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1. INTRODUCTION

Iwasawa’s theory for elliptic curves with complex multiplication was initiated
by J. Coates in the 1970s in a series of papers (for example, [CW] and [CW1]),
and it is now well developed (by the effort of a handful of number-theorists)
into a solid theory for abelian varieties of CM type (or one may call it
Iwasawa’s theory for CM fields). In this paper, we prove many cases of the
anticyclotomic main conjecture for general CM fields with p-ordinary CM type.

Let M be a CM field with maximal real subfield F'. The field F is totally real,
and M is a totally imaginary quadratic extension of F' (inside a fixed algebraic
closure F of F). We fix a prime p > 3 unramified in M/Q. We assume to have
a p-ordinary CM type ¥ of M. Thus, fixing an embedding i, : Q — @p, the
embeddings i, o o for o € ¥ induce exactly a half 3, of the p-adic places of
M. We identify ¥, with a subset of prime factors of p in M. For the generator
c of Gal(M/F), the disjoint union X, U ¢ gives the total set of prime factors
of pin M. For a multi-index e = Z‘Blp e(P)P € Z[E, U X5], we write P°
for [Tgp e, We choose a complete discrete valuation ring W inside Q,
finite flat and unramified over Z,. A Hecke character ¢ : M*\M; — C* is
called anticyclotomic if ¥(x¢) = (z)~t. We call ¥ has split conductor if the
conductor of v is divisible only by primes split in M/F. We fix a continuous
anticyclotomic character ¢ : Gal(F /M) — W of finite order. It is an easy
consequence of class field theory(see (7.18) and [HMI] Lemma 5.31) that we
can always find another Hecke character ¢ : M /M*MZ — C* such that
P(x) = o= (2) = ¢ 1 (x)p(x¢). Regarding ¢ and 1 as Galois characters, this
is equivalent to ¥ (o) = ¢ 1(0)p(coc™t) for any complex conjugation ¢ in
Gal(F/F). We assume the following four conditions:

(1) The character v has order prime to p with exact conductor ¢3¢ for ¢
prime to p.

(2) The conductor ¢ is a product of primes split in M/F.

(3) The local character 1y is non-trivial for all P € 3,,.

(4) The restriction 1* of ¢ to Gal(F/M|[\/p*]) for p* = (—=1)P=1/2p s
non-trivial.
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ANTICYCLOTOMIC MAIN CONJECTURES 467

We study arithmetic of the unique Z;,F:Qlfextension ML of M (unramified
outside p and o) on which coc™! = o~ for all 0 € T'y, = Gal(M/M). The
extension M_/M is called the anticyclotomic tower over M. Let M (v)/M
be the class field with 1 inducing the isomorphism Gal(M(¢)/M) = Im(1)).
Let Loo /M3 M () be the maximal p—abelian extension unramified outside X,,.
Each v € Gal(Loo /M) acts on the normal subgroup X = Gal(Lo,/M_ M (v)))
continuously by conjugation, and by the commutativity of X, this ac-
tion factors through Gal(M(y)M _/M). We have a canonical splitting
GalM ()M /M) = T3, x Gir(¢) for the maximal torsion subgroup
Gior(10) = Im(v). Since v is of order prime to p, it factors through the
maximal torsion subgroup Gior(¢). Then we look into the I'y,~module:

X[w] = X ®Zp[Gto7‘(w)]7w W

As is well known, X[¢] is a W{[I'},]]-module of finite type, and it is a tor-
sion module by a result of Fujiwara (cf. [HO00] Corollary 5.4 and [HMI] The-
orem 5.33) generalizing the fundamental work of Wiles [W] and Taylor-Wiles
[TW]. Thus we can think of the characteristic element F~(¢) € W/[[I'},]] of the
module X[¢]. As we have seen in [HT1] and [HT2], we have the anticyclotomic
p-adic Hecke L-function L, (¢) € W([[',]] (constructed by Katz), where W is
the completed p-adic integer ring of the maximal unramified extension of Q,
inside Q,. We regard W C W. Then we prove

THEOREM. We have the identity: F~ () = Ly, (1) up to a unit in W([[L]].

The condition p > 3 is necessary because at one point we need to choose a prime
ideal g of F' with Ng/g(q) # £1 mod p. By implementing our idea more care-
fully, we might be able to include the prime p = 3, but there is no hope (without
a new idea) of including p = 2. The condition (1) is probably inessential, and
it could be avoided by using the nearly ordinary Galois deformation with fixed
p—power order nearly ordinary characters instead of the minimal one we used,
although some of our argument has to be done more carefully to incorporate p—
power order characters. In such a generalization, we probably need to assume
(2-4) replacing ¥ by the Teichmiiller lift of ¢y mod myy for the maximal ideal
myy of W. The condition (2) is imposed to guarantee the local representation
at the prime [ given by Indf/}[ r is reducible; otherwise, we possibly need to
work with quaternionic modular forms coming from a quaternion algebra ram-
ifying at an inert or ramified prime I|¢, adding further technicality, though we
hope that the obstacle is surmountable. The condition (3) is a rigidity condi-
tion for nearly ordinary Galois deformation of Ind}; ¢, assuring the existence
of the “universal” (not “versal”) deformation ring. To remove this, we need to
somehow invent a reasonable requirement to rigidify the deformation problem.
The condition (4) is a technical assumption in order to form a Taylor-Wiles
system to identify the deformation ring with an appropriate Hecke algebra (see
[TW], [Fu] and [HMI] Sections 3.2-3).
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The type of the assertion (in the theorem) is called the anticyclotomic main con-
jecture for CM fields. The main conjecture for imaginary quadratic fields (in-
cluding the cyclotomic Z,—extension) and its anticyclotomic version for imag-
inary quadratic fields have been proved by K. Rubin [R] and [R1] refining
Kolyvagin’s method of Euler systems, and basically at the same time, the an-
ticyclotomic conjecture was treated by J. Tilouine (and B. Mazur) [Ti] and
[MT] (for imaginary quadratic cases) by a method similar to the one exploited
here combined with the class number formula of the ring class fields. A partial
result towards the general conjecture was studied in [HT1], [HT2] and [HO05d].

The present idea of the proof is a refinement of those exploited in [HT1], [HT2]
and [HO5d] Theorem 5.1, where we have proven L, (¢)|F~(¢) in W[[I'y,]].
One of the main ingredients of the proof is the congruence power series H (¢)) €
W([I'},]] of the C M—component of the universal nearly ordinary Hecke algebra
h for GL(2),p. In the joint works with Tilouine, we took h of (outside p)
level N p(€)d(M/F) for the conductor € of ¢ and the relative discriminant
d(M/F) of M/F. In this paper, as in [H05d] Section 2.10, we take the Hecke
algebra of level 9(z)) which is a product of ¢NF' and d(M/F') (introducing a new
type of Neben character determined by ¢ with ¢ = ¢ ). Fujiwara formulated
his results in [Fu] using such level groups. Another important ingredient is the
divisibility proven in [H05d] Corollary 5.5:

(L) (R(M)/N(F)) Ly, ()| H (%) in W[[T]].
Here h(M) (resp. h(F)) is the class number of M (resp. F). On the other

hand, Fujiwara’s result already quoted implies (see [Fu], [HT2], [H00] and [HMI]
Sections 3.2-3 and 5.3):

(F) H(¢) = (h(M)/h(F))F~ (") up to units in W[[I'y]].
Thus we need to prove:
R) H () (k)| (h(M)/h(F)) L, (7 )(x) in W

for a (single) weight x specialization, where ®(k) is the value of a power series
® € W([I'y,]] at & € Spec(W[[I';,]])(W). By (L) and Nakayama’s lemma, the
reverse divisibility (R) (specialized at k) implies the theorem. In the (finite
dimensional) space S™-°"¢(N()p>,ex; W) of nearly p-ordinary cusp forms
of weight x with coefficients in W and with suitable Neben character ), we
have a CM Hecke eigenform f(\) of a Hecke character A of weight x (regarded
as a Galois character) such that A~ factors through Gal(M (¢)ML /M) and
MGy = ¥ We write 0(A) (DN(N)[N(L)p>) for the level of f(\). This
form studied in [H91] is of minimal level (possibly of level smaller than that of
the primitive form). Since the CM local ring R of h is a Gorenstein ring (see

[Fu], [HOO] Corollary 5.3 (3) and [HMI] Proposition 1.53 and Theorem 3.59),

the number H(¢)(k) is the maximal denominator of the numbers %

in W as f running through all elements of S, (DM(A),ex; W) (see again [HOO]
Corollary 5.3 (1) and [H86] Proposition 3.9), where (-,-) is the Petersson
inner product of level D(A). As seen in [HT1] Theorem 7.1 and [H05d]
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ANTICYCLOTOMIC MAIN CONJECTURES 469

Proposition 5.6, we have 71 =*2T2(f(\), f(\)) = c1(h(M)/h(F))L(1,A7) for
an innocuous constant ¢; € W (for the constant ¢, see (7.17)). The quotient

P W O AIR) g then the value (A(M)/h(F))Ly () (k) € W (up
to units in W). Here W,(A7) is the local Gauss sum of A\~ at p, Q is the
Néron period of the abelian variety of CM type ¥ (defined over Q N W), and
the exponent k1 — ko is determined by the weight . Since H(1)(k) is the

maximal denominator of %, what we need to show (to prove (R))

is the W-integrality of L K;;;?:’i(,)‘@z(f(/\)’f) for all f € S.(MN),ex;W).
This we will show by a detailed analysis of the residue formulas of general-
ized FEisenstein series, which we call Shimura series, on orthogonal groups of
signature (n,2). The series have been introduced in [Shl] and [Sh2], and we
take those associated with a theta series of M and the determinant (quadratic
form) of Ms(F'). The validity of the g—expansion principle is very important
to show the W—integrality, because we write the Petersson inner product as
a value of a modular form (with integral g—expansion) at a CM point of (the
product of two copies of) the Hilbert modular variety. This modular form
is obtained as the residue of a Shimura series. However in the split case,
the orthogonal similitude group of signature (2,2) over F' is isogenous to the
product GL(2) x GL(2),p; so, basically we are dealing with Hilbert modular
forms, and the g—expansion principle is known by a work of Ribet (see [PAF]
Theorem 4.21).

Another important point is to write down every W—integral Hilbert cusp form
as a W-integral linear combination of theta series of the definite quaternion
algebra unramified at every finite (henselian) place. Such a problem over Q
was first studied by Eichler (his basis problem) and then generalized to the
Hilbert modular case by Shimizu and Jacquet-Langlands in different manners.
We scrutinize the integrality of the Jacquet-Langlands-Shimizu correspondence
(mainly using duality between Hecke algebras and their spaces of cusp forms;
see [HO5b]). At the last step of finalizing the W—-integral correspondence, we
again need a result of Fujiwara: Freeness theorem in [Fu] of quaternionic coho-
mology groups as Hecke modules, which is valid again under the assumptions
(1-4) for cusp forms with complex multiplication (see [HMI] Corollary 3.42).
The everywhere unramified definite quaternion algebra exists only when the
degree [F' : Q] is even; so, we will at the end reduce, by a base-change
argument, the case of odd degree to the case of even degree.

The identity: (h(M)/h(F))L, (¢»~) = H(3) resulted from our proof of the
theorem is the one (implicitly) conjectured at the end of [H86] (after Theorem
7.2) in the elliptic modular case. A similar conjecture made there for Eisenstein
congruences has now also been proven by [O] under some mild assumptions.
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2. SIEGEL’S THETA SERIES FOR GL(2) x GL(2)

Since the Shimura series has an integral presentation as a Rankin-Selberg con-
volution of Siegel’s theta series and a Hilbert modular form, we recall here the
definition and some properties of the theta series we need later.

2.1. SYMMETRIC DOMAIN OF O(n,2). We describe the symmetric domain as-
sociated to an orthogonal group of signature (n,2), following [Sh1] Section 2.
Let V be a n 4+ 2-dimensional space over R. We consider a symmetric bilinear
form S : V x V — R of signature (n,2) with n > 0. We define an orthogonal
similitude group G by

(21) G(R) = {a € Endg(V)|S(azx,ay) = v(a)S(z,y) with v(a) € R*}.

We would like to make explicit the symmetric hermitian domain G(R)*/R*C
for a maximal compact subgroup C' C G(R)™ for the identity connected com-
ponent G(R)™ of G(R). We start with the following complex submanifold of
Ve=Ve®C:

Y(S)={veVe=Ve&rC|Sh]=S(v,v)=0, S(v,v) <0}.

Since S is indefinite over C, the space Y(S) is always non-empty. Obviously
g € G(R) with v(g) > 0 acts on Y(S) by v — gv.

Take v € Y(S5), and write W for the subspace spanned over R by v + 7 and
tw — v for i = v/—1. Then we have

S(v+7,v+0)=251v,7) <0
S(iv —iv,iv — iv) = 25(v,7) < 0
S(v+7,iv—0) =—i-S,v)+i-S@0v)=0.

This shows that S|y is negative definite. Let W+ = {w € V|S(w,W) = 0}.
Then we have an orthogonal decomposition: V = W@&W =+ and S |w 1 is positive
definite. We then define a positive definite bilinear form

Pv(x,y) = 7S(xWayW) + S(xWi,yWi)

for the orthogonal projections zy to W and zy . to W= of . The bilinear
form P, is called the positive majorant of S indexed by v € Y(S5). If g € G(R)
fixes v € Y(S), g fixes by definition the positive definite form P,. Thus g
has to be in the compact subgroup O(P,) made up of orthogonal matrices
preserving P,. Thus G(R)*/O(P,) — Y(S). If we have two v,w € Y(S),
then by Sylvester’s theorem, we find g € G(R)" such that gv = w, and hence
GR)T/O(P,) = Y(S).
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Writing P,[x] = P,(z,z) for * = cv + e + 2 with ¢ € C and z € W+, we see

(2.2)
P,[z] — S[z] =P,(cv + 0+ z,cv + 0 + z) — S(cv + 0 + z,cv + 0 + 2)

= —2c2S[v] — 2¢%S[v] — 4|c|*S(v,7) + S[z] — S[¢]
=4|c|*S(v,7) = —4S(v,7) 1S (z,v)|* > 0.

We now make explicit the domain Y(5) as a hermitian bounded matrix domain.
PROPOSITION 2.1. We have a C-linear isomorphism A : Vo =2 C"*2 such that
S(z,y) = "(Az) - RAy, S(@,y) ="(Az) - QAy,

where R and @ are real symmetric matrices given by
1, 0 0 Lo

=(0 0 —1 =( .

R (0—10)’Q (0_12)

Proof. Choose a base v1,...,V,42 of V over R, identify V with R"*2 by send-
ing 22-12 ziv; = Y21, .., Tpee) € R"2 and use the same symbol S for the
symmetric matrix (S(v;,v;))ij. Then S(z,y) =tz - Sy for z,y € V = R"*2.
By a theorem of Sylvester, S is equivalent (in GL,42(R)) to Q; so, we find an
invertible matrix X € GL,2(R) with 'X - SX = Q.

Choose B = diag[1,, \/5_1 (2 1)]. Then by computation 'B - QB = @ and

‘BQB = R. Then z — Az for A = (XB)™! = B7!X~! does the desired
job. O

By our choice of A, the map o +— AaA~! gives an isomorphism of Lie groups:
(2.3) ¢:G(R) = G(Q,R)
={a € GLn2(C)|'a- Ra = v(a)R, '@ qa = v(a)Q with « € R*},
and the map: v — Av gives an isomorphism of complex manifolds:
(2.4) J:Y(S) 2 V(Q,R) ={ueC"?|'u- Ru=0, 'u-Qu<0}.
These two maps are equivariant:
va)j(v) = jlav).

We are going to show that Y(Q, R) has two connected components. Write
w="(uy,...,upt2) € Y(Q, R). Then we have

n
(Z uf) — 2Up41Upy2 = ‘u- Ru = 0,
i=1

n
Z il® < Juns1]?® + |uns2)® & - Qu < 0.
i=1
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Assume |up 41| = |nnp2| towards contradiction. Then we see

n n

Z |Uj|2 2 |Zu?| = 2funt1tnto| = [uni1? + |untol?,

j=1 j=1
a contradiction; hence we have either |u,4+1| > |unto| or [upt1| < |tunt2|. These
two cases split the domain Y(Q, R) into two pieces of connected components.
To see each component is connected, we may assume that |u,12| > |un11] by
interchanging indices if necessary; so, un12 # 0. Put z; = Uj/up4o for j <mn,
and define a column vector z = ¥(21,22,...,2,). Then w = Upi1/Upia =
t2.2/2, and defining

1
(2.5) 3—371—{ZG(C”|tz~z<1+4tz~z|2<2}7

C* x 3 is isomorphic to the connected component of Y(Q, R) given by |u, 42| >
[tns1| via (A, 2) = AP(2), where

(2.6) P(z) ="(2 ("2 2)/2,1).

From this expression, it is plain that Y(Q, R) has two connected components.
We define the action of @ € G(R) on 3 and a factor of automorphy u(c; z)
(z € 3) by

(2.7) Ua)P(z) = P(a(z))u(a; 2).

We look into spherical functions on Vg. Choose a base vq,...,vq of V over R.
By means of this base, we identify V with R? (d = n+2); so, v = (@1, ...,24) if
v=73;z;jvj. We take the dual base v} so that S(v,v;) = d;; for the Kronecker
symbol d;; and define a second-degree homogeneous differential operator A by

* * 82
A= E S(”i’vﬂamaxj‘
ij !

A polynomial function n : V' — C is called a spherical function if An = 0.
Writing S = (S(v;,v;)), we see that this definition does not depend on the

choice of the base vj, because A = '95719 for & = '(Z-,..., ). Since
A(twSx) = Sw for a constant vector w = (w1, ...,wy), we find that, for k > 2

A(twSz)* = k'o(S71Sw) (fwSz)k ! = k(k — 1)(*wSw) (‘wSz)*~2.
Thus the polynomial function 2 + S(w,z)* for k > 2 is spherical if and only
if S|w] := S(w,w) = 0. All homogeneous spherical functions of degree k > 2
are linear combination of S(w,z)* for a finite set of spherical vectors w with
S[w] = 0. In particular, for v € Y(S), the function x — S(v,z)" is a spherical
function.

Note here that for v € Y(S5), S[v] = 0 and S(v,z) = —P,(v,x), because
P(v,x) = P(v,zw) + P(v,zy 1) = =S(v,2w) = —S(v,x). Define 9, =v- 9,
where U = (A1,...,Aqg) when v = Zj A;v;. Then we have, by computation,

(2.8) 0y S[z] = 25(v,x), 0y Pylz] = 2P, (v,x) = —=S(v, ).
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We define a Schwartz function ¥ on V for each 7 = £ +in € $ and v € Y(95)
by

U(r;v;w) = e(%(S[w]{ + iPy[w]n)) = exp(mi(S[w]¢ + iPy[w]n)).
We see by computation using (2.8)
(2.9) (OFW) (13 v;w) = (2m0)* (7S (v, w))* V(73 v; w).

2.2. SL(2) x SL(2) AS AN ORTHOGONAL GROUP. We realize the product as
an orthogonal group of signature (2,2), and hence this group gives a special
case of the orthogonal groups treated in the previous subsection.

Let V = M>(R), and consider the symmetric bilinear form S : V x V — R
given by S(z,y) = Tr(zy"), where yy* = y'y = det(y) for 2 x 2 matrices y. We
let (a,b) € GL2(R) x GLy(R) act on V' by = — axb’. Then

S(axb*, aydb*) = Tr(azxb by‘a’) = det(b) Tr(azy‘a’)
= det(b)Tr(zy‘a‘a) = det(a) det(b)S(z, y).
Thus we have an isomorphism
(GLy(R) x GLy(R)) /{#£(1, 1)} — G(R)

with v(a,b) = det(a) det(b). Since the symmetric space of G(R) has dimension
2 over C, the above isomorphism has to be onto on the identity connected
component. Since G(R) has four connected components (because Y(S) has
two), the above morphism has to be a surjective isomorphism because G L2 (R) x
GL3(R) has four connected components:

(2.10) (GL2(R) x GL2(R)) /{£(1,1)} 2 G(R).

Since the symmetric domain of GL2(R) x GLy(R) is isomorphic to £ x $ for
the upper half complex plane $ = {z € C|Im(z) > 0}, we find that 3 = ) x 9.

We are going to make this isomorphism: 3 = § x $) more explicit. We study
Y = Y(S) more closely. Since Vg = M(C), writing v = (¢4) € M(C), we
have from the definition:

y={(2}) € Mx(O)]ad = be, ad — be+da—cb < 0}.

