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Abstract. We consider a generalization of a result of Kida in clas-
sical Iwasawa theory which relates Iwasawa invariants of p-extensions
of number fields. In this paper, we consider Selmer groups of a general
class of Galois representations which includes the case of p-ordinary
Hilbert modular forms and p-supersingular modular forms.

2000 Mathematics Subject Classification: 11R23
Keywords and Phrases: Iwasawa theory, Kida’s formula

1. Introduction

Let f be a modular eigenform of weight at least two and let F be a finite
abelian extension of Q. Fix an odd prime p at which f is ordinary in the
sense that the pth Fourier coefficient of f is not divisible by p. In Iwasawa
theory, one associates two objects to f over the cyclotomic Zp-extension F∞ of
F : a Selmer group Sel(F∞, Af ) (where Af denotes the divisible version of the
two-dimensional Galois representation attached to f) and a p-adic L-function
Lp(F∞, f). In this paper we prove a formula, generalizing work of Kida and
Hachimori–Matsuno, relating the Iwasawa invariants of these objects over F
with their Iwasawa invariants over p-extensions of F .
For Selmer groups our results are significantly more general. Let T be a
lattice in a nearly ordinary p-adic Galois representation V ; set A = V/T .
When Sel(F∞, A) is a cotorsion Iwasawa module, its Iwasawa µ-invariant
µalg(F∞, A) is said to vanish if Sel(F∞, A) is cofinitely generated and its λ-
invariant λalg(F∞, A) is simply its p-adic corank. We prove the following result
relating these invariants in a p-extension.
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616 Robert Pollack and Tom Weston

Theorem 1. Let F ′/F be a finite Galois p-extension that is unramified at all
places dividing p. Assume that T satisfies the technical assumptions (1)–(5) of
Section 2. If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then Sel(F ′

∞, A)
is Λ-cotorsion with µalg(F ′

∞, A) = 0. Moreover, in this case

λalg(F ′
∞, A) = [F ′

∞ : F∞] · λalg(F∞, A) +
∑

w′

m(F ′
∞,w′/F∞,w, V )

where the sum extends over places w′ of F ′
∞ which are ramified in F ′

∞/F∞.
If V is associated to a cuspform f and F ′ is an abelian extension of Q, then
the same results hold for the analytic Iwasawa invariants of f .

Here m(F ′
∞,w′/F∞,w, V ) is a certain difference of local multiplicities defined in

Section 2.1. In the case of Galois representations associated to Hilbert modular
forms, these local factors can be made quite explicit; see Section 4.1 for details.
It follows from Theorem 1 and work of Kato that if the p-adic main conjecture
holds for a modular form f over Q, then it holds for f over all abelian p-
extensions of Q; see Section 4.2 for details.
These Riemann-Hurwitz type formulas were first discovered by Kida [5] in
the context of λ-invariants of CM fields. More precisely, when F ′/F is a p-
extension of CM fields and µ−(F∞/F ) = 0, Kida gave a precise formula for
λ−(F ′

∞/F
′) in terms of λ−(F∞/F ) and local data involving the primes that

ramify in F ′/F . (See also [4] for a representation theoretic interpretation of
Kida’s result.) A similar formula in a somewhat different setting was given
for elliptic curves with complex multiplication at ordinary primes by Wingberg
[12]; Hachimori–Matsuno [3] established the cyclotomic version in general. The
analytic analogue was first established for ideal class groups by Sinnott [10] and
for elliptic curves by Matsuno [7].
Our proof is most closely related to the arguments in [10] and [7] where con-
gruences implicitly played a large role in their study of analytic λ-invariants.
In this paper, we make the role of congruences more explicit and apply these
methods to study both algebraic and analytic λ-invariants.
As is usual, we first reduce to the case where F ′/F is abelian. (Some care
is required to show that our local factors are well behaved in towers of fields;
this is discussed in Section 2.1.) In this case, the λ-invariant of V over F ′

