple of pairs of formal

linear combinations
(
∑

σ∈ΣK

ni,σσ,
∑

σ∈ΣK

n−i,σσ)

we define

(1.6.5) pK(κ,Σ, 2V ) =
∏

i

pK(
∑

σ

ni,σσ,Σ, Vi) ·
∏

i

pK(
∑

σ

n−i,σσ,Σ,−Vi).
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Here pK(
∑

σ ni,σσ,Σ,−Vi) is defined as in (1.6.4) but with aσ replaced by n−aσ
The subgroup T = GU⊕i(V,−V )∞ ⊂

∏
iGU(Vi)×

∏
iGU(−Vi) is a maximal

torus in K∞ (maximal compact mod center in G = GU(2V )). The formalism
of CM periods implies that the product on the right in (1.6.5) depends only
on the restriction of the algebraic character κ to the subgroup T . Indeed,
if the restriction of κ to

∏
i U(Vi) ×

∏
i U(−Vi) is trivial, then in particular

ni,σ = ni,σc for all i and all σ. Since ni,σ +ni,σc is independent of σ for each i,
it follows that ni = ni,σ is independent of σ for each i, and one can define n−i
likewise. One then has

pK(
∑

σ

nσσ,Σ, Vi) = pK(
∑

σ

σ,Σ, Vi)
ni = pK(|| • ||, 1)ni = (2πi)−dni

as in [H2,Lemma 1.8.3]. If moreover κ|T ≡ 1, then
∑

i ni + n−i = 0, and so
the product of powers of 2πi is in fact algebraic. Hence the statement of the
following Proposition makes sense:

(1.6.6) Proposition. Let G = GU(2V ). Let κ be a character of the torus
T that extends to a one-dimensional representation of K∞. Let [Wτ ] be the
corresponding automorphic line bundle over KS. Let D ⊂ Sh⊕i(V,−V )(Q)
be a set of points with the following property: the G(Ap

f ) orbit of the image
of D under specialization is Zariski dense in the special fiber of KS. Then
f ∈ H0(KS, [Wτ ])⊗L′ C belongs to H0(KS, [Wτ ])⊗O′ Z̄(p) if and only if, for all
g ∈ G(Ap

f ), the weight κ component fg[κ] of the restriction of the g translate
fg of f to D satisfies

(1.6.7) pK(κ,Σ, 2V )−1fg[κ](x) ∈ Z̄(p)

for all x ∈ D. Here the section fg ∈ H0(KS, [Wτ ]) ⊗L′ C is identified with
a classical automorphic form on X(2V ) × G(Af ) via (1.2.6). The same holds
with C replaced by Cp and Z̄(p) replaced by OCp

.

Remark. There is an analogous proposition for [Wτ ] of arbitrary dimension,
but we will not be needing it in the present paper.

Proof. Write H = H0(KS, [Wτ ]), H̄ = H⊗O′

(p)
Q. Our hypothesis on D implies

that D ·G(Ap
f ) is Zariski dense in the generic fiber KSh(G,X). Then (1.6.7),

with Z̄(p) replaced by Q, is a version of Shimura’s criterion for f to belong to

H̄ (cf. ([H1,§5.3], cf. [H3, III, Lemma 3.10.2] for an explicit statement when
K is imaginary quadratic). Then there is a number field L, containing L, such
that f ∈ H ⊗L′ L. Let Hp = H ⊗O′

(p)
OL,(p). Thus Hp is a free OL,(p)-module

of finite rank, and H̄ = Hp ⊗OL,(p)
Q.

Let p be a prime of OL,(p), necessarily dividing p, and let ̟ be a uniformizer
of p. Thus for some positive integer m we have ̟mf ∈ Hp. Write F = ̟mf .
Condition (1.6.7) asserts that

(1.6.8) pK(κ,Σ, 2V )−1F g[κ](x) ≡ 0 (mod pm), ∀x ∈ D
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The proposition then comes down to showing that any F satisfying (1.6.8)
belongs to pmHp.
Since belonging to pmHp is a local condition on KS×OL,p, we can replace the
latter by an affine open subset U = Spec(A) flat over OL,p, and Hp by a free
A-module Mp; F is an element of Mp. By induction we reduce to the case
m = 1. Let Ū = Spec(A/pA) denote the special fiber of U ; for a geometric
point y of Ū let Iy ⊂ A denote the maximal ideal at y. Condition (1.6.8) is
the condition that F ∈ Iy ·Mp for y in a Zariski dense subset D̄ of Ū ; this
is essentially the obvious p-integal version of the results of [H3, (3.10)]. By
definition, the intersection

⋂
D̄ Iy = p · A. Since Mp is free of finite rank over

the noetherian ring A, the proposition is clear.
A simple continuity argument now provides the proof in the case where Z̄(p) is
replaced by OCp

.

2. p-adic automorphic forms on unitary groups

(2.1) The Igusa tower, I: Definitions.

Notation is as in §1. Recall the Qp-rational K ⊗Q Qp-submodule F 0Vp ⊂
Vp, defined in (1.1.6), and the K ⊗Q Q-submodule subspace F 0V ⊂ V ⊗Q Q

introduced at the beginning of (1.3). The flag variety X̂ of K-linear subspaces of
V satisfying (1.3.0) has a natural E(V )-rational structure. Hypothesis (1.1.6)
is equivalent to the condition that the completion E(V )w0

of E(V ) at the
place w0 of E(V ) corresponding to inclp is isomorphic to Qp, and the K-linear
subspace F 0Vp ⊂ Vp is indeed a Qp = E(V )w0

-rational point of X̂.
The skew-hermitian pairing trK/Q < •, • >V,ג on V ⊗Q Qp defines a perfect
duality

(2.1.1) Vp,Σp
⊗ Vp,cΣp

→ Qp.

This duality identifies

Vw/F
0Vw

∼−→ Hom(F 0Vc·w,Qp)

for any w dividing p. In this way

(2.1.2)
∏

w|p
GL(F 0Vw)

∼−→
∏

w,Σw⊂Σp

GL(F 0Vw)×GL(Vw/F 0Vw),

is naturally isomorphic to the Levi quotient L0 of the parabolic

P 0 =
∏

w,Σw⊂Σp

Stab(F 0Vw).
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Here P 0 is a viewed as a parabolic subgroup of the unitary group G0 rather
than the unitary similitude group G. Bear in mind that the action of L0 on
Vw/F

0Vw is dual to that on F 0Vc·w.
We return to the situation of (1.3.1), and let K = Kp × Kp where Kp =
G0(Zp)×GL(1,Zp) is the hyperspecial maximal compact subgroup of (1.3.4),
viewed as the group of Zp-points of a smooth reductive group scheme K over Zp

with generic fiber G×Q Qp. We assume the subspace F 0Vp and Kp are chosen
compatibly, in the sense that P 0 is the Qp-points of a parabolic subgroup
P0 ⊂ K (parabolic in the subgroup of K corresponding to G0(Zp)), and we can

define L0 to be the Levi quotient of P0 so that L) = (L)0(Qp). Equivalently, Vp
and F 0Vp contain compatible Op-stable lattices M and M0, respectively, with
Kp the stabilizer of M , and the decomposition F 0Vp = ⊕w|pF

0Vw of (1.1.6)

is obtained by extension of scalars from a decomposition M0 = ⊕w|pM
0
w; P

0

is then the stabilizer in K of M0. Where necessary, we write M = M(V ),
M0 = M(V )0, etc., to emphasize the relation with the hermitian space V
defining the moduli problem.
We write

(2.1.3) M0
Σp

= ⊕w,Σw⊂Σp
M0

w, M
−1
Σp

= ⊕w,Σw⊂Σp
Mw/M

0
w

As in the preceding paragraph, the skew-hermitian form trO/Z < •, • >V,ג can
be normalized to define a natural skew-hermitian perfect duality.

(2.1.4) M0 ⊗M/M0 → Zp.

There is also a natural isomorphism

(2.1.5) M0 ∼−→ M0
Σp
⊕Homc(M−1

Σp
,Zp),

where
Homc(M−1

Σp
,Zp) = Op ⊗Op,c Hom(M−1

Σp
,Zp)

i.e. the natural action of Op on Hom(M−1
Σp
,Zp) is composed with complex

conjugation.
Let KpAp = KpAp

V,ג be the functor

S 7→ {(A, λ, ι, αp)}

where A is now an abelian scheme over S up to prime-to p-isogeny, λ is a po-
larization of degree prime to p, ι : O(p) → EndS(A) ⊗ Z(p) is an embedding

of Z(p)-algebras, and α
p : V (Ap

f )
∼−→ V f,p(A) is a prime-to-p O(p)-linear level

structure modulo Kp. The forgetful map KA → KpAp is obviously an isomor-
phism. The functor KpAp is representable over the integer ring Ow0

of E(V )w0

by a scheme we will denote KS, as in (1.4).

(2.1.6) Igusa Schemes
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The following constructions are compatible with change of the level subgroup
Kp, and with passage to the limit over all Kp. Hence we drop the subscript

Kp for the time being. We view Ap as a functor on the category of schemes
over Ow0

. Points of Ap(S) will be denoted A. Define three families of functors
above Ap, indexed by non-negative integers m:

(2.1.6.1) Ig1,m(S) = {(A, jet)}, jet : A[pm] ։ (M/M0)⊗ Z/pmZ.

(2.1.6.2) Ig2,m(S) = {(A, jo)}, A = (A, λ, ι, αp), jo :M0 ⊗ µpm →֒ A[pm].

(2.1.6.3) Ig3,m(S) = {(A, j0, j(−1))},
j0 :M0

Σp
⊗ µpm →֒ A[pm]Σp

, j(−1) : A[pm]Σp
։M−1

Σp
⊗ Z/pmZ.

In each case A designates a quadruple (A, λ, ι, αp) ∈ Ap(S). The maps j0, jet,
j0, and j(−1) are all assumed O/pmO-linear.

(2.1.6.4) Lemma. The functors Igi,m, i = 1, 2, 3, are all relatively repre-
sentable over Ap, and are canonically isomorphic for allm. These isomorphisms
are compatible with the natural forgetful projection maps Igi,m+1 → Igi,m for
all i; moreover, these projection maps are étale for all m.

Proof. Since the polarization λ is assumed of degree prime to p, we can use it to
identify Â[pm]

∼−→ A[pm]. The isomorphism Ig1,m
∼−→ Ig2,m is then obtained

by combining the duality (2.1.4) with Cartier duality A[pm] × Â[pm] → µpm .
The isomorphism between Ig2,m and Ig3,m is obtained in a similar way from
(2.1.5). Compatibility of these isomorphisms with the forgetful projection maps
is obvious. Finally, the projection Ig1,m+1 → Ig1,m is obviously étale, since it
corresponds to lifting a trivialization of the étale quotient of A[pm] to one of
the étale quotient of A[pm+1].

Since the isomorphisms in (2.1.6) are canonical, we write Igm for Igi,m, i =
1, 2, 3, or Ig(V )m when we need to emphasize V . For any m > 0, the natural
forgetful map Igm → S obviously factors through the inclusion of the ordinary
locus Sord ⊂ S. The limit Ig∞ = lim←−m Igm is an étale Galois covering of Sord

with covering group

L0(Zp) = Aut(M0)
∼−→ Aut(M0

Σp
)×Aut(M−1

Σp
).

Let F denote the algebraic closure of the residue field of Ow0
, and let S̄ =

KS ×Ow0
F denote the geometric special fiber of the moduli scheme KS. Let

S̄ord = Sord ×Spec(Ow0
) S̄ ⊂ S̄ denote the ordinary locus of the special fiber.

The following theorem is a special case of a result of Wedhorn [We]:
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(2.1.7) Theorem. The ordinary locus S̄ord contains an open dense subscheme
of every irreducible component of S̄.

(2.1.8) Modular interpretation of the Igusa tower in the limit

In the limit as m tends to infinity we can reformulate the definition of the Igusa
tower in terms of abelian varieties up to isogeny. We prefer to use the models
Ig3,m. Let T (Gm) = lim←−m µpm denote the Tate module of the multiplicative
group, viewed as a profinite flat group scheme over Spec(Zp). For any vector
space W over Qp we let W (1) = W ⊗Zp

T (Gm). Consider the functor on
schemes over Ow0

:
(2.1.8.1)

Ig′3,∞(S) = {(A, j0, j−1)},
j0 : F 0VΣp

(1) →֒ Qp ⊗Zp
A[p∞]Σp

, j−1 : Qp ⊗Zp
A[p∞]Σp

։ V/F 0VΣp
.

Here A = (A, λ, ι, αp) as above, but now A is an abelian variety up to isogeny,
and A[p∞] is a p-divisible group up to isogeny, or rather quasi-isogeny (cf. [RZ],
2.8). For fixed m we define Ig′3,m by the same functor as Ig′3,∞ but with j0

and j−1 defined only modulo the principal congruence subgroups modulo pm

of GL(M0
Σp

) and GL(M−1
Σp

), respectively. The usual argument shows that

(2.1.8.2) Lemma. There are canonical isomorphisms Ig′3,m
∼−→ Ig3,m for all

m, compatible with the forgetful maps from level pm+1 to level pm for all m.

In particular, the natural action of L0(Zp) on Ig∞ extends canonically to an
action of L0(Qp).

The final assertion is completely analogous to the existence of an action of
G(Ap

f ) in the inverse limit over Kp.

(2.1.9) Irreducibility of the Igusa tower

We reintroduce the prime-to-p level subgroups Kp, and the level subgroup
K = Kp ×Kp. The fiber over Qp of the ordinary locus KSord coincides with

KS ×Zp
Qp = KSh(V )Qp

; here, as above, we identify Qp = E(V )w0
. The

generic fibers KpIgm,Qp
can be identified with Shimura varieties attached to

appropriate level subgroups, as follows. Let U ⊂ P0 denote the unipotent
radical. For any non-negative integer m, let K(U,m)p ⊂ Kp denote the inverse
image of U(Zp/p

mZp)×GL(1,Zp) under the natural map Kp → K(Zp/p
mZp).

