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1 Introduction.

Fix a prime number p. Let F be a finite extension of Q and let F∞ be an
algebraic extension of F . We will consider the Zp-submodule U(F∞/F ) of
OF [1/p]

× ⊗ Zp defined by

U(F∞/F ) = Image(lim
←−
L

(OL[1/p]
× ⊗ Zp)→ OF [1/p]

× ⊗ Zp),

where L ranges over all finite extensions of F contained in F∞ and where the
inverse limit is taken with respect to the norm maps.
In the case F∞ is the cyclotomic Zp-extension of F , the understanding of
U(F∞/F ) is related to profound aspects in Iwasawa theory studied by Coates
and other people, as we will shortly recall in §3. Concerning bigger Galois
extensions F∞/F , the following result is (essentially) contained in Corollary
3.23 of Coates and Sujatha [4] (see §3 of this paper).

Assume F∞/F is a Galois extension and Gal(F∞/F ) is a commutative p-adic
Lie group. Assume also that there is only one place of F lying over p. Then
U(F∞/F ) is of finite index in OF [1/p]

× ⊗ Zp.

We ask what happens in the case of non-commutative Lie extensions.
The purpose of this paper is to prove the following theorem, which was conjec-
tured by Coates.

Documenta Mathematica · Extra Volume Coates (2006) 551–565



552 Kazuya Kato

Theorem 1.1. Let a1, · · · , ar ∈ F , and let

Fn = F (ζpn , a
1/pn

1 , · · · , a1/p
n

r ), F∞ = ∪n≥1Fn,

where ζpn denotes a primitive pn-th root of 1. Let F cyc be the cyclotomic Zp-
extension of F . Then:

(1) The quotient group U(F cyc/F )/U(F∞/F ) is finite.

(2) If there is only one place of F lying over p, then U(F∞/F ) is of finite index
in OF [1/p]

× ⊗ Zp.

An interesting point in the proof is that we use the finiteness of the higher
K-groups K2n(OF ) for n ≥ 1, for this result on the muliplicative group K1.
The author does not have any result on lim

←−L
OF [1/S]

× without ⊗Zp.
The plan of this paper is as follows. In §2, we review basic facts. In §3, we
review some known results in the case F∞/F is an abelian extension. In §4
and §5, we prove Theorem 1.1 (we will prove a slightly stronger result Theorem
5.1).
The author expresses his hearty thanks to John Coates for suggesting this
subject and for advice, and to Ramdorai Sujatha for advice and the hospitality
in Tata Institute where a part of this work was done.

2 Basic facts.

We prepare basic facts related to U(F∞/F ). Most materials appear in Coates
and Sujatha [4]. We principally follow their notation.

2.1. Let p be a prime number, and let F be a finite extension of Q. In the case
p = 2, we assume F is totally imaginary, for simplicity.
Let F∞ be a Galois extension of F such that the Galois group G = Gal(F∞/F )
is a p-adic Lie group and such that only finitely many finite places of F ramify
in F∞.
Let Zp[[G]] be the completed group ring of G, that is, the inverse limit of the
group rings Zp[G/U ] where U ranges over all open subgroups of G.

2.2. We define Zp[[G]]-modules

Zi(F∞) and Zi
S(F∞) (i ≥ 0)

where S is a finite set of finite places of F contaning all places of F lying over
p. Let

Zi
S(F∞) = lim

←−
L

Hi(OL[1/S],Zp(1))

where L ranges over all finite extensions of F contained in F∞, OL[1/S] denotes
the subring of L consisting of all elements which are integral at any finite place
of L not lying over S, and Hi is the étale cohomology. In the case S is the set
of all places of F lying over p, we denote Zi

S(F∞) simply by Zi(F∞).
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Since
(1) H1(OL[1/S],Zp(1)) ≃ OL[1/S]

× ⊗ Zp

by Kummer theory,

(2) Z1
S(F∞) ≃ lim

←−
L

(OL[1/S]
× ⊗ Zp).

Note that Hi(OL[1/S],Zp(1)) are finitely generated Zp-modules and Zi(F∞)
are finitely generated Zp[[G]]-modules. These modules are zero if i ≥ 3 for
the reason of cohomological dimension (here in the case p = 2, we use our
assumption F is totally imaginary).

2.3. Let US(F∞/F ) be the image of lim
←−L

(OL[1/S]
× ⊗ Zp) in OF [1/S]

× ⊗ Zp.
Here L ranges over all finite extensions of F contained in F∞.
The main points of the preparation in this section are the isomorphisms (1b)
and (2b) below.

(1) Assume S contains all finite places of F which ramify in F∞. Then there
are canonical isomorphisms

(1a) H0(G,Z2
S(F∞)) ≃ H2(OF [1/S],Zp(1)),

(1b) H1(G,Z2
S(F∞)) ≃ (OF [1/S]

× ⊗ Zp)/US(F∞/F ).

