
Documenta Math. 567

An Elementary Proof of the

Mazur-Tate-Teitelbaum Conjecture for Elliptic Curves

Dedicated to Professor John Coates on the occasion of his sixtieth birthday

Shinichi Kobayashi
1

Received: November 29, 2005

Revised: February 15, 2006

Abstract. We give an elementary proof of the Mazur-Tate-
Teitelbaum conjecture for elliptic curves by using Kato’s element.

2000 Mathematics Subject Classification: 11F85, 11G05, 11G07,
11G40, 11S40.
Keywords and Phrases: elliptic curves, p-adic L-functions, Iwa-
sawa theory, the Mazur-Tate-Teitelbaum conjecture, exceptional ze-
ros, Kato’s element.

1. Introduction

The p-adic L-function Lp(E, s) of an elliptic curve E defined over Q has an
extra zero at s = 1 coming from the interpolation factor at p if E has split
multiplicative reduction at the prime p. The Mazur-Tate-Teitelbaum conjec-
ture (now a theorem of Greenberg-Stevens) describes the first derivative of
Lp(E, s) as

d

ds
Lp(E, s) | s=1 =

logp(qE)

ordp(qE)

L(E, 1)

Ω+
E

where qE is the Tate period of E coming from the p-adic uniformization of E at
p, logp is the Iwasawa p-adic logarithm, Ω+

E is the real period of E and L(E, 1)
is the special value of the complex Hasse-Weil L-function at s = 1.
Known proofs of this conjecture are classified into two kinds. One is, as
Greenberg-Stevens [GS] did first, a proof using a global theory like Hida’s
universal ordinary deformation. The other is, as Kato-Kurihara-Tsuji [KKT]
or Colmez [C] did, a proof based on local theory (except using Kato’s element).
Each kind of proof has its own importance but the latter type of proof makes it
clear that the substantial facts behind this conjecture are of local nature. The
p-adic L-function is the image of Kato’s element via a purely local morphism,
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the so called Coleman map or Perrin-Riou map. The extra zero phenomena dis-
covered by Mazur-Tate-Teitelbaum is, in fact, a property of the local Coleman
map.
In this paper, we prove a derivative formula (Theorem 4.1) of the Coleman map
for elliptic curves by purely local and elementary method and we apply this
formula to Kato’s element to show the conjecture of Mazur-Tate-Teitelbaum.
Of course, our proof is just a special and the simplest case of that in Kato-
Kurihara-Tsuji [KKT] or Colmez [C] (they proved the formula not only for
elliptic curves but for higher weight modular forms) but I believe that it is
still worthwhile to write it down for the following reason. First, the important
paper Kato-Kurihara-Tsuji [KKT] has not yet been published. Second, since
we restrict ourselves to the case of elliptic curves, the proof is much simpler and
elementary (of course, such a simple proof would be also known to specialists.
In fact, Masato Kurihara informed me that Kato, Kurihara and Tsuji have
two simple proofs and one is similar to ours). I hope that this paper would
help those who are interested in the understanding of this interesting problem.

Acknowledgement: I would like to wish Professor John Coates a happy six-
tieth birthday, and to thank him for his contribution to mathematics, especially
to Iwasawa theory. It is my great pleasure to dedicate this article to him on
this occasion.
This paper was written during the author’s visit at the university of Paris 6.
He would like to thank P. Colmez and L. Merel for the accommodation. He
also would like to thank K. Bannai and N. Otsubo for discussion. Finally, he
is grateful to the referee for his careful reading of the manuscript.

2. A structure of the group of local units in k∞/Qp.

Let k∞ be the (local) cyclotomic Zp-extension of Qp in Qp(ζp∞) :=
∪∞n=0Qp(ζpn) with Galois group Γ and let kn be its n-th layer in k∞ with
Galois group Γn. We identify the Galois group Gal(Qp(ζp∞)/Qp) with Z×

p by
the cyclotomic character κ. Then Γ is identified with 1 + pZp and the torsion
subgroup ∆ of Gal(Qp(ζp∞)/Qp) is regarded as µp−1 ⊂ Z×

p .

Let U1
n be the subgroup of O×

kn
consisting of the elements which are congruent

to 1 modulo the maximal ideal mn of Okn
.

Following the Appendix of Rubin [R] or [Ko], for a fixed generator (ζpn)n∈N of
Zp(1), we construct a certain canonical system of local points (dn)n ∈ lim

←−n
U1
n

and we determine the Galois module structure of U1
n by using these points.