Let K(U,m) = K(U,m)p ×Kp. The variety K(U,m)Sh, as m tends to infinity,
parametrizes quadruples (A, λ, ι, α) where α = (αp,m, α

p) with αp as above and

α0
p,m :M/pmM

∼−→ A[pm] (mod K(U,m))

is an O/pmO-linear injection that identifies the given skew-symmetric pairing
on M/pmM with the Weil pairing on A[pm]. This comes down to an inclusion
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of (M/pmM)K(U,m) =M0/pmM0 in A[pm]Σp
and a Cartier dual surjection of

A[pm]Σp
onto M−1/pmM−1. It follows that there are natural isomorphisms

(2.1.9.1) KpIgm,Qp

∼−→ K(U,m)Sh

compatible with the forgetful maps from level m+ 1 to level m.
Over C, the connected components of K(U,m)Sh(G,X) are in bijection with the
class group C(m) = C(K(U,m)), as at the end of (1.2). Consider the normal-

ization K̂S of KS in K(U,m)Sh(G,X). This is an Ov-model of K(U,m)Sh(G,X),

though not a very good one. However the non-singular locus (̂̄S
o
is étale over

K S̄
ord, and KpIgm is naturally isomorphic to an open subscheme of (̂̄S)o. In

particular, there is a map cm :Kp Igm → C(m), which can be given a modular
interpretation as in (1.2). A special case of Corollary 8.17 of [Hi04], (cf. also
[Hi05, §10]) is that
(2.1.10) Theorem. ([Hida]) The fibers of cm are geometrically irreducible for
all m.

This is proved in [loc. cit.] under a hypothesis labeled (ord), which is equivalent
to our hypothesis (1.1.2). Lemma 8.10 of [loc. cit.] makes this explicit, but
only for imaginary quadratic K.
(2.1.11) Inclusion of Igusa towers for Sh(V,−V ) in Sh(2V )

Applying the previous discussion to the hermitian space 2V , we identify
Ig(2V )m = Ig(2V )2,m with the moduli space of quintuples

{B = (B,µ, ι2, β
p), jo2V :M(2V )0 ⊗ µpm →֒ B[pm]).

Now M(2V )0 is a lattice in the K ⊗Q Qp-submodule F 0(2V )p of (2V )p, which
we can choose arbitrarily as long as we respect Hypothesis (1.1.6). For example,
we can choose

(2.1.11.1) F 0(2V )p = F 0Vp ⊕ F 0(−V )p

where F 0(−V )p ⊂ (−V )p is any K ⊗Q Qp-submodule satisfying (1.1.6), which
for −V amounts to the condition that dimF 0(−V )w = n − aσ = acσ for any
σ ∈ Σw. As K ⊗Q Qp-module −V is isomorphic to V , and it is particularly
convenient to choose F 0(−V )p ⊂ (−V )p = Vp to be a subspace mapping iso-
morphically to Vp/F

0Vp under the projection, or equivalently such that (2.1.1)
restricts to a duality between F 0(−V )w and F 0Vcw for any w dividing p.
We define Ig(V,−V )m ⊂ Ig(V )m×Ig(−V )m as Sh(V,−V ) in (1.3) as the sub-
variety with compatible polarizations. Then, ignoring prime-to p level struc-
tures, the reduction modulo p of the natural morphism Sh(V,−V ) ⊂ Sh(2V )
defines a family of morphisms Ig(V,−V )m → Ig(2V )m whose image, in the
version Ig2,m, is the moduli space of quintuples as above where

(B,µ, ι2, β)
∼−→ (A×A−, λ× λ−, ι× ι−, α× α−)
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as in §1.4 and where

(2.1.11.2) jo2V = joV ×jo−V :M(V )0⊗µpm×M(−V )0⊗µpm →֒ A[pm]×A−[pm].

We make this more explicit. Fix w dividing p, let (a, b) = (aw, bw), and
choose bases (e1, . . . , en) and (f1, . . . , fn) for Vw and (−V )w, respectively, with
e1, . . . ea a basis for F 0Vw, f1, . . . fb a basis for F 0(−Vw). We regard the natural
identification of Vw with (−V )w as an isomorphism between the two halves of
2V , in such a way that ei is taken to fb+i for 1 ≤ i ≤ a and ea+j is taken to fj
for 1 ≤ j ≤ b. The 2n× 2n-matrix γ1 = γ1;a,b:

(2.1.11.3) γ1 = γ1;a,b =



Ia 0 0 0
0 0 0 Ib
0 0 Ia 0
0 Ib 0 0


 ,

in the basis (e1, . . . , en, f1, . . . fn) of 2Vw, takes the subspace Vw ⊂ 2Vw to the
subspace F 0(2V )w defined by (2.1.11.1).

(2.2) The Igusa tower, II: p-adic modular forms.

We now recall Hida’s generalization of the Deligne-Katz construction of p-adic
modular forms, for the Shimura varieties Sh(G,X). In the present article we
will only need p-adic modular forms in order to define a good notion of p-
integrality for certain holomorphic Eisenstein series ramified at p, but later we
will use them to construct p-adic L-functions and establish their boundedness .
So for the moment we let (G,X) = (GU(V ), X(V )) or (GU(V,−V ), X(V,−V )).
We work with a smooth, projective, toroidal compactification KS˜ of KS. The
construction of such compactifications in this setting is due to Fujiwara. The
choice of KS˜ is not canonical. However, the universal abelian scheme KA over

KS extends to a semi-abelian scheme over KS .̃ Hence ω, and therefore each
ρτ , also extends.
Let v be the prime of K determined by inclp. We begin by choosing a lifting
of K S̄

ord to an Ov-flat open subscheme of KS .̃ (This is possible since under
(1.1.2) E(V )w0

= Qp so our schemes are all defined over Ov.) More precisely,

K S̄
ord is defined by the non-vanishing of the Hasse invariant H, which can be

regarded as a section of a certain automorphic line bundle [L] over S̄. The line
bundle L is known to be ample, hence for some power κ >> 0 the section Hκ

lifts to a section H̃ ∈ Γ(KS, [L]κ). We let KSord ⊂ KS be the open subscheme

defined by non-vanishing of H̃. This is slightly abusive, since it depends on the
choice of lifting H̃, but different choices yield isomorphic theories. For all this,
see [Hi05, p. 213 ff.] or [SU].
We let W be a finite flat Ov algebra, Wr =W/prW , and let Sm = KSord ⊗Ov

Wr. The Sr form a sequence of flat Wr schemes, with given isomorphisms

Sr+1 ⊗Wr+1
Wr

∼−→ Sr.
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For m ≥ 1, let Pm = A[pm]et = A[pm]/A[pm]0 over K S̄
ord, the quotient of

the K S̄
ord group scheme of pm-division points of A by its maximal connected

subgroup scheme. This is a free étale sheaf in Ov/p
mOv-modules over K S̄

ord,
hence lifts canonically, together with its Ov-action, to an étale sheaf over Sr for
all r. Following [Hi04], we define Tr,m to be the lifting to Sr of the correspond-
ing principal GL(n,O/pmO)-bundle (resp.., GL(n,O/pmO)×GL(n,O/pmO)-
bundle) Igm(V ) = Ig1,m (resp., Igm(V,−V )), defined by (2.1.6.1) (resp., as in
(2.1.11)); note that our indices are not the same as Hida’s. Let

Vr,m = Γ(Tr,m,OTr,m
); Vr,∞ = lim−→

m
Vr,m; V∞,∞ = lim←−

r
Vr,∞

Note that these carry actions of GL(n,Op) or of GL(n,Op) × GL(n,O), de-
pending on whether G = GU(V ) or GU(V,−V ). Let U be the upper-triangular
unipotent radical of GL(n,Op) or GL(n,Op)×GL(n,Op), depending. We then
define our space of p-adic modular forms to be

V := VU
∞,∞.

We will adopt the convention of adding a superscript V or V,−V when it is
necessary to distinguish the groups in question. Hence, VV is the ring of p-adic
modular forms for GU(V ).
It is clear that the construction of the spaces of p-adic modular forms for
GU(V,−V ) and GU(2V ) can be done compatibly, at least when the var-
ious prime-to-p level structures are compatible (i.e., there are morphisms

KSh(V,−V )→ K′Sh(2V )). This gives rise to a restriction map

rV : V2V → V(V,−V ).

The primary goal of this section is to explain why this is a good definition and
how it naturally contains all p-adic sections of [Wτ ] for all τ , and, in the case
G = GU(2V ), is contained in the power series ring R[[qΛ

∗∩c
∗

]] of (1.5.3) for an
appropriate R. For n > 1, the sections of [Wτ ] are vector-valued functions. To
compare them for different τ , we follow Hida and trivialize the [Wτ ], using the
modular definition of Tr,m, and then apply the theorem of the highest weight
in integral form. The discussion below follows [Hi04,8.1], to which we refer for
missing details.
Let ωr,m denote the pullback of ω to Tr,m. By Cartier duality, the universal
surjection (2.1.6.1), with S = T1,m, is equivalent to an isomorphism of group
schemes

(2.2.1) d−1 ⊗ (µpm)n
∼−→ Â[pm]0.

Here d−1 is the different of K over Q, µpm is the kernel of multiplication by pm

in the multiplicative group scheme, Â is the abelian scheme dual to A, and the
superscript 0 denotes the maximal connected subgroup scheme. Since (2.2.1)
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is Cartier dual to an isomorphism of étale group schemes induced by (2.1.6.1),
it lifts canonically to Tr,m. Since there are canonical isomorphisms

ωr,m
∼−→ Lie(Â)⊗Wr

∼−→ Lie(Â[pm]0)⊗Wr

we can identify

(2.2.2) ωr,m
∼−→ d−1 ⊗ Lie(µpm)n ⊗Wr

∼−→ d−1 ⊗On
Tr,m

.

as Op ⊗Zp
Wr modules.

Since K is unramified at p, d−1 is prime to p, and (2.2.2) reduces to a family
of Op ⊗Zp

Wr isomorphisms

(2.2.3) ωr,m
∼−→ O ⊗Zp

On
Tr,m

,

compatible as m and r vary. Note that in (2.2.1), (2.2.2), and (2.2.3) the n
should be replaced by a 2n if G = GU(V,−V ).
Suppose that G = GU(V ). Now we apply the highest weight formalism as
in [Hi05]. Let G1 = ResOp/Zp

GL(n), let B1 be the upper-triangular Borel
of G1, U1 its unipotent radical, and T1 the torus of diagonal elements. Let
H = G1/U1. Then (2.2.3) yields a family of isomorphisms

(2.2.4) G1/Tr,m

∼−→ GLO(ωr,m)

and

(2.2.5) HTr,m

∼−→ Yr,m
def
= GLO(ωr,m)/Ucan

where Ucan is the Tr,m-unipotent group scheme corresponding to U1 under
(2.2.4). The isomorphisms (2.2.5) are compatible with the natural G1 × T1
actions on the two sides (G1 acting on the left and T1 on the right) and patch
together as r and m vary. Not that for any character κ of T1, taking κ-
equivariant sections (indicated by [κ]) of OYr,m

makes sense.
Continuing as in [Hi05, §7], and writing Y = Yr,m, pY : Y → Tr,m the natural
map, note that pY,∗(OY [κ]) inherits an action of G1(Zp), covering the trivial
action on Tr,m, because pY is a fibration in G1(Z/p

mZ)-homogeneous spaces.
On the other hand, Tr,m is a G1(Z/p

mZ)-torsor over Sr. We let δm denote the
diagonal action of G1(Z/p

mZ) on pY,∗(OY [κ]) over Sr. Over Sr

(2.2.6) ρκ = pY,∗(OY [κ])/δm(G1(Z/p
mZ)),

From the isomorphism (2.2.5) one obtains an isomorphism

φm : H0(Sm, ρκ)
∼−→ {f ∈MorVm,m

(G1/Vm,m
,Ga/Vm,m

) | f(hgut) = κ(t)h · f(g),
h ∈ G1(Zp), u ∈ U1, t ∈ T1}.
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These isomorphisms are clearly compatible with varying m. Composing with
the evaluation at the identity map yields a map

βκ : H0(Sm, ρκ)→ VU1
m,m.

Because of the compatibilities as m varies, this also makes sense for m = ∞,
in which case we have an injection

(2.2.7) βκ : H0(S∞, ρκ) → V = VU1
∞,∞.

The image of βκ is naturally contained in V[κ].
From (2.2.7) we obtain an injection
(2.2.8)
Ig : H0(K(U,∞)Sh(V ), [Wτ ])⊗QCp = H0(K(U,∞)Sh(V ), ρτ )⊗QCp → V⊗Ov

Cp.

This is defined by restricting a section of H0(K(U,∞)Sh(V ), ρτ ) to a formal

neighborhood of the Igusa tower in the special fibre of the normalization K̂S of

KS in KSh(V ).
When G = GU(V,−V ) the same arguments apply, but in the definition of G1,
GL(n) is replaced by GL(n)×GL(n), and in (2.2.4) GLO(ωr,m) is replaced by

the subgroup preserving the splitting of Lie(Â) coming from the splitting of A.
In particular, when the prime-to-p levels are compatible, there is a commutative
diagram
(2.2.9)

H0(K(U,∞)Sh(2V ), [Wτ ])⊗Q Cp
res′−−−−→ H0(K(U,∞)Sh(V,−V ), [Wτ ])⊗Q Cp

Ig2V

y IgV,−V

y

V2V ⊗Ov
Cp

rV−−−−→ VV,−V ⊗Ov
Cp

where res′ is the map coming from the inclusion of Igusa towers as in (2.1.11).

(2.3) p-adic modular forms and the q-expansion principle.

Now we return to the situation of (1.5), with the Shimura datum
(GU(2V ), X(2V )). We write Sh(LP ) instead of Sh(LP , XP ). For sim-
plicity, we again restrict attention to one-dimensional [Wτ ]. Then the Fourier
expansion of (1.5.6.8), applied to

H0(K(U,∞)Sh(2V ), [Wτ ]) := lim−→
m
H0(K(U,m)Sh(2V ), [Wτ ]),

takes values in

⊕̂

β∈U∗

H0(KP (∞)Sh(LP ), [WτP ]) :=
⊕̂

β∈U∗

lim−→
m
H0(KLP

(m)Sh(LP ), [WτP ]).

Documenta Mathematica · Extra Volume Coates (2006) 393–464



p-adic L-functions for unitary Shimura varieties, I 427

These can be translated into locally constant functions on LP (Af ) as in the
discussion following (1.5.6.5), and as indicated there, it suffices to consider
values on LP (A

p
f ). In [Hi04, 8.3.2], Hida explains how to fill in the lower

horizontal arrow in the following commutative diagram:

(2.3.1)

H0(K(U,∞)Sh(2V ), [Wτ ])⊗Q Cp
F.J.P−−−−→

⊕̂

β∈U∗

H0(KP (∞)Sh(LP ), [WτP ])⊗Q Cp

Ig

y =

y

V ⊗Ov
Cp

(F.J.P )Cp−−−−−−→
⊕̂

β∈U∗

H0(KP (∞)SP , [WτP ])⊗Ov
Cp

More precisely, and more usefully, Hida explains how to construct an integral
map

(2.3.2) V F.J.P−−−→
⊕̂

β∈U∗

H0(KP (∞)SP ,OSP )

which yields the bottom line of (2.3.1) upon tensoring with Cp.
6

Now we can state

Theorem 2.3.3 (q-expansion principle, [Hi04]).
(a) The map F.J.P of (2.3.2) is injective and its cokernel has no p-torsion.