(2) Assume F∞ contains the cyclotomic Zp-extension F cyc. Then we have
canonical isomorphisms

(2a) H0(G,Z2(F∞/F ))⊗Zp
Qp ≃ H2(OF [1/p],Zp(1))⊗Zp

Qp,

(2b) H1(G,Z2(F∞))⊗Zp
Qp ≃ (OF [1/p]

× ⊗ Zp)/U(F∞/F )⊗Zp
Qp.

Here Hm(G, ?) = TorZp[[G]]
m (Zp, ?) denotes the G-homology. Note that

Hm(G,M) are finitely generated Zp-modules for any finitely generated Zp[[G]]-
module M .

(1a) and (1b) follow from the spectral sequence

Ei,j
2 = H−i(G,Zj

S(F∞))⇒ Ei
∞ = Hi(OF [1/S],Zp(1)),

the isomorphisms 2.2 (1) (2), and the fact Zj
S(F∞) = 0 for j ≥ 3. The above

spectral sequence is given in [9] Proposition 8.4.8.3 in the case G is commuta-
tive. In general, we have the above spectral sequence by [6] 1.6.5 (3).
The proofs of (2a) and (2b) are given in 2.6 later.

2.4. By Kummer theory and by the well known structure theorem of the Brauer
group of a global field, we have an exact sequence

(1) 0→ Pic(OF [1/S]){p} → H2(OF [1/S],Zp(1))→ ⊕v∈SZp
sum
−→ Zp → 0,
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where {p} denotes the p-primary part. Let

YS(F∞) = lim
←−
L

Pic(OL[1/S]){p},

where L ranges over all finite extensions of F contained in F∞. In the case S
is the set of all places of F lying over p, we denote YS(F∞) simply by Y (F∞).
Then the exact sequences (1) with F replaced by L give an exact sequence of
Zp[[G]]-modules

(2) 0→ YS(F∞)→ Z2
S(F∞)→ ⊕v∈SZp[[G]]⊗Zp[[Gv]] Zp → Zp → 0

where for each v ∈ S, Gv ⊂ G is the decomposition group of a place of F∞

lying over v.
If S contains all finite place of F which ramify in F∞, the composite homo-
morphism

(3) (OF [1/S]
× ⊗ Zp)/U(F∞/F ) ≃ H1(G,Z2

S(F∞))

→ ⊕v∈SH1(G,Zp[[G]]⊗Zp[[Gv]] Zp) = ⊕v∈SH1(Gv,Zp)

induced by (1b) and (2) coincides with the homomorphism induced by the
reciprocity maps

F×
v → Gab

v (p) ≃ H1(Gv,Zp)

of local class field theory, where Gab
v denotes the abelian quotient of Gv and

(p) means the pro-p part.

2.5. Assume F∞ ⊃ F cyc. Then we have isomorphisms

Z1(F∞)
≃
→ Z1

S(F∞), Y (F∞)
≃
→ YS(F∞).

The first isomorphism shows U(F∞/F ) = US(F∞/F ).
In fact, for each finite extension L of F contained in F∞, we have an exact
sequence

0→ OL[1/p]
× ⊗ Zp → OL[1/S]

× ⊗ Zp →

→ ⊕wZp → Pic(OL[1/p]){p} → Pic(OL[1/S]){p} → 0

where w ranges over all places of L lying over S but not lying over p. If L′ is
a finite extension of F such that L ⊂ L′ ⊂ F∞, and if w′ is a place of L′ lying
over w, the transition map from Zp at w′ to Zp at w is the multiplication by
the degree of the residue extension of w′/w. Since the residue extension of v
in F cyc/F for v not lying over p is a Zp-extension, this shows that the inverse
limit of ⊕wZp for varying L is zero. Hence we have the above isomorphisms.

2.6. We prove (2a) (2b) of 2.3. Take S containing all finite places of F which
ramify in F∞. Let T be the set of all elements of S which do not lie over p.
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By 2.4 (2) and by Y (F∞)
≃
→ YS(F∞) in 2.5, we have an exact sequence of

Zp[[G]]-modules

0→ Z2(F∞)→ Z2
S(F∞)→ ⊕v∈TZp[[G]]⊗Zp[[Gv ]] Zp → 0.

This gives a long exact sequence

· · · → Hm(G,Z2(F∞))→ Hm(G,Z2
S(F∞))→

→ ⊕v∈THm(Gv,Zp)→ Hm−1(G,Z2(F∞))→ · · · .

Let Gcyc = Gal(F cyc/F ) and for v ∈ T , let Gcyc
v be the image of Gv in Gcyc.