can be expressed as the sum of the λ-invariants of twists of V by characters
of Gal(F ′/F ). The key observation (already visible in both [10] and [7]) is
that since Gal(F ′/F ) is a p-group, all of its characters are trivial modulo a
prime over p and, thus, the twisted Galois representations are all congruent to
V modulo a prime over p. The algebraic case of Theorem 1 then follows from
the results of [11] which gives a precise local formula for the difference between
λ-invariants of congruent Galois representations. The analytic case is handled
similarly using the results of [1].
The basic principle behind this argument is that a formula relating the Iwasawa
invariants of congruent Galois representations should imply of a transition for-
mula for these invariants in p-extensions. As an example of this, in Section 4.3,

Documenta Mathematica · Extra Volume Coates (2006) 615–630



Kida’s Formula and Congruences 617

we use results of [2] to prove a Kida formula for the Iwasawa invariants (in the
sense of [8, 6, 9]) of weight 2 modular forms at supersingular primes.

Acknowledgments: We would like to thank the anonymous referee for several
helpful comments and for pointing out some errors in an earlier draft of this
paper.

2. Algebraic invariants

2.1. Local preliminaries. We begin by studying the local terms that appear
in our results. Fix distinct primes ℓ and p and let L denote a finite extension
of the cyclotomic Zp-extension of Qℓ. Fix a field K of characteristic zero and a
finite-dimensionalK-vector space V endowed with a continuousK-linear action
of the absolute Galois group GL of L. Set

mL(V ) := dimK (VIL)
GL ,

the multiplicity of the trivial representation in the IL-coinvariants of V . Note
that this multiplicity is invariant under extension of scalars, so that we can
enlarge K as necessary.
Let L′ be a finite Galois p-extension of L. Note that L′ must be cyclic and
totally ramified since L contains the Zp-extension of Qℓ. Let G denote the
Galois group of L′/L. Assuming that K contains all [L′ : L]th roots of unity,
for a character χ : G → K× of G, we set Vχ = V ⊗K K(χ) with K(χ) a
one-dimensional K-vector space on which G acts via χ. We define

m(L′/L, V ) :=
∑

χ∈G∨

mL(V )−mL(Vχ)

where G∨ denotes the K-dual of G.
The next result shows how these invariants behave in towers of fields.

Lemma 2.1. Let L′′ be a finite Galois p-extension of L and let L′ be a Galois
extension of L contained in L′′. Assume that K contains all [L′′ : L]th roots of
unity. Then

m(L′′/L, V ) = [L′′ : L′] ·m(L′/L, V ) +m(L′′/L′, V ).

Proof. Set G = Gal(L′′/L) and H = Gal(L′′/L′). Consider the Galois group
GL/IL′′ over L of the maximal unramified extension of L′′. It sits in an exact
sequence

(1) 0 → GL′′/IL′′ → GL/IL′′ → G→ 0

which is in fact split since the maximal unramified extensions of both L and
L′′ are obtained by adjoining all prime-to-p roots of unity.
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Fix a character χ ∈ G∨. We compute

mL(Vχ) = dimK

(

(Vχ)IL
)GL

= dimK

(

(

((Vχ)IL′′
)G

)GL′′

)G

= dimK

(

(

((Vχ)IL′′
)GL′′

)

G

)G

since (1) is split

= dimK

(

(

(Vχ)IL′′

)GL′′

)G

since G is finite cyclic

= dimK

(

(VIL′′
)GL′′ ⊗ χ

)G
since χ is trivial on GL′′ .