(b) Let f ∈ H0(K(U,∞)Sh(2V ), [Wτ ]) and suppose f is defined over Q, viewed

as a subfield of C or of Cp. Then the expansions F.J.P (f), defined via (2.3.2)
or (1.5.6.8), coincide, and the following are equivalent:

(i) Ig(f) ∈ H0(S∞, ρκ)⊗OCp

(ii) F.J.P (f) has coefficients in OCp
.

Here, as in (1.5), the coefficients of F.J.P (f) can be viewed as functions on
LP (Af ), and to test their integrality it suffices to consider their values on
LP (Af ).

When n = 1 and E = Q, this theorem, or rather the corrected version of
this theorem incorporating a growth condition at the cusps, is essentially due
to Katz; for general E, still with n = 1, it is due to Ribet. The principal
ingredient in the proof is the irreducibility theorem 2.1.10.

(2.4) The case of definite groups.

We end our discussion of p-adic modular forms with a naive description when
V is definite. The comparison of this naive description, which is useful, for

6Actually Hida only considered the case of level prime to p; the general case is treated in

[SU].
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calculations, and the geometric description of the previous section is made in
(2.4.7). We will need it to understand how the restriction of a p-adic modular
form on U(2V ) to U(V,−V ) can be described in the naive sense.
Throughout this section we assume that < •, • >σ is positive definite for all
σ ∈ Σ (so aσ = n for all σ).

(2.4.1) Spaces of forms and rational structures.

For applications to definite unitary groups, we can avoid similitude factors, so
for the moment we let G denote U(V ) or U(−V ) (since these are canonically
identified, the distinction is made primarily for ease of subsequent notation).
In what follows, we consider only compact subgroups K ⊂ G(Af ) of the form
K =

∏
vKv, the product being over finite places of Q, with Kv a subgroup of

Gv. We fix a rational prime p such that all places of E dividing p split in K
and let Kp = K ∩G(Af,p) ∼=

∏
v 6=pKv.

Let ρ be a complex algebraic character of G. Via the fixed isomorphism Cp
∼= C

we view ρ as an algebraic character over Cp. Then ρ has a model over some
finite extension F of Qp. We fix such an F . For each finite place v of Q let
sv : Kv → GL(Lv) be a finite-dimensional F -representation of Kv factoring
through a finite quotient of Kv and such that sv and Lv are trivial for almost
all v and for v = p. Let s = ⊗v,F sv and L = ⊗v,FLv. The product G∞ ×K
acts on C⊗F L via ρ⊗ s.
For a finite set S of places of Q and a finite-dimensional complex vector space
H let C∞(G(AS), H) denote the space of functions from G(AS) to Wσ(C)
that are smooth as functions of the infinite component of G(AS) and locally
constant as functions of the finite component. If S contains ∞, G′ ⊂ G(AS) is
an open subgroup, and M is any set, then we write C∞(G′,M) for the set of
locally constant functions from G′ to M .
Let

A0(G,K, ρ, s) =

= {f ∈ C∞(G(A),C⊗F L)) | f(γg · g∞k) = (ρ⊗ s)(g∞ × k)−1f(g)},

where γ ∈ G(Q), g ∈ G(A), g∞ ∈ G∞, and k ∈ K. For any F -algebra R let

Af (G,K, ρ, s)(R) =

= {f ∈ C∞(G(Af ), R⊗F L) | f(γ · gk) = (ρ⊗ s)(γ × k−1)f(g)},

where γ ∈ G(Q), g ∈ G(Af ), and k ∈ K. Note that there is a canonical
isomorphism

(2.4.1.1) Af (G,K, ρ, s)(R) = Af (G,K, ρ, s)(F )⊗F R.

Restriction to G(Af ) defines a natural isomorphism

(2.4.1.2) res : A0(G,K, ρ, s)
∼−→ Af (G,K, ρ, s)(C),
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and hence, by (2.4.1.1), Af (G,K, ρ, s)(F ) defines an F -structure on
A0(G,K, ρ, s).
When ρ or s is the trivial one-dimensional representation, we drop it from our
notation.

(2.4.2) Integral structures.

Let R be a commutative ring. For any R[K]-module M let

A(G,K,M) =

= {f ∈ C∞(G(Af ),M) | f(γgk) = k−1 · f(g), γ ∈ G(Q), k ∈ K}.

If K ′ ⊆ K is an open subgroup then A(G,K,M) ⊆ A(G,K ′,M) and there
is a trace map trK′,K : A(G,K ′,M) → A(G,K,M) defined by trK′,Kf(x) =∑

y∈K/K′ yf(xy). These maps are clearly functorial in M and R and they

satisfy

(2.4.2.1) trK′′,K = trK′,K ◦ trK′′,K′ , K ′′ ⊆ K ′ ⊆ K.

Let A be the ring of integers of F . We choose a Kv-stable A-lattice Λsv

in each Lv and let Λs = ⊗v,AΛsv
. Clearly A(G,K,Λs) is an A-lattice in

Af (G,K, s)(F ).
Let ΓK = G(Q) ∩Kp. For χ an R×-valued character of ΓK and M an R[K]-
module let

Af (G,K, χ,M) = {f ∈ C∞(G(Af,p)×Kp,M |
f(γgk) = χ(γ−1) · k−1f(g), γ ∈ ΓK , k ∈ K}.

Weak approximation shows that restriction to G(Af,p)×Kp yields an isomor-
phism

(2.4.2.2) A(G,K,M)
∼−→ Af (G,K,1,M).

Similarly, when R is an F -algebra, restriction to G(Af,p) ×Kp yields an iso-
morphism

(2.4.2.3) Af (G,K, ρ, s)(R)
∼−→ Af (G,K, ρ,L⊗F R).

It follows from (2.4.2.3) that to define an A-lattice in Af (G,K, ρ, s)(F ) it suf-
fices to define an A-lattice in L. In particular, Af (G,K, ρ,Λs) defines an A-
lattice in Af (G,K, ρ, s).
For K ′ ⊆ K we define a trace map trK′,K : Af (G,K

′, χ,M)→ Af (G,K, χ,M)
just as we did above. These maps also satisfy (2.4.2.1) and are functorial in
M , and R and agree with our previous definitions via (2.4.2.2) when χ = 1.

(2.4.3) p-adic forms
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For a topological space X and a group G′ = H × H ′ with H ⊆ G(Qp) and
H ′ ⊆ G(Af,p) open sets, we write Cp(G′, X) for the space of maps from G′ to
X that are continuous on H (for the p-adic topology) and locally constant on
H ′.
Let G1 denote the group scheme ROE,p/Zp

GL(n) over Zp and fix an identi-
fication of G with G1 over Qp. Let B ⊆ G1 be its upper-triangular Borel.
Let P ⊇ B be a standard parabolic of G1. Let L be its standard Levi sub-
group and UP its unipotent radical. Upon fixing an identification OE,p =∏

w|pOE,w we have G1(Zp) =
∏

w|p GL(n,OE,w), P (Zp) =
∏

w|p Pw(OE,w)

where Pw ⊆ GL(n) is a standard parabolic corresponding to a partition
pw : n = n1,w + · · · + nlw,w of n, and L(Zp) =

∏
w|p Lw where Lw is the

set of block diagonal matrices diag(A1, ..., Alw) with Ai ∈ GL(ni,w,OE,w). Let
L1 ⊆ L(Zp) be the subgroup

∏
w|p Lw,1 where Lw,1 is the subgroup defined by

det(Ai) = 1. Let P1 = L1UP (Zp). For m ≥ 0 let UP,m = {x ∈ G1(Zp) | x
mod pm ∈ (P1 mod pm)}. So ∩UP,m = P1. Let IP,m = {x ∈ G1(Zp) | x
mod pm ∈ P (Zp/p

m)}.
Assume that K = G1(Zp)×Kp. Let KP,m = UP,m×Kp and let KP = P1×Kp.
Then ∩KP,m = KP . Let R be a p-adic ring and M any finite R-module that
is also an R[K]-module on which Kp acts trivially. Let

Ap(G,KP ,M)={f ∈ Cp(G(Af ),M) | f(γgk) = k−1 ·f(g), γ ∈ G(Q), k ∈ KP }.

Since M/prM is discrete, the canonical projections M ։ M/prM together
with (2.4.2.2) induce a canonical isomorphism

(2.4.3.1) Ap(G,KP ,M)
∼−→ lim←−

r
lim−→
m
Af (G,KP,m,M/prM).

Let A and Λs be as in (2.4.2) and take R = A. Then Λs provides an important
example of an M as above. We call Ap(G,KP ,Λs) the space of (Λs-valued)
p-adic modular forms on G relative to P (and K). When P is understood then
we just call this the space of p-adic modular forms.

(2.4.4) Characters

The group L(Zp) normalizes each KP,m, m > 0, and so acts on Ap(G,KP ,M)
via right translation, determining an action of

ZP = L(Zp)/L1 = P (Zp)/P1
∼−→ lim←−

m
IP,m/UP,m.

For any R×-valued character χ of ZP we define Ap(G,KP ,M)[χ] to be the
submodule on which ZP acts via χ. Note that

(2.4.4.1) ZP
∼−→

∏

w|p
(O×

E,w)
lw , diag(A1, ..., Alw )) 7→ (det(A1), ..., det(Alw).
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By an arithmetic character of Z(Zp) we will mean a character χ such that
χ = χ0ρ with χ0 a finite-order character and ρ arising from the restriction of
an algebraic character of G as in (2.4.1). For an arithmetic character χ let mχ

be the smallest integer such that χ0 is trivial on IP,mχ
/UP,mχ

. For m ≥ mχ

we can extend χ to a character of IP,m by setting χ(x) = χ(z) where z ∈ Zp

is such that z has the same image as x in IP,m/UP,m. We also extend χ to a
character of the center of L(Qp) as follows. We fix a uniformizer ξw of OE,w

for each w|p. Then we put

χ(diag(ξr1w 1n1,w
, ...., ξ

rlw
w 1nlw,w

)) = ρ(diag(ξr1w 1n1,w
, ...., ξ

rlw
w 1nlw,w

)).

Since any element of the center of L(Qp) can be uniquely written as a product
of a diagonal element as above and an element in L(Zp) this is enough to define
the desired extension.
For any R×-valued arithmetic character χ = χ0ρ of ZP we have injective maps

(2.4.4.2)
rχ : Af (G,K

0
P,m, χ,M) →֒ Ap(G,KP ,M)[χ], m ≥ mχ,

rχ(f)(g) = χ(xp)f(x),
g = γx, γ ∈ G(Q), x ∈ G(Af,p)× IP,m,

where K0
P,m = Kp× IP,m. A product decomposition of g as in (2.4.4.2) always

exists by weak approximation.
An important observation is that the rχ’s induce an isomorphism

(2.4.4.3) lim−→
m≥n

Af (G,K
0
P,m, χ,M/prM)

∼−→ Ap(G,KP ,M/prM)[χ].

For the surjectivity we note that for any f ∈ Ap(G,KP ,M/prM)[χ] if m is
sufficiently large then f belongs to A(G,KP,m,M/pr). For g ∈ G(Af,p) ×
IP,m let sχ(f)(g) = χ(g−1

p )f(g). Then sχ(f) ∈ Af (G,K
0
P,m, χ,M/pr) and

rχ(sχ(f)) = f .

(2.4.5) Hecke actions.

Let K be an open compact subgroup of G(Af ). Suppose H ⊆ G(A) is a
subgroup containing K and M is a Z[K]-module on which Kv acts trivially for
all v not in some finite set ΣM . For an open subgroup K ′ ⊆ K let C(H,K ′,M)
be the space of functions f : H →M such that f(gk) = k−1f(g) for all k ∈ K ′.
Then for any g ∈ H ∩ G(Af ) such that gv = 1 if v ∈ ΣM and any two
open subgroups K ′,K ′′ ⊆ K, the double coset K ′gK ′′ determines a map from
C(H,K ′,M) to C(H,K ′′,M) by

(2.4.5.1) [K ′gK ′′]f(x) =
∑

i

f(xg−1
i ), K ′gK ′′ = ⊔K ′gi.

This map is obviously functorial in M . It is easy to see that from (2.4.5.1)
we get actions of double cosets on the various modules of functions defined
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in the preceding sections; one need only observe that these actions preserve
the requisite topological properties. These actions are compatible with all the
various comparisons and isomorphisms described so far.
One important observation is that if g is such that the KP,mgKP,m have the
same left-coset representatives for all m, then from (2.4.3.1) we get an action
of T (g) = lim−→m[KP,mgKP,m] on Ap(G,KP ,M). If we further assume that gp
is in the center of L(Qp), then T (g) commutes with the action of P (Zp) and
hence stabilizes each Ap(G,KP ,M)[χ], χ a character of ZP .
Let CP ⊂ G1(Qp) be those elements g in the center of L(Qp) such that

(2.4.5.2) g−1UP (Zp)g ⊆ UP (Zp).

For such g we also have
(2.4.5.3)

IP,mgIP,m = ⊔IP,mgui and UP,mgUP,m = ⊔UP,mgui, ui ∈ UP (Zp).

Also, for g, g′ ∈ CP ,

(2.4.5.4)
IP,mgIP,m · IP,mg

′IP,m = IP,mgg
′IP,m

UP,mgUP,m · UP,mg
′UP,m = UP,mgg

′UP,m
,

where the multiplications are the usual double-coset multiplications.
LetM1 = ROE,p/Zp

Mn×n. Suppose Kp ⊆ G1(Zp) and let ∆K be the semigroup

in M1(Qp) generated by Kp and those g such that g−1 ∈ CP . Let M be an
A[K]-module for which there exists a finite set of places ΣM , p 6∈ ΣM , such
that Kv acts trivially on M if v 6∈ ΣM . Let g ∈ G(Af ) be such that gv = 1 for
all v ∈ ΣM , gp ∈ CP , and suppose that

(2.4.5.5) KgK = ⊔Kgi, g−1
i,p ∈ ∆K .