Then v is unramified in F cyc/F , and we have a canonical isomorphism Gcyc
v ≃

Zp which sends the Frobenius of v in Gcyc
v to 1 ∈ Zp. Let Hv (v ∈ T ) be the

kernel of Gv → Gcyc
v . Since G is a p-adic Lie group and since the characteristic

of the residue field of v is different from p, Hv is of dimension ≤ 1 as a p-adic
Lie group. Furthermore, if Hv is infinite, for an element σv of Gv whose image
in Gcyc

v is the Frobenius of v, the inner automorphism on Hv by σv is of infinite
order as is seen from the usual description of the tame quotient of the absolute
Galois group of Fv. These prove

(1) For v ∈ T , the kernel and the cokernel of the canonical map Hm(Gv,Zp)→
Hm(Gcyc

v ,Zp) are finite for any m.

Since the composition OF [1/S]
× → H1(G,Z2

S(F∞))→ H1(G
cyc
v ,Zp) = Gcyc

v ≃
Zp for v ∈ T coincides with the v-adic valuation OF [1/S]

× → Z, (1) shows
that the cokernel of H1(G,Z2

S(F∞)) → ⊕v∈TH1(Gv,Zp) is finite. Hence by
the above long exact sequence, we have the following commutative diagram
with exact rows in which the kernel of the first arrow of each row is finite.

H0(G,Z2(F∞)) → H0(G,Z2
S(F∞)) → ⊕v∈TZp → 0

↓ ↓ ↓
H2(OF [1/p],Zp(1)) → H2(OF [1/S],Zp(1)) → ⊕v∈TZp → 0

By this diagram and by 2.3 (1a), we have 2.3 (2a).
We next prove 2.3 (2b). By the above (1), H2(Gv,Zp) is finite for v ∈ T . By
this and by the case m = 1 of the above (1), we see that the complex 0 →
H1(G,Z2(F∞)) → H1(G,Z2

S(F∞)) → ⊕v∈TH1(G
cyc
v ,Zp) has finite homology

groups. By 2.3 (1b) and by U(F∞/F ) = US(F∞/F ) (2.5), the kernel of the
last arrow of this complex is isomorphic to (OF [1/p]

× ⊗ Zp)/U(F∞/F ). This
proves 2.3 (2b).

3 Abelian extensions (Review).

In this section, we review the proof of the following result of Coates and Sujatha
([4] Cor. 3.23), and then recall some known facts on U(F cyc/F ).

Proposition 3.1. Assume F∞/F is Galois and Gal(F∞/F ) is a commutative
p-adic Lie group. Assume further that there is only one place of F lying over
p. Then:
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(1) U(F∞/F ) is of finite index in OF [1/p]
× ⊗ Zp.

(2) Hm(G,Y (F∞)) and Hm(G,Z2(F∞)) are finite for any m.

In fact, this result was written in [4] in the situation Gal(F∞/F ) ≃ Z2
p. This

was because this result appeared in [4] in the study of the arithmetic of a Z2
p-

extension generated by p-power division points of an elliptic curve with complex
multiplication. We just check here that the method of their proof works in this
generality.

Proof. We may (and do) assume F∞ ⊃ F cyc. In the case p = 2, to apply our
preparation in §2, we assume F is totally imaginary without a loss of generality
(we may replace F by a finite extension of F having only one place lying over
p for the proof of 3.1).
(1) follows from the finiteness of H1(G,Z2(F∞)) in (2) by 2.3 (2b). We prove
(2).
We have H0(G,Z2(F∞))⊗Zp

Qp ≃ H2(OF [1/p],Zp(1))⊗Zp
Qp by 2.3 (2a), and

H2(OF [1/p],Zp(1)) is finite by the exact sequence 2.4 (1) and by the assump-
tion that there is only one place of F lying oer p. Hence H0(G,Z2(F∞)) ⊗Zp

Qp = 0. This shows that Hm(G,Z2(F∞)) ⊗Zp
Qp = 0 for any m (Serre [11]).

(Here the assumption G is commutative is essential. See 5.6.) This proves
Hm(G,Z2(F∞)) is finite for any m.
Let v be the unique place of F lying over p. Then by class field theory, the
decomposition group Gv of v in G is of finite index in G. By the exact sequence

H2(Gv,Zp) → H2(G,Zp) → H1(G,Z2(F∞)/Y (F∞)) → H1(Gv,Zp) → H1(G,Zp)

obtained from 2.4 (2), this shows that H1(G,Z2(F∞)/Y (F∞)) and hence the
kernel of H0(G,Y (F∞))→ H0(G,Z2(F∞)) are finite. Hence H0(G,Y (F∞)) is
finite, and by Serre [11], Hm(G,Y (F∞)) is finite for any m.

3.2. In the rest of this section, we recall some known facts about U(F cyc/F ).
Let Gcyc = Gal(F cyc/F ). For a place v of F lying over p, let Gcyc

v ⊂ Gcyc be
the decomposition group of v (so Gcyc

v ≃ Zp). Let (⊕v|pG
cyc
v )0 be the kernel of

the canoncial map ⊕v|pG
cyc
v → Gcyc.