Pick v = (’j Z) € Y, and suppose that ¢ = 0. Then by the defining equation
of ¥, ad =0 = 0 = ad + da < 0, which is a contradiction. Thus ¢ # 0; so,

we define for v as above, z = ¢ and w = fg. Then —zw = %, and hence (see

[Sh2] II (4.6))
(2.11) v=cp(z,w) with p(z,w) = (] 7%) =-"(z,1)(w, 1)e,

1 —w

where € = (91 (1)) Again by the equation defining Y,

(2.12)  S(p(z,w),p(z,w)) = (w—wW)(z —Z) = —2W + 2w — Zw + zw < 0.
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From this, it is clear that ) = C* x (532 L 52) By this isomorphism, for a €

G(R), we can define its action a(z, w) € (532 U §2> and a factor u(a; z,w) € C*
of automorphy by
a-p(z,w) = pla(z,w))u(a; z,w).
__ az+b

By a direct computation, writing j(v, z) = cz+d for v = ((C‘ g) and v(z) = ¢55,
we have, for (a, 5) € GL2(R) x GL2(R),

(2.13) ap(z,w)B" = pla(z), B(w))jla, 2)i(8,w).
Thus

(Oé, 6)('27 ’LU) = (a(z)’ B(U))) and :u’((a? B)a (Za ’LU)) = j(a7 Z)](ﬁv ’U))
We define a spherical function

(2.14) v [vs2,w]" = S(v,p(z,w))*

for a positive integer k > 0. This function is spherical because S[p(z,w)] =
2det p(z,w) = 0, and we have

(2.15) [avs'; 2, w] = j(at, 2)j (B, w)v; @™ (2), 87 (w)].

2.3. GROWTH OF THETA SERIES. Let F' be a totally real field with integer
ring O and B be a quaternion algebra over F. The algebra B can be Ms(F).
Let z — z* be the main involution of B; so, za* = N(z) and x + z* = Tr(x)
for the reduced norm N : B — F and the reduced trace Tr : B — F. We
consider the symmetric bilinear form S : Bx B — F given by S(z,y) = Tr(ay").

Writing I for the set of all archimedean places of F, we split I = Iz LI so
that B®p, R 2 My(R) < o € Ig. Thus for o € IP,

B®F,UR§H:{(EE§> ’a,be(C}.

We identify B, = B ®p,, R with M>(R) or H for each o € I. Thus G(Q) =
(B* x B*)/{%(1,1)} is the orthogonal group of (B, S). Since S at o € IP is
positive definite, G(R) = (GLy(R) x GLy(R))’? x (H* x H*)!” /{(1,1)}. For
each b € By, = B ®qg R, writing b = (b,) for c—component b, € B,, we define

(2.16) b; 2z, w)* = ] bo; 20, wol* (k=" koo € Z[Ig]),
o€lp o€lp

where [by; 25, w,] is as in (2.14) defined for B, = My(R). For o € IB, we
pick a homogeneous spherical polynomial ¢, : B, — C of degree k., and put
¢ = [l,er5 9o and & = Y. ko € Z[IP]. We define an additive character
er: Fc = F®gC — C* by ep(2) =exp(2mi ), 25) (2 = (25)0er) identifying
Fc with C! as C-algebras. Writing Tr : Fr — C for the trace map, we have
er(z) = e(Tr(z)).
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We consider Siegel’s theta series defined for 0 < k € Z[Ig] and a Schwartz-
Bruhat function ¢ : By() — C:

(217) W_Iak(T;Z,w§U,¢<P) = Z[&Z?w]k(¢9@)(£) ( (53[ ] +“7 (z,w)[é]))

teB

= 1tz (0p) (el TH(S[E)e (2 M) ,

= = Im(zy) Im(w,)

where 7 = £ +in € 9T, n'(r) = [[, 7> and the last equality follows from
(2.12). Since the majorant P,; ., is positive definite, the theta series is rapidly
decreasing with respect to 7 towards the cusp oo, as long as ¢(0)[0; z, w]* = 0
(in other words, as long as k 4+ k > 0). Since the infinity type k + x does not
change under the transformation 7 +— «(7) for a € SLo(F'), the theta series is
rapidly decreasing towards any given cusp if & + k > 0. Otherwise it is slowly
increasing (see below Proposition 2.3).

2.4. PARTIAL FOURIER TRANSFORM. We are going to compute in the following
subsection the Fourier expansion of the theta series (introduced in the earlier
subsections) with respect to (z,w) when B = My(F). This is non-trivial,
because 6 is defined by its Fourier expansion with respect to the variable 7. A
key idea is to compute the partial Fourier transform of each term of the theta
series and to resort to the Poisson summation formula. In this subsection, we
describe the computation of the partial Fourier transform.

The Schwartz function on Bo, = B ®g R = My(F) which gives rise to the
theta series 0y (7; z, w; @) is given by

w i Uo(u) = nler(det(u)r + 2iyt|[u; 2, wl?)

for r =&+, z =z +yi and w = r + ti with £, 2,7 € Fyg and n,y,t € F .

Here FZ | is the identity connected component of F. We define

(2.18) W(u H\Ilk (o) (0<k=> koo €Z[I]) and
Mo

2Yolo

We write the variable u = (4,3 ) for two row vectors u; and write individually
u1 = (a,b) and uy = (¢,d). The partial Fourier transform ¢* of ¢ is given by

kd+1[

Ui o(ug) =n5 Uy} Zgs wg]k”e(det[ug]ﬂ, 44 [[to; Zos w0]|2).

(2.19) o (1) = / 6 (@) ep(al — ba')da'dV,

F2 ’
where ab/ —ba’ = 35 [( % })] and da’ = ®,da, for the Lebesgue measure dal,
on the Ufcomponent R of F.. By applying complex conjugation, we have
(2.20) o (ea)=(0) (7)-
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We compute first the partial Fourier transform to the action of U(F.) X
GL3(Fy), where U(X) is made up of upper unipotent matrices with right
shoulder entry in X. We first deal with (1, 8) with 8 € GLa(Fx):

(po(1,8)" (24) :/F2 ¢ ((¢0)B) er(—(d', b))t (a, b))da'db'
(a’,b’)ﬁ;—)(a’,b')

|N(det(,8)\‘1/ 6 (¢ V) ep(—(d, )< (a,b)da'dD’

F%

=|N(det(B)|* / ¢ (%) ep(—(a,b")B7 e B (a,b))da'db/

r2
=[N (det(B)| " 0" o ((§ aetrsy) »B7") (25)-

We now compute (¢ o (a,1))* for o« € U(Fixo):

(@o((§7),1)" (25) =/F2 ¢ (et +rd) ep(ab’ — ba')da'db'

oo

¢ (%) ep(ab —ba')dad'db'ep(—z(ad — be))

C

(a'+wc,b'+§d)»—>(a/,b/)/
F2
= ep(—z(ad — bc))p* (¢ 4).

Summarizing the above computation, we get for ((§%),1) € U(Fs) X SLa(Fu)

(2.21) (@0 ((61),8) (u) = ep(—wdet(u))d” o (1,87 (u).

By (2.15), for (o, 8) € SLa2(Fx) X SLa(Fs), we have
[auf'; 2,w] = S(aup’sp(z,w)) = S(u;a™'p(z,w)5™")
= [uv a_l(z)v ﬁ_l(w)]j(a_l7 Z)j(ﬁ_lv Z)
To compute the partial Fourier transform of W, we may therefore assume that

r = x = 0. Then the computation for ¥§ is reduced to, writing v’ = (“c/ ZZI/)
(and omitting the subscript o),

(2.22) / Voo (u")e(ab’ — ba')da'db =
FZ

in /2 b/2 42
/]R<2 ne (5 detu’ + %( (; + m + yT + yt02)> e(ab — ba')da'db'.

We then invoke the following formula:
o0 b2
/ exp(—mza'*)e(a'b)da’ = /2 exp(—L),
z
—00
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where z € C —R_ (R_: the negative real line) and z~'/2 is the branch of the
square root which is positive real if z is positive real. Then (2.22) is equal to

(2.23)
Yo exp(—mn ! <{j‘7(d§a — )% + Yoty (cty — a)2> e (Zga(ztladQ + ygtgc2))
o1
= Y, exXp (—wy(t|d70 — b + tler, — a|2)> .
By computation, we have
(2.24) tlre —al* + t77d — b* = t 7Y [u; T, it]|* + 21 det(u).
Thus we get

o (u) = Ui (u) = [ 5., (uo),

o 1
(2.25) Poq(u) =5, (25) =yoexp <—7r71;(t|d70 —b* + tolet, — a2)>

g o

st

ovo

= Y, exXp (27rya det(u) — 7

In order to compute the partial Fourier transform of ¥, we consider the fol-
lowing differential operator

(2.26) 0, =S <p(n,wa),t (

segfe

0 IR I N
5a " 7 9a 779 Oe 7od’

. ! /
Since we have, for u = (¢ b)),

9]
7o —e(ab — ba') = 2miT,b'e(ab’ — ba’)
a

0

0
%e(ab' —ba') = 2miw,T,a’e(ab’ — ba’)

— W, (u) = (—2mib' 1, — Wn—g(wazg [U; 25, Wo | + WeZo [U; 20, Wo|) ) Wo 0 ()

80 ’ yata

No

= —(2mid' Towy — 7 (Wo 2o [U; 26, Wo| + WoZo (U5 20, Wo|) ) W0 o ().

O'tO'

Taking the fact that w, — w, = 2it,, 2z, = iy, and

aﬂ([u; Zavwa]) = 30(50(%17(20#1/0)) = So(p('raawcr)ap(zaa wa)) =0
into account, we have
(2.27) 0o (U o (u)e(al — ba’)) = 27041 »(u)e(ab — ba)

for all integers j > 0.
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To complete the computation, we need to compute 0, ®; ,(u). We have, noting
that we are restricting ourselves to w, = it,:

0 oto _
Tg%q)o’g (u) = Wyng (To(cTo — @) + To(cTo — @) Do o (1)
—itaTU%q)o,g(u) = —m’y—a(fa(dﬁ, —b) + 7o (d7e — b)) P o (1)
Mo
0 _ Yoto _ —
50200 (u) = =7 No (7o (To — a) + To(cTo — a)) o o (u)

—it[,%(%’a(u) = m‘y—a(ﬂ,(dﬁ, —b) +To(dry — b)) Do o (u).
No

From this we get, taking the fact:
ity (cTe —a) + d7, — b = [u; T, ity]

into account, we have

05P0,6 (1) = 2mYo[U; To, ite | Po,o ().
Since 9, ([u; T, w]) = 0, we again obtain, when z = iy and w = it,
(2.28) 00 (®j.o) (1) = 27Pj 11 (u),
where @; ,(u) = yI T u; 7, wl? g , (u). By (2.27) and (2.28) combined, we get,
at this moment for z = iy and w = it,
(2:29) (r)" (u) = g (u),
where @ (u) =[], Pi, o(us) and Vi (u) =[], Vi, o (ts).

We are going to compute the partial Fourier transform for general (z,w) and
show that (2.29) is valid in general under a suitable description of ® for general
(z,w): To do this, we write

7,0 o’tU

PEoWeTo () = ngﬂ[u; 2o, wg]je (det(u)Tg + i2 il |[w; 2o, wg]|2) )

Since [u, a(zs), B(wy)]j(a, 2)j (B, w) = [a " uf™; 2o, ws| by (2.13) and (2.14)
combined, we have

B = () (7))
Then by (2.21),
(@0 ((6777) (5 717))) (u) = e(zq det(u))e* o (1, (5
and applying this to W37*""™, we get from (2.29)

(Wievo ™)™ (u) = e(wq det(w)) e "™ (u (§ 71)),

7,0 7,0

ﬁ
—aq

N
N

where

q);%’;’it“’” (1) = [tg; Toy ity y2 T exp (—27rya det(u) — m y; I[u; Tg,it,,]|2> .

Nolo
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Define
(2.30)
O (u) =27 (u) = H P07 () for

o

‘ i
0o (u) =057 (u) = yi T us 75, wo) e <det(u)zo + 2ny; H“?Ta,waHz) '
ovo

Using this definition, (2.29) is valid for general (z,w,7) € ! x H! x §. In
other words, we have the reciprocal formula:

(2.31) T =Wt and (WP (u) = W ().
By (2.20) (and (2.15)), we also have

2 32 < Z“) 7')
H( hotly,: — 7, W, e (det(ug)ﬂ, + 2 |[ua;ﬂ,,wc,]2>> .

O'tO'

2.5. FOURIER EXPANSION OF THETA SERIES. Write V = M3(F). We choose
on Fj) = F ®q A(>) the standard additive Haar measure da so that

/Adazl for O=0@,Z (Z=]]z)
o
p

At infinity, we choose the Lebesgue measure ®,da, on Foo = [],c;R. Then
we take the tensor product measure du = da ® db ® dc ® dd for u = (‘; g) € Va.

Let ¢ : Vi = Ms(Fy) — C be a Schwartz-Bruhat function, and assume that
¢ =11, o for ¢, : V® Q, — C. We define the partial Fourier transform of ¢
for ¢ : Vj — C by the same formula as in (2.19):

(2.33) o (e0) = / 6 (¥ ) ea(all — ba')da'dV,

Ff
where ey : Fy/F — C* is the additive character with ep(ro) = ep(xoo)
for £, € Fs. We further assume that ¢oo = U7 studied in the previous
subsection. Then we define

(2.34) 0(g) = > o(0)

Lev

Writing ¢(°°) for the finite part of ¢ and regarding it as a function on V C Vj (),
we find
O(¢) = n* b1 (75 2, w; ¢>).

Since fFA/F da = \/|D| for the discriminant D of F, the measure |D|~da’dl/
has volume 1 for the quotient F2/F?. Thus |D|~1¢* gives the partial Fourier
transform with respect to volume 1 measure |D|~!da’db’. The Poisson summa-
tion formula (with respect to the discrete subgroup F? C F7) is valid for the
volume 1 measure (cf. [LFE] Section 8.4), we have the following result:
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PROPOSITION 2.2. We have O(¢) = |D|~1O(¢*). In terms of 0y, we have
0FO(752,w; ) = | D71y 0 (27, w5 7).

We could say that the right-hand-side of this formula gives the Fourier expan-
sion of the theta series in terms of the variable z.

PROPOSITION 2.3. Let
I7(¢") = {v € SLa(F)|¢* > (yu) = X+ (7)6* ) (w)}
D= () = {(v,0) € SLa(F)?[¢) (yud ™) = xz,00(7,6)0 ) () }.

for characters x, : T7(¢*) — C* and X, @ I'*"(¢) — C* Suppose that
Goo =W, Then for (o, 8,7) € I'7(¢*) x T=™(¢), we have

O(¢)(a(7); B(2), v(w))
= 0(9)(7s 2, w)xr (@) Xz (B, 7)1 (0, 1) G (B 2) i (, w) .
More generally, for general o € SLy(F), we have
0(¢)(a(r); 2,w)j(a, 1) = |D|'O(¢" 0 a) = B(@),
where ¢* o a(u) = ¢*(au) and ® (24) = (¢* o a)* (). Similarly, for
(8,7) € SLa(F), we have
O(¢)(73 2,w)j (B, 2)* (v, w)* = O(¢ 0 (8,7)),

where ¢ o (B,7)(u) = p(Buy ™).
Proof. Since the argument is similar, we prove the formula in details for the
action on 7. Write I' = I'"(¢*). We use the expression ©(¢) = |D|~1O(¢*).
By (2.15), we have

M7, wol 2 [169(70), woll®

1(7s) n(y(7s))
Then, up to y* er(det(¢)z) (independent of 7), ©(¢*) is the sum of the
following terms over £ € '\ My (F') and v € I':
X (N (OYe(v(7))j (v, 7)",
where Y, (1) = [(;7,w]Fexp(—7 Y, %7|[ZZ;(’:,U)H2
automorphic property with respect to 7 for
F@) =" xe (Y ()i, 7)",
~v€ET /Ty

where I'y C T is the stabilizer of £. We see

flam) = Y xr(MYe(ya(r)j(y, a(r)*

~yel'/Ty

= > xMYe(va(n)i(va, 1) (e, 7)F TE T ()T (7)j (e T) R
~€L /Ty

, T w)t =[Gy (r),w)h i ()P

). Thus we need to prove the
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This shows the first assertion for 7. As for the assertion with respect to (z,w),
we argue similarly looking into the terms of O(¢).

For the action of general «, the argument is similar for ©(¢*). To return to
©(¢), we need to use the Fourier inversion formula (¢*)* (24) = ¢ (7* 7).
We leave the details to the attentive readers.

3. ¢—EXPANSION OF SHIMURA SERIES

The Shimura series for GL(2) x GL(2) is defined for 0 < k € Z[I] and 0 < m €
Z[I] in [Sh2] 11 (4.11) by

(31) H(Z,’LU,S) = Hk,m(sz;8;¢(W)7f)

=[] > ¢ (a)a(—det(a), f)] det(a)| ™o 2, w] F |[o; 2, w] |7
0£a€M;(F)/U

for (z,w) € H! xH. When m = 0, we simply write Hy, for Hy o. The positivity
of k means that £ > 0 and k, > 0 for at least one ¢ € I. Here f is a Hilbert
modular form given by the Fourier expansion: > .. a(, fer () for 7 € Hl
of weight ¢ (ep({1) = exp(2mi ) £77,)) with a(&, f) = 0 if &7 < 0 for some
o € I, U is a subgroup of finite index of the group O of all totally positive
units for which each term of the above sum is invariant, [U] = [OF : U]}
and ¢(>) : M, (Fp(e0)) = C is a locally constant compactly supported function
(a Schwartz-Bruhat function). To have invariance of the terms under the unit
group U, we need to assume

32) k—t(—2m=k—-(—-2m]] (I= ZO’) for an integer [k — ¢ — 2m)].
oel

The series (3.1) converges absolutely and locally uniformly with respect to all
variables s, z, w if

(3.3) Re(s) >n+2+20(f) — [k — £ —2m)

as was shown in [Sh2] I Proposition 5.1 and Theorem 5.2, where
6(f) = —1 when f is a constant, and otherwise, §(f) = 6 > —3 with
la(&, )E? = O(IN(£)|?) for the norm map N = Npg. This series is a
generalization of Eisenstein series, because if we take f = 1 (so £ = 0 and

m = 0), the series gives an Eisenstein series for GL(2) x GL(2) over F.

We are going to compute the Fourier expansion of the Shimura series. We sum-
marize here how we proceed. We have already computed the Fourier expansion
of ©(¢)(7; 2, w) with respect to z, and it is equal to |D|710(¢*)(z; 7, w) for
the partial Fourier transform ¢* of ¢. By the integral expression of the series
given in [Sh2] T Section 7, the series (actually its complex conjugate) is the
Rankin-Selberg convolution product of ©(¢) and f with respect to the variable
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7. Since integration with respect to T preserves Fourier expansion of ©(¢) with
respect to z, what we need to compute is

/ O(6") (2 7, w) () E(r; 0)du(r)
r\s?

for the invariant measure du(7) for a suitable holomorphic Eisenstein series
E(7;0). This has been actually done, though without referring the result as
the Fourier expansion of the series Hi(z,w;0), in [Sh2] II Proposition 5.1 (re-
placing f(w) and variable w there by E(7;0)f(7) and 7). We recall the integral
expression in Subsection 3.1 and the computation of Proposition 5.1 in [Sh2] IT
in Subsection 3.2. We shall do this to formulate our result in a manner optimal
for our later use.

3.1. INTEGRAL EXPRESSION. Let I' be a congruence subgroup of SLs(F') which
leaves 0y (T; z,w; () and f fixed; thus, T' € T7(¢*). The stabilizer T's, of the
infinity cusp has the following canonical exact sequence:

00— a — T — U —1

(3.4) a

for a fractional ideal a and a subgroup U C O* of finite index. By shrinking
I' a little, we may assume that U C OF. We recall the integral expression of
the Shimura series involving Siegel’s theta series given in [Sh2] I (7.2) and II
(6.5b):

(35  UIN@ VD[ /F o ( /F ) @(qs)dmf(r)ds) 0t

27 074
multiplicative Haar measure given by ®,(n, 1dn,). We first compute the inner
integral: if Re(s) > 0,

N(@) /D] /F OO ()i =

> 6N @al(B, £IBIM e; 2, w]* exp(—m(28 + Puw(@))n" ™ uct(a),—s5
a€V,BEF

because for C' = N(a)‘lx/\D\_l

where d” =[], ( L0 )mg, p(u) = ¢ (NI (uy) and d*n is the

1 if det(a) = -5,
0 otherwise.

C/ er((det(a) + B)&)dE = dget(a),—p = {
Fs/a

To compute the outer integral, when det(«) = —f, we note from (2.2) that
. 2
P, ,]a] = S[a] + % for S[a] = 2det(a) and that

[lev; 2, w]|”

exp(—m(26+ P, w(a))n) = exp(m(2det(a) — P, . (a))n) = exp(—m )i

n).
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Here we have integrated term wise (with respect to) the summation of © and
the Fourier expansion of f, which can be justified by the locally uniform and
absolute convergence of the Fourier expansions of ©® and f as long as the
resulting series is absolutely convergent (Lebesgue’s term wise integration the-
orem). The convergence of the series is guaranteed by (3.3) if Re(s) is large.