Under this assumption we define an action of KgK on Af (G,K, χ,M) by

(2.4.5.6)
(KgK)f(x) =

∑
i χ(γi)f(xi),

γi ∈ G(Q), γixg
−1
i = xi ∈ G(Af,p)×Kp;

the assumption (2.4.5.5) ensures that γ−1
i ∈ ∆K .

Let χ be an A×-valued arithmetic character of ZP . If gp ∈ CP and gv = 1
for v ∈ ΣM then (2.4.5.3) implies that (2.4.5.5) holds with K replaced by

K0
P,m for any m ≥ mχ. In particular, (2.4.5.6) defines an action of T̃ (g) =

(K0
P,mgK

0
P,m) on Af (G,K

0
P,m, χ,M), m ≥ mχ, which is multiplicative in such

g by (2.4.5.4). Moreover, viewing Af (G,K
0
P,m, χ,Λs) as an A-submodule of

Af (G,KP,m, ρ, σ)(F ) we find that

(2.4.5.6) T̃ (g) = χ−1(gp)[KP,mgKP,m].
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Additionally, it is clear from the definitions that

(2.4.5.7) rχ ◦ T̃ (g) = T (g) ◦ rχ,

where rχ is as in (2.4.4.2).

(2.4.6) Pairings.

For K ⊆ G(Af ) an open compact subgroup, let

KS(G) = G(Q)\G(Af )/K.

This is a finite set. Let R be a commutative ring and let M,M ′ be R[K]-
modules on which Kp acts trivially. Suppose (•, •) : M ×M ′ → R is a K-
equivariant R-pairing. Given an R×-valued character χ of ΓK we define an
R-pairing

< •, • >K : Af (G,K, χ,M)×Af (G,K, χ
−1,M ′)→ R,

(2.4.6.1) < f, g >K=
∑

[x]∈KS(G)

(f(x), g(x)), x ∈ G(Af,p)×Kp.

These pairings (integration with respect to the measure dµK(g) of (0.2.4)) are
clearly functorial in R,M,M ′. The following lemma records some basic but
important properties of these pairings. For simplicity we will assume that

(2.4.6.2) γxk = x, γ ∈ G(Q), x ∈ G(Af ), k ∈ K =⇒ k = 1.

This holds for sufficiently small K.

(2.4.6.3) Lemma. Assume (2.4.6.2).

(i) If (•, •) is a perfect pairing, then so is < •, • >K .
(ii) Let K ′ ⊆ K be an open subgroup. Then

(2.4.6.4)
< f, trK′,K(h) >K=< f, h >K′ ,

f ∈ Af (G,K, χ,M), h ∈ Af (G,K
′, χ−1,M ′).

(iii) Suppose there exists a finite set of places ΣM such that Kv acts trivially
onM if v 6∈ ΣM . LetK ′,K ′′ ⊆ K be open subgroups and let g ∈ G(Af )
be such that gp = 1 and gv = 1 for all v ∈ ΣM . Then

(2.4.6.5)
< [K ′′gK ′]f, h >K′=< f, [K ′g−1K ′′]h >K′′ ,

f ∈ Af (G,K
′′, χ,M), h ∈ Af (G,K

′, χ−1,M ′).
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Part (i) holds because Af (G,K, χ,M) is spanned by the functions δx,m, x ∈
G(Af,p)×Kp, m ∈M , defined by

δx,m(y) =

{
χ(γ−1) · k−1m y = γxk, γ ∈ ΓK , k ∈ K,

0 otherwise.

The assumption (2.4.6.2) ensures that these functions are well-defined. Part (ii)
is also clear from (2.4.6.2). Part (iii) follows from part (ii) and the observation
that

[K ′′gK ′](f(x)) = trK′∩g−1K′′g,K′(f(xg−1)).

For our purposes, the most important situation to which we will apply Lemma
(2.4.6.3) is when R is the integer ring of some finite extension of F , χ comes
from an arithmetic character of ZP , and M = Λs ⊗A R. In this case we let
M ′ = HomA(Λs, R), the latter being an R[K]-module with the usual action,
and let (•, •) be the canonical pairing between M and M ′. Let

(2.4.6.6) < •, • >m,χ,σ=< •, • >K0
P,m

, m ≥ mχ,

where the right-hand side is defined by (2.4.6.1) with our current choices of
M,M ′, etc. Assuming that (2.4.6.2) holds for K0

P,m, then all the conclusions

of Lemma (2.4.6.3) hold for < •, • >m,χ,σ.

(2.4.7) Comparison with the geometric picture.

Previously, we defined spaces of p-adic modular form for GU(V ) from a geomet-
ric perspective. We now compare these to the spaces in (2.4.3). For simplicity

we will assume that the similitude character maps K onto Ẑ×.
In the definite situation the geometric constructions of (2.2) are simple. The
varieties K(U,m)Sh(V ) clearly all have models over Ov; the base change to

Ov/p
r is just Tr,m. From this it is easily deduced that VU

r,mΓ(Tr,m,OTr,m
) is

naturally identified with the set of Ov/p
r-valued functions on K(U,m)Sh(V ) and

so, under our hypotheses on K, with Af (G,K(U,m),Ov/p
m) (in particular,

these identifications are compatible with varying r and m. Thus we have that

(2.4.7.1) V = lim←−
r

lim−→
m
VU
r,m = lim←−

r
lim−→
m
Af (G,K(U,m),Ov/p

m).

Then (2.4.3.1) identifies V with Ap(G,KB ,Ov). The spaces of p-adic modular
forms for other parabolics are obtained by taking UP -invariants.

The restriction on K can be dropped; then V is identified with a direct sum of
copies of Ap(G,KB ,Ov).
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3. Fourier coefficients of Siegel
Eisenstein series on unitary groups

(3.0) Conventions for automorphic forms on unitary groups.
We let ΣE denote the set of archimedean places of E. Let W be any hermitian
space over K of dimension n, and define −W and 2W = W ⊕ (−W ) as in §1.
Set

W d = {(v, v) | v ∈W}, Wd = {(v,−v) | v ∈W}
These are totally isotropic subspaces of 2W . Let P be the stablizer of W d in
U(2W ). As a Levi component of P we take the subgroup M ⊂ U(2W ) which
is stablizer of both W d and Wd. Then M ≃ GL(W d). We let U denote the
unipotent radical of P .
The decomposition 2W = W d ⊕ Wd is a complete polarization. Choose a
basis (u1, . . . , um) for W , so that (ui, ui) is a basis for W d. Let (−vj , vj),
j = 1, . . . ,m, be the dual basis of Wd. For any A ∈ GL(n)K, we define

m(A) to be the element of U(2W ) with matrix

(
A 0
0 tĀ−1

)
in the basis

{(ui, ui)}∪{(−vj , vj)}, where Ā is the image of A under the non-trivial Galois
automorphism of K/E. We will let

w =

(
0 1n
−1n 0

)

in the same basis; then P\PwP is the big cell in the Bruhat decomposition of
P\U(2W ).
All automorphic forms will be assumed K∞-finite, where K∞ will be a max-
imal compact modulo center subgroup of either U(2W )(R) or U(W )(R), as
appropriate. Conventions are as in §1.5; in particular K∞ will be associated to
a CM point, except where otherwise indicated.
We let GU(2W ) be the group of rational similitudes, as in §1. Let GP ⊂
GU(2W ) denote the stabilizer of W d, and let GM be the normalizer of M in

GP . We can identify GM
∼−→ M × Gm where M acts as GL(W d) and Gm

acts via the center of GL(Wd). Here and below Gm designates Gm,Q. In other
words, writing GP in standard form:

(3.0.1) GP = {
(
A B
0 D

)
}

with D = d · tc(A)−1 for some scalar d, we can identify the factor Gm ⊂ GM
with the group of matrices

(3.0.2) {d(t) =
(
1n 0
0 t1n

)
} ⊂ GU(2W ).

Let v be any place of E, | · |v the corresponding absolute value on Qv, and let

(3.0.3) δv(p) = |NK/E ◦ det(A(p))|
n
2
v |ν(p)|−

1
2n

2

, p ∈ GP (Ev).
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This is the local modulus character of GP (Ev). The adelic modulus character
of GP (A), defined analogously, is denoted δA. Let χ be a Hecke character of

K. We view χ as a character of M(AE)
∼−→ GL(W d) via composition with

det. For any complex number s, define

δ0P,A(p, χ, s) = χ(det(A(p))) · |NK/E ◦ det(A(p))|sv|ν(p)|−ns

δA(p, χ, s) = δA(p)δ0P,A(p, χ, s) =

= χ(det(A(p))) · |NK/E ◦ det(A(p))|
n
2 +s
v |ν(p)|− 1

2n
2−ns.

The local characters δP,v(·, χ, s) and δ0P,v(·, χ, s) are defined analogously. The

restrictions to M of the characters δP,v, δ
0
P,v, and so on are denoted by the

same notation.
As in (2.2), the symmetric domain X(2W ) is isomorphic to the Xd

n,n of tube

domains. Let τ0 ∈ X(2W ) be a fixed point of K∞, X+ the connected compo-
nent of X(2W ) containing τ0, GU(n, n)+ ⊂ GU(2W )(R) the stabilizer of X+.

Thus X+ ∼−→ ∏
σ∈ΣE

X+
n,n;σ with X+

n,n;σ the symmetric space associated to

U(n, n) = U(Eσ). Let GK∞ ⊂ GU(n, n)+ be the stabilizer of τ0; thus GK∞
contains K∞ as well as the center of GU(n, n).
In the tube domain realization, the canonical holomorphic automorphy factor
associated to GP and GK∞ is given as follows. Let τ = (τσ)σ∈ΣE

∈ X+ and

h =

((
Aσ Bσ

Cσ Dσ

))

σ∈ΣE

∈ GU(n, n)+. Then the triple

(3.0.4) J(h, τ) = (Cστσ +Dσ)σ∈ΣE
, J ′(h, τ) = (C̄t

στσ + D̄σ)σ∈ΣE
, ν(h)

defines a canonical automorphy factor with values in (GL(n,C)×GL(n,C))d×
GL(1,R) (note the misprint in [H3, 3.3]). Write J(h) = J(h, τ0) = (Jσ(h))σ∈ΣE

and define J ′(h) and J ′
σ(h) analogously. Given a pair of integers (µ, κ), we

define a complex valued function on GU(n, n)+:

(3.0.5) Jµ,κ((hσ)σ∈ΣE
) =

∏

σ∈ΣE

det Jσ(h)
−µ · det(J ′

σ(h))
−µ−κ · ν(h)n(µ+κ)

For purposes of calculation, we let τ0 = (σ(ג))σ∈Σ, where ג is the trace zero
element of K chosen in (1.4). We also write σג = σ(ג). Then the stabilizer
GK∞ is rational over the reflex field E(GU(2W ), X(2W )) = E(K,Σ), and the
map h 7→ J(h) is a rational function on the algebraic group GU(2W ) with
values in GK∞, rational over E(K,Σ).
(3.1) The Siegel Eisenstein series and doubling.

In this section we let G denote U(W ), H = U(2W ), viewed alternatively as
groups over E or, by restriction of scalars, as groups over Q. Identifying G
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with U(−W ), we obtain a natural embedding G×G ⊂ H. We choose maximal
compact subgroups K∞,G =

∏
v∈ΣE

Kv,G ⊂ G(R) and K∞ =
∏

v∈ΣE
Kv ⊂

H(R) – as at the end of the previous subsection – such that

K∞ ∩ (G×G)(R) = K∞,G ×K∞,G.

We will be more precise about these choices in (4.3).

(3.1.1) Formulas for the Eisenstein series

Let χ be a unitary Hecke character of K. We view χ as a character of
M(AE)

∼−→ GL(W d) via composition with det. Consider the induced rep-
resentation

(3.1.1.1) I(χ, s) = Ind(χ| · |sK)
∼−→ ⊗v Iv(χv| · |sv),

the induction being normalized; the local factors Iv, as v runs over places of
E, are likewise defined by normalized induction. At archimedean places we
assume our sections to be K∞-finite. For a section f(h;χ, s) ∈ I(χ, s) (cf. [H4,
I.1]) we form the Eisenstein series

(3.1.1.2) Ef (h;χ, s) =
∑

γ∈P (k)\U(2V )(k)

f(γh;χ, s)

This series is convergent for Re(s) > n/2, and it can be continued to a mero-
morphic function on the entire plane. We now fix an integer m ≥ n and assume

(3.1.1.3) χ|A = εmK

Then the main result of [T] states that the possible poles of Ef (g;χ, s) are all
simple, and can only occur at the points in the set

(3.1.1.4)
n− δ − 2r

2
, r = 0, . . . , [

n− δ − 1

2
],

where δ = 0 if m is even and δ = 1 if m is odd.

(3.1.2) The standard L-function via doubling. Let (π,Hπ) be a cuspidal auto-
morphic representation of G, (π∨, Hπ∨) its contragredient, which we assume
given with compatible isomorphisms of G(A)-modules

(3.1.2.1) π
∼−→ ⊗v πv, π

∨ ∼−→ ⊗v π
∨
v .

The tensor products in (3.1.2.1) are taken over places v of the totally real field
E, and at archimedean places πv is a admissible (gv,Kv,G)-module, which we
assume to be of cohomological type, with lowest Kv,G-type (cf., e.g., [L1]) τv.
For each v we let (•, •)πv

denote the canonical bilinear pairing πv ⊗ π∨
v → C.
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Let f(h;χ, s) be a section, as above, ϕ ∈ Hπ, ϕ
′ ∈ Hπ̌, and let ϕ′

χ(g) =

ϕ′(g)χ−1(det g′). We define the zeta integral:
(3.1.2.2)

Z(s, ϕ, ϕ′, f, χ) =

∫

G×G)(Q)\(G×G)(A)

Ef ((g, g
′);χ, s)ϕ(g)ϕ′

χ(g
′)dgdg′.

The Haar measures dg = dg′ on G(A) are normalized as in (0.2.2). The relation
to the integral in terms of Tamagawa measure is determined by (0.2.3).
The theory of this function, due to Piatetski-Shapiro and Rallis [PSR], was
worked out (for trivial χ) by Li [L2] and more generally in [HKS,§6]. We make
the following hypotheses:
(3.1.2.4) Hypotheses

(a) There is a finite set of finite places Sf of E such that, for any non-
archimedean v /∈ Sf , the representations πv, the characters χv, and the
fields Kw, for w dividing v, are all unramified;

(b) The section f admits a factorization f = ⊗vfv with respect to (3.1.1.1).
(c) The functions ϕ, ϕ′ admit factorizations ϕ = ϕSf

⊗ ⊗v/∈Sf
ϕv, ϕ

′ =
ϕSf
⊗⊗v/∈Sf

ϕ′
v, with respect to (3.1.2.1)

(d) For v /∈ Sf non-archimedean, the local vectors fv, ϕv, and ϕ
′
v, are the

normalized spherical vectors in their respective representations, with
(ϕv, ϕ

′
v)πv

= 1.
(e) For v archimedean, the vector ϕv (resp. ϕ′

v) is a non-zero highest (resp.
lowest) weight vector in τv (resp. in τ∨v ), such that (ϕv, ϕ

′
v)πv

= 1.