The idea of the construction of such a system is as follows. First we consider a

certain formal group F isomorphic to Ĝm whose formal logarithm has a certain
compatible property with the trace operator of k∞. Then the system of local

points is essentially the image of cyclotomic units by the isomorphism F ∼= Ĝm.
We let

ℓ(X) = log(1 +X) +

∞∑

k=0

∑

δ∈∆

(X + 1)p
kδ − 1

pk
.
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The Mazur-Tate-Teitelbaum Conjecture 569

This power series is convergent in Qp[[X]] due to the summation
∑

δ∈∆. It is
straightforward to see that

ℓ′(X) ∈ 1 +XZp[[X]], ℓ(0) = 0, (ϕ− p) ◦ ℓ(X) ∈ pZp[[X]]

where ϕ is the Frobenius operator such that (ϕ ◦ ℓ)(X) = ℓ((X + 1)p − 1).
Hence by Honda’s theory, there is a formal group F over Zp whose logarithm
is given by ℓ, and ι(X) = exp ◦ ℓ (X) − 1 ∈ Zp[[X]] gives an isomorphism of

formal groups F ∼= Ĝm over Zp. (See for example, Section 8 of [Ko].) Take an
element ε of pZp such that ℓ(ε) = p and we define

cn := ι((ζpn+1 − 1) [+]F ε).

Since this element is fixed by the group ∆, this is an element of Ĝm(mn). Then
by construction, dn = 1 + cn ∈ U1

n satisfies the relation

logp(dn) = ℓ(ε) + ℓ(ζpn+1 − 1) = p+

n∑

k=0

∑

δ∈∆

ζpn+1−k
δ − 1

pk
.

Proposition 2.1. i) (dn)n is a norm compatible system and d0 = 1.
ii) Let u be a generator of U1

0 . Then as Zp[Γn]-module, dn and u generate U1
n,

and dn generates (U1
n)

N=1 where N is the absolute norm from kn to Qp.

Proof. Since ζp − 1 is not contained in mn, the group Ĝm(mn) does not con-
tain p-power torsion points. Therefore to see i), it suffices to show the trace
compatibility of (logp(dn))n, and this is done by direct calculations. For ii),

we show that (ι−1(cn)
σ)σ∈Γn

and ε generate F(mn) as Zp-module by induction
for n. The proof is the same as that of Proposition 8.11 of [Ko] but we rewrite
it for the ease of the reader. The case n = 0 is clear. For arbitrary n, we show
that ℓ(mn) ⊂ mn + kn−1 and

F(mn)/F(mn−1) ∼= ℓ(mn)/ℓ(mn−1) ∼= mn/mn−1.

Here the first isomorphism is induced by the logarithm ℓ and the last isomor-
phism is by (mn + kn−1)/kn−1

∼= mn/mn−1. As a set, F(mn) is the maximal
ideal mn, and we write x ∈ F(mn) in the form x =

∑
δ∈∆

∑
i ai ζ

iδ
pn+1 , ai ∈ Zp.

Then for y =
∑

δ∈∆

∑
i ai ζ

iδ
pn ∈ mn−1, we have that xp ≡ y mod pOkn

.
Therefore for k ≥ 1, we have

∑

δ∈∆

(x+ 1)p
kδ − 1

pk
≡
∑

δ∈∆

(xp + 1)p
k−1δ − 1

pk
≡
∑

δ∈∆

(y + 1)p
k−1δ − 1

pk
mod mn.

Hence we have
∑

δ
(x+1)p

kδ−1
pk ∈ mn + kn−1. Since ℓ(x) is convergent, for

sufficiently large k0, we have
∑∞

k=k0

∑
δ

(x+1)p
kδ−1

pk ∈ mn, and therefore ℓ(x)

is contained in mn + kn−1. Since ℓ is injective on F(mn) (there is no torsion

point in F(mn) ∼= Ĝm(mn)) and is compatible with the Galois action, we have
ℓ (mn) ∩ kn−1 = ℓ (mn−1). Therefore we have an injection

ℓ(mn)/ℓ(mn−1) →֒ (mn + kn−1)/kn−1
∼= mn/mn−1.
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By direct calculations, we have ℓ(ι−1(cn)) ≡
∑

δ(ζ
δ
pn+1 − 1) mod kn−1. Since∑

δ(ζ
δ
pn+1 − 1) generates mn/mn−1 as a Zp[Γn]-module with respect to the

usual addition, the above injection is in fact a bijection. Thus (ι−1(cn)
σ)σ∈Γn

generate F(mn)/F(mn−1). By induction (ι−1(cn)
σ)σ∈Γn

and ε generate F(mn).