The lemma thus follows from the following purely group-theoretical statement
applied with W = (VIL′′

)GL′′ : for a finite dimensional representation W of a
finite abelian group G over a field of characteristic zero containing µ#G, we
have

∑

χ∈G∨

(

〈W, 1〉G − 〈W,χ〉G
)

=

#H ·
∑

χ∈(G/H)∨

(

〈W, 1〉G − 〈W,χ〉G
)

+
∑

χ∈H∨

(

〈W, 1〉H − 〈W,χ〉H
)

for any subgroup H of G; here 〈W,χ〉G (resp. 〈W,χ〉H) is the multiplicity of
the character χ in W regarded as a representation of G (resp. H). To prove
this, we compute

∑

χ∈G∨

(

〈W, 1〉G − 〈W,χ〉G
)

= #G · 〈W, 1〉G −
〈

W, IndG
1 1

〉

G

= #G · 〈W, 1〉G −#H ·
〈

W, IndG
H 1

〉

G
+#H ·

〈

W, IndG
H 1

〉

G
−

〈

W, IndG
1 1

〉

G

= #H ·
∑

χ∈(G/H)∨

(

〈W, 1〉G − 〈W,χ〉G
)

+
∑

χ∈H∨

(〈

W, IndG
H 1

〉

G
−

〈

W, IndG
H χ

〉

G

)

= #H ·
∑

χ∈(G/H)∨

(

〈W, 1〉G − 〈W,χ〉G
)

+
∑

χ∈H∨

(

〈W, 1〉H − 〈W,χ〉H
)

by Frobenius reciprocity. �

2.2. Global preliminaries. Fix a number field F ; for simplicity we assume
that F is either totally real or totally imaginary. Fix also an odd prime p and
a finite extension K of Qp; we write O for the ring of integers of K, π for a
fixed choice of uniformizer of O, and k = O/π for the residue field of O.
Let T be a nearly ordinary Galois representation over F with coefficients in O;
that is, T is a free O-module of some rank n endowed with an O-linear action
of the absolute Galois group GF , together with a choice for each place v of F
dividing p of a complete flag

0 = T 0
v ⊂ T 1

v ⊂ · · · ⊂ Tnv = T
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stable under the action of the decomposition group Gv ⊆ GF of v. We make
the following assumptions on T :

(1) For each place v dividing p we have
(

T iv/T
i−1
v

)

⊗ k 6∼=
(

T jv /T
j−1
v

)

⊗ k

as k[Gv]-modules for all i 6= j;
(2) If F is totally real, then rankT cv=1 is independent of the archimedean

place v (here cv is a complex conjugation at v);
(3) If F is totally imaginary, then n is even.

Remark 2.2. The conditions above are significantly more restrictive than are
actually required to apply the results of [11]. As our main interest is in abelian
(and thus necessarily Galois) extensions of Q, we have chosen to include the
assumptions (2) and (3) to simplify the exposition. The assumption (1) is
also stronger than necessary: all that is actually needed is that the centralizer
of T ⊗ k consists entirely of scalars and that gln/bv has trivial adjoint Gv-
invariants for all places v dividing p; here gln denotes the p-adic Lie algebra of
GLn and bv denotes the p-adic Lie algebra of the Borel subgroup associated to
the complete flag at v. In particular, when T has rank 2, we may still allow
the case that T ⊗ k has the form

(

χ ∗
0 χ

)

so long as ∗ is non-trivial. (Equivalently, if T is associated to a modular form
f , the required assumption is that f is p-distinguished.)

Set A = T ⊗O K/O; it is a cofree O-module of corank n with an O-linear
action of GF . Let c equal the rank of T cv=1

v (resp. n/2) if F is totally real
(resp. totally imaginary) and set

Acr
v := im

(

T cv ⊗O K →֒ T ⊗O K ։ A
)

.

We define the Selmer group of A over the cyclotomic Zp-extension F∞ of F by

Sel(F∞, A) = ker

(

H1(F∞, A) →

(

⊕
w∤p

H1(F∞,w, A)

)

×

(

⊕
w|p

H1(F∞,w, A/Acr
v )

))

.