Again spreading the integral fFoXc+/U2 >ecu ®(2n)d*n to the whole F, for

D(n) = eXp(,ﬂHOféi’Ji?tﬂ]W), we see that (as long as the latter integral is abso-

lutely convergent) the integral (3.5) is equal to

(3.6)

0] > ¢ (a)a(— det(a), f)| det(a)[™[a; 2, w]*

acV/U
oz, wl|? .
></ eXp(—WTT(un))nH‘Idxn-
FX. Y
‘We know
k |[a;z,w]|2 k+sI g%
[a; z, w] / exp(—witn)n d*n
FX. Y

_ 21—[F:Q]ﬂ_—k—sIFF(k + SI)yk+sItk+sI[a; z,w]k|[a; Z7U)H_2S_2k

— 21_[F:Q]7T_k_SIFF(I€ + SI)yk+SItk+SI[Oé;§, E]_k|[oz; Z,’w]l_QS,

where T'r(k) = [], I'(k,), and as for the factor 2!~1F*@  see [LFE] page 271.
Thus we conclude

21—[F:Q]7r—k—sIFF(k+ SI)yk+sltk+sIHk’m(Z’w;§; 5(00),fc)
-1
— W@ VD [ et Ve,
F;+/U2 Foo/a
where f.(z) = f(—Z). In other words, by taking complex conjugation, we have,
for 5 = 5(00)%0,
(3.7) 2t Qp—k=sIpp (g 4 syF stk sl (2, w; s; ¢ f)

—WN@VT [ e@RE

The above formula (3.7) is only valid for s satisfying (3.3). However, by Rankin-
Selberg convolution, we can analytically continue the function H to a mero-
morphic function on the whole s—plane (see [Sh2] I Section 7). We recall the
process. We first assume that m = 0. Since D', \$! = (FX, /U?) x (Fx/a),
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we can rewrite the above integral as

217[F:Q]7rfkstFF(k + SI)yk+SItk+SIHk(Z,w;S; QS(OO),f)

N / W%ﬁ(r)nﬂdu(f)
(38) o ViDT | (€@ Fn™) o vdu(r)
r\s!

'yEF \I"
W VDT [ O@RmEsdu(r),
\$1
where du(7) is the invariant measure n~2/dédn on $!, and by Proposition 2.3,

(39)  Blris) = Bes(ms) =t S i) i),
YET o \I
In general, if m # 0, we use the formula (see [Sh2] I (1.16a)):

=Y (?)W(Mn)ﬂ'—maﬁ(f)

05%m Lr(l+37)

for 67(j) = 5= (T(yf“ + aT ) and

51(0) = TT 07 (s + 250 — 2) -+ 67 (£y + 2007 (L))

g

The binomial coefficients (Z") is the product of individual ones (’Z") over
o € I. Since 6(f) preserves automorphy (but not holomorphy), we can
write d" f. as a linear combination of ¢} f., which is an automorphic form
of weight £+ 2w on the same I'; and therefore the above computation still works.

The integral (3.8) (in general for m > 0) is convergent for all s € C except for
s giving rise to a singularity of the Eisenstein series, because ©(¢) for k > 0
does not have constant term at any cusp; so, it is rapidly decreasing. Thus
the integral of (3.8) converges absolutely for any slowly increasing automor-
phic form f(7) as long as E(r;s) is finite. This is the proof of the analytic
continuation given in [Sh1] Section 13. This proof works well even when k& =0
for cusp forms f.

3.2. COMPUTATION OF ¢—EXPANSION. We assume that m = 0. We are going
to compute the Fourier expansion of fr\ﬁf O(¢)g(T)du(r) for an eigenform

g(7) of Laplacian A,: Agg = (s2 — 1)g (s, € C) for all 0 € I, where A, =
12 (9 + &) We assume that (8(@)g)(+(7)) = (B(6)g)(r) for all 7 € T

By (2.2), ©(¢) = |D|7'O((¢)*) is the sum of the following terms:

1
Hyk a7, w )" (det( 7)zo + 277%; |[a”;ﬂ,,wg]|2).

ovo
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By (2.15), we have, for v € T,

—TYo o
log(Y(75)) = o [(va)7; 7o, wo |
—TYo o — L=
= — a7y (10), wolPli (v, 2))?
Nole
_ Yo . —1 2
- Im(’Y_l(Tg))tal[a Y (Ta)awa]‘ .
This shows
(3.10)

—(k+1) C] T)Ydu(T
v [ e

= Y eret(@ne™@) [ S farlulfl ()Y ()

r\&s’

a€l\M;(F) YETA\T
= Y erlet(@2)6™a) [ fmulY (ng(r)dn
€D\ Ma(F) Fa\H!

where I'y = {y € T'|ya = o} and Y (2) =[], e(Y(25)). If det(cr) # 0, then
r,={1}.

We first compute the general term: fﬁ,[a;T, w]*Y (7)g(7)du(7). For that, we
recall [Sh2] Lemma 5.2 and the discussion after the lemma:

LEMMA 3.1. Let oo € GLo(F). Let P(r,w) = exp(— 3, 25 [, 7o, we]|?) for
r,w € HT with 0 < u, € R. Assume that the integral fﬁl P(r,w)g(T)du(r) is
convergent. If A,g = (s2 — i)g and det(«) is totally positive, we have

(3.11) /ﬁ} P(r,w)g(T)du(r)

= 7l QU2 (det(a)u™) /2 exp(—2 Z det(a”)uy) K (det(a)u, s)g|ra(w)

for the modified Bessel function:
oo
K(u,s) = H/ exp(—uq (o + x5 1)) zi ~tda,,
. Jo

where glra(w) = det(a)*Tg(a(w))j(a, 2)7F. If det(a) is not totally positive
and g is holomorphic, the integral (3.11) vanishes, as long as it converges.

By the above lemma, taking g = f (so, g = f is holomorphic), only non-trivial
case is when det(a) is totally negative, and noting the fact that K(u,1) =
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#lF:Q)/2y~1/2 xp(~2 3" u,), we have

/ﬁ o Wzm i 1073 70wl Pl 7wl £ (7))

o) /ﬁ epom 3 lasa(ra).wal las ) wl (et
o exn(r Y. e 1574w, )

x (17, w]* det(0)* (0, 7) 7 (7)) dp(7)
2= ()P 20k try T exp(—am Y | det(a”)|yo) flra().

If o # 0 and det(a) = 0, then 'y, is equal to I'N BZ/{(F)B*1 for 8 € GLo(F).
By a variable change, we may assume that o = ({§). Then I', = T NU(F),
and we have an isomorphism: a = Ty, by a 3 a — ({ ¢), where a is a fractional
ideal of F. In this case, [o; 7, w] = —w. We then have

312 [ YO @)
— [ lnuly() / (& + inden 1 dn
FX, Fo/a
=N(a)ma(07f)/F (—w)" exp( ﬂz 97w |2)y 2l dn
m N(coma(o,f)(—w)k /F e(- Z””% 2)

oo+

— LN (a)v/[D]ao, f><—w>’f;—”|w\-”,

o

where f(7) = > s5cpa(0, flep(67).

Thus we obtain the following version of [Sh2] IT Proposition 5.1 for B = My(F):

THEOREM 3.2. Suppose that f is a holomorphic cusp form of weight k > 0.
Let T be a congruence subgroup of SLo(F) fizing f(7)O(4)(7). Then we have

(~)F|D| O(d)(7; z,w) f(7)du(7)
r\s’

= (-20)*1"y* > 9" (@)er (det(a)z) f|ra(w).
€T\ My (F);det(a)<0
where f|a(w) = det(a)* ! f(a(w))j(a,w)~* for a € My(F) with totally nega-
tive determinant.
Taking complex conjugate of the above expansion and replacing the pair (¢, f)

—(o0)

in the above theorem by (qu O oo, [cE(w;0)), we get
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COROLLARY 3.3. We have, if f is a holomorphic cusp form of weight £ with
k—{=1[k— LI for an integer [k —{] > 0,

o F:Q]—1 —3/2 71(27”')]C
Hi(z,w; 0:6), f) = 2791 U)| DI N (@) 7' 0
F
X 3 ¢ (ea)er(det(a)z)(f Bx—o(w; 0))[pa(w),

a€l'\ M (F);det(a)>>0
where € = (_01 (1])

We can apply the above theorem to the following integral:
[ 0@ = VB (ms T )du(r)
r\s!

at s = 1 when k = £, because E(7, s) has a simple pole at s = 1 whose residue
is a constant cr # 0 (independent of 7). We then have

COROLLARY 3.4. We have, if f is a holomorphic cusp form of weight k,

Res, 1 Hu (2, w556, ) = en(~0)FQ271 U] Dl /2 (@)1 2T
€Ss=111k(Z, W; 5] ) =cr(—t a FF(k-_|_])
xy~Tt! > 6" (ca)ep(det(a)z) flra(w),

acl\ M3 (F);det(a)>0
where cr = Ress—1 E(w; s).

For the exact value of the constant cr # 0, see [H99] (RES3) page 173.

4. EVALUATION AT CM POINTS

We follow [Sh2] I Sections 5 and 8 to write down the evaluation of the Shimura
series at some special CM points in terms of Rankin-Selberg L—functions.

4.1. CM poINTS. We fix the “identity” embedding (o : F — Q) € I. Let
(20,wo) be a point in H! such that M = F[zq,,,] and L = Flwy ,,] are totally
imaginary quadratic extensions of F' (so, CM fields). Let Y = M ®p L, and
we embed Y into Ma(F) @ Ma(F) = My(F) by (a,b) — pa(a) @ pr(b) with

(%%) = par(a) () and (“p°) = pr(d) ().
We see easily that ppr(a) = par(a©) and pr(b)" = pr(b°) for complex conjuga-

tion ¢. We regard V- = M3(F') as a Y-module for the multiplicative semi-group
Y via pp ® pr; in other words, (a,b)v = par(a)vph ().

We have four distinct Y—eigenvectors p(zo o, wo.0), P(20,05 Wo,0)s P(Z0,05 Wo,5)
and p(Zo.0,Wo ») in Mz(C) =V @, C, whose eigenvalues of (a,b) are (a®b°¢),
(a”b7), (a®°b°¢) and (a®°b7), respectively, for an extension & of o to the com-
posite LM. Since V ®p,, C is free of rank 1 over Y, = Y ®p, C, V = My(F) is
free of rank 1 over Y (because C is faithfully flat over F'). Thus we find v € V
such that V' = Ywv. Then Sy : (y,y") — S(yv,y’v) gives a non-degenerate
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symmetric F-bilinear form on Y with Sy (yy',y"”) = Sy (v, y°y"), and we can
write Sy (z,y) = Try,p(dxy®) for § € Y with 0¢ = 6.

Suppose now that L = M. Then Y =2 M @Y, with Yy = M, the first projection
to M is given by a ® b — ab® and the second to Y is given by a ® b — ab.
Since ¢ is an automorphism of M, p(z,w) and p(Zy », Wo,») belongs to Mv®p »
C C Y,v = V,. The vectors p(zo,Wo,s) and p(Zo -, Wo,»,) are orthogonal to
Yy ®F,» C. In other words,

Yo={yeYl|o(y)=co(y) =0 forallo €I}.

Thus ¥ = ;0 gives rise to a CM type of M (with X U¥c giving all complex
embeddings of M). This shows: writing V 3> o = av @ bv with a € M and
beYy

[aa; 20,05 w0,0’] = 5(040710(2’0,0, wO,wo)) = S(avo'7p('z0,o'7 wO,um))
(4.1) = SV, a°P(20,0, Wo,u0)) = 07 [V 20,005 Wo, 0],

[av; 20, wo) ™ | 20, wo)| 2T = C7FF|CF |20 * N (a) ",

where C' = [v,; 20,0, Wo,5] and N(a) is the absolute norm of a € M. Here we

have written kX = >"__; k,0 and ck¥X =>"__ k,0c.

oel oel

Since (20,6, Wo,0) and p(Zo,s, Wo,») span (by the definition of Y(S) in Subsec-
tion 2.1) a scalar extension to C of a subspace on which S, is negative definite,
S is totally positive definite on W = Y{v, because every vector in W is orthog-
onal to p(20,, Wo,) and p(Zo,», Wo,»). We write Sy for the restriction of S to
W. By this fact, writing § = —dp; @ dg for dpy € M and dy € Yy, then 6,/ is a
totally positive element of F'; so, we may assume that dy; = % by changing v
if necessary. Similarly, we may choose §y = %
4.2. SPECIAL VALUES OF SHIMURA SERIES. As we have explained already, we
choose v as in previous subsection so that

(4.2) Sy ((a,b), (a’, b)) = %TrM/F(—aa'c +bb').
We see, supposing
(4.3) ¢\ (u) = par @ oo
for functions ¢ : Mv — C and ¢ : Yov — C,
C*|CP P Hy (20, wo; 550, f)
= [U] Z o (aw) Z do(Bv)a(aa’ — BE°, fla"*N(a)~*,

aeM /U BEYy/U
where C'is as in (4.1). We now define 0(¢o) = >_ ¢y, do(Bv)er(88°z). Then
for f'(z) = 0(d0) f(2) = X¢er al&, f)er(§z), we have
al€. f)y= D al&~ BB on(Bv),

BEYL/U
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which is a finite sum because {z € Yy ®F R|z727¢ < £° Vo} is a compact set.
Thus we have, under (4.2) and (4.3)

CkZ\CZFSHk(Zo, Woj S; ¢(°O)v f)
(4.4) =[U] Z dar(awv)a(aa®, fa= N ()75,

aeM/U

In general, ¢(°°)|detm| is a constant linear combination of the functions sat-
isfying (4.3); so, H(zo,wo; s) is a linear combination of the series of the above
type. The series (4.4) is the Rankin convolution of f’ and the theta series
0(¢x. ) of the norm form of M for ¢y ar(a) = aF=dar(av) (see (4.9)).

4.3. AN EXPLICIT FORMULA OF PETERSSON INNER PRODUCT. For a given
theta series 0y (¢) of weight k + I of a CM field M/F, we are going to write
down the inner product (857(¢), f2) for a special value of a modular form on
GL(2) x GL(2), taking [’ = f0x(¢’) for another theta series 07(¢’) of weight
I of M. Here fl(z) = f'(=2); so, f. is a holomorphic modular form whose
Fourier coefficients (at the infinity) are the complex conjugate of those of f’.
The modular form is given by, up to an explicit constant,

Ress—1 Hi (2, w; 8, ¢' @ ¢, f).

2k+21
We will later in Section 7 deduce from this the integrality of % for

the period Q2 of the Néron differential of the abelian variety of CM-type sitting
at the evaluation point (zg, wp).

Let f and g be Hilbert modular forms on I' C SLy(F) with Fourier expansion

f=2>ccral fler(ér) and g =3 pa(& gler({T) for 2 € H1. We take the
ideal a C F' and the unit group U C O as in (3.4). Let £ and s be the weights
of f and g respectively. We suppose that one of f and g is a cusp form so that
fg is rapidly decreasing.

We let € € U act on $! by 7 + €27. Then f(e7) = ¢ f(7) and g(e?7) =

¢*g(7). Then the function fg(7)n**)/2 is U-invariant. We then consider
(4.5)

DG f9) = WIN@ VDT [ [ Fgom e g

‘We now assume that
(4.6) =k mod 2Z[I] + ZI.

Thus we find m € Z[I] such that £ — k — 2m € ZI. Replacing T by
{7 €T|Fan /2 0 7)(r) = (Fgn /) (1), 7) % (v, 1) L, )~}
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if necessary, we have
(4.7)  [U*]7'N(a)V/IDID(s; f.9)

_ 0 e —
= [, TO8O " Bscania (i 1= E=E 2 ),

where

EnI,m(T; S) _ nsl Z (.7:(’)/’7—)) j(’}/,T)_nIU(’}/,T)‘_QSI.

S M)

When m = 0, we write simply E,; for E,;o (n € Z). Since E,jm(7;s) has
meromorphic continuation on the whole s—plane as a slowly increasing function
(outside its singularity), the above integral gives an analytic continuation of
D(s; f,g) to the whole complex s—plane. In particular if £ = k, the L-function
D(s; f,g) can have a pole at s = 0 because in that case, we can choose m =0
and Ey(7, s) has a simple pole at s = 1 with a constant residue.

By the same calculation as in Subsection 3.1, we have
2[F:Q]—1(47T)SI+(Z+.~;)/2D<S; f, g)
U8 — 0 resI+ (¢ +m)/2) Y al& HE a6 g)¢ /2N ()™

0K EEFX JU?

if Re(s) > 6(f) + 0(g) + 1 for O(f) as in Section 3.
Let us recall the theta series defined below (4.4):

0(dr,n) = Z br, 0 (a)er(aa’T)

aeM

for ¢p a(a) = a* ¢ (a) as in (4.4). We compute D(s; f~,0(¢x.n)) for a cusp
form f’ of weight £ + I:
(471_)SI+(€+1<:+21)/2 .

=07 Y al& fE I Ra(E, 0(ga))E N (G
0KECFX U2

=07 Y. éu(aaaal, [t (aat) DN ()
aeEMX /U

_ [UQ] Z ¢Ju(a)a(aac7f/)akE(Oékaafka)N(a)7sfl+(kfé)/2
aeMX /U

— [UZ] Z ¢M(a)a(aac7f/)a—kcEN(a)—s—1+(k—Z)/2
aeEMX* /U

olF:Ql-1
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From this, we get under the notation and the assumption of (4.4)
2! ~IFQICKS|C® 12 (47) =T (s + k) Hy (20, wo; 530, f)

(4.9) B
=[U:U%D(s —1+ w;féﬂ(qﬁk,]\/[)),

where ¢ is the weight of f (so, weight of f. is £ + I). Note here that
[U:U?] = 2lF-1,

Since Ey(7;s) has a simple pole at s = 1 with constant residue cp # 0, if k = ¢
and ¢(*) = ¢y ® Bo, we have from (4.7)

AR CRE G 2 (47) T p (k + T)Resom1 Hy (20, wo; 50, f)
(4.10) =Ress=1D(s — 1; f7, 0(dx,m))
= [U*IN(a) " V/ID] er{(@rn), foir,
where

o= [ oOTE ).

Let U;(z,w) be the modular from on GL(2) x GL(2) given by the Fourier
expansion:

Uz, w) = > "> (ea)er (det(a)z) flra(w)
a€T\ M (F),det(a)>0

as in Corollary 3.4. Then taking I' sufficiently small and combining Corol-
lary 3.4 and (4.10), we get the following explicit formula:

THEOREM 4.1. Let f be a Hilbert modular cusp form of weight k. Then we
have

(0(br,r), fohr = 27F 21 DI7HCM|C% %% Tm(20) ™" Tm(wo) ™" W £ (20, wo)
under the notation of (4.4).

This type of results enabled Shimura to get a rationality result of the Petersson
inner product of quaternionic cusp forms of CM type with respect to CM
periods (for example, see [Sh2] II Section 3).

5. JACQUET-LANGLANDS-SHIMIZU CORRESPONDENCE

It is a well known result of Jacquet-Langlands and Shimizu that if we choose
level appropriately, the space of quaternionic automorphic forms can be embed-
ded into the space of Hilbert modular forms keeping the Hecke operator action.
We are going to recall the result, scrutinizing integrality of the correspondence.
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5.1. HILBERT MODULAR FORMS AND HECKE ALGEBRAS. Let us recall the
definition of the adelic Hilbert modular forms and their Hecke ring of level 91
for an integral ideal 9 of F' (cf. [H96] Sections 2.2-4).

We first recall formal Hecke rings of double cosets. We consider the following
open compact subgroup of GLa(F) (o) ):

(5.1) Uo(m):{(gg) € GLy(O)[c=0 mod m@},
where O = O®77Z and Z = [I;Z¢. Then we introduce the following semi-group
(5.2) Ao(M) = {(g b) € GLy(Fyr) N Ma(O)[c =0 mod NO, diy € 0§} :

where duy is the projection of d € O to [Tij Or for prime ideals [. Writing Tp
for the maximal diagonal torus of GL(2),0 and putting

(53) Do ={(§%) € To(Fy0)) N Ma(O)]dn = 1}
we have (e.g. [MFG] 3.1.6)
(5.4) Ao(M) = Uo(M)DolUp(N).

Formal finite linear combinations ) s c¢sUn(MN)dUs(N) of double cosets of Uy (N)
in Ag(M) form a ring R(Up(N), Ag(D1)) under convolution product (see [IAT]
Chapter 3 or [MFG] 3.1.6). The algebra is commutative and is isomorphic to the
polynomial ring with variables {T'([), T'(I, 1) };, T(I) for primes [ corresponding to
the double coset Ug(M) (5 {) Up(MN) and T'(I,1) for primes [N corresponding
to Upg(M)wwUg(N), where wy is a prime element of Oy.