Since Ĝm is isomorphic to F by ι, we have ii). �

Since Ndn = d0 = 1, by Hilbert’s theorem 90, there exists an element
xn ∈ kn such that dn = xγ

n/xn for a fixed generator γ of Γ. We put
πn =

∏
δ∈∆(ζ

δ
pn+1 − 1). Then πn is a norm compatible uniformizer of kn.

By the previous proposition, xn can be taken of the form xn = πen
n un for some

integer en and un ∈ (U1
n)

N=1.

Proposition 2.2. In the same notation as the above, we have

p ≡ en (p− 1) logp κ(γ) mod pn+1.

Proof. If we put

G(X) = exp(p) · exp ◦ ℓ (X) = exp ◦ ℓ (X[+]ε) ∈ 1 + (p,X)Zp[[X]],

then by definition
Gσ(ζpm+1 − 1) = dσm

where Gσ(X) = G((X + 1)κ(σ) − 1) for σ ∈ Γ. By Proposition 2.1 ii), un is
written as a product in the form un =

∏
(dσn)

a. If we put H(X) =
∏

Gσ(X)a,
then H(X) satisfies H(ζpm+1 − 1) = Nkn/km

un for 0 ≤ m ≤ n. We put

F (X) =

(
∏

δ∈∆

(X + 1)δκ(γ) − 1

(X + 1)δ − 1

)en
H((X + 1)κ(γ) − 1)

H(X)
.

Then we have

G(X) ≡ F (X) mod
(X + 1)p

n+1

− 1

X
since they are equal if we substitute X = ζpm+1−1 for 0 ≤ m ≤ n. Substituting
X = 0 in this congruence and taking the p-adic logarithm, we have that p ≡
en(p− 1) logp κ(γ) mod pn+1. �

3. The Coleman map for the Tate curve.

We construct the Coleman map for the Tate curve following the Appendix of
[R] or Section 8 of [Ko]. See also [Ku]. In this section we assume that E is the
Tate curve

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

where q = qE ∈ Q×
p satisfying |q|p < 1 and

sk(q) =
∑

n≥1

nkqn

1− qn
, a4(q) = −s3(q), a6(q) = −

5s3(q) + 7s5(q)

12
.

Then we have the uniformization

φ : Cp
×/qZ ∼= Eq(Cp), u 7→ (X(u, q), Y (u, q))
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where

X(u, q) =
∑

n∈Z

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∑

n∈Z

(qnu)2

(1− qnu)3
+ s1(q).

(Of course, we put φ(qZ) = O.) This isomorphism induces the isomorphism of

the formal groups φ̂ : Ĝm
∼= Ê. It is straightforward to see that the pull back

by φ̂ of the invariant differential ωE = dx
2y+x on Ê with the parameter t = −x/y

is the invariant differential ω
Ĝm

= dX
1+X on Ĝm with the parameter X = u− 1.

Hence φ̂ is given by the power series t = expÊ ◦ log(1 +X)− 1 ∈ Zp[[X]].

From now we identify Ĝm with Ê by φ̂. In particular, we regard cn ∈ Ĝm(mn)

in the previous section as an element of Ê(mn).
Let T = TpE be the p-adic Tate module of E and V = T ⊗ Qp. The cup
product induces a non-degenerate pairing of Galois cohomology groups

( , )E,n : H1(kn, T )×H1(kn, T
∗(1))→ H2(kn,Zp(1)) ∼= Zp.

If there is no fear of confusion, we write ( , )E,n simply as ( , )E . By the

Kummer map, we regard Ê(mn) as a subgroup of H1(kn, T ). Then we define
a morphism Coln : H1(kn, T

∗(1))→ Zp[Γn] by

z 7−→
∑

σ∈Γn

(cσn, z)E,n σ.

This morphism is compatible with the natural Galois action and since the
sequence (cn)n is norm compatible, Coln is also compatible for n with respect
to the corestrictions and the natural projections. We define the Coleman map

Col : lim
←−
n

H1(kn, T
∗(1)) −→ Λ = Zp[[Γ]]

as the projective limit of Coln over all n.
We recall the dual exponential map. For every n let tan(E/kn) denote the
tangent space of E/kn at the origin, and consider the Lie group exponential
map

expE,n : tan(E/kn)→ E(kn)⊗Qp.