The Selmer group Sel(F∞, A) is naturally a module for the Iwasawa alge-
bra ΛO := O[[Gal(F∞/F )]]. If Sel(F∞, A) is ΛO-cotorsion (that is, if the
dual of Sel(F∞, A) is a torsion ΛO-module), then we write µalg(F∞, A) and
λalg(F∞, A) for its Iwasawa invariants; in particular, µalg(F∞, A) = 0 if and
only if Sel(F∞, A) is a cofinitely generated O-module, while λalg(F∞, A) is the
O-corank of Sel(F∞, A).

Remark 2.3. In the case that T is in fact an ordinary Galois representation
(meaning that the action of inertia on each T iv/T

i−1
v is by an integer power ei

(independent of v) of the cyclotomic character such that e1 > e2 > . . . > en),
then our Selmer group Sel(F∞, A) is simply the Selmer group in the sense of
Greenberg of a twist of A; see [11, Section 1.3] for details.
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2.3. Extensions. Let F ′ be a finite Galois extension of F with degree equal
to a power of p. We write F ′

∞ for the cyclotomic Zp-extension of F ′ and set
G = Gal(F ′

∞/F∞). Note that T satisfies hypotheses (1)–(3) over F ′ as well, so
that we may define Sel(F ′

∞, A) analogously to Sel(F∞, A). (For (1) this follows
from the fact that Gv acts on (T iv/T

i−1
v )⊗k by a character of prime-to-p order;

for (2) and (3) it follows from the fact that p is assumed to be odd.)

Lemma 2.4. The restriction map

(2) Sel(F∞, A) → Sel(F ′
∞, A)

G

has finite kernel and cokernel.

Proof. This is straightforward from the definitions and the fact that G is finite
and A is cofinitely generated; see [3, Lemma 3.3] for details. �

We can use Lemma 2.4 to relate the µ-invariants of A over F∞ and F ′
∞.

Corollary 2.5. If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then
Sel(F ′

∞, A) is Λ-cotorsion with µalg(F ′
∞, A) = 0.

Proof. This is a straightforward argument using Lemma 2.4 and Nakayama’s
lemma for compact local rings; see [3, Corollary 3.4] for details. �

Fix a finite extension K ′ of K containing all [F ′ : F ]th roots of unity. Consider
a character χ : G → O′× taking values in the ring of integers O′ of K ′; note
that χ is necessarily even since [F ′ : F ] is odd. We set

Aχ = A⊗O O′(χ)

where O′(χ) is a free O′-module of rank one with GF∞
-action given by χ. If

we give Aχ the induced complete flags at places dividing p, then Aχ satisfies
hypotheses (1)–(3) and we have

Acr
χ,v = Acr

v ⊗O O′(χ) ⊆ Aχ

for each place v dividing p. We write Sel(F∞, Aχ) for the corresponding Selmer
group, regarded as a ΛO′ -module; in particular, by λalg(F∞, Aχ) we mean the
O′-corank of Sel(F∞, Aχ), rather than the O-corank. We write G∨ for the set
of all characters χ : G→ O′×.

Proposition 2.6. Assume that Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) =
0. If G is an abelian group, then there is a natural map

⊕
χ∈G∨

Sel(F∞, Aχ) → Sel(F ′
∞, A)⊗O O′

with finite kernel and cokernel.

Proof. First note that as O′[[GF ′ ]]-modules we have

A⊗O O′ ∼= Aχ

from which it easily follows that

(3)
(

Sel(F ′
∞, A)⊗O O′(χ)

)G
= Sel(F ′

∞, Aχ)
G.
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Also, for any cofinitely generated O[G]-module S, the natural map

(4) ⊕
χ∈G∨

(S ⊗O′(χ))
G
→ S ⊗O′

has finite kernel and cokernel. Since we are assuming that µalg(F∞, A) = 0, we
may take S = Sel(F ′

∞, A) in (4); combining this with (3) yields a map

⊕
χ∈G∨

(Sel(F ′
∞, Aχ))

G
→ Sel(F ′

∞, Aχ)⊗O′

with finite kernel and cokernel. Now applying Lemma 2.4 for each twist Aχ,
we obtain our proposition. �

As an immediate corollary, we have the following.