The double coset ring R(Up(M), Ao(DN)) naturally acts on the space of adelic
modular forms whose definition we now recall. Since To(O/9) is canonically
a quotient of Uy(N'), a character € : Tp(O/M') — C* can be considered as a
character of Uy(D'). Writing e (¢ 9) = e1(a)e2(d), if £ = e16, ' factors through
O/ for NN, then we can extend the character e of Uy(9) to Uy(M) by
putting e(u) = e2(det(u))e(a) for u= (2Y) € Up(MN). Writing e~ =&, e(u)
has another expression (u) = ¢;(det(u))e™ (d), because they induce the same
character on Up(M') and on Up(MN) N SLy(O). Hereafter we use the expression
e(u) = e1(det(u))e™(d) (although e(u) = ea(det(u))e(a) is used in [Fu] and
[HMI]; we note that (k1, k) in this paper corresponds to (k2, /1) in [HMI] and
[PAF]). We fix an arithmetic character ey : F,)/F* — C* with e |5, = €162
and g4 () = = +r2=D We use the symbol ¢ for the triple (£1,e2,64);
thus, we may regard e as a character of Uy(M)F,* by e(uz) = e(u)ey(z) for
z € FJ and u € Uy(M). If we replace ey by its p-adic avatar £}, we get a
p—adic character £ of Uy(M)F,*.

We identify the group of algebraic characters X*(Tp) of Ty with Z[I]? so that
k= (k1,k2) € Z[I)? sends (§9) tox="1y="2 =] ,(o(z) "0 (y)~"2<). To
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each k € X*(T)), we associate a factor of automorphy:
(5.5)  Je(g,7) = det(g)*2Lj(g,7)"* "2 for g € GLy(Fs) and 7 € H7.

Then we define S, (M,e;C) to be the space of functions f : GLy(Fy) — C
satisfying the following conditions (e.g. [H96] Section 2.2):

(S1) We have f(azuz) = eq(2)e(w)f(2)Jx(uoo, i)™t for all @ € GLy(F),
z € FJ and u € Up(M)C; for the stabilizer Cj in GLI(Fy) of i =
(V—1,...,v/=1) € 3 = 9!, where GLJ (F.,) is the identity connected
component of GLy(Foo);

(S2) Choosing u € GL(F.) with u(i) = 7 for each 7 € H7, define f,(7) =
f(ztoo)Jis (oo, 1) for each € GLa(Fj(e)). Then f, is a holomorphic
function on 3 for all z;

(S3) f.(7) is rapidly decreasing towards the cusp oco.

If we replace the word: “rapidly decreasing” in (S3) by “slowly increasing”,
we get the definition of the space of modular forms M, (9,¢e;C). It is easy to
check (e.g. [MFG] 3.1.5 and [HMI] 2.3.5) that the function f, in (S2) satisfies
the classical automorphy condition:

(5.6) F((r)) = e(@™ ya) T f (1) (v, 7) for all v € To 0 (D),

where T (M) = 2Ug(M)2"1GL5 (Fx) N GLa(F), and GL3 (Fy) is the sub-
group of GLy(F,) made up of matrices with totally positive determinant. Also
by (S3), f. is rapidly decreasing towards all cusps of ', (e.g. [MFG] (3.22)).
It is well known that M, = 0 unless k1 + ko = [k1 + ko]l for [k + k2] € Z. We
write simply [k] for [k1 + ko] € Z if M,; # 0. In [H88a] Section 2, the space S
is written as S} - for k = k1 — ko + 1 and W = I — k9, and the action of Hecke
operators is the same as specified in [H88a] (2.9¢), which we recall now.

In order to define the Hecke operator action on the space of automorphic forms,
we fix a prime element @ of the [~adic completion Oy of O for each prime ideal
[ of F. We extend e~ : 0% — CX to FX ey = CX Just by puttlng e () =1
for m € Z. This is possible because F,* = O x w? for w? = {w"|m € Z}.

Similarly, we extend e3 to F, . Then we deﬁne e(u) = e1(det(u))e™ (d) for

u=(2%) € Ag(MN). Let U be the unipotent algebraic subgroup of GL(2),r
defined by

={(69)acA}.
For each Uy(M)yUp(N) € ( (‘ﬁ Ap(M)), we can decompose
Uo(M)yUp (M) = | ] utUp (M)
teTy(F),uetd(0)
for finitely many w and ¢ (see [IAT] Chapter 3 or [MFG] 3.1.6). We define
(5.7) FIlUMyUo(M)](z) = Y e(t) ™" f(wut).
tu

It is easy to check that this operator preserves the space M (91,¢;C) and
S, (M, e;C) by verifying (S1-3) for f|[Uo(D)yUo(N)]. This action for y with
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ym = 1 is independent of the choice of the extension of ¢ to To(Fy). When
ym # 1, we may assume that y, € Dy C Tp(Fa), and in this case, t can be
chosen so that tg; = ym (so tg is independent of single right cosets in the double
coset). If we extend ¢ to T(Flioo)) by choosing another prime element w; and
write the extension as €', then we have

£(ton) [Uo(M)yUo(M)] = &' (ton) [Uo (M)yUo (M)]',

where the operator on the right-hand-side is defined with respect to &’. Thus
the sole difference is the root of unity (to)/e’(tm) € Im(g|gn, 0 m)). Since it
depends on the choice of zo[, we make the choice once and for all, and write T'(I)
for [Up(M) (! 0) Up(MN)] (if [MN). By linearity, these action of double cosets
extends to the ring action of the double coset ring R(Up(91), Ao(N)).

To introduce rationality structure on the space of modular forms, we recall
Fourier expansion and g—expansion of modular forms (cf. [H96] Sections 2.3-4
and [HMI] Proposition 2.26, where the order of k; (j = 1,2) is reversed; so,
(k1, k2) here corresponds to (ka2, /1) in [HMI]). We fix an embedding i, : Q <
C once and for all and identify Q with the subfield of all algebraic numbers
in C. We also choose a differental idele d € F;* with trivial prime-to-0 part:
d® = 1. Thus dO = 20 for the absolute different  of F. Each member f of
M, (M, &; C) has Fourier expansion of the following form:

(5.8)

FOD) =1lyla{ aolyd, Hlul™ + 37 a(€yd, £)(Eyoe) e (i€ysJen(Ex)

0KEer

Here y — a(y, f) and ao(y, f) are functions defined on y € F; only depending
on its finite part y(>). The function a(y, f) is supported by the set (6 X
Foo)NEY. When f € S.(M,¢;C), ap(y, f) = 0; so, we just ignore the constant
term ag(y, f). When ko is not in ZI, we have S, = M,; so, we ignore the
constant term if [k2] € Z is not well defined. Let F'[x] be the field fixed by
{0 € Gal(Q/F)|koc = k}, which is the field of rationality of the character
k € X*(Tp). Write O[x] for the integer ring of F[k]. We also define Olx, €]
for the integer ring of the field F[k, €] generated by the values of ¢ (on finite
ideles) over F[x]. We call an idele y € F* integral if y(>®) ¢ O. Then for any
F[k,e]-algebra A inside C, we define

(5.9)

M. (M, e;A) = {f € M.(M,&,C)|ao(y, f),aly, f) € A as long as y is integral }
Se(M,e; A) = M, (M, e; A) N S.(M, ; C).

Using rationality of (the canonical models of) the Hilbert modular vari-
ety (studied by Shimura and others), we can interpret S, (91,¢;A) (resp.

M, (9, e; A)) as the space of A-rational global sections of a line bundle of
the variety defined over A; so, we have, by the flat base-change theorem (e.g.
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[GME] Lemma 1.10.2),
(5.10) M,(M,e;A)@4C = M,(M,5;C) and S.(M,e;4) @4 C =5, (M,&;C)

Since Hecke operators are induced by algebraic correspondences on the prod-
uct of two Hilbert modular varieties defined over A (e.g. [GME] 4.2.1 and
[PAF] 4.2.5), the action of the Hecke operators T'(I) and T'(I,[) preserves the
A-rational space of modular forms (see below (5.15) for a more concrete ar-
gument showing the Hecke operator stability). We define the Hecke algebra
hx (M, e; A) C End4(S.(M,e; A)) by the A-subalgebra generated by the Hecke
operators T'(I) and T'(I, ) for all prime ideals [ (here we agree to put T'([,[) =0
if [|91). In the same manner, we define H, (M, e; A) C Enda (M, (M, ¢; A)).

5.2. ¢—EXPANSION OF p—INTEGRAL MODULAR FORMS. We recall the rational
prime p and the embedding %), : Q — @p. Then for any @pfalgebras A, we
define
(5.11)

M,.(M,e; A) = M, (M,£;Q) ®g.i, Aand S,(M,&;4) = S,.(M,&;Q) ®G,ip A.
By linearity, y — a(y, f) and ao(y, f) extend to functions on F* x M,;(9M,e; A)
with values in A. Let N': F/F* — @; be the p—cyclotomic character defined
by N(y) =y, * ly(>) | 1. Then we define the g-expansion coefficients (at p) of
f e M.(M,e; A) by

(512) ap(ya f) = y;lwa(ya f) and aO,;D(yv f) = N(ydil)[lw]a()(ya f)

Here we note that ao(y, f) = 0 unless [rs] € Z is well defined. We now define
for any p-adically complete Olk, e]-algebra A in Q, (the p—adic completion of
Q)
(5.13)
M, (M, e; A) = { € My(M,6;Qp)|a0,(y, f), ap(y, f) € A for integral y}
Se(M, e A) = M (M, A) N S (M, £5Q,).
These spaces have geometric meaning as the space of A-integral global sections

of a line bundle of the Hilbert modular variety of level 9 (e.g. [HT1] 1.3 and
[HMI] 4.3.7).

The formal ¢g—expansion of f has values in the space of functions on FAX(OC) with
values in the formal monoid algebra A[[¢*]]¢cF, of the multiplicative semi-group
F; made up of totally positive elements, which is given by

(5.14) F) =N ao,(yd, f) + D ay(€yd, f)d*

£>0

We choose a complete representative set {a;};=1,.._5 in finite ideles for the strict
idele class group FX\FAX/axF;H_. Let a;, = a;0. Write t; = (‘“féfl ?) and
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consider f; = f;, as defined in (S2). The collection (f;)i=1,...» determines f,
because

h
GLy(Fu) = | | GL2(F)t;Us(MGLF (Fo)

by the approximation theorem. Then as observed in [H88a] Section 4 (and
[PAF] 4.2.10), f(a;d~1) gives the g—expansion over A of f; at the Tate abelian
variety with a;O-polarization Tate,—1 5(¢) as in [HT1] 1.7. Thus by the ¢-
expansion principle ([HT1] 1.7 and [HMI] 4.2.8), the g—expansion: y — f(y)
determines f uniquely (for any algebra A for which the space of A-integral
modular forms is well defined).

We write T'(y) for the Hecke operator acting on M, (M, e; A) corresponding to
the double coset decomposition of

T(y) = {& € Ag(M)| det(2)0 = yO

fory € ON FJ - We renormalize T'(y) to create a new operator T(y) by
T(y) =y, "*T(y). Since this only affects T'(y) with y, # 1, T(l) = T'(w) = T(I)
if [ p. However T(p) # T'(p) for primes p|p. This renormalization is optimal to
have the stability of the A—integral spaces under Hecke operators. We define
(y = N(OT (L, 1) for [ 91 This new action also preserves the integrality as
long as [k] > 0 (cf. [H96] Section 2.2 and [HMI] Theorem 2.28). We have the
following formula of the action of T'(I) and T'(,[) (e.g. [H96] Section 2.4):

ay(yw, f) +ap(yw; L D) i N

a,(yowy, f) if 1]91.

From this, it is plain that T'(I) preserves the space S, (,¢; A) if either p|N
or [k] > 0, because a,(yw; ', f|{I)) = wE;”N([)er([)ap(y,f). We hereafter
assume

(5.16) Either p|9t or [k] > 0 and k1 — ko > 1.

We define h,(1,¢; A) again by the A-subalgebra of End4(S.(,¢;A4)) gen-
erated by T() and (I) over A for all primes [ (for a p-adically complete
Olk, e]-algebra A).

(5.15) ap(y, fIT(1) = {

We can think of the subgroup U(D) of Up(N) made of matrices u € Uy(N)
whose reduction modulo 9t are upper unipotent. Then for any subgroup U
with U(M) C U C Up(N), we can think of the space of cusp forms S, (U, ¢; C)
made up of cusp forms satisfying (S1-3) for U in place of Uy(91). We have Hecke
operators T(y) corresponding to (U - DoU) NT (y) acting on S, (U,e; A). Then
in the same manner of S, (M, e; A), we define S, (U, ¢; A) and the Hecke algebra
hi(U,e; A) as the A-subalgebra of End (S, (U, ¢e; A)) generated by T(y) and

(0).
PROPOSITION 5.1. Let A be an Olk,¢e]-algebra for which the space of cusp
forms S (M, e; A) is well defined (by (5.9) or (5.11) or (5.13)). Write H =
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hs(M,e; A) and S = S.(M,e;A). Let V be an H-module and V' be an A-
module of finite type with an A-bilinear product {( , ):V x V' — A. Then we
have:

(1) The formal q—expansion for v € V and w € V':

foew)(y) =Ny > (@T(Eyd), w)g®

£>0

gives a unique element of S.

(2) The map v @ w — f(v®w) gives an A-linear map of V@4 V' into S
with f((v|T(y)) ® w) = fv @ w)|T(y). If further V' is an H-module
and (vlh,w) = (v,w|h) for allv € V, w € V' and h € H, then the map
f induces an H-linear map: V @y V' — S.(M,e; A).

(3) Suppose that R is an A-algebra direct summand of H, and put
V(R) = RV and S(R) = RS. If V(R) is R-free of finite rank and
Hom 4 (V(R), A) is embedded into V' by the pairing { , ), then the map
f:V(R)®a V' — S(R) is surjective.

The formulation of this proposition is suggested by the expression of the theta
correspondence given in [Sh2] IT, Theorem 3.1.

Proof. We have an isomorphism ¢ : Homa (H, A) = S given by a,(y,(¢)) =
#(T(y)) (see [H88a] Theorem 5.11, [H91] Theorem 3.1 and [H96] Section 2.6),
which is an H-linear map (that is, ¢(¢ o h) = ¢(p)|h). Since V is an H—
module, h — (v|h,w) gives an element of Hom4(H, A) and hence an element
in S. The element has the expression as in (1) by the above explicit form of
t. The assertion (2) is then clear from (1). As for (3), by the isomorphism
Homa (V(R), A) — V', each element of Hom(R, A) = S(R) is a finite A-linear
combination of h — (v|h,w) for v € V(R) and w € V'; so, the surjectivity
follows. O

5.3. INTEGRAL CORRESPONDENCE. In order to create a proto-typical example
of the module V' in Proposition 5.1, we study here cohomology groups on
quaternionic Shimura varieties. See [H94] and [H88a] for more details of such
cohomology groups.

Let B be a quaternion algebra over F. We write G for the algebraic group
defined over Q such that G(A) = (B®g A)* for each Q-algebra A. Let d(B)?
be the discriminant of B. We assume that p { d(B) and that

My(R) ifo€lp

5.17 B®p, R
(5.17) o {]HI ifoel—1Ip=1IP,

where H is the Hamilton quaternion algebra over R.

We fix once and for all an extension of o : F' — Qtoo : F %@ for an
algebraic closure F/F. We take a quadratic extension K/F inside F so that
K®p,R=RxR as F-algebras for 0 € Ig, K ®p F}, = F, x F,, for primes p|p
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and Ber K = My(K). We can always choose such a quadratic extension K as
long as p { d(B). These condition automatically implies K@ R = C for o € I5.

We identify B @ p K with My(K) by the above isomorphism. We fix maximal
orders Op and Ok of B and K, respectively, and we suppose that

(5.18) O ®p Ok CMQ(OK).
We fix an isomorphism Op ; = M2(Oy) so that for the p—adic place p|p induced

by i, o o, this isomorphism coincides with the one: Op — Ms(Ok) tpoC
M>(O,). For an integral ideal 91y of F' prime to d(B), putting M = MNyd(B),

we define
(5.19) Ul (M) = {z € GA)|zom, = (¢}) with ¢ €NMOxn, },

where Ox, = [[jjn, Or. Similarly we define AP (M) € B ®g A so that it
is the product of local components A; which coincide with the local compo-
nents of Ag(MN) as long as [ 1 d(B) and Ay = Op if l|d(B). Again we can
think of the double coset ring R(UZ (D), AF (D). We have T(I) and T(I,1) in
R(UE (M), AB(M)) for [{d(B), because the local component at [ of AF(MN) is
identical to that of Ag(). For [|d(B), we take oy € Op  so that its reduced
norm generates [O;. Then we define T(I) = —UP (M) UL (M) for 1|d(B), and

we have
(5.20) R(Up(M), Ag(M)) = R(U (M), AG (N)).

The above isomorphism brings T'(I) and T'(I,[) to the corresponding elements
in the right-hand-side.

For a given ring A, we consider the following module L(x; A) over the multi-
plicative semi-group Ms(A): Let n = k1 —ko—1I € Z[I]. We suppose that n > 0
(implying n, > 0 for all o € I), and we consider polynomials with coefficients

in A of (X,,Y,)s,er homogeneous of degree n, for each pairs (X,,Y,). The
collection of all such polynomials forms an A—free module L(x;A) of rank

[, (ns+1).

Suppose that A is a closed Og|k,¢]-algebra (via i,) of @p. Then i,(c(dp))
(which we write simply o(6,)) for 6 € G(A) can be regarded as an element in
Ms(A). We let AF (M) act on L(k; A) as follows:

(5.21) 50 (7)) =e@N(©E)=2 ((0(6)(57)) -

Here N(6) is the reduced norm of B. We also let z € F) act on L(k; A)
through scalar multiplication by &4 (z) = e4.(2)z, * =" (the p-adic avatar of
e1). We write L(ke; A) for the module L(k; A) with this AF (M) F~action. By
the condition: k1 + ko € ZI, if U C UP(M) is sufficiently small open compact
subgroup, central elements in I', = xUz~! N G(Q) acts trivially on L(ke; A).

We let ¢ € G(R) with N(g) > 0 act on $’2 (by the linear fractional trans-
formation) component-wise via g, = 0(g) € GLa(K ®k,» R) = GL2(R). We
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put C,4 for the stabilizer of v/—1 in the identity connected component of
(B ®p, R)* and define

Coct = [ Cor x [ Bor.R)*.

o€lp oelB

Thus we have /82 =2 G(R)*/Cooy by g(i) < g (i = (V—1,...,/—1) € H'B)
for the identity connected component G(R)* of G(R). For any open compact
subgroup U C UP (M), we think of the complex manifold associated to the
Shimura variety:

Y(U) = GQ\GA)/FLU - Coos.
We write simply Y (M) for Y(UE(MN)).

If U is sufficiently small so that the image I'y, of I'yy, = 2Uz 1GH(R)NG(Q)

in G(R)/FX acts freely on $H7# for all € G(A(>)), and the action of Ty, on

L(ke; A) factors through I'yy .. Then we can define an étale space over Y (U):
L(k=; 4) = GQ)\ (G(A) x Lixg; A)) /XU - Cucy.,

where vy(z, ®)uz = (yruz,u'ey (2)®) for u € U - Cooy, z € F and v € G(Q).
This étale space gives rise to the sheaf L(ke;A),y @) of locally constant
sections. We consider the sheaf cohomology group H4(Y (U), L(ke; A)).

Since Y (U) 2 U, T, \$H!# for finitely many x with z;, = 1, we have a canonical
isomorphism (cf. [H94] page 470):

(5.22) HY(Y (U), L(ke; A)) = @ HY(Tyz, L(ke; A)),

where the right-hand-side is the direct sum of the group cohomology of the
T,-module L(ke; A). The kernel E = Ker(I'y, — I'y,) is a subgroup of units
O*. Since k1+ko € ZI, the action of € € F on L(ke; A) is the multiplication by
Er(e)N(e)F+1 = 1. Even if Ty, does not act freely on the module L(xe; A),
we still have Y/(U) = | | T,\$'# for finitely many z with =, = 1, we can
define the left-hand-side of (5.22) by the right hand side of (5.22).

We choose U sufficiently small as above so that [UZ (D) : U] is prime to p (this
is a condition on p). Then we have the trace map Tr (that is, the transfer map
in group cohomology) and the restriction map Res:

Tr: HY(YB(U), L(ke; A)) — HU(Y P (N), L(ke; A))
Res : HY(YP (M), L(ke; A)) — HY(Y P (U), L(ke; A)).
Since Tr o Res is the multiplication by [Ug(D) : U], we have
(5.23)  HIYE(N), L(ke; A)) = HI(YP(U), L(re; A))/ Ker(Tr) = Im(Res).

We can always choose a multiple 9 = 91q (by a prime q) of 0 so that Ty ., (')
acts freely on $75.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 465-532



500 HaruzO HibA

As defined in [H88a] Section 7 and [H94] Section 4, where L(ke; A) is written
as L(n,v,e; A) for v = k3 and n = k1 — k2 — I, we have a natural action of
the ring R(UEZ(M), AF(M)) on the cohomology group HY (Y (N), L(ke; A)).
For our later use, we recall the definition of the action when ¢ = 0: In this
case, we may regard each cohomology class as a global section f : B —
L(ke; A) with f(axu) = u* f(x) for a € BX and u € UE(M)BX,. Decomposing
U (49) U™ =, @UL (M), we have

(5.24) fIT() =y, "2 > wflzm™).