We let S = ΣE ∪ Sf . Define

(3.1.2.5) dn(s, χ) =

n−1∏

r=0

L(2s+ n− r, εn−1+r
K ) =

∏

v

dn,v(s, χ),

the Euler product on the right being taken only over finite places;

(3.1.2.6) Q0
W (ϕ,ϕ′) =

∫

G(Q)\G(A)

ϕ(g)ϕ′(g)dg;

(3.1.2.7) ZS(s, ϕ, ϕ
′, f, χ) =

∫
∏

v∈S G(Ev)

fv((gv, 1);χ, s)(πv(gv)ϕ,ϕ
′)dgv;

Z̃S(s, ϕ, ϕ
′, f, χ) =

∏

v∈S

[dn,v(s, χ)]ZS(s, ϕ, ϕ
′, f, χ).

The integral in (3.1.2.7) converges absolutely in a right halfplane and admits
a meromorphic continuation to all s.7 We have the following identity of mero-
morphic functions on C:

7For non-archimedean places this is worked out in detail in [HKS]. There is no published
reference for unitary groups at archimedean places in general. Shimura [S97] calculates

the archimedean integrals explicitly for holomorphic automorphic forms of scalar weight. For
general π∞ meromorphic continuation is established by Kudla and Rallis [KR] for symplectic
groups by reduction to principal series. The same technique applies to unitary groups, bearing
in mind that not all unitary groups are quasi-split. For the special values we have in mind

we appeal to the explicit calculations of Garrett [G].

Documenta Mathematica · Extra Volume Coates (2006) 393–464



p-adic L-functions for unitary Shimura varieties, I 439

(3.1.2.8) Basic Identity of Piatetski-Shapiro and Rallis.

dn(s, χ)Z(s, ϕ, ϕ
′, f, χ) = Z̃S(s, ϕ, ϕ

′, f, χ)LS(s+
1

2
, π, χ, St).

Here LS(s+ 1
2 , π, χ, St) =

∏
v/∈S Lv(s+

1
2 , πv, χv, St), where Lv(s+

1
2 , πv, χv, St)

is the local Langlands Euler factor attached to the unramified representations
πv and χv and the standard representation of the L-group of G×RK/QGm,K.8

For any place v /∈ S, there is a formal (unramified) base change from πv to a

representation BC(πv) of G(K ⊗E Ev)
∼−→ GL(m,K ⊗E Ev), and

Lv(s, πv, χv, St) = L(s,BC(πv)⊗ χv ◦ det),

where the right-hand term is the standard Godement-Jacquet Euler factor (cf.
[H4,I.1] for a further discussion).
If we assume ϕSf

and ϕ′
Sf

to be factorizable over the v ∈ Sf , with respect to

the isomorphisms (3.1.2.1), then the integral ZS also breaks up as a product of
local integrals multiplied by the factor Q0

W , as in [H3,H4], as well as [PSR,Li92].
To treat congruences it seems preferable not to impose factorizability at this
stage. However, under special hypotheses on the local data we can obtain
a factorization, as follows. Write Gv = G(Ev), and let Kv ⊂ G(Ev) be a
compact open subgroup fixing ϕ. The natural map G×G → P\H defines an
isomorphism between G× 1 and the open G×G orbit in the flag variety P\H
[PSR, p. 4]. In particular, P · (G× 1) is open in H and P ∩ (G× 1) = {1}. It
follows that, if Y is any locally constant compactly supported function on Gv,
there is a unique section fY (h, χ, s) ∈ Iv(χv, s) such that fY ((g, 1), χ, s) = Y (g)
for all g ∈ Gv, s ∈ C. Let fKv

(h, χ, s) = fY (Kv)(h, χ, s), where Y (Kv) is the
characteristic function of the open compact subgroup Kv chosen above. With
this choice, we have

(3.1.2.9)

∫

Gv

fKv
((gv, 1);χ, s)(πv(gv)ϕ,ϕ

′)dgv = vol(Kv)

for any s. If we choose fv = fKv
for all v ∈ Sf , the basic identity becomes

dn(s, χ)Z(s, ϕ, ϕ
′, f, χ) =

= dn,S(s, χ) · vol(KSf
)Z∞(s, ϕ, ϕ′, f, χ)LS(s+

1

2
, π, χ, St),

where dn,S(s, χ) =
∏

v∈Sf
[dn,v(s, χ)], KSf

=
∏
Kv, and

(3.1.2.10) Z∞(s, ϕ, ϕ′, f, χ) =

∫
∏

v∈ΣE
G(Ev)

fv((gv, 1);χ, s)(πv(gv)ϕ,ϕ
′)dgv.

8As in the previous footnote, there is no published reference for the meromorphic continua-
tion and functional equation of standard L-functions of unitary groups, although the results
of Kudla and Rallis for symplectic groups adapt to the case of unitary groups. In the applica-
tions we will restrict attention to π admitting base change to automorphic representations of

GL(n,K), which immediately implies the analytic continuation of the standard L-functions.
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The integrals in (3.1.2.10) are purely local in the following sense. For any
archimedean place v we can define a local analogue of (3.1.2.7) by

(3.1.2.11) Zv(s, ϕv, fv, χv) =

∫

G(Ev)

fv((gv, 1);χv, s)πv(gv)ϕvdgv.

This is a function of s with values in the K∞,v-finite vectors of πv, absolutely
convergent and holomorphic in a right half-plane, and admitting a meromorphic
continuation to C (see note 5). Let τ+v ⊂ τv denote the line spanned by
the highest weight vector ϕv, let p

+
v : πv → τ+v denote orthogonal projection.

Define the meromorphic function Zv(s, fv, χv) by

p+v (Zv(s, ϕv, fv, χv)) = Zv(s, fv, χv) · ϕv.

This is well-defined, because τ+v is a line, and does not depend on the choice
of ϕv because both sides are linear functions of ϕv. Let Z∞(s, f, χ) =∏

v∈ΣE
Zv(s, fv, χv) It then follows that

(3.1.2.12) Z∞(s, ϕ, ϕ′, f, χ) = Z∞(s, f, χ)Q0
W (ϕ,ϕ′),

hence that

(3.1.2.13) dn(s, χ)Z(s, ϕ, ϕ
′, f, χ)

= dm,S(s, χ) · vol(KSf
)Z∞(s, f, χ)LS(s+

1

2
, π, χ, St)Q0

W (ϕ,ϕ′)

We note the following consequence of the basic identity in the form (3.1.2.13).
Let Kf = KSf

× KS , where KS =
∏

w/∈S Kw is a product of hyperspecial
maximal compact subgroups fixing ϕ and ϕ′.

(3.1.2.14) Hypothesis. We assume f , s = s0, and χ can be chosen so that

dn,S(s0, χ)Z∞(s0, f, χ) 6= 0.

Thus we are staying away from poles of the local Euler factors in dn,S(s, χ))
and the global Euler products dn(s, χ) and L

S(s+ 1
2 , π, χ, St) have neither zeros

nor poles at s = s0. This hypothesis is easy to verify in practice, e.g. in the
situation of [H3]; the only subtle point is the non-vanishing of Z∞(s0, f, χ) when
φv is holomorphic and the Eisenstein series defined by fv is nearly holomorphic,
and in this case the non-vanishing follows from the arguments of Garrett [G].
Let A0(π, S), resp. A0(π

∨, S) denote the space spanned by Kf -invariant cusp
forms on G, that generate irreducible automorphic representations whose v-
component is isomorphic to πv (resp. to π∨

v ) for all v /∈ Sf , and belonging to
the highest weight subspace τ+v of τv (resp. to the lowest weight subspace of τ∨v
for all v ∈ ΣE . Then (3.1.2.12) asserts that the bilinear forms Z(s0, ϕ, ϕ

′, f, χ)
and Q0

W on A0(π, S) are proportional. (If π occurs with multiplicity one in
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A0(G), then this is automatic.) This simplifies the arguments of §3 of [H3],
proving, when E = Q, that critical values of L(s, π, χ, St) are K-multiples of
a basic period equal to an elementary expression multiplied by a square norm
of the form Q0

W (ϕ,ϕ′), where ϕ and ϕ′ are arithmetic holomorphic modular
forms of the given type.9 In particular, this gives a somewhat more natural
proof of Corollary 3.5.12 of [H3], to the effect that, under the hypotheses of
loc. cit. (existence of sufficiently many critical values) Q0

W (ϕ,ϕ′) depends up
to arithmetic factors only on the abstract representation πS .

(3.1.2.15) Remark. Local Euler factors Lv(s, πv, χv, St) are defined in [HKS]
for all finite places, by the method of Piatetski-Shapiro and Rallis. It should
not be difficult to prove by global methods that these factors coincide with
L(s,BC(πv)⊗ χv ◦ det), at least when πv is a local component of an automor-
phic cuspidal representation for a definite unitary group. A complete proof
would require local functional equations at archimedean primes. When n = 2
the unitary group can be compared simply to the multiplicative group of a
quaternion algebra, and the result can be proved easily in that case directly.

(3.1.3) Eisenstein series and zeta integrals on similitude groups.

We now return to the situation of (3.1). Let GH = GU(2W ), and consider the
subgroup GU(W,−W ) = G(U(W )× U(−W ) ⊂ GH. The induced representa-
tion I(χ, s) and the Eisenstein series Ef ((g, g

′);χ, s) can be extended in various
ways to automorphic forms on GH. Let GP ⊂ GH denote the Siegel parabolic
defined in (3.2.5). Global characters of GM =M×Gm are given by pairs (χ, υ)
where χ is a Hecke character of Mab = RK/QGm,Q, lifted to a character of M

by composition with the determinant, and υ is a Hecke character of A×/Q×.
Let

(3.1.3.1) I(χ, υ, s) = IndGH
GP ((χ| · |sK) ◦ det ·υ ◦ ν).

For any section f(h;χ, υ, s) ∈ I(χ, υ, s) we form the Eisenstein series
Ef (h, χ, υ, s) by the analogue of the formula (3.1.1.2). The character υ fac-
tors through a character of GH and does not affect convergence.

Let π, π′ be automorphic representations of GU(W ), with central characters
ξ, ξ′, respectively. Let ϕ ∈ π, ϕ′ ∈ π′, and consider ϕ ⊗ ϕ′ by restriction as
an automorphic form on GU(W,−W ). Let Z be the identity component of the
center of GU(W,−W ), which we may also view as a central subgroup of GH,
or (via projection) as a central subgroup of GU(W ). We assume

(3.1.3.2) ξ · ξ′ · ξχ,υ = 1;

9In [H3] only values of s in the absolutely convergent range are considered, but the argument
remains valid in general under hypothesis (3.1.2.14). See [H5] for a more extended discussion

of this point.
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here ξχ,υ is the central character of I(χ, υ, s). We can then define the zeta
integral

(3.1.3.3) Z(s, ϕ, ϕ′, f, χ, υ) =
∫

Z(A)GU(W,−W ))(Q)\(GU(W,−W )(A)

Ef ((g, g
′);χ, s)ϕ(g)ϕ′

χ(g
′)dgdg′.

The basic identity (3.1.2.8) then takes the following form (cf. [H3,(3.2.4)]):
(3.1.3.4)

dn(s, χ)Z(s, ϕ, ϕ
′, f, χ, υ) = QW (ϕ,ϕ′)Z̃S(s, ϕ, ϕ

′, f, χ)LS(s+
1

2
, π, χ, St).

where

(3.1.3.5) QW (ϕ,ϕ′) =

∫

Z(A)GU(W )(Q)\GU(W )(A)

ϕ(g)ϕ′(g)ξ−1
χ,υdg

and the remaining terms are as in (3.1.2). The period QW (ϕ,ϕ′) is slightly
more natural from the standpoint of Shimura varieties.

(3.1.4) Holomorphic Eisenstein series.

Fix (µ, κ) as in (3.0.1). Define

χ∗ = χ · |NK/E |
κ
2 .

Suppose the character χ has the property that

(3.1.4.1) χ∗
σ(z) = zκ, χ∗

cσ(z) = 1 ∀σ ∈ ΣE

Then the function Jµ,κ, defined in (3.0.5), belongs to

(3.1.4.2) In(µ−
n

2
, χ∗)∞ = In(µ+

κ− n
2

, χ)∞ ⊗ |ν|
nκ
2∞

(cf. [H3,(3.3.1)]). More generally, define

(3.1.4.3) Jµ,κ(h, s+ µ− n

2
) = Jµ,κ(h)| det(J(h) · J ′(h))|−s ∈ In(s, χ∗)∞

When E = Q, these formulas just reduce to the formulas in [H3].
Let f∞(h, χ, s) = Jµ,κ(h, s+µ−n

2 ), and suppose the Eisenstein series Ef (h;χ, s)
is holomorphic at s = 0. The local section J(µ, κ) is a holomorphic vector in
the corresponding induced representation, and in what follows we will extend
it to a global section f so that Ef (h;χ, 0) is a holomorphic automorphic form.
This is always the case if χ/|χ| is a character of U(1) and if f is a Siegel-Weil
section, as we will be assuming in later articles. It is also the case for the
specific sections f considered in (3.2) and (3.3), where holomorphy is verified
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by explicit calculation of Fourier coefficients (see especially (3.3.3.2), (3.2.2.3),
and (3.3.4.8)). As in [H3, (3.3.4)] we can identify Ef (h;χ, 0) with an element
of H0(Sh(2W ), Eµ,κ) where Eµ,κ is the automorphic vector bundle defined in
[H3,(3.3)]. The identification is as in (1.3.6) and depends on a choice of canon-
ical trivialization of the fiber of Eµ,κ at τ0.
The center of symmetry s = 1

2 for L(s, π, χ, St) in the unitary normalization
corresponds via (3.1.2.8) to a zeta integral with the Eisenstein series at s =
s0 = 0. Since χ is by (3.1.1.3) a unitary character, this corresponds in turn to
the relation to s0 = µ+ κ−n

2 = 0. More generally, the value of the motivically
normalized L-function

Lmot(s, π, χ∗, St) def
= L(s− n− κ− 1

2
, π, χ, St)

at s = s0+
n−κ
2 corresponds as above to the Eisenstein series at s0 = µ+ κ−n

2 ),
i.e. at s = µ, as in [H3] (where µ was called m). It follows from (3.1.4.1) that
we can choose m in (3.1.1.3) so that

(3.1.4.4) m = n+ 2s0 = 2µ+ κ;

the assumption m ≥ n translates to s0 ≥ 0, so the Eisenstein series is always
to the right of the center of symmetry.