Let

αF : (OF [1/p]
× ⊗ Zp)/U(F cyc/F )→ (⊕v|pG

cyc
v )0

be the homomorphism induced by the reciprocity maps of local fields Fv, which
appeared in 2.4 (3).
It is known that the following conditions (1) - (3) are equivalent.

(1) Ker (αF ) is finite. (That is, U(F cyc/F ) is of finite index in the kernel of
OF [1/p]

× ⊗ Zp → (⊕v|pG
cyc
v )0.)

(2) Coker (αF ) is finite.

(3) H0(G
cyc, Y (F cyc)) is finite.
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The equivalence of (1)-(3) is proved as follows. Though this is not at all
an essential point, in the case p = 2, to apply our preparation in §2, we
assume F is totally imaginary without a loss of generality (we can replace
F by a finite extension of F for the proof of the equivalence). Let σ be a
topological generator of Gcyc. Then H0(G

cyc,Z2(F cyc)) is isomorphic to the
cokernel of σ − 1 : Z2(F cyc) → Z2(F cyc) and H1(G

cyc,Z2(F cyc)) is isomor-
phic to the kernel of it. Since Z2(F cyc) is a torsion Zp[[G

cyc]]-module, this
shows that the Zp-rank of H1(G

cyc,Z2(F cyc)) ≃ (OF [1/p] ⊗ Zp)/U(F cyc/F )
is equal to the Zp-rank of H0(G

cyc,Z2(F cyc)) ≃ H2(OF [1/p],Zp(1)) which is
equal to the Zp-rank of (⊕v|pG

cyc
v )0 by 2.4 (1). Hence (1) and (2) are equiv-

alent. The exact sequence 2.4 (2) (take F∞ = F cyc and S to be the set of all
places of F lying over p) shows that Coker (αF ) is isomorphic to the kernel of
H0(G

cyc, Y (F cyc)) → H0(G
cyc,Z2(F cyc)) = H2(OF [1/p],Zp(1)). The image

of the last map is Pic(OF [1/p]){p} by 2.4 (1) (2), and hence is finite. Hence
Coker (αF ) is finite if and only if H0(G

cyc, Y (F cyc)) is finite.

3.3. Greenberg [7] proved that H0(G
cyc, Y (F cyc)) is finite if F is an abelian

extension of Q (hence all (1) - (3) in 3.2 are satisfied in this case).

3.4. In the case F is totally real, by Coates [2] Theorem 1.13, H0(G
cyc, Y (F cyc))

is finite if Leopoldt conjecture for F is true.

3.5. Let F be a CM field. Let F+ be the real part of F , and let
H0(G

cyc, Y (F cyc))± ⊂ H0(G
cyc, Y (F cyc)) be the ±-part with respect to the

action of the complex conjugation in Gal(F/F+). Then by the above result
of Coates, H0(G

cyc, Y (F cyc))+ is finite if Leopoldt conjecture for F+ is true.
On the other hand, Conjecture 2.2 in Coates and Lichtenbaum [3] says that
H0(G

cyc, Y (F cyc))− is finite. In [8], Gross conjectured that the kernel and the
cokernel of the (-)-part αF of αF is finite (this finiteness is also a consequence
of Conjecture 2.2 of [3]), and formulated a conjecture which relates α−

F to the
leading terms of the Taylor expansions at s = 0 of p-adic Artin L-functions.

Thus known conjectures support that the equivalent conditions (1) - (3) in 3.2
are satisfied by any CM field F .

A natural question arises: Are (1) - (3) in 3.2 true for any number field F?

4 A result on Tor modules.

The purpose of this section is to prove Proposition 4.2 below.

4.1. For a compact p-adic Lie group G, for a Zp[[G]]-module T , and for a
continuous homomorphism G → Z×

p , let T (χ) be the Zp[[G]]-module whose
underlying abelian group is that of T and on which Zp[[G]] acts by Zp[[G]] →
Zp[[G]] → End(T ), where the first arrow is the automorphism σ 7→ χ(σ)σ
(σ ∈ G) of the topological ring Zp[[G]] and the second arrow is the original
action of Zp[[G]] on T . We call T (χ) the twist of T by χ.
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Proposition 4.2. Let G be a compact p-adic Lie group, let H be a closed
normal subgroup of G, and assume that we are given a finite family of closed
normal subgroups Hi (0 ≤ i ≤ r) of G such that {1} = H0 ⊂ H1 ⊂ · · · ⊂ Hr =
H, Hi/Hi−1 ≃ Zp for 1 ≤ i ≤ r and such that the the action of G on Hi/Hi−1

by inner automorphisms is given by a homomorphism χi : G/H → Z×
p .