Let W be a valuation ring as in the introduction. We assume that h, (91, ¢; W)
is well defined and Ok |k, €] is embedded into W via 4,. Let V be the image of
HI(YSN), L(ke; W)) in HY(YEP (N), L(ke; W @2 Q)). By the Eichler-Shimura
isomorphism (between the space of cusp forms on G(A) and the cohomology
group; e.g. [H94] Proposition 3.1 and (10.4)) combined with the Jacquet-
Langlands-Shimizu correspondence (e.g. [H88a] Theorem 2.1, Proposition 2.3
and [H81] 2.12), the above cohomology group and its compactly supported
version (denoted by H4(YZ(M),-)) are the module over the Hecke algebra
H,(M, ;W ®7 Q). Since

H M eWR,Q) =h.(NMe;We,Q) @ F
as an algebra direct sum for the Eisenstein part F, for the idempotent 1; of the

cuspidal part h, (91, &; W ®z Q), we can define the cuspidal cohomology groups
by
H,op(Y3% (M), L(ke; W @2 Q) = 1nHU (Y (M), L(ke; W @2 Q)).

cusp

The natural map from compactly supported cohomology group into the coho-
mology group without support condition actually induces an isomorphism
L HI(Y (M), L(ke; W @2 Q) = H, ., (Yo" (M), L(ke; W @7 Q).
We then put
(5:25)  HE,,(Ys" (), L(kes W) = HE, (V)" (M), L(ke; W @7 Q) N Im(3)

for the natural morphism
i: HY(YP (M), L(ke; W) — HIUYL(N), L(ke; W @7 Q)).

We consider the duality pairing [, ] on L(ke; A) (for Q-algebra A) introduced
in [H94] Section 5:

-1
(5:26) | Y b X"V N a; X"y :Z(—I)J(T_L) by—ja; € A,

0<j<n 0<i<n 7 J
where n = k1 — ko — I, (?) =Il,er (;L:) and for example X7 = [ler XJo. As
Up (M) F-modules, this pairing satisfies:
(5.27) [uz®, uz®'] = £%(u)ey (2)* N, p(up) ™ T2~ 1[0, @],
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where Np,p : B — F' is the reduced norm map.

Define £* = (—k2,1 — k1) and €* = ¢!, Thus [s*] <1 & [k] > 0. Then the
pairing [ , ] induces Uy(M)F, —equivariant pairing
[, ]: L(ke; A) x L(k*e*; A) — A.

We now choose ¢ = |Ip| = dim¢ $8. Then the cup product pairing induces
([H94] (5.3)) a non-degenerate pairing:

(5 ) s Haop (Y67 (), L(wes W)) x HE, o, (Y7 (M), (ke W) — W @z Q.

cusp

Thus we obtain from Proposition 5.1 the following result:

PROPOSITION 5.2. Let V = HY, (YE(MN), L(ke; W)). Let V* be the dual W -

cusp

lattice of V in H2,,,(Y? (M), L(k*e*; W @2 Q)) under the Poincaré duality:
( ’ ) : ngsp(YOB(m)’L(KE; W)) X ngsp<YOB(m>7L*(‘%*€*; W)) - W ®z Q

Then we have a h(MN,e; W)—linear map
f:Vew V= S.(MeW)
defined by the g—expansion:

foew)=N(y) ™Y @|T(Eyd), w)d,

0kg
where we regard V @w V* as an hy (M, e; W)—module through the left factor V.

A similar fact for the matrix coefficients of T'(y) in place of (v|T(y),w)
has been proven in [Sh2] Theorem 3.1 by analytic means without using the
Jacquet-Langlands-Shimizu correspondence.

We have HY, . (Y (M), L(ke;W)) = HYY L (M), L(ke; W)) under the follow-

cusp
ing two conditions:

~

(V1) The character ke : Tp(O) — W* does not factor through the reduced
norm map N : Tp(OB))) — G(OB)) — (OEBEN)* In particular,
if kK1 # kg, this condition is satisfied.

(V2) The quaternion algebra B is a division algebra. In particular, this
condition is satisfied if [Ip| < [F': Q].

6. ORDINARY COHOMOLOGY GROUPS

We are going to prove that the morphism f : V(R) @w V(R) — S(R) in
Proposition 5.1 for V' in Proposition 5.2 is surjective for the nearly ordinary
local ring R (associated to a mod p irreducible Galois representation), when
B is unramified at every finite place and ¢ = |Ig| < 1. A key to the proof
is the R—freeness of V(R) proven by Fujiwara [Fu] (see [HMI] Corollary 3.42).
Another important ingredient of the proof is the self duality of V(R) over W.
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6.1. FREENESS AS HECKE MODULES. We recall here a special case of Fuji-
wara’s result in [Fu] “Freeness Theorem” of the component V(R) for a local
ring R of the Hecke algebra h,(M,e; W) (see also [HMI] Corollary 3.42). To
state the result, we need to have a good description of the modular nearly or-
dinary Galois representation; so, we recall the description. We call a local ring
R of h,(M,e; W) nearly ordinary if the projection of T(p) to R is a unit. We
hereafter always assume

(ord) R is nearly ordinary with k1 — ke > I, that is, k1, — K2, > 1 for all

o.

(unr) F/Q is unramified at Q.
We write 9V for the product of primes [ { p for which one of €1 and &5 ramifies;
so, W C MNP, For a W-algebra homomorphism A : h. (M, e; W) — W factoring
through R (such a A is called nearly ordinary), we have a Galois representation
p=px:Gal(F/F) — GLy(W) (e.g. [H96] 2.8 and [MFG] 5.6.1) such that

(G1) p is continuous and is absolutely irreducible over W @z Q;

(G2) p is unramified outside H'p;

(G3) For primes [ outside DN'p, we have

det(1y — p(Frob)X) = 1 — MT ()X + A({1) X%

(G4) For the decomposition group D, C Gal(F/F) at each prime p|p, we
have an exact sequence of Dy-modules: 0 — ¢, — p|p, — &, — 0
with one dimensional character ¢, satisfying d, ([y; Fp]) = A(T(y)) for
the local Artin symbol [y; F}] of y € F°.

Writing F for the residue field of W, the semi-simplification p = pp of the
reduction of p modulo the maximal ideal my, of W is independent of A by
(G2-3) (cf. [MFG] Corollary 2.8 combined with the Chebotarev density). In
particular, if p is irreducible, the isomorphism class of p mod my, for the
maximal ideal my, is unique, and always we have (p mod my ) = p.

We shall recall some terminology from (formal) deformation theory of Galois
representations. See [MFG] Section 2.3 for basics of formal deformation theory
of representations. Let H be a subgroup of Gal(F/F). We call a representation
p: H — GLy(A) for a local proartinian W-algebra A with residue field F a
deformation over H of 7 if p = p|lg mod m4. Let x = det(py)/N for the
p-adic cyclotomic character A/. Then yx is of finite order. For any character
v : Dy = A* let C(p) denote the conductor of p; thus, C(p) = 1 if ¢ is
unramified, and C(p) = [™ if y — ¢([y, F1]) factors through F* /(1 + [™Oy)
but not F* /(14 [™~10y) for m > 0. We assume the following four conditions
on py:

(H1) x is of order prime to p.

(H2) For primes [|9p, write Dy for the decomposition group at [. Then we
have p|p, = (G 5 ) with 6([y, F]) = A(T(y)). This condition actually
follows for [|p from near ordinarity of A as already remarked in (G4).

(H3) If a prime |91 but [ { p, then the restriction of ¢; and ¢ to the inertia
subgroup Iy of Dy is of order prime to p.
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(H4) If ¢, = 6N mod my on I, for a prime p|p, the following five condi-
tions have to be met: (i) the character €, is of order prime to p, (ii)
k = (I,0), (iii) pls, is associated to a p-divisible group over an un-
ramified extension of Oy, (iv) p { N, and (v) €,0, ' (y)y~! = 1 for all
y e Oy.
We write §; = (§; mod my,) and & = (¢, mod my). We assume the following
two local conditions on p.

(H5) For all plp, 0, # €.

(H6) For |9 and [ 1 p, the [-primary part of DN coincides with C (Elg[_l).
Thus p could ramify at a prime [ + 9N, and by (H3), 9V gives the product
of primes (outside p) at which p ramifies. We assume the following global
condition on p:

(H7) 7 is absolutely irreducible over Gal(F/F[y/p*]) for p* = (—=1)P=1)/2p,
We choose a quaternion algebra B,p so that d(B) = 1 and ramified at most
infinite places (that is I” is as large as possible). This implies:

(6.1) Igp={o1} if[F:Q]isodd, and Ip =0 if [F:Q]is even.

We now quote the following special case of “Freeness Theorem” in Section 0 in
[Fu] (see [HMI] Corollary 3.42 for a proof of this Fujiwara’s result):

THEOREM 6.1. Suppose the conditions (6.1), (ord), (unr), (H1-7) and p > 3.
Then V(R) for V.= HI(Y(N), L(ke;W)) (q = |Ip|) is free of rank 29 over
the local ring R. Even if we ease the condition (H4) to allow the case where
the p—primary part of N is equal to p for primes p|p, the same assertion holds
as long as [F : Q] is even.

This is a special case of Fujiwara’s result. In particular, we do not need to
assume unramifiedness of p in F, but we use the assumption (unr) anyway in
our later application; so, we have imposed it.

Proof. Here is a brief account of how to deduce the above theorem either from
[HMI] Corollary 3.42 or from [Fu], because the set of the assumptions imposed
in these works appears different. In [HMI] Corollary 3.42, the theorem is proven
under the assumptions:
(A) [F: Q) is even;
(B) = (1,0);
(C) the assumptions (H1-3) and (H5-7);

(D) the milder condition than (H4) as stated in the theorem.
As can be easily seen, the conditions (A-D) implies the assumptions actu-
ally stated in Corollary 3.42 of [HMI]: the absolute irreducibility of p over
Flup) (written as (aip[up]) in [HMI]) which follows from (HT7), the conditions
(h1-4) in [HMI] 3.2.1, (dsg) which is (H5) and (H6), and the conditions
(Q1-6) (for @ = () in [HMI] Section 3.2.1. These conditions exhaust all the
assumptions of Corollary 3.42 of [HMI] except for the condition (sml). The
condition: p > 3 and the unramifiedness of p in F/Q implies [F[u,] : F] > 2,
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which is the last assumption (sml) in Corollary 3.42 of [HMI]. We only
use this theorem under the four conditions (A-D); so, logically, for the proof
of the main theorem of this paper, it is sufficient to quote [HMI] Corollary 3.42.

For the sake of completeness, we now reduce the theorem in the case not covered
under (A-D) to [Fu] (the version of 1999). Recall that 9 is the product of all
primes (outside p) at which p ramifies. We consider an open compact subgroup
U(p) =11, U:i(p) C Up(MN) and a character vy of Ui(p) with values in W* defined
as follows:

(1) Ui(p) = GL2(Oy) in B ify[ Np, and vy is the trivial character;
(2) Suppose that [|V. If € # d; on Iy, then (|,

Up) ={(2%) € Uo(M)iJla=1 mod I, (d mod I) is of p-power order}

and V@(u) = 5[([det(u),F[}). If e = S[ on [y, U[(p) = GLQ(O[) (SO [J(‘ﬁ)
and vi(u) = 01([det(u), F1]).

(3) For p|p, define vp(u) = €,([det(u), Fp])(det(u))™ "> for u € GL2(O,),
which is a finite order character and can be regarded as a character
with values in W*. If €, # d,w on I, for @ = (N mod myy), then p|N
and

Up(p) ={(2%) € Us(p)pla=1 mod p, (d mod p) is of p-power order} .

If €, = 6,y on Iy, then Uy, = GL2(O,) (and p { N).
Let U = Ker([[,» : U(p) — W*). Since the restriction of operators of
he(U,e; W) to Se(M,e; W) induces a surjective algebra homomorphism 7 :
he(U,e; W) — h (N, e; W), we have a unique local ring Ry of he(U, ;W)
through which A o 7 factors. Then Ry is nearly ordinary. For a smaller open
compact subgroup U’ with U(Mq) C U’ C U for a suitable prime q outside
N'p, it is proven in [Fu] that

(1) For all z € G(A(®)), Ty, is torsion-free and acts on $H72 freely;

(2) The action of I'yr, on L(ke; A) factors through T'yr, for all z €
G(AP>));

(3) The Hecke algebra h,(U’,e; W) has a local ring R’ with R’ = R as
W—-algebras;

(4) Let Vy = HY(YB(U),L) and V' = HY(YB(U"), L) for L = L(re; W))
and ¢ = |Ig|. Then the restriction map Res : HY(YP(M),L) —
HY(YB(U),L) composed with the multiplication by the idempotent
of R’ induces a W-linear map: Vy(Ry) = V/(R') which is T(y)-
equivariant as long as yq = 1;

(5) Ry is generated by T(y) with yq = 1;

(6) V'(R') = R'" for some r.

In [Fu], U" and U are written as Kp , and Kp, respectively. This is enough to
conclude that V(Ry) is Ry—free. On the other hand, for the Sylow p-subgroup
S of Up(M)/U, Ry is W[S]-free of finite rank. Then R = Ry ®ws),. W, where
e is the algebra homomorphism W[S] — W induced by the character € of S.
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This fact follows from the freeness of the Hecke algebra over the group algebra
(under (unr) and p > 2), for example, [H02] Corollary 4.3, [H05a] Corollary 9.3
or [PAF] 4.2.11-12. In the above papers, the symbol N is used for the prime-
to-p—part of the present level M. Similarly, Vi; is W[S]free of finite rank by
[H89] Theorem 3.8. Thus we have

V(R) = Vu(R) @wis),c W = (Ru @wis)c W) = R

for a suitable integer r. Actually r = 27 < 2, because V ® Q is of rank 27 over
the (rational) Hecke algebra.

As for the easing of the condition (H4) on 0, it follows from the same argument,
replacing 9% by 91N Hpe p P, because this is the case where the deformation is
unrestricted at p € P, which has been dealt with in [Fu] assuming that, for
example, [F : Q] is even (see [HMI] Section 3.2). O

By the theory of p—adic analytic families of nearly ordinary cusp forms (see
[H89], [H96] Section 2.7 and [HMI] 3.2.8, 3.3.4 and 4.3.9), we can ease slightly
the conditions necessary to have freeness of V(R) over R. We shall describe
this generalization for our later use. Let G = G(W) = CIL(M'p>) x (O, x
O/‘ﬂ’(p))x, where CI}(9Vp") is the strict ray class group modulo p™ of F,
and

CLEOVp™) = im CLH(Vp") = F /P Up (W)W F

n

with Ug (M) = O*N(1+90). We have a natural homomorphism ¢ : To(0p) —
G sending (a,b) to (a~!,a~'b). Each element (z,y) € G actson f € S, (U, ¢; A)
by fl(z,y)(z) = f|T(y)(xz) (for U C Up(N')). Let 'y be the maximal torsion-
free quotient of G (which is independent of 9V up to isomorphisms), and fix
a splitting G = Ty X Gy, We consider the Iwasawa algebra W[[I'o]]. For an
integral domain I finite flat over W[[T'g]], we define

A(l) = {P = Homw(ﬂ,@p)|Po L~ K with k1 — Kk > I and [k] > O},

where ¢ ~ 1 if ¢ = 9 locally on Tp(O,) (in other words, @i~ is of finite order).
For each P € A(I), we write x(P) and ep for the corresponding algebraic
character of Ty and the character of

g=(29)z € Ty(0, x (O/NPYF* C GLy(Fy)

given by G 2 g = P(T(ab™1))P({bz))etor(g), where g4, is the restriction of
e to the torsion part Gy, (regarded as a character of G). Thus we can form
a triple (ep1,ep2,ep+) out of ep so that ep(g) = ep1(a)epa(b)eps(2). For
a given nearly ordinary Hecke eigenform f € S, (I, &; W) with k1 — ko > 1,
decomposing G into a product I'g X A for a finite subgroup A, we write (P) =
epe|a. Thus for a suitable P € Spec(I)(Q,) whose weight is %, we find e(P) = e.
Then there exist Iy, as above and a unique family of Hecke eigenforms
{fp}pPeaq containing f and satisfying the following two conditions:
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(1) fp € Supy(Np,e(P); Wep]) for the conductor Mp of the character
(P)~, where Wep] is a subring of Q, generated over W by the values
of ep;

(2) There exists a function a : F;* — I such that a,(y, fr) = a(y)(P) for
all y € F and all P € A(I).

COROLLARY 6.2. Let {fp}pcam be the family of nearly p-ordinary Hecke
eigenforms as above. Write Rp be the local ring of h,.py(Mp,e(P); Wep])
through which the algebra homomorphism Ap of the Hecke algebra given
by frlT(y) = Ap(T(y))fp factors. If one member f € S.(MN,e;W) sat-
isfies the assumptions (H1-7), V(Rp) is Rp—free of rank 29, where V =
HIUYPNp), L(k(P)e(P);Wep])) and ¢ = 0,1 by (6.1).

Proof. We choose U’ as in the proof of Theorem 6.1 and write U)(9t") = U’ N
Uo (). We consider the limit V = lim H! L (YBU NU®P")),L(ke; W) @,
Qp/Z,), where H! . = eH? for the idempotent e = lim, o, T(p)™. The
module V is naturally a module over G(N') and hence over W{[I'g]]. Then in
the same manner in [H89] Corollary 3.5 and Theorem 3.8, we can prove that

for the Pontryagin dual V' of V,
V//PV' = H (VP (Ug(Np)), L(K(P)e(P); Wep]))

n.ord

as Hecke modules and that V' is W{[['g]]-{free module of finite rank. We write
V} for the Hecke module of the right-hand-side of the above formula. Then
we define h’ C Endyyp,j(V’) by the W([['g]]-subalgebra generated by T(y)
for all integral ideles y. As proved under (unr) and p > 3 in [PAF] Corollaries
4.31-32 or [H02] Corollary 4.3 (where the assumption is p > 2 and N denotes
the prime-to—p part of the present 1), h’ is W{[[g]]-algebra free of finite rank,
whose rank is equal to rankyy ., hp for h, = hﬁ(‘g)d(Ué(mpe(P)), e(P); Wlep)).
Since they have the same generators T(y)’s, h//Ph’ surjects down to h’l». By
comparing their rank over Wiep], we find h’'/Ph’ = h, canonically sending
T(y) to T(y). Since R’ is the direct summand of hlp C h.(MN,&;W), by
Hensel’s lemma (cf. [BCM] II1.4.6), h’ has a unique local ring R’ C h’ with
R'/PR' =2 R'. We put V/(R’) = R'V’, which is W[[[y]]{ree module of finite
rank. Since V/(R')/PyV'(R’) = V/(R’), which is a free of finite rank over
R' =R'/PR’, we choose a lift {vy,...,v,} in V' of a base of V'(R’) over R'.
Then the R/-linear map 7 : R"" — V'(R’) given by (h1,...,h.) = 37 hjv;
is surjective by Nakayama’s lemma applied to R’ and ideal Py. By comparing
the rank over W{[I'o]], we find that 7 is an isomorphism. Thus V'(R’) is free
of rank r = 27 over R/.

We define R, by R = R/PR C hls. Then R}, = Rp canonically, and
VA(Rp) = Vo(Rp) for Ve = HY ,,(Us(9p), L(k(P)=(P); W[ep]) in the same
manner as in the proof of Theorem 6.1. This finishes the proof. (|

6.2. INDUCED REPRESENTATIONS. We are going to verify the assumption of
the freeness theorem: Theorem 6.1 for induced representations from CM fields.
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We first recall a cusp form f on GLo(Fy) with complex multiplication by a CM
field M. Let M/F be a CM field with integer ring R and choose a CM type X:

Iy = Homﬁeld(M,@) =Y Uc

for complex conjugation ¢. To assure the assumption (ord), we need to assume
that the CM type X is p-ordinary, that is, the set ¥, of p-adic places induced
by i, 0 o for o € ¥ is disjoint from Y,c (its conjugate by the generator ¢ of
Gal(M/F)). The existence of such an ordinary CM type implies that all prime
factors of p in F' split in M/F. For each k € Z[I], we write k¥ = Y ¢ ko|p0.