(3.2) Fourier coefficients of Eisenstein series:
General considerations.

(3.2.1) Notation and preliminaries.

We let V , 2V = V ⊕−V , and H = U(2V ) be as in (3.1) with n = dimV . Let
ג be as in (1.4). We fix an orthogonal basis u1, · · · , un of V , and set

(3.2.1.1) ej = (uj , uj), fj = δj · (−uj , uj)

where

(3.2.1.2) δj =
1

2 ג < uj , uj >V

With respect to this basis, the matrix of the skew-hermitian form <,>2V,ג is
given by (

0 1n
−1n 0

)

Let g ∈ GL(V ). When no confusion is possible, we use the same letter g to
denote the n× n matrix (gij) given by

g(ui) =

n∑

j=1

gjiuj
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Write δ = diag(δ1, · · · , δn). Then g ∈ U(V ) if and only if tḡδ−1g = δ−1, or
equivalently gδtḡ = δ. With respect to the basis {ei, fj}, the matrix corre-
sponding to (g, 1) ∈ U(V )× U(V ) ⊆ U(2V ) is

(3.2.1.3) (g, 1) =

(
1
2 (1n + g) 1

2 (1n − g)δ
1
2δ

−1(1n − g) 1
2δ

−1(1n + g)δ

)

We let

w′ = diag(−1V , 1V ) =
(
−1n 0
0 1n

)
with respect to 2V = V ⊕−V

Then with respect to the basis ei, fj we have

(3.2.1.4) w′ =

(
δ 0
0 tδ̄−1

)
· w = m(δ) · w, w =

(
0 1n
−1n 0

)
,

This amounts to taking g = −1n in (3.2.1.3). In other words, the coset P ·
(−1n, 1n) ⊂ P ·G× {1} belongs to the big cell PwP , and indeed

(3.2.1.5) P · (−1n, 1n) = Pw · 1

More generally, for any positive integer r ≤ n let Vr be the subspace of V
spanned by u1, · · · , ur. Let V ⊥

r be the othogonal complement of Vr in V . We
define

(3.2.1.6) w′
r = diag(−1Vr

, 1V ⊥
r
, 1Vr

, 1V ⊥
r
) ∈ U(2V )

Then w′ = w′
n. With respect to the basis ei, fj we have

(3.2.1.7) w′
r =




rδ 0 0 0
0 1n−r 0 0
0 0 t

r δ̄
−1 0

0 0 0 1n−r


 · wr,

with rδ = diag(δ1, · · · , δr), where

(3.2.1.8) wr =




0 0 1r 0
0 1n−r 0 0
−1r 0 0 0
0 0 0 1n−r


 .

By means of the basis {ei, fj} we identify elements of H as 2n× 2n matrices.
Then if v is any finite place of E we define H(Ov) to be the subgroup of H(Ev)
consisting of matrices whose entries are in OK ⊗Ov. Let B be the stablizer of
the flag

[e1] ⊂ [e1, e2] ⊂ · · · ⊂ [e1, · · · , en]
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where [e1, · · · , er] denotes the linear span of e1, · · · , er. Then B is a Borel
subgroup, and we have the Iwasawa decomposition H(Ev) = B(Ev)H(Ov).
In what follows we fix a non-trivial character ψ =

∏
ψv of A/E, as follows.

Let e0 =
∏

e
0
p be the unique character of AQ/Q such that

e
0
∞(x) = e2πix (x ∈ R),

and that e0p has conductor Zp for every finite p. Let e =
∏

ev be the character
of A/E defined by

(3.2.1.9) e(x) = e
0(TrE/Q(x)) (x ∈ A)

Alternatively, we may characterize e as the unique character of A/E such that
for every archimedean place v we have

ev(x) = e2π
√
−1x (x ∈ Ev = R).

An arbitrary character ofA/E is given by x 7→ e(ax), with a some element of E.
We let ψ be one such character with a ∈ E totally positive, fixed henceforward.
We can and will always assume a to be a unit at all primes dividing p. Thus

(3.2.1.10) ψ(x) = e(ax) = e
0(TrE/Q(ax)) (x ∈ A)

In paricular, for every archimedean place v we have

ψv(x) = e2πa
√
−1x (x ∈ Ev = R).

(3.2.2) Formulas for Fourier coefficients.

We start with a general Siegel Eisenstein series F = Ef (h, χ, s) with f ∈ I(χ, s).
Here we have written Ef instead of Ef , in order to leave space for a subscript
to denote Fourier coefficients. Let Hern be the space of all n × n hermitian
matrices. For β ∈ Hern(E) we define the character ψβ of U(Q)\U(A) by

ψβ(n(b)) = ψ(tr(βb))

Note that we have tr(ββ′) ∈ E for any β, β′ ∈ Hern(E).
We now fix a Haar measure dx on U(A) ≃ Hern(A) as follows. First we
take counting measure on the discrete subgroup Hern(E) ⊆ Hern(A). We
choose dx, so that the quotient mesaure on U(E)\U(A) = Hern(E)\Hern(A)
is normalized, with total volume 1. Consider the lattice Λ ⊆ Hern(E) consisting
of all hermitian matrices with entries in OK. We shall also need the dual lattice
Λ∗, defined by

Λ∗ = {β ∈ Hern(E) | tr(βξ) ∈ OE ∀ ξ ∈ Λ}
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For each finite place v of E we set

Λv = Hern(Ov) = Λ⊗Ov,

Define Λ∗
v similarly. Then Λv = Λ∗

v unless v ramifies in K. Let dxv be the Haar
measure of Hern(Ev) normalized by

∫
Λv
dxv = 1. For any archimedean place v

we set

dxv = |
n∧

j=1

dxjj
∧

j<k

(2−1dxjk ∧ dx̄jk)|

where xjk is the (j, k)-entry of xv. There is a constant c(n,E,K) so that

dx = c(n,E,K) ·
∏

v

dxv.

Since Hern(A) is the product of n copies of A and n(n − 1)/2 copies of AK,
we obtain (say from [Tate])

(3.2.2.1) c(n,E,K) = 2n(n−1)[E:Q]/2|δ(E)|−n/2|δ(K)|−n(n−1)/4,

where δ(E) and δ(K) are the discriminants of E and K. This is the same as
[S97], p. 153.
For β ∈ Hern(E) we define the β-th Fourier coefficient

Fβ(h) =

∫

U(Q)\U(A)

F (uh)ψ−β(u)du

as in (1.5.6).
We now assume that f is factorizable, and write f = ⊗fv. If β has full rank n
then a familiar calculation gives
(3.2.2.2)

Ef
β (h, χ, s) = c(n,E,K)·

∏

v

∫

U(Ev)

fv(wnvhv, χv, s)ψ−β(nv)dnv, (detβ 6= 0)

the product being over all places of E. Here w is the Weyl group element given
by (3.2.1.4).
Remark 3.2.2.3. Suppose that for at least one place v the function fv(•, χv, s)
is supported on the big cell P (Ev)wP (Ev). Then (3.2.2.2) is valid for h ∈ P (A)
and any β. Indeed for h ∈ P (A) we have

f(γh, χ, s) 6= 0=⇒γ ∈ P (E)wP (E) = P (E)wU(E)

So that
Ef (h, χ, s) =

∑

δ∈U(E)

f(wδh, χ, s)

and (3.2.2.1) follows immediately for any β, not necessarily of full rank.
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Write

(3.2.2.4) Wβ,v(hv, fv, s) =

∫

U(Ev)

fv(wnvhv, χv, s)ψ−β(nv)dnv.

This function satisfy a transformation law as follows. Suppose

m = m(A) =

(
A 0
0 tĀ−1

)
∈M(Ev)

Then

(3.2.2.5)
Wβ,v(mhv, fv, s) = |N ◦ detA|n/2−s

v χv(detA) ·WtĀβA,v(hv, fv, s)

= |N ◦ detA|
n−κ

2 −s
v χ∗

v(detA) ·WtĀβA,v(hv, fv, s)

where N = NK/E .
We now recall a calculation of Shimura. In what follows, a is the totally positive
element of E, prime to p, fixed in (3.2.1.10).

(3.2.2.6) Lemma. ([S97], 19.2) Suppose β is of full rank n. Let v be a finite
place of E. Let fv(•, χv, s) be the unique section which is invariant under
H(Ov), and such that fv(1, χv, s) = 1. Let m = m(A) ∈ M(Ev). Then
Wβ,v(m, fv, s) = 0 unless tĀβA ∈ a−1D(E/Q)−1

v Λ∗
v, where D(E/Q)v is the

different of Ev relative to Qp (p being the rational prime lying below v). In
this case, one has

Wβ,v(m, fv, s) =

= |N ◦ detA|n/2−s
v χv(detA)gβ,m,v(χ(̟v)q

−2s−n
v ) ·

n∏

j=1

Lv(2s+ j, χεn−j
K/E)

−1.

Here Lv(•, •) is the local abelian L-factor at v, with χ viewed as a character
for A

×
E by restriction, and gβ,m,v is a polynomial with constant term 1 and

coefficients in Z. Let D(E/Q)v = δvOv for some δv ∈ Ev. If v is unramified in
K, and

det(aδv
tĀβA) ∈ O×

v ,

then gβ,m,v(t) ≡ 1.

Example. Let n = 1. Then β ∈ E×
v and A is a scalar. Let r ≥ 0 be the

integer determined by
|aδvĀAβ|v = q−r

v

Then

gβ,m,v(t) =
(1− t)[1− (qt)r+1]

1− qt
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(3.2.2.7) Corollary. For any finite place v we let Tv be the characteristic
function of D(E/Q)−1

v Λ∗
v. Suppose that β ∈ Hern(E) is of full rank n. Let

S be a finite set of places including all the archimedean ones and all places
ramified in K, and large enough so that the conditions of Lemma 3.2.2.6 are
satisfied at any place v 6∈ S. Let m = m(A) ∈M(A). Then

(3.2.2.8) Ef
β (m,χ, s) = c(n,E,K) · | detA|n−s

K χ(detA) ·(
∏

v∈S

WtĀβA,v(1, fv, s))

·
∏

v/∈S

[Tv(a
tĀβA)gβ,m,v(χ(̟v)q

−2s−n
v )] ·

n∏

j=1

LS(2s+ j, χεn−j
K/E)

−1

Here LS(•, •) is the partial L-function, with χ viewed as a character for A
×
E

by restriction.

(3.2.2.9) Remarks.

(i) In the subsequent sections we will always assume S contains all primes
of residue characteristic p. Suppose this is the case and v /∈ S. Then the
local factor Tv(a

tĀβA)gβ,m,v(χ(̟v)q
−2s0−n
v ) is p-adically integral for

any half-integer s0. In particular, the p-adic denominators of the Fourier

coefficients Ef
β (m,χ, s0), normalized by the product of the partial L-

functions, are determined by the local factors at v ∈ S and by the global
factors.

(ii) Let β ∈ Hern(E) be of full rank n. We say β is S-primitive if det(aβ) ∈
O×

v for all v /∈ S. The condition depends implicitly on a. Since S
contains the ramified primes, the local different factors can be ignored.
It follows from (3.2.2.7) that for S-primitive β, the product of local
coefficients satisfies

n∏

j=1

LS(2s0 + j, χεn−j
K/E) ·

∏

v/∈S

Wβ,v(1, fv, s0) = 1

and in particular is a p-adic unit.
(iii) On the other hand, the factors gβ,m,v(χ(̟v)q

−2s−n
v ) are p-units at half-

integer values of s, provided v is prime to p. Our local data at primes
v dividing p will guarantee the vanishing of coefficients Wβ,v unless
det(aδv

tĀβA) ∈ O×
v , and we will only evaluate the coefficients at points

m = m(A) with Av ∈ GL(n,Ov)). Thus we will always have the local
factors gβ,m,v(t) ≡ 1 for v dividing p, and the product

(3.2.2.10) T 0(β,m(A), s) =
∏

v/∈S

[Tv(a
tĀβA)gβ,m,v(χ(̟v)q

−2s−n
v )]

will always be a p-adic unit when s ∈ 1
2Z.

(iv) In other words, the p-adic behavior of the Eisenstein series is completely

determined by the global normalizing factor
∏n

j=1 L
S(2s+ j, χεn−j

K/E)
−1

and by the local factors at v ∈ S. Calculation of the local factors will
occupy most of the rest of this section.
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(3.3) Local coefficients of holomorphic Eisenstein series.

In this section we consider a finite set S of places as in (3.2.2.7), containing all
archimedean places, all places ramified in K/E, all places dividing p, and all
places at which the character χv is ramified. We also include in S a collection
of finite places where, to guarantee non-vanishing of local zeta integrals for
ramified πv, fv cannot be the unramified vector funrv ∈ I(χ, s), i.e., the vector
invariant under H(Ov). At the archimedean places we will take specific local
data. Otherwise the data will vary according to circumstances to be defined
later. The resulting calculation (3.3.1.5, 3.3.2.1) of the local Fourier coefficients
at ramified finite primes is less precise than at unramified places.
We treat non-split places, split places, and archimedean places separately.

(3.3.1) Finite non-split places.

Let v be a finite place in S. Suppose first that v does not split in K. We let
w be the unique place of K dividing v. We define a special section in I(χv, s)
as follows. Let uv be a Schwartz function on Hern(Ev). Define a section

fv(h;χv, s)
def
= fuv

(h;χv, s) ∈ I(χv, s) by the condition that it is supported in
the big cell P (Ev)wP (Ev), and

(3.3.1.2) fv(wn(b);χv, s) = uv(b) (b ∈ Hern(Ev))

It is easy to see that Wβ,v(1, fv, s) = ûv(β). Together with the transformation
law (3.2.2.5), we find that

(3.3.1.3) Wβ,v(m(A)f̃v, s) = | detA|n/2−s
v χv(detA) · ûv(tĀβA)

We now choose a lattice Lv ⊂ Hern(Ev), and make the following assumption:

(3.3.1.4) Hypothesis. uv is the characteristic function of Lv.