Corollary 2.7. If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then each
group Sel(F∞, Aχ) is ΛO′-cotorsion with µalg(F∞, Aχ) = 0. Moreover, if G is
abelian, then

λalg(F ′
∞, A) =

∑

χ∈G∨

λalg(F∞, Aχ).

2.4. Algebraic transition formula. We continue with the notation of the
previous section. We write R(F ′

∞/F∞) for the set of prime-to-p places of F ′
∞

which are ramified in F ′
∞/F∞. For a place w′ ∈ R(F ′

∞/F∞), we write w for its
restriction to F∞.

Theorem 2.8. Let F ′/F be a finite Galois p-extension with Galois group G
which is unramified at all places dividing p. Let T be a nearly ordinary Galois
representation over F with coefficients in O satisfying (1)–(3). Set A = T ⊗
K/O and assume that:

(4) H0(F,A[π]) = H0
(

F,Hom(A[π], µp)
)

= 0;

(5) H0(Iv, A/A
cr
v ) is O-divisible for all v dividing p.

If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then Sel(F ′
∞, A) is Λ-

cotorsion with µalg(F ′
∞, A) = 0. Moreover, in this case,

λalg(F ′
∞, A) = [F ′

∞ : F∞] · λalg(F∞, A) +
∑

w′∈R(F ′

∞
/F∞)

m(F ′
∞,w′/F∞,w, V )

with V = T ⊗K and m(F ′
∞,w′/F∞,w, V ) as in Section 2.1.

Note that m(F ′
∞,w′/F∞,w, V ) in fact depends only on w and not on w′. The

hypotheses (4) and (5) are needed to apply the results of [11]; they will not
otherwise appear in the proof below. We note that the assumption that F ′/F
is unramified at p is primarily needed to assure that the condition (5) holds for
twists of A as well.
Since p-groups are solvable and the only simple p-group is cyclic, the next
lemma shows that it suffices to consider the case of Z/pZ-extensions.

Lemma 2.9. Let F ′′/F be a Galois p-extension of number fields and let F ′

be an intermediate extension which is Galois over F . Let T be as above. If
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Theorem 2.8 holds for T with respect to any two of the three field extensions
F ′′/F ′, F ′/F and F ′′/F , then it holds for T with respect to the third extension.

Proof. This is clear from Corollary 2.5 except for the λ-invariant formula. Sub-
stituting the formula for λ(F ′

∞, A) in terms of λ(F∞, A) into the formula for
λ(F ′′

∞, A) in terms of λ(F ′
∞, A), one finds that it suffices to show that

∑

w′′∈R(F ′′

∞
/F∞)

m(F ′′
∞,w′′/F∞,w, V ) =

[F ′′
∞ : F ′

∞] ·
∑

w′∈R(F ′

∞
/F∞)

m(F ′
∞,w′/F∞,w, V )

+
∑

w′′∈R(F ′′

∞
/F ′

∞
)

m(F ′′
∞,w′′/F ′

∞,w′ , V ).

This formula follows upon summing the formula of Lemma 2.1 over all w′′ ∈
R(F ′′

∞/F∞) and using the two facts:

• [F ′′
∞ : F ′

∞]/[F ′′
∞,w′′ : F ′

∞,w′ ] equals the number of places of F ′′
∞ lying

over w′ (since the residue field of F∞,w has no p-extensions);
• m(F ′′

∞,w′′/F ′
∞,w′ , V ) = 0 for any w′′ ∈ R(F ′′

∞/F∞)−R(F ′′
∞/F

′
∞).

�

Proof of Theorem 2.8. By Lemma 2.9 and the preceding remark, we may as-
sume that F ′

∞/F∞ is a cyclic extension of degree p. The fact that Sel(F ′
∞, A)

is cotorsion with trivial µ-invariant is simply Corollary 2.5. Furthermore, by
Corollary 2.7, we have

λalg(F ′
∞, A) =

∑

χ∈G∨

λalg(F∞, Aχ).