We choose k1 > ko with k1 + ko = []] for an integer [k]. We then choose a
Hecke character A of conductor €3¢ (€ prime to p) such that

M()) = am=Fen2 for o € M* with @« =1 mod Ep°,

where B¢ = [[pes, (PePpee®)) for e = Ypes,us, e €(B)B. We also
decompose € = []q £9) for prime ideals £ of M. We extend \ to a p-adic
idele character A : M JM* M - @: so that A(a) = )ﬁaO)a;’”“lE*c’”Z. By
class field theory, we may regard A as a character of Gal(F'/M). Any character
¢ of Gal(F /M) of the form X as above is called “of weight x”. For a prime ideal
£ of M outside p, we write A¢ for the restriction of X to Mg . For P € ¥, we
define Ap(z) = A(z)z™*® for = € Mg and Aqe(z) = Az)xer2® for x € Mg..
Then Mg for all prime ideals £ is a continuous character of M with values in
Q whose restriction to R3 is of finite order. By the condition k1 > k2, A cannot
be of the form A = ¢ o Nyyp for an idele character ¢ : ' /F*FX, — @;

We define a function F* 3 y — a,(y, 0(\)) supported by integral ideles by

(6.2) a,(y,0(\)) = Z A=) if y is integral.

wEJ\/Ig\< ,xx”:y7w2p:1

where x runs over elements in M.,/ (E(?’wc))X satisfying the following three
conditions: (i) xR is an integral ideal of M, (ii) Na/p(z) =y and (iii) 14 =1
for primes 9 in ¥, and 9|€. The g-expansion determined by the coefficients
a,(y,0(\)) gives a unique element (\) € S, (M, e4; Q) ([HT1] Theorem 6.1),
where W = Ny p(€R°)d(M/F) for the discriminant d(M/F) of M/F and €',
is a suitable “Neben” character.

We decompose € = §§°J so that §F. is a product of split primes and J for the
product of inert or ramified primes, §+3§. = Rand § C §5. Weput f =g§NF
and i = JN F. Assuming that A~ has split conductor, we describe the Neben
character €, of the minimal form f()\) in the automorphic representation ()
generated by (). The character ey is possibly different from ¢} and is given
as follows:
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(1) For l|f, we identify To(Or) = O x O with R3. x R§ with this order for
the prime ideal £|(IRNF). We define € [ by the restriction of Age X Ag
to To(O[).

(2) For p|p, identify To(Oy) with Ry x Rgy for Plp in X)), we define ey
by the restriction of Age x Ap to Tp(Oy).

(3) For l|id(M/F), we choose a character ¢; : F;* — C* such that \¢ =
¢1o N, p, (this is possible because A~ has split conductor). Then

we define €y 1.1(a) = ¢ and € 2 ((d) = (MLT/F‘> Ae(d), where £ is the

prime factor of [ in M and (MLT/F') is the quadratic residue symbol

for Me/Fy.
(4) The central character €4 is given by the product of the restriction of

A to F and the quadratic character (M—/F> of the CM field M/F.

We now give an explicit description of f(\) without assuming that A~ has split
conductor. Let =, be the set of prime factors [ of ' = d(M/F) Ny p(ER°)
where 7 is principal. If A~ has split conductor, Z,, is the full set of prime
factors of M. Otherwise, [ € Z,, if and only if either [|f or I|i and

(6.3) Ae(x) = ¢i(xa®) for a character ¢ : F* — C*.
For [ € 2,,, taking a prime £|l in M, we have

_[mAee ) if []f and €|,
(64) 7T[(>‘) = {7‘(‘(@25[, (Mz:/F[) ¢[) if [|1

We split 9 into a product D391, of co-prime ideals so that 9y is made up of
primes in =Z,,.. Writing m(\) = m(n, n[) for characters n,n[ : F* — C*, we
write Cy for the conductor of 7, 'n{. Define the minimal level of w(\) by

NN = [] ¢

€S,
We write 2 = {£]|£ D FB¥, £ D N(N\)} for primes £ of M and define

_ X(m)x,(fﬁm)z if y is integral,

(65)  ayly, f(V) = {Z

0 otherwise,

where z runs over (RN Mg(oo)/(]if(a))X with ze = 1 for £ € Z. The value \(z)
is well defined modulo (R(®))* as long as 2= = 1 for the following reason: For
primes [|91(A) non-split in M/F, by the condition zz® = y, x is determined
up to a unit v with uu® = 1. Since Ae(u) = ¢r(uu®) = 1, the value Ag(ze) is
well defined. For £ € =, by imposing ¢ = 1, the condition zz¢ = y implies
Tge = yi; so, the value Ae(z() is again well defined. As for a split prime
L1 D(A) but I[Ny p(€), we have )\)3|le = )\,3C|O[x, 50 Ae(ug)Aee(uge) =1

because uu® = 1 implies ug = ugcl identifying Re and Rec with Oy. As for p|p
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with p 4 M(N), if (uvu®) = 1, we have
Ju

:\\( (k1—k2)Z —r1E—cha S+ (R1—K2)E _ (uuc)—ﬁz -1

Kl Hz)z

So again, /\( )y is well-defined modulo such local units.

For a principal series representation w(n’,n) of GLs(F}), if n\o[x = ’17/|O[><, we
have 7(n',n) = n ® n(n~'n’,1) and w(n~'n’,1) is spherical; thus we have a
unique spherical vector v # 0 in 7(n~ 19/, 1) with v|T () = (1+n~1n/(w())v. The
corresponding vector v = v ® 1 in m(n’, n) has minimal level fixed by SL4(Oy)
with o'|T(y) = (n(y)+n'(y))v'. If the conductor Cy of n~1n’ is non-trivial, again
by the same argument, we find v’ # 0 in 7;(A\) such that o'|T(y) = n(y)v’ and
v'|u=e(u)v’ (u € Up(Ch)1), where e(u) = n(det(u))(n~n'(a)) foru= (24) €
Up(Cy)r. This shows that f()) is a classical modular form in M, (M(N),ex; Q)
if A~ has split conductor. The form f()\) is a common eigenform of Hecke
operators T(y). The p-adic Galois representation py associated to f (M) is the
induced representation IndM )\ regardlng X as a character of Gal(F/M) by
class field theory. By regularity: k1 > ka, (cac by #£ /\( ) for o € Gal(F/M),
px is absolutely irreducible by Mackey’s theorem, and f(A) is a cusp form.

We take the coeflicient ring W' to be free of finite rank over Z,. Assuming that
A~ has split conductor (< 7(A) is principal at every finite place), we shall study
when f()) satisfies the conditions (H1-7) of Theorem 6.1. We take a character
¢ of Gal(F /M) of order prime to p such that X! =1 mod my and define
Y = ¢~ . Suppose that A and ¢ coincides on Ry if £ p. Then the conditions
(2) and (3) on v in the introduction are an interpretation of principality of
m(\) at every finite place. To interpret the four conditions (1-4) on ¢ in the

introduction in terms of ¢, let G(€) = M /M* Uy (€)P) M, where

Upt(€)P) = {x € §X|xp =1, z=1 mod Qﬁ} :

The first conditions (1) on ¢ can be stated in terms of ¢ as follows:
(h1) ¢ has order prime to p with exact conductor B¢ for € prime to p.

Thus ¢ factors through the maximal prime-to-p quotient of G(€) which can be
regarded canonically as a subgroup of G(€), because G(€) is almost p—profinite.
The conditions (2-4) in the introduction imply the following three assertions:
(h2) For all prime factors £|3, ¢e = ¢1o Ny/p for a character ¢ : F* —
W,
(h3) g # ope for all P € L.

(hd) Ower Gal(F/M[/p¥]), we have p. # o, where @ (o) = p(coc™t).
We write Gy, (€) for the maximal torsion subgroup of G(€).

THEOREM 6.3. Assume (6.1) and the four conditions (hl-4). Let Mg

G(@) — @: be an arithmetic Galoischaracter of weight k13 + ckoX (k; €
Z[I]) such that k1 > ko and /\k'|Gw,.(¢) = @. Then for the local ring R
of hi(MU(Ak),exng; WAk]) corresponding to f(Ag), the R—component V(R) of
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V = HUYP (M), Lken,; WIA])) is R-free of rank 29, where W{\g] is the
complete discrete valuation ring inside Q,, generated by the values of A over
W oand q = |Ig| < 1.

Proof. We take a sufficiently large £ with k1 > ko and k1 + ko = [k|I for
0 < [k] € Z so that (F*+e"2% = ] for all ( € R* and x =0 mod (Q — 1)Z[I]
for @ = |F|. Then we can find a Hecke character A with the following properties:
(1) We have A((a)) = af1=FTem2Ep((a)) for all « € M* prime to CP°;
(2) A= mod my.
We are going to show for f(\) the assumptions (H1-7) except for (H4) of
Theorem 6.1. Thus if (H4) is not applicable to Indﬂ)\ , we get the result
for f(Ax) by Corollary 6.2, because f()\) is a member of the p-adic family of
modular forms determined by f(Ag). Otherwise, we modify the choice of .

We verify condition (H1-3) and (H5-7) one by one. We always have a character
A1 of conductor 1 with A\j((a)) = a1 =+ for all @ € M* and A\ = 1
mod my by our choice of k; so, A/A\; = ¢ mod my,. We may assume that
/\//\1 = @.

e By the above choice of A1, we have det py, = N1 (L/F> and det p) =

NG (M) , where ¢ is the Galois character corresponding to the pull
back of ¢ as a Hecke character of M, to F,*. Then y in (H1) is given
by @ (M—/F>, which has order prime to p because p > 2. This shows
(H1).
e By (h2), we have for [|9T(\)p,
(U) if [= €€ (£ #€) in M,

0

PxlD, =
( (>(\)[ Xl(fﬂ)) if [ is inert or ramified in M/F.

We can choose A, to corresponds to quc for P € 3, with P|l if [|p.
Then by construction (or the definition of k3), we have §; = //\\gpc. This
shows (H2).

e Since A; is of conductor 1, we find that X|1, = ¢|r,, which is of order
prime to p. This shows (H3).

e Since A = ¢ mod myy, (h3) implies that &, # p; so, (H5) follows from
h3).

) ’(Thg condition (H6) follows from the definition of 91(A) and (hl), be-
cause C(?Sfl) is equal to C(ei0; ") by (H3) already verified. By our
definition of 9()), its [ part coincides with C(e(d; ).

e The condition (H7) follows from (h4) by Mackey’s theorem.

Thus as long as A e XCN mod myy on I, for every p|p, we have verified the
theorem.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 465-532



ANTICYCLOTOMIC MAIN CONJECTURES 511

Now assume that

P= {p|p|x =\ N mod my on Ip}

is non-empty. Let R* (resp. O*) be the p-adic closure of R* (resp. O*) in
R} for R, = R®z Z,. Since M cannot have p-th root of unity (by ordinarity
of ¥ and unramifiedness of p in F/Q), [R* : O] is prime to p; so, R*/O*
has order prime to p. We consider the character z + x> of Ry — WX,
which has values in a complete valuation subring A of W unramified and
finite over Z,. Let A} be the maximal p-profinite subgroup of A*, which
is canonically a direct factor of A*, because A is unramified over Z,. Let
x +— (x) be the projection of z € A* to Ay. Thus (z) = 1 mod my for
all z € A% and (¢) = 1 for all roots of unity ¢ in A. Thus z — (z%) is a
character of R /R, which is a subgroup of finite index of G(1). We can
extend this character to a character x of G(1) so that ¥ =1 mod my on G(1).
This is possible for the following reason: We first extend the character to a
character x' : G(1) — W>, which is always possible, replacing W by its finite
extension if necessary. Then we take a Teichmiiller lift & of the reduction (x’
mod myy). Then ¥ = e~ 1y’ gives the desired extension. By our construction, ¥
is the p—adic avatar of an arithmetic Hecke character x whose infinity type is X.

We now take the Teichmiiller lift Ao of (X mod myy ), which is a p—adic avatar
of a finite order character Ao : G(€) — W*. Then X = Agx is of infi-
nite type ¥ and satisfies M’ = A = ¢ mod my. For z € R, we write
w(z) = lim,_, zFPH" ¢ R, for x € R,. Since p is unramified in M/Q,
the Teichmiiller lift of (z¥ mod my,) for k € Z[X U X¢] is given by w(z)* (in
other words, the operations k and w commute). Thus, at the place p € P,
by the above process of construction, N~ (z,) = N~ (zp) for z, € Ry N Fy
(B € X, with Blp), and the level N(N') of f(N\') is prime to all p € P. Thus
f(N) has weight (I,0) and its Galois representation satisfies (H4). Then the
theorem follows from Corollary 6.2, since f(\x) comes from the same local ring
of the universal nearly ordinary Hecke algebra h as the local ring of the p—adic
family of Hecke eigenforms determined by f(A) or f(\'). O

For our later use, we shall compute the g—expansion of classical modular forms
associated to f(\). Pick y € F with y, = yso = 1. Then by the definition of

X and (6.5), we get the following formula of the complex Fourier coefficients:
a(gyd. fN) = Y, AazR),
zre=Eyd,x==1
where 2R = F N zR and x runs over (E NM

Aleo)
shows that for fyiag[y,1) in (S2),

faingy ) (M) = N()™H > A@)a 0(\ ),
2A;AAC~pd

)/R®) for = as in (6.5). This
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where 2 runs over a complete representative set for ideal classes of M with
AA° = and (y = yO N F) for a totally positive a € F and

(6.6) b = Y AEF) () g
geA™T /(M)

Here we regard A as an idele character A : M, /M* by putting
)\( ) _ )\(I'R) —K1X— cnzz’

and ¢ runs over elements in A1 such that £ is outside = for = as in (6.5).
As a locally constant function on QAl_l, the p—component of ¢} : & — \(¢&)) is
given by A ! restricted to 2, ! by the following reason: ¢} is the characteristic
function of Qlfl for I outside the conductor C'(\), and taking ¢ € 21! with
¢ =1 mod CP()), we see that ¢ (&) = A(&3F)) = A\(EP)) = A(&,) !

The modular form @(A;2) is of weight xe on
To(M(A);n) ={(24) € SLo(F)|a,d € O, bey, c€ NAw'}.

6.3. SELF-DUALITY. Let L*(ke;W) be the dual lattice of L(x;W) un-
der the pairing [ , | introduced in Subsection 5.3. Then by definition,
L*(ke; W) C L(ke; W) and the quotient L(ke; W)/L*(ke; W) is spanned by
X"IYJ for 0 < j < n.

Since

Us(Mp), diaglp, WUo(Mp), = | | (51) Uo(9p),,

u  mod pO,

the action of (§ |) on L(ke; W) /L*(ke; W) (even after dividing by p'?) is nilpo-
tent. Thus the pI‘OJeCtOI‘ e = lim,,,o T(p) kills the cohomology group:

HI(Y, L(ke; W) /L*(kes W) (Y = Y7 ()
for any r > 0, and hence by cohomology sequence, we get a canonical isomor-
phism for Y = YOB (O):
(67) *,M. ord(Y L* ("{5; W)) = *,10. ord(Y L(K’E W))

where H is either compactly supported or usual cohomology group. We define
the action of Hecke operators T(y) and () on HI (Y, L*(k*c*;W)) via the ad-
joint action under [, ] of the semi-group Ag(9). Then the operator is integral
if either p|9M or [k] < 1 & [k] > 0. Thus in the same way, we get

(68) *nord(Y L(K 7W)) = *nord(y L*("€ ’W))

As we have seen in [H88a] Theorem 10.1, H] (Y, L(ke; W) ® (Qp/Zy)) is p-
divisible if |Ig| < 1. Then by looking into the cohomology sequence attached
to the short exact sequence:

0 — L(ke; W) — L(ke; W ® Qp) — L(ke; W) @ (Qp/Zy,) — 0
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HI(Y, L(ke; W)) is free of finite rank over W, and we get a perfect pairing:
(,w:H! (Y, L(ke;W)) x H! (Y,L(k"e";W)) = W

c,n.ord
of W-free modules. For the moment, assume that F' # Q. Then YB(U) is

compact; so, H, .. =H} = H! . and we have the perfect duality
pairing

(69) ( ) )W : ngsp,n.ord(}/? L(KE; W)) X ngsp,n.ord(}/? L(/{*E*; W)) — W

As already verified in [H88b] Theorem 3.1 for F' = Q, the assertion (6.9) holds
even for F' = Q; so, we do not need to assume F' # Q anymore. We thus have

COROLLARY 6.4. Under the assumptions and notations of Corollary 6.2,
the map (v,w) — f(v ® w) induces a surjective linear map: V(Rp) ®rp
V'(Rp) — S(Rp) for all P € A(l), where S = S,py(M,e(P); Wlep]),
V = HUY, L((P)E(P: Wep)), V! = HO(Y, L(x(P)'=(P); Wlep))). If
q=|Ig| =0, f is an isomorphism: V(Rp) ®r, V'(Rp) = S(Rp).

7. PROOF OF THE THEOREM

We shall prove the theorem in the introduction under the assumptions (h1-4)
on ¢, which are equivalent to the assumptions (1-4) in the introduction once we
have chosen ¢ with ¢ = ¢p~. We first recall integrality results due to Shimura
[ACM] Section 32 and Katz [K] II on the values of modular forms and then
prepare preliminary results on integral decomposition of quaternionic quadratic
spaces. After that, we prove the theorem in the case where the degree [F': Q]
is even. The odd degree case will be reduced to the even degree case.

7.1. INTEGRALITY OF VALUES OF MODULAR FORMS. By the approximation
theorem,
GLo(F)\GLy(FL ™) JUp(M) = FX\FY ./ det(Up(M)) = Clp via y — det(y)

for the class group Clp of F. From this, f € S;(M,e; W) is determined by

the g—expansions {f(y)},. Writing y = ya N F for the ideal corresponding

to the idele y and setting § = (49), f(y) is the g-expansion at the Tate

AVRM Tatey- 0(q) (in [K] 1.1) of the classical modular form f; (of (S2) in
Subsection 5.1) of weight k = k1 — K2+ on the following congruence subgroup:

(7.1) To(Mn) ={(2Y) € SLy(F)|a,d € O, ben, cey 'N}.
Here y* = p~ 107! for the absolute different d of F.

A classical modular form with g-expansion coefficients in W on a slightly
smaller I'y—type congruence subgroup:

(7.2) rMin) ={(24) eTo(Min)ja=d=1 mod N}

has a moduli theoretic interpretation, which we recall in the following para-
graph. We write S (T'(91;); A) for the space of the classical cusp forms on
L'(9T; 1) of weight k with ¢g—expansion coefficients in A.
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Let A be a valuation ring with residual characteristic p. An abelian scheme
X4 over an A-algebra A’ is called an abelian variety with real multiplication
by O (AVRM) if it has an embedding: O — End(X,4/) of algebras such
that H%(X,Qx/0) = (O ®z A")w for a nowhere vanishing differential w. Here
we have used the unramifiedness of F' at p (otherwise, we need to formulate
this condition as H(X,Qx/0) = (07! ®z A’)w). Each Hilbert modular form
f € Sp(T(M;9); A) can be regarded as a function of quintuples: (X, \, i, w, A)
made up of an A-algebra A’, an AVRM X over A’, a polarization A whose
polarization ideal is given by p*, an embedding i : puyn — X of group schemes
over A’ and a differential w as above (see, for more details of AVRM’s, [K] 1.0
and [PAF] Section 4.1). Here pe is the group scheme made up of DM—torsion
points of G,, ® 971, that is, un(A) = {¢ € G,, ® 07 1(A)|N¢ = 0}, regarding
Gy, ® 071(A) as an additive group. Every ingredient of the quintuple has to
be defined over A’. As a function of (X, \,i,w) 4/, f satisfies the following
conditions (see [HMI] 4.2.7):

(M1) f(X, N, ,0") = p(f(X,\i,w)) if p: A — C is an A-algebra homo-
morphism and (XN i W) e =2 (X, N i, w) X ar,,C. Here “=” implies:
X xaC 2 X)p as AVRALS, (o N 0 = Axa C. doi =i and
o*w' = w.

(M2) f vanishes at all cusps, that is, the g—expansion of f at every Tate

quintuple vanishes at ¢ = 0.
(M3) £(X,\i,aw) = a Ff(X, \,4,w) for a € (A’ @7 0)*.

The “Neben” character e : Ug(0M) — Q * restricted to UL (M) = Up(MNSLy(0)
factors through U}(M)/UY (M) for UY(MN) = UMM) N SLg(@) (the conductor
of £~ is M), because e(u) = e1(det(u))e™(d) for u = (¢4). Thus to evaluate
f € S.(Mye;A) at an AVRM X of CM type, we only need to specify pugym — X.

Let M/F be the CM quadratic extension in the introduction. Recall the
decomposition: € = §§.J of the conductor of the Hecke character A such that
F+3F. = R with §F C §¢ and J is made up of primes non-split in M/F. By
(h2) (for ¢ = X), the prime factors of 9(\) are either split or ramified over
F. If IN(N) and [ = £€ (with £ # £) in M, we may choose £ so that £ D .
The exponent of I in D(A) is less than or equal to that of £ in §. Thus to
evaluate f(A) at a CM point, we need to specify the level structure for the
level d(M/F)f (f = §NF). Actually we later need the level structure at other
primes non-split in M/F; so, we first specify level structure for split primes
and then extend the definition to non-split primes. We shall do this first for
an abelian variety of CM type ¥ with multiplication by R. Hereafter § is an
integral ideal of R with § + §° = R and prime to p (because we need to be
more careful for primes dividing p).