Let M be a finitely generated Zp[[G]]-module, and let M ′ be a subquotient of
the Zp[[G]]-module M . Let m ≥ 0. Then there is a finite family (Si)1≤i≤k of
Zp[[G/H]]-submodules of Hm(H,M ′) satisfying the following (i) and (ii).

(i) 0 = S0 ⊂ S1 ⊂ · · · ⊂ Sk = Hm(H,M ′).

(ii) For each i (1 ≤ i ≤ k), there are a subquotient T of the Zp[[G/H]]-
module H0(H,M) and a family (s(j))1≤j≤r of non-negative integers s(j) such
that ♯{j|s(j) > 0} ≥ m and such that Si/Si−1 is isomorphic to the twist

T (
∏

1≤j≤k χ
s(j)
j ) of T .

Note

Hm(H,M) = TorZp[[H]]
m (Zp,M) = TorZp[[G]]

m (Zp[[G/H]],M)

for Zp[[G]]-modules M .
A key point in the proof of Proposition 3.1 was that for commutative rings,
Torm vanishes if Tor0 vanishes. This is not true for non-commutative rings.
In the next section, we will use the above relation of Tor0 and Torm in a
non-commutative situation for the proof of Theorem 1.1.

4.3. We denote this proposition with fixed r by (Ar). Let (Br) be the case
M = M ′ of (Ar).

Since (Br) is a special case of (Ar), (Br) follows from (Ar).
In 4.4, we show that conversely, (Ar) follows from (Br). In 4.5, we prove (B1).
In 4.6, for r ≥ 1, we prove (Br) assuming (Ar−1) and (B1). These give a proof
of Prop.4.2.

4.4. We can deduce (Ar) from (Br) as follows. Let M
′′ be the quotient of the

Zp[[G]]-module M such that M ′ is a Zp[[G]]-submodule of M ′′. We have an
exact sequence of Zp[[G/H]]-modules

Hm+1(H,M ′′/M ′)→ Hm(H,M ′)→ Hm(H,M ′′).

Then (Ar) for the pair (M,M ′) is obtained from (Br) applied to M ′′/M ′ and
to M ′′ since H0(H,M ′′/M ′) and H0(H,M ′′) are quotients of the Zp[[G/H]]-
module H0(H,M).

4.5. We prove (B1). Assume r = 1. Let χ = χ1.
Note that H ≃ Zp. Let α be a topological generator of H, and let N = α−1 ∈
Zp[[G]]. Let I = Ker (Zp[[G]]→ Zp[[G/H]]) = Zp[[G]]N = NZp[[G]].
We have
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(1) For σ ∈ G, σNσ−1 is expressed as a power series in N with coefficients
in Zp which is congruent to χ(σ)N mod N2. In particular, σNσ−1 ≡ χ(σ)N
mod I2.

In fact, σNσ−1 = αχ(σ) − 1 = (1+N)χ(σ) − 1 = χ(σ)N +
∑

n≥2 ciN
i for some

ci ∈ Zp.
Concerning Hm(H,M) (m ≥ 0), we have:

(2) N(M) is a Zp[[G]]-submodule of M , I kills M/N(M), and there is an
isomorphism of Zp[[G/H]]-modules

H0(H,M) ≃M/N(M).

(3) Ker (N : M →M) is a Zp[[G]]-submodule of M , I kills Ker (N : M →M),
and there is an isomorphism of Zp[[G/H]]-modules

H1(H,M) ≃ Ker (N : M →M)(χ).

(4) Hm(H,M) = 0 fo m ≥ 2.

We prove (2)–(4). We have a projective resolution

0→ I → Zp[[G]]→ Zp[[G/H]]→ 0

of the right Zp[[G]]-module Zp[[G/H]]. Since Hm(H, ?) =

TorZp[[G]]
m (Zp[[G/H]], ?), H0(H,M) (resp. H1(H,M)) is isomorphic to the

cokernel (resp. kernel) of I⊗Zp[[G]]M →M , and Hm(H,M) = 0 for all m ≥ 2.
This proves (2) and (4). Furthermore,

H1(H,M) ≃ Ker (I ⊗Zp[[G]] M →M) ≃ I ⊗Zp[[G]] Ker (N : M →M)

≃ I/I2 ⊗Zp[[G/H]] Ker (N : M →M).

Consider the bijection

Ker (N : M →M)→ I/I2 ⊗Zp[[G/H]] Ker (N : M →M) ; x 7→ N ⊗ x.

By the above (1), for σ ∈ G, we have σN ⊗ x = χ(σ)Nσ ⊗ x = χ(σ)N ⊗ σx in
I/I2 ⊗Zp[[G/H]] Ker (N : M →M). Hence

I/I2 ⊗Zp[[G/H]] Ker (N : M →M) ≃ Ker (N : M →M)(χ)

as Zp[[G/H]]-modules. This proves (3).
Let

Vn = Ker (Nn : M →M) (n ≥ 0), V = ∪nVn.