Let L∨
v be the dual lattice defined by

L∨
v = {β |ψ(trβx) = 1 for all x ∈ Lv}

Then we have

(3.3.1.5) Wβ,v(m(A), fuv
, s) = Tv(

tĀβA)| detA|n/2−s
v χv(detA) · vol(Lv),

(3.3.2)Finite split places.

Next we consider the case where v is finite and splits in K, of residue character-
istic different from p. Let uv be a Schwartz function on Hern(Ev) ≃Mn,n(Ev)
(n× n matrices with entries in Ev). Then there is a section fuv

(h;χv, s) such
that fv(•;χv, 0) has support in P (Ev)wP (Ev), and fv(wn(b);χv, 0) = uv(b).
Formula (3.3.1.3) remains valid for all β. If uv is chosen as in (3.3.1.4), then
we write fLv

instead of fuv
. In what follows, A ∈ GL(n,Kv) can be written as

a pair (Av,Bv) with Av,Bv ∈ GL(n,Ev), and | det(A)|v = | det(Av ·B−1
v )|v,

with conventions as in (3.3.4) below.
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(3.3.2.1) Lemma. With fv = fLv
, formula (3.3.1.5) is valid for all β.

At split places other choices might be more convenient. For example, let Uv ⊂
GL(n,Ev) be a compact open subgroup and τv a finite-dimensional irreducible
representation of Uv. Let uv be a matrix coefficient of τv, viewed as a function
on Uv ⊂ GL(n,Ev) and extended by zero toM(n,Ev). Then uv takes values in
the integers of some cyclotomic field. It then follows immediately from (3.3.1.3)
that:

(3.3.2.2) Lemma. The functions ûv and Wβ,v(m(A), fv, 0) are locally con-
stant, compactly supported, not identically zero, and takes values in Qab with
denominators bounded p-adically independently of τv.

Indeed, the integral defining ûv is a finite sum of terms, each of which is an
algebraic integer multiplied by a volume. The volume lies in Q and the denom-
inators are bounded in terms of the orders of finite subgroups of GL(n,Ev),
independently of τv. The remaining factors in (3.3.1.5) are p-units.

(3.3.2.3) Remark 3.3.2.3 Alternatively, we can let uv be a matrix valued
function, namely the function τv, with values in End(τv), extended to zero off
Kv. The Eisenstein series and its Fourier coefficients will then have values in
End(τv). This will allow us to pair the Eisenstein series with forms taking
values in the space of τv and its dual. The local zeta integral will be essentially
a volume.

(3.3.3) Archimedean places.

Let v ∈ S∞ be a real place of E. We shall regard elements of H(Ev) ≃ U(n, n)
as 2n × 2n matrices by means of the basis {ei, fj} chosen in (3.2.1). Let
j = σv(ג). We let Kv ⊂ H(Ev) be the maximal compact subgroup consisting
of those matrices k with tk̄ diag(j2In,−In)k = diag(j2In,−In), where In de-
note the identity matrix of size n. Then Kv ≃ U(n) × U(n). We make this
isomorphism explicit as follows. Set

γ =

(
1n 1n

j−11n −j−11n

)
∈ GU(n, n)

Then for any A,B ∈ U(n) one has

k(A,B) = γ

(
A 0
0 B

)
γ−1 ∈ Kv

The map (A,B) 7→ k(A,B) is an isomorphism from U(n)× U(n) onto Kv.
Let x ∈ Hern(R). One easily checks that the Iwasawa decomposition of wn(x)
is given by

wn(x) =

=

(
1n − x

−j2+x2

0 1n

)( 1√
−j2+x2

0

0
√
−j2 + x2

)
k
(
− x+ j1n√
−j2 + x2

,− x− j1n√
−j2 + x2

)
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Let m = 2µ + κ as in (3.1.4.4), so that χv(−1) = (−1)m (3.1.1.3). We follow
Shimura [S82] and take fv to be (up to sign) the v component of the canonical
automorphy factor denoted Jµ,κ(h, s − κ

2 ) in (3.1.4.3); thus fv is holomorphic

for s = s0 = m−n
2 . More precisely,

(3.3.3.1)
fv(wn(x), χv, s) = det(−j2 + x2)−s−n/2 det(

−j1n − x√
−j2 + x2

)m

= (−1)mn · δ(x− j1n)−s−m+n
2 δ(x+ j1n)

−s+m−n
2

In subsequent articles we will identify fv with a Siegel-Weil section for the
theta lift of the trivial representation of U(m). Continuing the calculation,
and making the simple change of variables, x 7→ x/α, where α = −j/i > 0, we
find

Wβ,v(1, fv, s) =

= (−1)mn(−j/i)−2ns

∫

Hern(R)

δ(x+i1n)
−s−m+n

2 δ(x−i1n)−s+m−n
2 e−2πitr(βx)dx

= (−1)mn(−j/i)−2nsξ(1n, β; s+
n+m

2
, s+

n−m
2

)

([S82], p. 274, (1.25)). By ([S82], p. 275, (1.29)), this is equal to

(−i)mn2nπn2

(−j/i)−2nsΓn(s+
n+m

2
)−1Γn(s+

n−m
2

)−1 ×

η(21n, πβ; s+
n+m

2
, s+

n−m
2

)

Choose A ∈ GL(n,C) with AA∗ = πβ, where A∗ = tĀ. By ([S82], p.280-281),
we have

η(21n, πβ; s+
n+m

2
, s+

n−m
2

) = δ(πβ)2s ·η(2A∗A, 1n; s+
n+m

2
, s+

n−m
2

)

= (2π)2nsδ(β)2se−2πtr(β)ζ(4A∗A; s+
n+m

2
, s+

n−m
2

)

Thus

Wβ,v(1, fv, s) =(−i)mn2n(m−n+1)πns+n(m+n)/2(−j/i)−2nsδ(β)s−n−m
2 e−2πtr(β)

Γn(s+
n+m

2
)−1ω(4A∗A; s+

n+m

2
, s+

n−m
2

)

The function ω(z;µ, λ) is analytic in µ, λ and satisfies the functional equation

ω(z;n− λ, n− µ) = ω(z;µ, λ)
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By (3.15) of Shimura we know ω(z;µ, 0) = 1. So at s = (m− n)/2 we obtain
(3.3.3.2)

Wβ,v(1, fv,
m− n

2
) =

= (vג)
−mn+n2

(−i)−n2

2n(m−n+1)πmn det(β)m−ne−2πtr(β)Γn(m)−1

=
(vג)

−mn+n2

(−i)−n2

2n(m−n+1)πmn−n(n−1)/2 det(β)m−n

∏n
j=1(m− j)!

· e−2πtr(β).

The factor e−2πtr(β) at the end is the value at h∞ = 1 of the function denoted
qβ in §(1.5.6); more precisely, qβ factors over the archimedean primes, and
e−2πtr(β) is the factor at v. The coefficient preceding this factor is the local
contribution at v to the Fourier coefficient fβ .

(3.3.4) Local results at primes dividing p (choice of special functions at p)

First we fix some notation.

(3.3.4.1) Notation. Let v be a place of E dividing p. Then v splits in K
according to our assumptions. Throughout we shall identify Ev with Kw, where
w is the divisor of v with w ∈ Σp (see (1.1.4)). We denote by Ov the ring of
integers of Ev, and by pv the prime ideal in Ov. For any pair of positive integers
a, b we denote by Ma,b or M(a, b) the space of a × b matrices. Let dZ be the
normalized Haar measure on Mn,n(Ev) that assigns measure 1 to Mn,n(Ov).
We write d×Z = dZ/| detZ|n. Let dgv be the normalized Haar measure on
GL(n,Ev) that assigns measure 1 to GL(n,Ov). Then d×Z = A(n) · dgv,
where

A(n) =

∫

GL(n,Ov)

d×Z =

n∏

j=1

(1− q−j) = q−n2

#GL(n,Fq)

This is just the right hand side of (0.2.2). Thus we may assume that d×Z =
Lv(1, εK)−1dτgv in the notation of (0.2).
Let χ be the character of A×

K that goes into the definition of our Siegel Eisenstein
series. At the place v which splits in K, χ is given by the pair of characters
(χ1v, χ

−1
2v ).

For the rest of section (3.3.4) we drop the subscript v from our notation, writing
χ1 for χ1v, etc. On H(Ev) ≃ GL(2n,Ev), the inducing character is

(
A ∗
0 B

)
7→ χ1(detA)χ2(detB) · | det(AB−1)|s+ρ,

with ρ = n/2.
Fix a partition

n = n1 + · · ·+ nl

Let P = LU be the standard parabolic subgroup of GL(n) corresponding to the
above partition. Let I ⊆ GL(n,Ov) be the paraholic subgroup corresponding
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to P . Thus I consists of matrices Z = (Zij) (written in blocks with respect to
the above partition of n), such that
• Zjj ∈ GL(nj ,Ov) for 1 ≤ j ≤ l.
• Zij has entries in Ov for 1 ≤ i < j ≤ l.
• Zij has entries in pv for i > j.
Note that I is an open set in the space M(n, n) of all n × n matrices with
entries in Ev. Consider l characters ν = (ν1, · · · , νl) of E×

v . We define our
Schwartz function φν by the formula

(3.3.4.2) φν(Z) =

{
ν1(detZ11) · · · νl(detZll), Z ∈ I

0, otherwise

We use the same letter ν to denote the character of L(O) given by

ν(diag(A1, · · · , Al)) = ν1(detA1) · · · νl(detAl)

It is easy to see that the function φν satisfies the relation

φν(mZ) = φν(Zm) = ν(m)φν(Z) (m ∈ L(O), anyZ)

Define Fourier transform by

(3.3.4.3) F(φ)(x) =
∫
φ(z)ψv(tr(ztx))dz

The function F(φν) satisfies the (obvious) condition

(3.3.4.4) F(φν)(mx) = F(φν)(xm) = ν−1(m)F(φν)(x) (m ∈ L(O), anyx)

The explicit formula for F(φν) is given in Part II, Appendix B.
Consider another l-tuple of characters µ = (µ1, · · · , µl). We can define φµ
as above. Take any integer t which is large enough — say larger than the
conductors of all the characters µj . Let

Γ = Γ(pt) ⊆ GL(n,O)

be the subgroup of GL(n,O) consisting of matrices whose off diagonal blocks
are divisible by pt.
Note that the restriction of φµ to Γ(pt) is a character. We have

(3.3.4.5) φµ(γx) = φµ(xγ) = φµ(γ)φµ(x) (γ ∈ Γ(pt), anyx)

Define a related function φ̃µ by

φ̃µ(x) =

{
Vol(Γ(pt); d×Z)−1 · φµ(x), if x ∈ Γ(pt)

0, otherwise
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Here Vol(Γ(pt); d×Z) is the volume of Γ(pt) with respect to the measure d×Z.
We have

Vol(Γ(pt); d×Z)−1= A(n)−1[GL(n,O) : Γ(pt)] = (

l∏

j=1

A(nj)
−1)(

∏

1≤i<j≤l

q2tninj )

Later on, we shall identify various spaces withMn,n, and φµ, etc, will be viewed
as a function on these spaces.
We define a Schwartz function Φ1 on M(n, n) by

(3.3.4.6) Φ1(u, v) = φ̃µ(
u− v
2

) · F(φν)(u+ v)

Recall that we have identified U(2V )(Ev) with GL(2n,Ev). Thus it acts on
M(n, 2n) by right multiplications. We take a global section

f(h;χ, s) = ⊗fu(h;χ, s) ∈ Ind(χ| · |s)

with u running through all places of E. At the place v we choose the local
section by the following formula:

(3.3.4.7) fv(h;χ, s) = fv,µ(h;χ, s)
def
= χ1(deth) · | deth|s+ρ

·
∫

GL(n,Ev)

Φ1((Z,Z)h)χ1χ
−1
2 (detZ)| detZ|2(s+ρ)d×Z.

Recall that we have the decomposition

2V = V d ⊕ Vd

of the doubled space 2V into totally isotropic subspaces. We now define a
Weyl element wn that interchanges the two summands above. To make it
precise wewrite matrices in blocks corresponding to the decomposition

2V = V ⊕ (−V )

Then we take

w = wn =

(
1n 0
0 −1n

)

For each index j with 1 ≤ j ≤ n we also define

wj =




1j 0 0 0
0 1n−j 0 0
0 0 −1j 0
0 0 0 1n−j




(Really, 1n is the identity on V . But the definition of 1j for 0 < j < n implies
an implicit choice of an orthogonal basis for V ).
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(3.3.4.8) Lemma. Let P = P d be the stabilizer of V d in U(2V ). Then as
a function of h the local section fv(h;χ, s) is supported on the “big cell”
P (Ev)wnP (Ev).