Let W be as in the introduction. Define W = i;l(W) C Q, which is a
valuation ring unramified over Z,) with algebraically closed residue field F.
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We consider X(R),c to be the algebraization of the complex torus C*/R*,
where R* = {(a”),exla € R} and C¥ = R* @7 R. Since X(R) has complex
multiplication, it can be defined over Q@ and hence over a number field (see
[ACM] 12.4). By the main theorem of complex multiplication (see [ACM]
18.6), X(R) and its f—divisible group for any prime ¢ outside p are actually
defined over an infinite extension K of Q unramified at p. By the criterion of
good reduction by unramifiedness of /—power torsion points (see [ST]), we find
a model X(R)yy of X(R)/k-

By choosing § € M with Im(o(8)) > 0 for o € %, we have a polarization pairing
(z,y) = Trayg(dzc(y)). This pairing identifies R Ao R with y for a suitable
choice of a fractional ideal y C F' (prime to p) and induces a y*—polarization
A = A(R). Thus we have the CM-triple (X (R), A(R),i(R),w(R)),w, choosing
w(R) so that H*(X(R),Qx(ry,w) = (O @z W)w(R).

Since W has algebraically closed residue field, for any integer m prime to p, we
have X (R)[m] = {z € X(R)(W)|mz = 0} = (Z/mZ)MY and pu,, = Z/mZ as
group schemes over W. Thus we define the level f-structure to be

15 = 0/f = X(R)[3) = {« € X(R)(W)|a = 0}.

Since the Frobenius map of F,, acts by multiplication by p (times a unit) on
Qx (r)/w> the p-divisible group X (R)[B>°] ) for P € X, is connected. Since
the residue field of W is algebraically closed, we see that X(R)[P°] = ppe
over W (for e = (e(*B))qpex, ), which gives rise to the level p®~structure we need.

Since RA R = vy, we can choose a base wi and ws of R so that R = Ow; + yws.
For any integral ideal q prime to p, we choose a generator w, of qO,. Fixing
an isomorphism O/q = y/q, we embed O/q = v/q/y < q~*Rq/Rq = X (R)][q]
by sending z to @, Yzwy € My/Rq, which gives the level g—structure on X (R).
We choose the base w = (w1, we) so that the level p¢f-structure we have chosen
coincides with the one for q if p®f + q is non-trivial. We may always choose
w so that wy = wy /wy € $HT. Therefore choosing the base (w1, ws) is almost
equivalent to the choice of a point wy € H! modulo I'(N,y) for N = q N fpe.
We write the level structure as i(R) : pp — X (R)[N].

The above definition of the quadruple z(R) = (X(R),A(R),i(R),w(R))/w
can be generalized to ideals of an O—order of R. Let m be an integral ideal
of F prime to pf. Let R = O + mR be the O-order of M of conductor m.
We take a proper fractional ideal 2 of R’ prime to pfqd(M/F). A fractional
R'—ideal 2 is called R'—proper if {x € M|zA C 2} = R'. The polarization
pairing on R (so on M) induces the polarization A() on 2. We identify
2A A A with a fractional ideal y(2() of F' under this pairing. It is easy to
verify p(2) = y(R)mNy;/p(2A). Then we can choose a base w of 2 so that
2 = Ow; + n(A)ws and wo(A) = wy /ws € H!. This choice w gives rise to the
level structure i(2() : pm — X (A)[N]. We can always find an étale constant
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subgroup C' = O/c¢ (¢ prime to fqd(M/F)p) in X(R) such that the étale
quotient X (2) = X(R)/C over W (e.g. [GME] 1.8.3) gives a model over W
of C*¥/2A*. Since ¢ is prime to pf, the level structure i(R) and the differential
w(R) induce a unique level structure and a unique differential w(2A) on X (A).
We make a choice w so that the two level structures (one coming from i(R) and
another from the base w) coincide at primes where the two are well defined.
Thus we have a unique point wo(A) € $7/T'1(N,y). Having w is equivalent to
having the quadruple () = (X (), A(2),i(2A),w(A)) over C.

Supposing that f € Si(T'(9%;9); W) (and regarding f as a complex modular
form), we may interpret the value f(x(2)) in terms of evaluation at a CM
point wo(2A) € HT. For each z = (21,22) with z := 4 e $!, we consider
the lattice L, = LY = 2mi(Oz1 + 9z2) C Fr = F ®g C. We define a pairing
(, ) : Fe x Fg — R by (2mi(azy +bza), 2mi(cz1 +dz2)) = ad — be, which induces
a p*—polarization A\, = A? on the complex torus X, = X9 = F¢/L,. Thus
we can algebraize X, to an abelian variety X,,c. We have a canonical level
MN-structure i, : (071 @ O/N) = 2mi(nze @ O/N) C X,(C) as long as y is prime
to 9. Then the analytic value of f at z is given by

(7.3) z;kf((zo, 1) = f(z) = f(2)) for 2) = (X,,\,, i, du),

where u is the variable (uq)se; Wwith u, € C identifying Fr with C! as
C-algebras.

Defining the canonical period Q € FZ = (C*)* by

(7.4) w(R) = Qdu

and choosing y so that R = (2mi) 'L} , we find z(2A) = 23 and
21 k

(7.5) flz@) = % € W up to units in W,

because w(A)/w(R) € (O ®z W)* (see [ACM] Section 32 and [K] II). Here
writing Q = (Q,) € C*, QF =[], . QF-.

Since W-integral modular forms f(z,w) of weight (k, k) for the product of
congruence subgroups: T'(9%;p) x T'(MN;1') classify the pairs of test objects:
(z9,29), the same formula is valid (by the same proof given in [K]): up to

z) w

units in W,
2mi)2F £ (2, w
76) Fla(@, () = BT _Tew)

7.2. ERROR TERMS OF INTEGRAL DECOMPOSITION. Let B be a quaternion
algebra over F'. Let M/F be a CM field with integer ring R. We are going
to compute error terms of O—integral decomposition of an O-lattice of B as

an integral quadratic space into a direct sum of two O—lattices of M with its
norm form.
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We fix a maximal order Op of B. For an embedding i : R < B of O—algebras,
since i is an embedding of O-algebras, we have Tr(i(a)) = Trp;/p(a) for
the reduced trace Tr of B and i(a)i(a)* = Nyyp(a) = aa. This shows
i(a®) = i(a)" for the main involution ¢ of B.

Let L be an O-lattice in B. We consider the two orders:
(7.7) OY ={z € BlzL c L} and O} = {x € B|Lx C L}.

We suppose to have two embedding [ : R — B and r : R — B. Thus L
becomes an R; ®o R,~—module by (a ® b)¢ = I(a)lr(b), where R; = I71(I(R) N
Ot) and R, = r~Y(r(R)NOY). Since K™ ® K™ = M,,x,(K), we find that
M,, ®x M, (K) & M,,,(K) as K-algebras. By extending scalars to M, we
find B®r M = My(M), and the above argument applied to the extended
algebra Ms(M) shows that the embedding | ® r : R; ®o R, — Endp(L) is
injective. Therefore B is a free M @ p M—module of rank 1. When we regard B
as an M—vector space, we agree to use right multiplication by o € M given by
ab=0b-r(a). Therefore M ®p M is identified with M @& M by a®b — (ab, a®b)
for the generator c of Gal(M/F). Then we define L! = (1,0)L and L? = (0,1)L
for the idempotents (1,0),(0,1) € M @& M. Since LM = L' © L? O L, we can
define L; = L/ N L. Then Ly = L1 & Ly C L. Since (1,0)B is the eigenspace
of M @& M killed by the right factor M, we have

Ly ={x € L|S(L1,x) =0},

because multiplication by units in (M ® p M)* preserves the inner product
S(z,y) = Tr(xy") up to scalar similitude. By S, we have the orthogonal
projection 7w of B to ML; and m to MLy. Then we may have defined
LM = 71(L) ® ma(L). Indeed, 7 (resp. m2) is given by the multiplication
by (1,0) (resp. (0,1) € M ®p M). We want to determine primes dividing the
index [LM : Ly]. Here is the result:

LEMMA 7.1. Let d(R;/O) (resp. d(R,/O)) be the relative discriminant of R;/O
(resp. of R./O). Then we have d(R;/O)d(R,/O)LM C Ly;.

Proof. The process constructing LM and Lj; can be done at each localization
B, for primes p of O. Then L;, = L, N M,L; and 7;(L,) = m;(L),. If a
prime p of O is unramified in R, and R;, we have R; ®o, Rrp & Ry ® Ry,
and hence L{JW = Ly, by definition. More generally, by the definition of the
discriminant, we have

d(R;/O)d(R,/O)(R®R) C Ry ® R, C M ®p M.

This shows the desired assertion. O

For a prime [ outside the discriminant of B/F, identifying By with My (F}), we
define the Eichler order of level [ by

60([111)[ = {(g Z) € M2(F[)|C € [mO[} .
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Here 60([0)[ is the fixed maximal order of B;. We then put for ideals 0
outside the discriminant of B/F, Og(M) = [, Oo(1*V), where 9t = [], ¢V is
the prime decomposition of O (for [t N, we agree to put e(l) = 0).

We identify B, with Mj(F},) so that r and [ both bring (z,y) € M, = Ms, x
Ms, . onto (§9) in Ma(F,). For I|f = §N O, we take the factor £|l so that
£|§, and we identify B; with Mj(F) bringing (z,y) € M; = Mg x Mg to
(59) in My(Fy). For [|[D(M/F), we embed M; by r = [ into the O;-order
of My(Fy) generated by the scalar in Oy and AF(I), that is the Eichler order
Oo(D(M/F)), of level D(M/F),.

PROPOSITION 7.2. Suppose the following three conditions:

(a) pNt is prime to © = d(R,/O)d(R;/O);

(b) Ljp = 60(fp€)fp C Byp for the conductor p© = Hp‘p pe®) of ey;

(c) €1p s trivial on O and k = (I,0).
Let v € L(ke;W) = W and w € L(k*¢*; W) = W. Then ¢ : L — W given
by d(y) = [yv,w] is a W—integral linear combination of functions of the form

$1 ® ¢a for functions ¢j : LI — W such that
(1) d1(2) = brp(e,)d” (@P) (resp. da(w) = b2,(2p)05” (@P)), where
we embed x € M into M, x M® by x— (p, x®) and for a Z-module
X C B, X®) = X @, Z®) with Z®) =[], Zs;
2) g2 () = e2(d) if () € OF and vanishes outside O, xO) C O2 = L2;
3) ¢1,p is the characteristic function of Lll) = Op x p°Op;
4) qbg.p) (j = 1,2) factors through the finite quotient L7 /JDLI of L ®);
5) the function ¢; is supported on L7 and has values in W.

(
(
(
(

Proof. We regard ¢ as a function of B&OO) = B, x ng ) supported on L so

that ¢(b) = ¢p(bp)p®) (bP) for ¢, = ¢, and ¢P) = | ). We identify B,
A

with

Rsye Rsye
My (Fyp) = M, ® M, = (RE;; Rzzp)'

Then ¢, (¢5) = e1(a)e2(d)[v,w] if (2}) € Oo(p®),. This shows the desired
assertion for ¢,.

As for the component outside p, we only need to prove that the characteris-
tic function xr ) of L) is a finite W-linear combination of tensor products
of W—integral locally constant functions. Note that any additive character

M /Ly — W™ is a tensor product of Wfintegral valued additive characters
of LM /Ly = LM’(”)/L%), because [LM : L] is a product of primes dividing
the discriminant © by the proposition. We then have yr = [L™ : L]~! Sou s
where 1 running through all additive characters of L*:(®) /L) Note that
¥ = 11 @ ¥y with locally constant additive characters of ; : L7 — w’.
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Thus we may take ¢;(x,, 2P)) = ¢y, (x,)11 (m(p))agp)(mc(p)) and ¢ (y,, y®)) =
¢27p(yp)w1(y(p))5§p)(y(p)) for (z,y) € L' @ L?. Since 1; (resp. sgp)) factors
through L7 /® L7 by Lemma 7.1 (resp. L?/fL’ by definition), we conclude that
¢;p ) factors through L /FDLI. O

Let B = M5(F). We choose two fractional ideals %7 and B5 of M. Then
we decompose A = Oz; + az and B = Ow; + bwy with 29 = 21/22 € H!
and wg = wy/we € HT. The regular representation I of R on B given by
l(a) (F) = (%) gives an embedding of R into
Oy, ={(2%)|a,d€eO, bea, cea'}.
Similarly we define an embedding r : R — O replacing 2y by wg, where
p={(2Y%)]a.de O, beb, ceb™'}.

We consider the tensor product: B ®o B and L = I(B1)v - r(B2) C Ma(F)
for a suitable v € Ms(F).

We want to determine the factors of Ly, and LM. Since L' is the projection
of L to the first factor M of M @ p M = M & M, writing the projection to the
first factor as (a ® b) — a®b (so the projection to the second factor is given by
(a @ b) — a‘b®), we have L' =2 BB, and L2 = B{BS.

Since R ®o R can be identified with

{(a,b) e R®Rla=b mod d(M/F)}
inside R®&@ R C M ®p M for the relative different (M /F) for M/F, we see
that L1 =2 B$B0(M/F) and Ly = B{BSo(M/F).

Remark 7.1. We analyze the choice of v locally at primes p|p of F' when B;, =
Ry, for j = 1,2. Since the prime ideal p is split into PP with P € X, in M, by
choosing the base (e1, ez) for e; = (1,0),e2 = (0,1) of Ry, = Rype @ Ry over Oy,
we may assume that {(a) =r(a) = (% 2). Then we choose v to be b= (11).
By computation, we have

Ha-r(5) = (5 2)0 (55 ) = (% o )
This shows that [(R,)b- r(R,) = M>(O,), and regarding M>(Oy) as an Ry~
module via ax = I(«)z, we find
_ [ Rype Rype
MQ(OP) - ( Rq_} Rq_; ) :
Take O, basis w = (w1, w2) and z = (21, 22) of Ry, in M so that w = z = (e, e2)

mod p™ for m > e(p) for e(p) as in Proposition 7.2.

We define p(z,w) = zowap(zo,wp) and [u;z,w] = S(u,p(z,w)) (the homoge-
neous form of [u; zp, wop]). Then we find [b; z, w] = (21 — 22)(we — w1 ) and that
[b; z,w] is a p—adic unit.
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7.3. PROOF. We first suppose that [F : Q] is even. Then we have a definite
quaternion algebra B with d(B/F) =1 and I = (. We write G g for the
algebraic group associated to B*.

We fix a maximal order Op and identify 0 B with Mg(a) once and for all. Thus
Oo(M) C Op is an open compact subring. We have UZ () = Op(MN)*. We fix
complete representative sets {a1, ..., a5} for G(Q)\G(A) /UL (M)G(R)F; with
aimp = oo = 1 and Z C (FAX)(W’OO) for Clp = FAX/FXaXFOXO. We consider

(7.8) Aya(M) = a; 'z - AF(M)al N B,0;.(M) = a; 'z - Og(M)a’ N B (2 € Z)
and T{(M) = GH(Q) N a;UF (Ma; 'G(R),
where G'(4) = {g € G(4)|gg" = 1}. Thus A;;(MN) C 0;5:(MN). Note

here that {a;z|z € Z},=1,. 5 gives a complete representative set for

G(Q\G(A)/UF (MG(R).

Let ¢ € HO(YE (M ) L(ke; W)); so, We may regard ¢ : G(A) — L(ke; W) with
P(yau) = u'p(z) for u € UP(MFLGR)FS and v € G(Q). Similarly, we
choose ¢* € HO(Y 2 (M ,L(K*E*,W)) Then

h

(6,0 ) = D _[6(ai), &" (a:)).

i=1

Pick y € F* with y, = ys = 1. Supposing {yd is integral, we consider T(Eyd)
for 0 < € € F. By (unr), we have d, = 1. We choose a decomposition

Ug ) (49 uf |_| wUE N

Here we can choose w so that ww' = yd, because
U\U (§1) U/U =Ug (OO\UG () (§ 7) Ug’ (/U5 (M)
writing U = {u € UP (MN)|uu’ = 1}. Thus w,w!, = £ Then

HT(yd) () = £ mpme(am ™).

Since a;w™* € U;,G(Q)ajz - UP(MG(R), we can write a;m™" = v;a;u;z
for v;7* € A;;(91) and ui € UB(M)G(R). Thus we have, writing a; =
NB/F(aZ)OﬁF and y = yO N F, a;9032¢ = N(v; Ha; 3 = 20 N F; in other

words, n~ 107 ta, a; 1372 is generated by a totally positive element 5. € F

prime to pM. Thus we have
€ = a7 'yt up to totally positive units.

Then we see, up to totally positive units,

¢|T(§yd)(a‘l) = 5—:‘62 pr‘ﬁd)(aiw_L) - azjz ZNB/F rYl) ,Yz d)( )

Yi
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Here, extending ¢ : Up(M) — Q" toe: Uy M ES — @; by the p-adic avatar

e FY/F* — @; of the central character ¢, we have

Npp(7:)™277 lag) = e(v; Do(ay) ((7 ) (37))

o

which is p-integral if ¢(a;) is in L(ke; W).

Since B is totally definite (|/5| < 1 and |Ip| = [F : Q] mod 2 = Ip = 0),
F;(m) =T§(91)/O* is a finite group. We then put e; = |f6(9’t)| Defining

1 —K i v
045 (v, w) = oo, Z Np/r(v)™ " [yv, w]g*5=77
" yeA; - (M)NSupp(e)

for v € HO(T) (M), L(ke; W)) and w € HO(D4(N), L(x*e*; W)) (and rewriting

v, “as ), we find for y € F with y, =1
(7.9)  fe@¢")(y) =Ny > ;20,5 (0(ay), ¢* (),

. -1, _
4,4,250:0 7372~

where a ~ b indicates that the two ideals belong to the same strict class
in F. Here O;;, is a theta series of the O-lattice A;;.(9) and is a Hilbert
modular form of weight ke on T'o(N;n) for y = F'N ya Since the pairing: [, ]
is p-integral valued on L(ke; W) x L(k*e*; W) and «y;, is prime to pM, the
theta series has p—integral Fourier coefficients (except possibly for the constant
term). The constant term does not show up if ¢ € H? (Y E (M), L(ke; W)) C
HY, ., (Y? (M), L(ke; W)). Thus restricting ¢ to the ordinary part, f(¢®¢*) has
to be cuspidal (cf. [H88a] Theorem 6.2) and hence, the constant term vanishes.
We may forget about the integrality problem stemming from the denominator:
€i€5.

We choose an ideal 2 of M with Nj;/p(A) ~ v. We choose a > 0 with
p ' ' Ny p(A) = (). Then we consider the theta series defined in (6.6):

B = Y A1) g

yeA-1

for a Hecke character A of conductor € with A\(a) = am¥trEc if o = 1
mod €. Strictly speaking, we need to divide the above series by |u(M)| (see
(6.6)), but |u(M)| is prime to p by the unramifiedness of p in M/Q. So we
forget about |p(M)|. Here we have freedom of choosing 2 in its ideal class (by
changing « > 0 suitably).

We define the reversed Petersson inner product (f, g) = (g, f) = (f, g) to make
it linear with respect to the right variable g. By the variable change z — —Z,
we have

(7.10) (f,9) = (fer9c) for fe(z) = f(=2).
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Unless the following condition is met:
(7.11) k= (1,0) and (A7)*(P°)=1 mod my for some P € X,
we have proven in [H05d] Proposition 5.6 the following equality up to units in
W:
(2mi)* 2 W, (A (FON), FN)n o

(MT) L,(A\") = ey ew,

where W, () = H‘BEEP W (Agp) and

—e —e u
Wp) = NBP)N@x™) > Aplwen («»»)
uE(R/PeR))x “p
if e(P) > 0 and W (Ay) = 1 otherwise. We would like to show (choosing A in
the p-adic analytic family so that (7.11) does not hold)

(GL) (2ﬂi)2(“1’“2)Wp(/\*)S()92((;\1; i);)@ijz (¢(a;), ¢*(a;)))

for T'=To(DN(N); n) and the optimal CM period € defined in (7.4), as long as
¢ € V(R) and ¢* € V*(R) for R = Rp as in Corollary 6.4 for P associated to
A

Lew

We write O;(M) for O;;,(N) with z = 1. We choose an embedding ig : M — B.
We may then realize B as

B={(3,%)]abeM}

with Op containing (g;’;) if a,b € R. We define i1(a) = (“062) € B.
For primes [ split in M/F, we assume that our identification By & M (F)
is induced by completing £-adically the above expression of B choosing
one prime factor £|[ in M. Taking a; = 1, we find that i1(R) C O:(M) if
M is made of primes split in M/F. Suppose now that 91 contains primes
non-split in M/F. For a given finite set S of primes, we can conjugate the
embedding i; by a norm 1 element u; (I € S) so that ui;u=1(Rg) C O1(M)s
(O1(M)s = O1(M) ®p Os for the localization Og = [[,cg O1). By the strong
approximation theorem, choosing one prime q of F', we can write u = yu' with
v € G(Q) and v’ € U(’,B(‘JI)BqX. Thus changing i; by 7i;y~!, we may assume
that for any given 91 that i;(R1) C O1(M) for an O—order Ry C R of g—power
conductor. We identify M, with the image in G(A) under ;.