Then, since Zp[[G]]Nn = NnZp[[G]], Vn is a Zp[[G]]-submodule of M . Since
Zp[[G]] is Noetherian and M is a finitely generated Zp[[G]]-module, V = Vn for
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some n. That is, N is nilpotent on V . Since Ker (N : M/V → M/V ) = 0, we
have H1(H,M/V ) = 0 by (3). Hence

(5) H1(H,V ) = H1(H,M),

(6) H0(H,V )→ H0(H,M) is injective.

Consider the monodromy filtration (Wi)i on the abelian group V given by the
nilpotent endomorphism N in the sense of Deligne [5] 1.6. It is an increasing
filtration characterized by the properties N(Wi) ⊂ Wi−2 for all i, and N i :

grWi
≃
→ grW−i for all i ≥ 0.

(7) Wi are Zp[[G]]-submodules of V .

In fact, for σ ∈ G, the filtration (σWi)i also has the characterizing property of
(Wi)i by (1).
Now we define an increasing filtration (W ′

i )i of the Zp[[G/H]]-module H0(H,V )
and an increasing filtration (W ′′

i )i on the Zp[[G/H]]-module H1(H,V ) =
H1(H,M) as follows. By identifying H0(H,V ) with Coker (N : V → V ), let
W ′

i = Wi(Coker (N : V → V )) (i.e. the image of Wi in Coker (N : V → V )).
By identifying H1(H,V ) with Ker (N : V → V )(χ), let W ′′

i = Wi(Ker (N :
V → V ))(χ) (i.e. (Wi ∩ Ker (N : V → V ))(χ)). Then W ′′

0 = H1(H,M), and
W ′′

i = 0 if i is sufficiently small. We prove:

(8) For any i ≥ 0,

grW
′′

−i ≃ grW
′

i (χi+1)

as Zp[[G/H]]-modules.

By the injectivity of H0(H,V )→ H0(H,M) (6), this proves (B1).

We prove (8). By (1), we have

(9) The map N : grWi → grWi−2 satisfies σNσ−1 = χ(σ)N for σ ∈ G.

Let Pi ⊂ grWi (i ≤ 0) be the primitive part Ker (N : grWi → grWi−2) ([5]
1.6.3). Then for i ≥ 0, the canonical map grW−i(Ker (N : V → V )) → P−i

is an isomorphism of Zp[[G/H]]-modules ([5] 1.6.6). Furthermore, we have a

bijection P−i
≃
→ grWi (Coker (N : V → V )) as the composition

P−i → grW−i
Ni

← grWi → grWi (Coker (N : V → V ))

([5] 1.6.4, 1.6.6, and the dual statement of 1.6.6 for Coker (N)). By (9), this
gives an isomorphism of Zp[[G/H]]-modules P−i ≃ grWi (Coker (N : V →
V ))(χi). Hence we have (8).

4.6. Let r ≥ 1. We prove (Br) assuming (Ar−1) and (B1). Let J = H1. By
the spectral sequence

E−i,−j
2 = Hi(H/J,Hj(J,M))⇒ E−m

∞ = Hm(H,M)
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in which Hj(J,M) = 0 for j ≥ 2, we have an exact sequence of Zp[[G/H]]-
modules

(1) Hm−1(H/J,H1(J,M))→ Hm(H,M)→ Hm(H/J,H0(J,M)).

We consider Hm−1(H/J,H1(J,M)) first. By (B1) applied to the triple
(G, J,M), H1(J,M) is a successive extension of twists of subquotients of
H0(J,M) by χi

1 (i ≥ 1). By (Ar−1) applied the triple (G/J,H/J,H0(J,M)),
Hm−1(H/J, ?) of these subquotients of H0(J,M) are successive extensions of

twists of subquotients of H0(H/J,H0(J,M)) = H0(H,M) by
∏

2≤j≤r χ
s(j)
j

such that s(j) ≥ 0 for all j and such that ♯({j | s(j) > 0} ≥ m − 1.
Hence Hm−1(H/J,H1(J,M)) is a successive extension of twists of subquo-

tients of H0(H,M) by
∏

1≤j≤r χ
s(j)
j such that s(j) ≥ 0 for all j and such that

♯({j | s(j) > 0} ≥ m.
We consider Hm(H/J,H0(J,M)) next. By (Br−1) (which is assumed
since we assume (Ar−1)) applied to the triple (G/J,H/J,H0(J,M)),
Hm(H/J,H0(J,M)) is a successive extension of twists of subquotients of

H0(H/J,H0(J,M)) = H0(H,M) by
∏

2≤j≤r χ
s(j)
i such that s(j) ≥ 0 for all j

and such that ♯({j | s(j) > 0} ≥ m.
By these properties of Hm−1(H/J,H1(J,M)) and Hm(H/J,H0(J,M)), the
exact sequence (1) proves (Br) (assuming (Ar−1) and (B1)).