Proof. We know that U(2V ) is the disjoint union of the double cosets PwjP .
Since fv is a section, it suffices to show that

fv(wjp;χ, s) = 0, for any p ∈ P (Ev), j < n

As remarked above, the definition of wj involves an implicit choice of a basis,
and therefore a decomposition

V = Vj ⊕ V j

where Vj is of dimension j. Recall that U(2V )(Ev) ≃ GL(2n,Ev). Under this
identification, a typical element of P (Ev), written in blocks with respect to the
decomposition 2V = V ⊕−V , is of the form

p =

(
A B
C D

)

where A,B,C,D are n× n matrices, and

A+ C = B +D

In accordance with the decomposition V = Vj ⊕ V j , we may write an n × n
matrix as Z = (X,Y ) where X is n× j and Y is n× (n− j). Then we find

(Z,Z)wjp = (u, v)

with
u = (X,Y )A+ (−X,Y )C, v = ((X,Y )B + (−X,Y )D

Consequently
u− v = (X, 0)(A+D −B − C)

(Here we have used the condition A + C = B +D). The right hand side is a
singular matrix unless j = n. Since

Φ1(u, v) = φ̃µ(
u− v
2

)F(φν)(u+ v)

and φ̃µ is supported on invertible matrices, we find

Φ1((Z,Z)wjp) = 0 for all Z

if j < n. Hence fv(wjp;χ, s) = 0 for j < n and p ∈ P (Ev).
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We define the Eisenstein series Ef (h;χ, s) = Efµ(h;χ, s) and its Fourier co-
efficients as before. Let P = MN be a Levi decomposition. We assume that

M is normalized by w. We will calculate the v-component of Ef
β (h;χ, s) un-

der the condition that hv ∈ P (Ev). In view of the above lemma and Remark
3.2.2.3, we know that the factorization (3.2.2.2) is valid for any β (full rank or
otherwise), provided hv ∈ P (Ev). However, in (3.3.4.9) we will see that our

choice of local data at primes dividing p forces Ef
β (h, χ, s) = 0 for rank(β) < n,

provided hv ∈ P (Ev) for at least one place v dividing p.
For the remainder of this section we shall calculate

Wβ,v(hv, fv, s) =

∫

N(Ev)

fv(wnvhv;χv, s)ψ−β(nv)dnv

The group N can be identified with the space Hermn of n × n hermitian ma-
trices. We write this isomorphism as

Hermn−→N, R 7→ n(R)

If R ∈ Hermn(A) then
ψβ(n(R)) = ψ(tr(βtR))

where tr denotes trace of the matrix, followed by trK/E . We need to explain
what this means at the split place v. We have the isomorphism

K ⊗ Ev ≃ Ev ⊕ Ev

where the first summand Ev is identified with Kw, with w the place of K
dividing v, such that w ∈ Σp. The second summand is then identified with Kwc .
Also, on the right hand side the trace map is identified with the summation of
the two coordinates. This gives rise to

2V ⊗ Ev = (2V )1 ⊕ (2V )2

etc. Now any R ∈ Hermn(Ev) is identified with an arbitrary n×n matrix with
coefficients in Ev, as follows. We consider

Mn,n(K) ⊂Mn,n(Kw) =Mn,n(Ev)

Then the embedding

Mn,n(K)−→Mn,n(Ev)⊕Mn,n(Ev), γ 7→ (γ, γ̄)

extends to an isomorphism

Mn,n(K)⊗ Ev−→Mn,n(Ev)⊕Mn,n(Ev)
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Since γ̄ = tγ for γ ∈ Hermn(E), we see that the image of

Hermn(Ev) = Hermn(E)⊗ Ev ⊂Mn,n(K)⊗ Ev

under the above isomorphism is precisely

{(R, tR) |R ∈Mn,n(Ev)}

Thus we get the identification Hermn(Ev) = Mn,n(Ev) by the map (R, tR) 7→
R.
Now if a matrix R ∈ Mn,n(Ev) is identified with an element of Hermn(Ev) as
above then a simple calculation gives

ψβ(n(R)) = ψ(2 · trE(βtR))

This time, on the right hand side trE(β
tR) is the trace of βtR viewed as a

matrix with coefficients in Ev.
We may assume hv ∈ M(Ev). Then hv preserves both the diagonal and the
anti-diagonal. So there are n× n invertible matrices A and B such that

(Z,−Z)hv = (ZA,−ZA), (Z,Z)hv = (ZB,ZB)

for any Z. Suppose n = n(R). A simple calculation gives

(Z,Z)wnhv = (Z(RB +A), Z(RB −A))

Recalling the definition of Φ1 we obtain

(3.3.4.9) Φ1((Z,Z)wnhv) = φ̃µ(ZA)F(φν)(2ZRB)

We already know that fv is supported on the big cell. In the integral expression
for fv given by (3.3.4.7) we may translate the variable Z by any element of
L(O) and then integrate over L(O) ⊆ GL(n,Ev). By formula (3.3.4.9) and the
transformation properties of φµ and F(φν) given by (3.3.4.4)-(3.3.4.5), we see
immediately that fv would be identically 0 unless the following conditions are
satisfied:

(3.3.4.10) µj = νjχ2χ
−1
1 on O×

v , for 1 ≤ j ≤ l

We assume this from now on. Then

fv(wnhv;χ, s) = χ1(detB)χ2(detA)| detBA−1|s+ρF(φν)(2A−1RB)

By Fourier inversion we obtain
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(3.3.4.11) Lemma. For hv ∈ M(Ev) as above, the v-component of the β-th

Fourier coefficient Ef
β (h, χ, s) = E

fµ
β (h, χ, s) is given by

(3.3.4.12)
Wβ,v(hv, fv, s) = χ1(detB)χ2(detA)| detAB−1|−s+ρφν(

tAβtB−1),

where ν is defined in terms of µ and χ by (3.3.4.10).
In particular, the β-th Fourier coefficient vanishes unless β is of full rank.

The last assertion of the lemma follows from the fact that φν is supported on
I.
(3.3.5) Summary.

Recall that m = n+ 2s0. Define

C∞(n,m,K) =
∏

v∈Σ

(vג)
−mn+n2 ·

(
(−i)−n2

2n(m−n+1)πmn−n(n−1)/2

∏n
j=1(m− j)!

)[E:Q]

,

(3.3.5.1) CS(n,m,K) = c(n,E,K)
n−1∏

j=0

LS(m+ j, χεj)−1C∞(n,m,K);

We choose a global section

(3.3.5.2) f = fµ(h, χ, s) =
⊗

v/∈S

funrv ⊗
⊗

v∈S∞

fv ⊗
⊗

v∈Sp

f

fuv
⊗v|p fv(h;χ, s)

in accordance with the preceding sections. The functions fv for v | ∞, resp. v |
p, are defined by (3.3.3.1), resp. (3.3.4.7), the characters µj being determined
by νj and χ by (3.3.4.10). Finally, for v /∈ S, funrv is the unramified vector in
I(s, χ) normalized to take value 1 at 1.
Let

E(h, χ,m, f) = E(h, χ,m, fµ)
def
= CS(n,K)−1Ef (h, χ, s0).

We define the factor T 0(β,m(A), s0) by (3.2.2.10). When h = m(A) ∈M(Af ),
we write m(A) = m(Ap) ·∏v|p hv, and let Av be the local component of A at

v for v prime to p. The preceding calculations show that the β-Fourier coef-
ficient of E(m(A), χ,m, f) equals zero if rank(β) < n. Otherwise, the Fourier
coefficient is given by the following formula, in which χ has been replaced by

the (motivic) Hecke character χ∗ = χ · Nκ/2
K/E and where for split v in Sp

f we

write χ∗
v(det(Av)) as an abbreviation for χ∗

v(det(Av ·B−1
v ) as in (3.3.2):

(3.3.5.3) Eβ(m(A), χ,m, f) = Eβ(m(A), χ,m, fµ) =

= T 0(β,m(A), s0) det(β)
(m−n)[E:Q]| detA|

n−κ
2 −s0

A
×

×
∏

v∈Σp

χ∗
1(detB(hv))χ

∗
2(detA(hv))φν(

tA(hv)βB(hv)
−1)×

×
∏

v∈Sp

f

χ∗
v(det(Av))ûv(

tĀvβAv)
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We have dropped the term qβ of (1.5.6). The complete arithmetic Fourier
expansion is
(3.3.5.4)

E(h∞m(A), χ,m, f) = E(h∞m(A), χ,m, fµ) =
∑

β

Eβ(m(A), χ,m, f)qβ

with m(A) ∈M(Af ) as before.

Remarks

(3.3.5.5) By (3.1.4.4) the exponent in the absolute value factor | detA|
n−κ

2 −s0
A

is an integer. Thus these factors are always integers, and in fact are
p-units under our standing hypothesis that A(hv) and B(hv) are in
GL(n,Ov) for all v dividing p. Similarly, since m ≥ n, the factor
det(β)m−n is p-adically integral provided β is, and this is guaran-
teed by our hypothesis on A(hv) and B(hv) and the definition of
T 0(β,m(A)).

(3.3.5.6) With uv chosen as in (3.3.1) and (3.3.2) at places in Sp
f , the coef-

ficients are then p-adic integers, and in fact are p-adic units where
they are non-zero. Better control of the local theta correspondence
at places in S will require different choices of fv at Sp

f .

(3.3.5.7) In applications to the zeta function we will want to work with finite
sums of Siegel-Weil Eisenstein series attached to hermitian spaces V ′

that differ locally at non-split primes in S, since at such primes we
are forced to take the local sections denoted f̃v of (3.3.1.2), which are
not generally Siegel-Weil sections. These Fourier coefficients of these
sums remain p-adically integral and since the different V ′ represent
different β, they are also p-adically primitive.

(3.4) Review of abstract p-adic distributions and measures.

Let T be a torus over Zp, and let R be a complete Zp-algebra, assumed Zp-
flat and compact, R[ 1p ] = R ⊗Zp

Qp. For instance, we can take R = OCp
, so

that R[ 1p ] = Cp. Let B denote an R[ 1p ]-Banach space,M ⊂ B the unit ball of

elements of norm ≤ 1. If A = R,R[ 1p ], B, or M, let C(T (Zp), A) denote the

R-module of continuous A-valued functions on T (Zp). Since T (Zp) is compact,
C(T (Zp),B) = C(T (Zp),M)⊗RR[

1
p ]), and this is true in particular forM = R

itself. The sup norm makes C(T (Zp, R[
1
p ] into an R[ 1p ]-Banach space. The

locally constant functions in C(T (Zp), A) are denoted C∞(T (Zp), A).
A p-adic distribution on T (Zp) with values in an R[ 1p ]-vector space V is a

homomorphism of R-modules

λ : C∞(T (Zp, R) → V.
To define a distribution V need not be a Banach space. A B-valued p-adic
measure on T (Zp) is a continuous homomorphism of R[ 1p ]-Banach spaces

µ : C(T (Zp), R[
1

p
]) → B.
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Let Xfin(T ) denote the set of characters of finite order of T (Zp), viewed as a
subset of C∞(T (Zp), R) for any sufficiently large p-adic ring R, e.g. R = OCp

.

The setXfin(T ) forms a basis for theR[ 1p ]-vector space C
∞(T (Zp), R[

1
p ]), hence

any function χ 7→ vχ from Xfin(T ) to V determines a V-valued distribution on
T (Zp) by linearity.

(3.4.1) Lemma. Let χ 7→ mχ be a function from Xfin(T ) toM, and let λ(m)
denote the corresponding B-valued distribution. Then λ(m) extends to a p-adic
measure if and only if, for every integer n and for any finite sum

∑
j αjχj with

αj ∈ R[ 1p ] and χj ∈ Xfin(T ) such that
∑

j αjχj(t) ∈ pnR for all t ∈ T (Zp), we

have

(3.4.2)
∑

j

αjmχj
∈ pnM.

This is a version of the abstract Kummer congruences stated as Proposition
5.0.6 of [K].

(3.4.3) Corollary. In Lemma (3.4.1) above, it actually suffices to check
(3.4.2) with n = 0.

Indeed, the the condition for n=0 implies the condition for general n: a bounded
distribution is a measure.
In the next section we will be constructing measures with values in the Ba-
nach space of p-adic modular forms on the Shimura variety Sh(2V ). Let
R = OCp

, so that R[ 1p ] = Cp. Let V denote the algebra of p-adic modular

forms, as in (2.2.9), and let B = V ⊗OCp
Cp. LetM denote the right-hand side

ˆ⊕
α∈U∗H0(KP (∞)S(GP , XP ),OSP ) of (2.3.2), and let Q = M⊗OCp

Cp. The
Cp-vector space B is a Banach space via the sup norm, whereasQ can be viewed
as a ring of formal series over the Banach space H0(KP (∞)S(GP , XP ),OSP ),
hence again becomes a Banach space via the sup norm. The q-expansion map
F.J.P (2.3.2) is a continuous homomorphism of Banach spaces.
The following proposition follows from the q-expansion principle, as in [DR] or
[K], and represents the primary application of the q-expansion principle to our
project:

(3.4.4) Proposition. Let T be a torus over Zp, and let µ be a p-adic measure
on T (Zp) with values in Q. Suppose that µ(χ) =

∫
T (Zp)

χdµ lies in the image

of F.J.P for all χ ∈ Xfin(T ). Then µ is the image, under F.J.P , of a measure
with values in B.

(3.5) Construction of Eisenstein measures.
Let ℓ be a positive integer and let T (ℓ)0 denote the torus over Zp given by
(ROE/Zp

Gm,OE
)ℓ. Thus T (ℓ)0(Zp) is canonically isomorphic to

∏
w|pO×,ℓ

w ,

where w runs through places of E. This can also be identified with the product
of ℓ copies of

∏
v∈Σp

O×
v , where now v are places of K. The latter form will be
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the most useful for us. For brevity we write O×
Σp

for
∏

v∈Σp
O×

v . We let

T (ℓ) = T (ℓ)0 × (ROK/Zp
Gm,OK

).

Then the set Xfin(T (ℓ)) of finite order characters of T (ℓ) can be parametrized
by (ℓ + 1)-tuples (ν1, . . . , νℓ, χ), where each νi is a character of finite order of
O×

Σp
, and χ is a character of finite order of

∏
v|pO×

v where now v runs over

all places of K dividing p. We will further write χ = (χ1, χ2), where χ1 is the
restriction of χ to

∏
v∈Σp

O×
v and χ2 is a second character of the same group∏

v∈Σp
O×

v obtained by restricting χ−1 to
∏

v∈cΣp
O×

v and then composing with

c. So in the end, Xfin(T ) can be viewed as the set of (ℓ+2)-tuples of characters
of O×

Σp
. The character χ will in practice be the restriction to O×

K,p of a character

of K×
p =

∏
v|pK×

v , which in turn will most commonly be the p-adic component

of a global Hecke character.
We introduce additional notation: for j = 1, . . . , ℓ, we let µj = νj · χ2 · χ−1

1 .
Let m,n, and s0 be as in (3.3.5). Let n = n1 + · · ·+ nℓ be a partition of n and
Q the corresponding standard parabolic subgroup of GL(n).

(3.5.1) Theorem. There is a B-valued measure λmQ on T (ℓ) with the property

that, for any ℓ+2-tuple (µ, χ) = (µ1, . . . , µℓ, χ1, χ2) of characters of finite order
of O×

Σp
.

(3.5.2) F.J.P ◦
∫

T (ℓ)

(µ1, . . . , µℓ, χ)dλ
m
Q = E(•, χ,m, fµ)

where the right hand side is the q-expansion of (3.3.5.4).

Proof. The right-hand side of (3.5.2) defines the value at (µ, χ) of a Q-valued
distribution on T (t). To show that this distribution is in fact a Q-valued p-
adic measure, it suffices, by Corollary (3.4.3), to show that the right-hand side
of (3.5.2) satisfies the abstract Kummer congruences (3.4.2) for n = 0. In
other words, for any β ∈ U∗ ∩C, the Fourier coefficients Eβ(m(A), χ,m, fµ) as
(ν, χ) vary, satisfy the abstract Kummer congruences as functions of m(A) ∈
LP (Af ), with the coefficients Av ∈ GL(n,Ov) for v | p. Bearing in mind the
relation (3.3.4.10) between ν and µ, this follows immediately from (3.3.5.3) and
Remarks (3.3.5.5) and (3.3.5.6).
Now the theorem follows from Proposition 3.4.4 and from the fact that
E(•, χ,m, fµ) is a classical modular form for (µ, χ) ∈ Xfin(T (ℓ)).
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