If d(M/F) # 1, we find by,...,b; in M so that Ny p(b;) gives a complete
representative set for F'*\F /5X(FAX )2. By the reduced norm map: Np,p :
G(A) — F;, we have a surjection:

GQ\GA)/UF (NGR)F; — FI\FY, JO*(Fy)2.

Thus we can choose {a; = bjsp} = {b;} x {sp} so that Ng,p(sx) = 1. Then
again by the strong approximation theorem, we can write s = rur with
u, € UP (M) By and v € G(Q). Since b; commutes with 4, (R;), conjugation
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by b; does not alter ¢;. Then defining i; : M — B by ’ykiﬂ,;l and putting
R; to be the inverse image under i; of i;(M) N O;(M), we find that R; is an
O-order of M of g—power conductor.

Suppose now that d(M/F) = 1. In this case, the image of M, in the class

group FI\F., 5XF§H_ under the norm map is of index two; so, we need to
add one more element b" € G(Fy) with Nj;/p(b) generating qOy, choosing the
prime q to be inert in M/F. Then the representatives a; can be chosen as b;sy
or bjb'sy for s € SLy(Fy) and b; € M. Thus, by the same argument as
above, we find again an O-order R; of g-power conductor and an embedding
ij 1 Rj — O;(M). We have now proven:

LEMMA 7.3. Let the notation be as above. By choosing a prime ideal q of F
outside any given finite set of primes, we can embed the order O +q™R C M
of q-power conductor into O;(N) for all j =1,2,..., h, if the conductor q" is
sufficiently deep.

We write R; for O;(M) N R. By the above lemma, we assume that R, is
of conductor q™). We choose later q in a way optimal to our proof. We
regard L;j, = O;;,(MN) as R; ®o R; module by i1: (o, f)b = abB. Since
M®pr M = M @& M, writing 1, (resp. 1;) the idempotent of left and right
factors, we split O;;,(N) C L%[Z =1,L;;. @ 1;L;;,. The index [Lf‘j/fz :Lij.)is a
product of a power of q and primes ramifying in M/F, which we can choose to
be prime to p. Then as studied in Subsection 7.2, we can write ©;;, of level
as a p—integral linear combination of 6(¢1)0(¢2) of theta series of Ly, = 1,Lijs
and Léjz = 1;L;;., respectively. The functions ¢; (k = 1,2) can be chosen to

be p—integral.

We now bound the level of 8(¢y). To make the argument simple, first assume
that i1(R) C O1(MN), a; = by and a; = by, and we choose that by so that
bi1 =1 for all primes [|9p - d(M/F)q. Note that bz - Oo(‘ﬁ)b;1 =3by ® b;,l
as R ®o R-modules for by = (by RN M), we find from the discussion at the
end of the previous section that L}, = 3b5b}," and L7, = 3b5b,,°. Thus we
find that y0 = a; 'a;3? = Nay/p(LL;.) = NayypL,,.
As explained in the introduction, we take ¢ with ¥ = ¢~. We may assume
that the weight x of f(¢) is (I,0). We than take a weight £ member f(\) of the
p-adic family (associated with ¢: X|Gm(¢) = ) with complex multiplication
by M. To avoid (7.11) (& (MT)), we choose € so that it is non-trivial at all
p|p. Replacing ¢ by ¢n for a finite order character i : Gal(Q/F) — W™ does
not alter the anticyclotomic part ¢~. By a theorem of Chevalley ([Ch]), we
can choose 1 so that n = )\[_1 on the inertia group at [ for every prime [ in any
given finite set of prime ideals. Thus we may assume

(7.12) A has conductor prime to Xpc.
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Write 91 = 91()\). Under this assumption, x = x*, e* = ¢~! and [v,w] = vw by
identifying L(ke; W) = W (on which Ag(M) acts via multiplication by ¢) and
L(k*e*; W) = W. Then

yp(az), 6™ (ai)] = e(vp)d(az) 9" (ai)-

Regarding the character ¢ : AF(M);, — W™ as a function €ij- of
B ®g Al>®) supported on A, (N) = angoB(‘ﬂ)aj_L by €ij-(x) = e(xsp)
(Aijz(N)ip = AF(N)jp), the function xi5. : v = e(7)[y¢(ay), ¢*(a;)] is the
function €;;, multiplied by the p-integral constant: ¢(a;)¢*(a;). Write down
Xijz @5 & Sum Xij, = Z¢1,¢2 @1 ® ¢o for finitely many p—integral locally
constant functions ¢ : ngz — W and ¢s : ijz — W. By Proposition 7.2,
P2,p(xp) = Az, (2x,) on Ry o X Rgp and is supported by (Rx, . X Rép) C L%ZW
(and @1, is the characteristic function of L}jz’p = Rs,c X p@REP).

By the proof of Proposition 7.2, we find that QS,(CP) (k = 1,2) factors through
ijz/b(M/F)fojz. Thus 6(¢x) is at least automorphic with respect to the

congruence subgroup To(MN(N);9) NT(d(M/F)?;v), where
FMGy) ={(2%) €eTo(Mp)la=d=1 mod N}.

This follows from the fact that ¢y as above is a linear combination of p-integral
functions x of the lattice (3b§,b;1) modulo (3b§/bi710(M/F)) for a sufficiently
large m and the fact that 0(x) = > ¢ x(€)q®9=¢€" has the level as described
above.

More generally, when a; = bys and a; = bjs’ for s or 8" with norm 1 in By,
R; and R; could have conductor a power of q; so, the same argument yields
that 0(¢y) is on T = To(N(N);n) NT(d(M/F)?q™; 1) for a sufficiently large m.

As seen in (6.6), the y—component of f()\) is given by a p-integral finite sum
|L(M)] 7S o A(2)O(A; ) of theta series of the form:

ONA) = D AEE) g,

ceau—1

where (¢ = and (with a > 0 in F'). Here the sum ) o A(A)0(X\; Q) is over
ideal classes of M whose norm isequivalent to yd. By choosing v € My (F') and
(20,w0) € HT x H! as in Section 4, we identify My(F) with M & M. Then
we choose £ = A~ @ LZ;, as an O-lattice of My(F). Since we have freedom
of changing 2 in its ideal class, we may assume that the p—adic completion
L, = L ®z 7y is equal to Ma(0,) in My(F,) = By, because L7;, = Op ® O,
Then £' = A" and £* = L7;,. We take ¢} : L' — W so that 6(¢)) = 6(\; ).
Then ¢ (€) = A(€E>)) and ¢} 5, = A5 (€s,), and ¢ 5, . is the characteristic

function of Ry ..
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We choose two ideals 81 and By of M and v € My(F) very close p—adically
tob=(1}1) € My(F,) as in Remark 7.1 so that L = I(Bq)v - 7(B3) C L with
L/L killed by a power of d(M/F)q. Here we need to introduce another prime
q, because £2 is stable only by an O-order in M of g-power conductor. We
choose the base B1 = Oz; + 922 and By = Ow; + hws again as in Remark 7.1.
Let z = (21,22) and w = (wy,ws). Thus zg = 21/22 and wy = w;y /ws are both
in 7. Thus we have from Theorem 4.1 and (7.10) that:

(0(¢1),0(41)0(¢2))r = (8(¢1)c, 0(d1 ® d2)c)r = C¥(z, w)
for a constant C' € W and a congruence subgroup
[ =To(M(A);9) NT(d(M/F)*q™sp) (m > 0).
Here U(z,w) is the homogeneous version of the modular form:

(7.13) U(zo,wo) = . ¢ (ca)erp(det(a)z0)0(¢1)ro(wn)
0K a€el\ M2 (F)

for the partial Fourier transform ¢* of ¢ = 6/1 0 ¢ ® ¢, because () (z) =
0(¢)(—z) = O(¢poc). The constant C' is prime to p (that is, i,(C) € W*)
because of the following reason: Since W is of weight (I, 1), the homogeneous
form is given by z2wlW(z,w) = (2, wp). Since v is very close p-adically to b,
we may assume that v = b. Then by Theorem 4.1 and [b; z, w] = (21 — 22) (wa —
wy ), we have

C = zéwé Im(zo)fl Im(wo)fl[b; zo,wO]IHb; zo,w0]|21

_ (21— 29) (w2 —w1)| (21 — 22) (w2 —wi)
(21Z2 — Z122) (W1 W — Wiws)

whose image under i, is easily seen to be in W* (by our choice of the base z
and w as in Remark 7.1).

The local partial Fourier transform preserves p—integral Schwartz-Bruhat func-
tions on M(Fy) as long as [{p. Since M, = Ms, ® Ms, ., we find
Ms,c Ms,.
My(F,) = M, ® M, = (ME;; MZEP ) :

The first column is the factor M, carrying 5,1)1) o c¢. The function 5/1,17 ocis
supported on R,. Since complex conjugation interchanges a and ¢ (see Propo-
sition 7.2), we see from (6.6) that (6/171, oc)(¢) = Ag,(a) (because we have as-
sumed that A has conductor prime to X¢: (7.12)). Similarly, ¢2,, (%) = s, (d)
for b € Ry, and d € Ry,. Thus ¢,(a,b) equals to x(a,b)As,(a) for the char-
acteristic function x of R, = O, x O,. The partial Fourier transform is with

respect to the variables “(a(p), b(p))” keeps p—integrality by the Fourier inver-
sion formula. Thus we may concentrate on the p—component. Define for each
P € 3, )(z) to be equal to Ay(z) if z € Ry and 0 outside Ry. Then the

Fourier transform of ®, is given by W(Am))\m(wgm))éx(wgmw) (see [BNT]
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Proposition 13 in VIL.7). Thus we need to prove W()\;})W()\qg))\(wf;}(m)) ew.
This can be done as follows: writing e = e(*P) and w = wsy,

(7.14) W@ )W (Ap) = N(B~*)N@) M@~ )G (A )G (Ay)
= Ap(=DA(@™ )M @)N(B™),

where G(X) = >_,cp/qp- X(w)en(4z) for the conductor B¢ of x. Note here

that the infinity type of A is —%, and hence \(w®) is up to unit equal to >

which is equal to N(3¢) up to units in W. This shows the desired integrality.

Since the partial Fourier transform with respect to the character ey (ab’ — ba’)
interchanges (a, b), the support of 6; is contained in

Op w “OX\ _ -1 Op Oy
(57505) = (%) .
where 7 = (E(,) _01).
The function ¢1, is the characteristic function of Ry . X peRgp. Since T
normalizes Uy(p®),, we can choose complete representative set R for

U)o\ (15, 0 ) X GLa(Fpi))

such that o € R can be written as 77!3 with p-component f3, is upper tri-
angular (e.g. [MFG] 3.1.6) with p-adic unit at the lower bottom corner. The
Hecke operator UzU for x € R preserves the p—integral structure of S, (I'; W)
(the space of cusp forms on I" with W—integral Fourier coefficients). This fact
follows, for example, [H88a] Theorem 4.11, and actually, if + € GLo(F') has
upper triangular p—component with p—adic unit at the lower bottom corner,
the action of 8 — 6|12 on modular forms preserves p-integrality since it is
basically given by 0(z) — 6(az) for totally positive a. Thus the action of g:
0(p1)|177 L = 0(¢p1)|17 1B in (7.13) preserves the p-integrality (see Theorem
4.9 in [H88a]), and (¢1)|17 !B has p-integral g—expansion with respect to the
variable w if (¢;)|7~! is p-integral. Thus we need to prove that 0(¢)|;7*
has p-integral g—expansion coefficients, in order to show ¥(z,w) in (7.13)
has p-integral g-expansion. Since 6(¢)|7" for 7/ = (9 ') is given by 6(%1)
for the Fourier transform g/b\l of ¢1 regarding it as a function on M,. The
p-integrality only depends on the p—part ¢, , of ¢;. By computation, (ELp is
N(p~°) times the characteristic function of Ry . x p~“Ryx,. Taking @™ in
O, we find that 6(¢1)|7~! is equal to 6(cd1)|1 (6 2e) (w)= @°0(¢ ) (ww) up
to a p—adic unit. Since w®N (p~¢) is a p—adic unit, we get the desired integrality.

By the g—expansion principle, we conclude from (7.6)

27Ti22Wp/\_ 9/\,9[,0 1)0(d2))r a—
(2mi) ( )(9(22) (@1)0(¢2))r _ 5

(7.15)
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This shows

— — (QWi)QEW ()\7)(9(>\,2[),@1 'z)l" MN(N); —
To((N):v) : T P e A e W

Write (8(\;20), f)r for the inner product (6(A; %), f,)) for the y—component f,
of f € S.(M,e;W). Since any f € S, (M(N\),e; W) is a W-linear combination
of ©;;. by Corollary 6.4, we conclude

Ty (0(N):0) : T (2m) W (A7) (0(X; 91)Q ;S’;(‘II(A), & W))ro(0):m) e

Since [To(91(N\);p) : [ is a factor of

, 1
NF/@((Jt )2 H (1 - NF/Q([)2>

o
for W = d(M/F)>q™, if pt (N (1) & 1) for all primes [|[d(M/F)q, we get
(2mi) 22 W, (A7) (0N ), S (N(A), & W))rg (t(a):m)
2=
We can choose q (by unramifiedness of p in F/Q and p > 5) so that

Pt (Nayr(q) £1).

Thus if p  (Nar/p([)£1) for all primes [|d(M/F'), we conclude H((p)|%L‘ ()
as we explained in the introduction. Here H (p) is the congruence power series
with respect to the nearly ordinary Hecke algebra h(9(y), e,; W) interpolating
R-ord(N(N),ex; W) (for all ke € A(I)). Thus H(y) divides thecongruence
power series H in [HT1] but could be smaller if € N €° contains non-trivial
prime factor. In [HT1], we had an extra factor A(M/F;€) which is equal
to the product of the Euler factors of L(s,a)L(s, o tp.) for primes outside
p in €N ¢ This comes from the formula of the inner product of #(\) in
[HT1] Theorem 7.1. After doing the same computation for f(A) of smaller
level instead of () and writing k = k1 — ko + I (see [HO5d] (5.5)), we get the
exact formula, if A~ has split conductor:

(7.17)  (fF)" FN))men
= D - Npg(M(N)27 e~ HDDp(k + I)L(1, Ad(f(N)))

(7.16) cwW.

under the terminology of [HT1] Section 7 without any error terms. Here D =
N () is the discriminant of F/Q.

Here is how to remove the condition: p { (Ny/p(l) £ 1) for primes [ in the
discriminant d(M/F'). The idea is to make quadratic base-change (and then
descent). As a target of the base-change, we can find a totally real qua-
dratic extension F’/F unramified at p such that d(M’/F’) for the composite
M' = MF' does not contain prime factors as above. Then for M'/F’  we get
the assertion. We later choose F’ more carefully so that we can effectively
descend back to F again. Let x be the character Gal(F'/F) = {£1} restricted
to Gal(Q/M). Suppose that we find a character 7 of Gal(Q/M) of conductor
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¢’ such that ¢! = .

We can always assume that 7 is of order prime to p by taking the Teichmiiller
lift of (n mod my;). Let T'j be as in the introduction and we consider the
universal character ¢ : G(€) — W/[[I"ps]] with branch character ¢. Put ¥ :
Gal(F/F) — GLy(I) be the induced Galois representation Indy; @. Then we
have

Ad(V) 2 o & Ind}, () for o = <M/F>

Thus
~ ~ =1~
Ad(¥) @ x = ax ® Indy (61 @01,)-
By Fujiwara’s “R = T” theorem [Fu] (actually its I-adic version: [HMI] The-
orem 3.59), under the assumption (h1-4), the congruence power series H ()
gives the characteristic power series of the Selmer group

Sel(Ad(¥)) = Hom(Cl™,Q,/Z,) @z I & Sel(y),
where Cl~ = Clp;/Clp for the class groups Clys (resp. Clp) of M (resp. F).

We need to argue more for the character ¢n, because ¢n may not satisfy the
condition (h2). We choose F’ so that F{ = M, for all l|2pd(M/F) and F'/F
ramifies outside 2d(M/F) only at primes which split in M/F. This is possible
for the following reason: We take an element § € O so that M = F[\/3].
Then we take a high power a = (2pd(M/F))™ so that any element v € F
with w =1 mod a is a square in Fy for all [|2pd(M/F). Then for the infinite
set Z = {e € Ole =0 mod a, € > 0}, we can find an infinite set of primes
q = (€61) which splits in M/F. Then we define F’ = F[\/g]. By our choice,
(e) = q(8), and hence if a prime outside 2d(M/F) ramifies in F'/F, it has to
be q, which splits in M/F.

We shall show that for the above choice of F”, ¢n satisfies (h2). In fact, suppose
that [ remains prime in M/F. Thenif nf~" = x; # 1, then x has to ramify, and
hence F’/F ramifies at [. By our choice of F’, [ splits in M/F, a contradiction.
If [ ramifies in M, x{ restricted in Gal(M /M) is trivial because F} = M.
This shows that ¢y is c-invariant, and hence by local class field theory, it is
a pull-back of a character of F* by the norm. Thus ¢n satisfies (h2), and the
congruence power series H(pn) still gives the exact characteristic power series
of Sel(Ad(¥')), where W' = Ind}, @n. This is the beauty of taking level 9(i)
(not the deeper level: Ny /p(€)d(M/F) taken in [HT1] and [HT2]). Writing
the congruence power series for ¢ = ¢ o Ny as H(P), by the base change
(cf. [HOO] Proposition 2.4), we have (by p > 2),

Sel(Ad(Ind%,, 3)) = Sel(Ad(¥)) @ Sel(Ad(V) @ y),
which implies

H(E) = H(e) o) ),
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where M” is the third (and unique) CM quadratic extension of F inside
M =MF'.

If x = n'=¢ for a Hecke character n of M, x1 is again anti-cyclotomic. We
have shown in [HO5d] Corollary 5.5:

(h(M)/R(E))L™(¢)|H(p) and (h(M)/h(F))L™(¢n)|H(en),

which is enough to conclude the equality for each (by Nakayama’s lemma):

(h(M)/W(F))L™(¢) = H(p) and (h(M)/h(F))L™(¢Yn) = H(en)
from (h(M’)/h(F’))L*(J) = H(p) we have already proven.
We now prove the anticyclotomy of x: x = n°~!. Let x : M /M* — {+1}
be the quadratic idele character corresponding to M'/M. We want to have
a finite order Hecke character n : M — pum such that n°~! = x, where
n°(x) = n(c(x)) for x € M.

Let k be a number field. By class field theory, any continuous character of
Gal(Q/k) can be regarded as a continuous idele character: Cy, = k; /k* — T,
where
T ={z € C||z| =1}.

A given continuous character of CY, is of finite order if and only if it is trivial on
the identity component of the infinite part k% of k; (cf. [MFG] Proposition
2.2). By Artin reciprocity, any continuous character of C} trivial on the
identity component of kX C k; can be viewed as a (finite order) character of
Gal(Q/k) canonically.

Looking at the exact sequence:
1> M* M —Cuy—1,
by Hilbert’s theorem 90 applied to M* and Gal(M/F) = (c), we find
H°(Gal(M/F),Cy) = Cp,
and the kernel of c—1 : 2 — 27! is given by Cr. A character ¢ : Cpy — T is of
the form ¢ = n°~! if and only if ¢ is trivial on Cr. Since Gal(M'/F) = (Z/27)?,
we find a quadratic character a of Cr such that x = a o Ny p. This shows

that x(z) = a(z2¢) = a(2?) = 1 for € Cp. Thus we can write y = n°~! for
a character n: Cpy — T.

To have 7 factor through the Galois group of the maximal abelian extension
of M, we need to show that 1 can be chosen so that its restriction to M is
trivial. Since x = n°~! is trivial on MZ, n is trivial on (MZ)*™ = Ker(Nyy/p
M — FX). Thus n|y,x factors through Nyyp : M — FZ .. Replacing 7
by n(§ o Naj/r) for a Hecke character £ of F', we may assume that 7 is trivial
on MZ. This finishes the proof for even degree field.
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We now assume that F' has odd degree. The above trick of taking totally real
quadratic extensions F’/F reduces the proof to the even degree case of M'/F’;
so, we get the theorem. a

As we have seen that ¢ = ¢~ if and only if ¢ is trivial on Cp. If ¢ is
anticyclotomic, then 1(z¢) = ¢(z™!) (& ¢ =1 on Nyyp(MS)). Thus ¢|c,
is either the character of M/F or trivial. Since ¢ is a Hecke character of M
of finite order, its infinity type is trivial; so, ¥ has to be trivial on C'r. This
shows

(7.18)  If ¢ is anticyclotomic, then ¢ = ¢~ for a Hecke character ¢ of M.

We leave the reader to show that we can take ¢ to be of finite order (see [HMI]
Lemma 5.31).
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