5 Some non-commutative Galois extensions.

Theorem 1.1 in Introduction is contained in Corollary 5.2 of the following The-
orem 5.1, for the extension F∞/F in Theorem 1.1 satisfies the assumption of
Theorem 5.1 with n(i) = 1 for all i.

Theorem 5.1. Assume that F∞ is a Galois extension of F , F∞ ⊃ ∪nF (ζpn),
and that there is a finite family of closed normal subgroups Hi (1 ≤ i ≤ r) of
G = Gal(F∞/F ) satisfying the following condition. Let F cyc be the cyclotomic
Zp-extension of F and let H be the kernel of G→ Gcyc = Gal(F cyc/F ). Then
{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hr, Hr is an open subgroup of H, and for 1 ≤ i ≤ r,
Hi/Hi−1 ≃ Zp and the action of G on it by inner automorphism is the n(i)-th
power of the cyclotomic character G→ Z×

p for some positive integer n(i) > 0.
Let S be any finite set of finite places of F containing all places lying over p.
Then the kernel and the cokernel of the canonical maps

Hm(G,Z2
S(F∞))→ Hm(Gcyc,Z2

S(F
cyc)),

Hm(G,Y (F∞))→ Hm(Gcyc, Y (F cyc))

are finite for any m.
In particular (since Hm(Gcyc, ?) = 0 for m ≥ 2), Hm(G,Z2

S(F∞)) and
Hm(G,Y (F∞)) are finite for any m ≥ 2.
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Corollary 5.2. Let the assumption be as in Theorem 5.1. Then:

(1) The quotient group U(F cyc/F )/U(F∞/F ) is finite.
(2) If there is only one place of F lying over p, then U(F∞/F ) is of finite index
in OF [1/p]

× ⊗ Zp, and Hm(G,Y (F∞)) and Hm(G,Z2(F∞)) are finite for any
m.

(3) If F is an abelian extension over Q, then Hm(G,Y (F∞)) is finite for any
m.

In fact, by 2.3 (2b), (1) of Corollary 5.2 follows from the finiteness of the
kernel and the cokernel of H1(G,Z2(F∞)) → H1(G

cyc,Z2(F cyc)) which is a
special case of Theorem 5.1. (2) follows from (1) and the case F∞ = F cyc of
Proposition 3.1. (3) follows from (1) and the result of Greenberg introduced in
3.3.

Corollary 5.3. Let the assumption be as in Theorem 5.1. Then
Hm(G,Z1(F∞)) for m ≥ 1 and the kernel of the canonical map
H0(G,Z1(F∞))→ OF [1/p]

× ⊗ Zp are finite.

In fact, for S containing all finite places which ramify in F∞, since Z1(F∞)
≃
→

Z1
S(F∞) (2.5), the spectral sequence in 2.3 shows that Hm(G,Z1(F∞)) for

m ≥ 1 is isomorphic toHm+2(G,Z2
S(F∞)), and the kernel ofH0(G,Z1(F∞))→

OF [1/p]
× ⊗ Zp is isomorphic to H2(G,Z2

S(F∞)). Hence this corollary follows
from the finiteness of Hm(G,Z2

S(F∞)) for m ≥ 2 in Theorem 5.1.

5.4. We prove Theorem 5.1. First in this 5.4, we show that the kernel and
the cokernel of Hm(G,Z2

S(F∞)) → Hm(Gcyc,Z2
S(F

cyc)) are finite for any m
assuming that S contains all finite places of F which ramify in F∞,.
We may replace F by a finite extension of F . Hence we may assume that
Hr = H, ∪n≥1F (ζpn) = F cyc, and that in the case p = 2, F is totally imaginary.
Let p be the augmentation ideal of Zp[[G

cyc]]. It is a prime ideal of Zp[[G
cyc]].

By the spectral sequence E−i,−j
2 = Hi(G

cyc, Hj(H, ?)) ⇒ E−m
∞ = Hm(G, ?),

it is sufficient to prove that Hi(G
cyc, Hm(H,Z2

S(F∞))) is finite for any i and
for any m ≥ 1. For a finitely generated Zp[[G

cyc]]-module M , Hi(G
cyc,M) is

isomorphic to M/pM if i = 0, to the part of M annihilated by p if i = 1, and
is zero if i ≥ 2. Applying this taking M = Hm(H,Z2

S(F∞)), we see that it is
sufficient to prove

(1) Hm(H,Z2
S(F∞))p = 0 for any m ≥ 1,

where (?)p denotes the localization at the prime ideal p.
We apply Proposition 4.2 to the case M = M ′ = Z2

S(F∞). By this proposition,
to prove (1), it is sufficient to show that for any subquotient T of the Zp[[G

cyc]]-
module H0(H,M) = Z2

S(F
cyc) and for any integer k ≥ 1, we have T (k)p = 0.