The cotangent space cotan(E/kn) is generated by the invariant differential ωE

over kn, and we let ω∗
E be the corresponding dual basis of tan(E/kn). Then

there is a dual exponential map

exp∗E,n : H1(kn, V
∗(1)) −→ cotan(E/kn) = kn ωE ,

which has a property

(x, z)E,n = Trkn/Qp
logÊ(x) exp

∗
ωE ,n(z)

for every x ∈ Ê(mn) and z ∈ H1(kn, V
∗(1)). Here exp∗ωE ,n = ω∗

E ◦ exp
∗
E,n. If

there is no fear of confusion, we write exp∗ωE ,n(z) as exp
∗
ωE

(z). Then using the
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identification φ̂ : Ĝm
∼= Ê, the morphism Coln is described in terms of the dual

exponential map as follows.

Coln(z) =
∑

σ∈Γn

(cσn, z)E,n σ

=
∑

σ∈Γn

( Trkn/Qp
logp(d

σ
n) exp

∗
ωE

(z) )σ

=

(
∑

σ∈Γn

logp(d
σ
n)σ

) (
∑

σ∈Γn

exp∗ωE
(zσ)σ−1

)
.

Let Gn be the Galois group Gal(Qp(ζpn)/Qp) and let χ be a finite character of
Gn+1 of conductor pn+1 which is trivial on ∆. Then we have

∑

σ∈Γn

logp(d
σ
n)χ(σ) =

{
τ(χ) if χ is non-trivial,

0 otherwise

where τ(χ) is the Gauss sum
∑

σ∈Gn+1
χ(σ) ζσpn+1 . Hence for χ 6= 1, we have

χ ◦ Col(z) = τ(χ)
∑

σ∈Γn

exp∗ωE
(zσ)χ(σ)−1.

Kato showed that there exists an element zKato ∈ lim
←−n

H1(kn, T
∗(1)) such that

∑

σ∈Γn

exp∗ωE
((zKato)σ)χ(σ)−1 = ep(χ)

L(E,χ, 1)

Ω+
E

where ep(χ) is the value at s = 1 of the p-Euler factor of L(E,χ, s), that is,

ep(χ) = 1 if χ is non-trivial and ep(χ) =
(
1− 1

p

)
if χ is trivial. (See [Ka],

Theorem 12.5.) Hence we have

χ ◦ Col(zKato) = τ(χ)
L(E,χ, 1)

Ω+
E

if χ is non-trivial. The p-adic L-function Lp(E, s) is written of the form

Lp(E, s) = Lp,γ(E, κ(γ)s−1 − 1)

for some power series Lp,γ(E,X) ∈ Zp[[X]]. If we identify Λ = Zp[[Γ]] with
Zp[[X]] by sending γ 7→ 1 +X, then it satisfies an interpolation formula

χ ◦ Lp,γ(E,X) = τ(χ)
L(E,χ, 1)

Ω+
E

.

Since an element of Λ has only finitely many zeros, we conclude that

Col(zKato)(X) = Lp,γ(E,X).

Here we denote Col(zKato) by Col(zKato)(X) to emphasis that we regard
Col(zkato) as a power series in Zp[[X]]. Note that we have 1 ◦ Col(z) = 0
for the trivial character 1, or Col(z)(0) = 0, namely, any Coleman power series
Col(z)(X) for the Tate curve has a trivial zero at X = 0.
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4. The first derivative of the Coleman map.

We compute the first derivative of the Coleman map Col(z)(X). By Tate’s
uniformization, there is an exact sequence of local Galois representations

(1) 0→ T1 → T → T2 → 0

where T1 = TpÊ ∼= Zp(1) and T2
∼= Zp. The cup product induces a non-

degenerate paring

H1(kn, T1)×H1(kn, T
∗
1 (1))→ H2(kn,Zp(1)) ∼= Zp.

With the identification by φ̂ : T1
∼= Zp(1), this is in fact the cup product pairing

of Gm

( , )Gm,n : H1(kn,Zp(1))×H1(kn,Zp)→ H2(kn,Zp(1)) ∼= Zp.