Here T (k) is the k-th Tate twist. It is sufficient to prove that H0(G
cyc, T (k))

is finite. Since Z2
S(F

cyc) is a finitely generated torsion Zp[[G
cyc]]-module, the

Zp[[G
cyc]]-module T is a successive extension of Zp[[G

cyc]]-modules which are
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either finite or isomorphic to Zp[[G
cyc]]/q for some prime ideal q of Zp[[G

cyc]]
of height one. We may assume T ≃ Zp[[G

cyc]]/q. Then there is a Zp[[G
cyc]]-

homomorphism Z2
S(F

cyc) → T with finite cokernel. Hence it is sufficient to
prove that H0(G

cyc,Z2(F cyc)(k))) is finite for any k ≥ 1. But

H0(G
cyc,Z2(F cyc)(k))) ≃ H2(OF [1/S],Zp(k + 1)).

The last group is finite by Soulé [12]. In fact, by Quillen [10] and Borel [1],
K2k(OF [1/S]) is finite, and by Soulé [12], we have a surjective Chern class map
from K2k(OF [1/S]) to H2(OF [1/S],Zp(k + 1)).

5.5. We complete the proof of Theorem 5.1. Let S be a finite set of finite places
of F which contains all places of F lying over p. Take a finite set S′ of finite
places of F such that S ⊂ S′ and such that S′ contains all finite places of F
which ramify in F∞.
By comparing the exact sequence 2.4 (2) for F∞/F and that for
F cyc/F , we see that the finiteness of the kernel and the cokernel
of Hm(G,Z2

S(F∞)) → Hm(Gcyc,Z2
S(F

cyc)) for all m and that of
Hm(G,Y (F∞)) → Hm(Gcyc, Y (F cyc)) for all m are consequences of the
following (1) - (3).

(1) The kernel and the cokernel of Hm(G,Z2
S′(F∞)) → Hm(Gcyc,Z2

S′(F cyc))
are finite for all m.

(2) The kernel and the cokernel of Hm(G,Zp) → Hm(Gcyc,Zp) are finite for
all m.

(3) The kernel and the cokernel of Hm(Gv,Zp) → Hm(Gcyc
v ,Zp) are finite for

all m and for all finite places v of F . Here Gv ⊂ G denotes a decomposition
group of a place of F∞ lying over v, and Gcyc

v denotes the image of Gv in Gcyc.

We proved (1) already in 5.4. (2) and (3) follow from the case M = M ′ = Zp

of Proposition 4.2.

Remark 5.6. There is an example of a p-adic Lie extension F∞/F for which
there is only one place of F lying over p but U(F∞/F ) is not of finite index
in OF [1/p]

× ⊗ Zp. For example, let F = Q, let E be an elliptic curve over F
with good ordinary reduction at p, and let F∞ be the field generated over F
by pn-division points of E for all n. Then U(F∞/F ) = {1} and is not of finite
index in OF [1/p]

×⊗Zp = Z[1/p]×⊗Zp ≃ Zp. In fact U(F∞/F ) must be killed
by the reciprocity map of local class field theory of Qp into Gab

p (p) ≃ Z2
p, where

Gp ⊂ G = Gal(F∞/F ) denotes the decomposition group at p, and Gab
p (p)

denotes the pro-p part of the abelian quotient of Gp. The image of p ∈ Z[1/p]×

in Gab
p (p) is of infinite order. This proves U(F∞/F ) = {1}. In this case,

H0(G,Z2(F∞)) is finite, but H1(G,Z2(F∞)) is not finite.

Remark 5.7. There is an example of a p-adic Lie extension F∞/F for which
G = Gal(F∞/F ) ≃ Z2

p and H0(G,Y (F∞/F )) is not finite. Let K be an imag-
inary quadratic field in which p splits, let K∞ be the unique Galois extension
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of K such that Gal(K∞/K) ≃ Z2
p, let F be a finite extension of K in which p

splits completely, and let F∞ = FK∞. Then the Zp-rank of H1(G,Y (F∞)) is
≥ [F : K]− 1 as is shown below. Hence it is not zero if F 6= K. In fact, from
the exact sequence 2.4 (2) with S the set of all places of F lying over p, we can
obtain

rank Zp
H1(G,Y (F∞)) ≥

≥ (
∑

v∈S

rank Zp
H1(Gv,Zp))− rank Zp

H1(G,Zp)− rank Z OF [1/p]
×.

But rank Zp
H1(Gv,Zp) = 2 for any v ∈ S, rank Zp

H1(G,Zp) = 2,
rank ZOF [1/p]

× = 3[F : K]−1 by Dirichlet’s unit theorem, and hence the right
hand side of the above inequality is 2[F : Q]− 2− (3[F : K]− 1) = [F : K]− 1.
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