If there is no fear of confusion, we write ( , )Gm,n simply as ( , )Gm
. Since

cn ∈ Ê(kn) ⊂ H1(kn, T1), we have

(cσn, z)E,n = (dσn, π(z))Gm,n

for z ∈ H1(kn, T
∗(1)) where π is the morphism induced by the projection

T ∗(1)→ T ∗
1 (1). Tate’s uniformization φ also induces a commutative diagram

H1(kn, V
∗(1))

exp∗

E−−−−→ kn ωE
ω∗

E−−−−→ kn

π

y
y

H1(kn, V
∗
1 (1))

exp∗

Gm−−−−→ kn ωGm

ω∗

Gm−−−−→ kn

where ωGm
is the invariant differential of Gm which is dX

1+X on Ĝm, and ω∗
Gm

is the dual basis for ωGm
. We also put exp∗ωGm

= ω∗
Gm
◦ exp∗Gm

.
Now we compute the derivative. With the same notation as the previous sec-
tion, we have

Coln(z) =
∑

σ∈Γn

(cσn, z)E,n σ =
∑

σ∈Γn

(dσn, π(z))Gm,n σ

=
∑

σ∈Γn

((xγ
n/xn)

σ, π(z))Gm,n σ

= (γ−1 − 1)
∑

σ∈Γn

(xσ
n, π(z))Gm,n σ.

Therefore by the identification Zp[X]/((X + 1)p
n

− 1) ∼= Zp[Γn], X 7→ γ − 1,
we have

Col(z)(X)

X
≡ −

1

γ

∑

σ∈Γn

(xσ
n, π(z))Gm,n σ mod

(X + 1)p
n

− 1

X
.

Hence

Col(z)′(0) ≡ − (Nxn, π(z))Gm,0 mod pn.
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Since Nxn = penN(un) = pen and by Proposition 2.2, we have

(Nxn, π(z))Gm
= en (p, π(z))Gm

≡
p

(p− 1) logp κ(γ)
(p, π(z))Gm

mod pn.

Taking limit for n, we have that

(2) Col(z)′(0) = −
p

(p− 1) logp κ(γ)
(p, π(z))Gm

.

Next we compute (p, π(z))Gm
. We consider the exact sequence

H1(Qp, T
∗(1))

π
−−−−→ H1(Qp, T

∗
1 (1))

δ2−−−−→ H2(Qp, T
∗
2 (1))

induced by (1), and a diagram

H1(Qp, T1) × H1(Qp, T
∗
1 (1))

( , )Gm−−−−→ H2(Qp,Zp(1)) = Zp

δ1

x δ2

y
y

H0(Qp, T2) × H2(Qp, T
∗
2 (1))

( , )Gm−−−−→ H2(Qp,Zp(1)) = Zp.

It is straightforward to see that the connecting morphism δ1 is given by

H0(Qp, T2) = Zp → Q×
p ⊗ Zp = H1(Qp, T1), 1 7→ qE ⊗ 1.

Hence for w ∈ H1(Qp, T
∗
1 (1)), we have

(qE ⊗ 1, w)Gm
= (δ1(1), w)Gm

= (1, δ2(w))Gm
.

In particular, if w comes from H1(Qp, T
∗(1)), namely, it is of the form π(z),

then

(3) (qE ⊗ 1, w)Gm
= (qE ⊗ 1, π(z))Gm

= (1, δ2 ◦ π(z))Gm
= 0.

On the other hand, if we put qE = pordp(qE) ρ uq where ρ ∈ µp−1 and uq ∈
1 + pZp, we have

(qE ⊗ 1, w)Gm
= ordp(qE) (p, w)Gm

+ (uq, w)Gm
(4)

= ordp(qE) (p, w)Gm
+ logp(uq) exp

∗
ωGm

(w).(5)

Hence by (3) and (5) we have

(6) (p, π(z))Gm
= −

logp(uq)

ordp(qE)
exp∗ωGm

(π(z)) = −
logp(qE)

ordp(qE)
exp∗ωE

(z).

Combining (2) and (6), we obtain

Theorem 4.1. For z ∈ lim
←−n

H1(kn, T
∗(1)), the first derivative of the Coleman

map Col(z) is given by

d

dX
Col(z)(X) |X=0 =

p

(p− 1) logp κ(γ)

logp(qE)

ordp(qE)
exp∗ωE

(z).

Now if E/Q has split multiplicative reduction at p, then we may assume that
E is locally the Tate curve for some qE ∈ Q×

p . We apply the above formula to

Kato’s element z = zKato. Since exp∗ωE
(zKato) = (1− 1

p )
L(E,1)

Ω+

E

, we have
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Corollary 4.2. Let Lp,γ(E,X) be the power series in Zp[[X]] such that
Lp(E, s) = Lp,γ(E, κ(γ)s−1 − 1). Then

d

dX
Lp,γ(E,X) |X=0 =

1

logp κ(γ)

logp(qE)

ordp(qE)

L(E, 1)

Ω+
E

,

or
d

ds
Lp(E, s) |s=1 =

logp(qE)

ordp(qE)

L(E, 1)

Ω+
E

.
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