For χ ∈ G∨, note that χ is trivial modulo a uniformizer π′ of O′ as it takes
values in µp. In particular, the residual representations Aχ[π

′] and A[π] are
isomorphic. Under the hypotheses (1)–(5), the result [11, Theorem 1] gives
a precise formula for the relation between λ-invariants of congruent Galois
representations. In the present case it takes the form:

λalg(F∞, Aχ) = λalg(F∞, A) +
∑

w′∤p

(

mF∞,w
(V ⊗ ω−1)−mF∞,w

(Vχ ⊗ ω−1)
)

where the sum is over all prime-to-p places w′ of F ′
∞, w denotes the place of

F∞ lying under w′ and ω is the mod p cyclotomic character. The only non-zero
terms in this sum are those for which w′ is ramified in F ′

∞/F∞. For any such
w′, we have µp ⊆ F∞,w by local class field theory so that ω is in fact trivial at
w; thus

λalg(F∞, Aχ) = λalg(F∞, A) +
∑

w′∈R(F ′

∞
/F∞)

(

mF∞,w
(V )−mF∞,w

(Vχ)
)

.
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Summing over all χ ∈ G∨ then yields

λalg(F ′
∞, A) = [F ′

∞ : F∞] · λalg(F∞, A) +
∑

w′∈R(F ′

∞
/F∞)

m(F ′
∞,w′/F∞,w, V )

which completes the proof. �

3. Analytic invariants

3.1. Definitions. Let f =
∑

anq
n be a modular eigenform of weight k ≥ 2,

level N and character ε. Let K denote the finite extension of Qp generated
by the Fourier coefficients of f (under some fixed embedding Q̄ →֒ Q̄p), let O
denote the ring of integers of K and let k denote the residue field of O. Let Vf
denote a two-dimensional K-vector space with Galois action associated to f in
the usual way; thus the characteristic polynomial of a Frobenius element at a
prime ℓ ∤ Np is

x2 − aℓx+ ℓk−1ε(ℓ).

Fix a Galois stable O-lattice Tf in Vf . We assume that Tf ⊗k is an irreducible
Galois representation; in this case Tf is uniquely determined up to scaling. Set
Af = Tf ⊗K/O.
Assuming that f is p-ordinary (in the sense that ap is relatively prime to
p) and fixing a canonical period for f , one can associate to f a p-adic L-
function Lp(Q∞/Q, f) which lies in ΛO. This is well-defined up to a p-adic
unit (depending upon the choice of a canonical period) and thus has well-defined
Iwasawa invariants.
Let F/Q be a finite abelian extension and let F∞ denote the cyclotomic Zp-
extension of F . For a character χ of Gal(F/Q), we denote by fχ the modular
eigenform

∑

anχ(n)q
n obtained from f by twisting by χ (viewed as a Dirichlet

character). If f is p-ordinary and F/Q is unramified at p, then fχ is again
p-ordinary and we define

Lp(F∞/F, f) =
∏

χ∈Gal(F/Q)∨

Lp(Q∞/Q, fχ).

If F/Q is ramified at p, it is still possible to define Lp(F∞/F, f); see [7, pg. 5],
for example.
If F1 and F2 are two distinct number fields whose cyclotomic Zp-extensions
agree, the corresponding p-adic L-functions of f over F1 and F2 need not
agree. However, it is easy to check that the λ-invariants of these two power
series are equal while their µ-invariants differ by a factor of a power of p.
As we are only interested in the case of vanishing µ-invariants, we will abuse
notation somewhat and simply denote the Iwasawa invariants of Lp(F∞/F, f)
by µan(F∞, f) and λ

an(F∞, f).

3.2. Analytic transition formula. Let F/Q be a finite abelian extension
of Q and let F ′ be a finite p-extension of F such that F ′/Q is abelian. As
always, let F∞ and F ′

∞ denote the cyclotomic Zp-extensions of F and F ′. As
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before, we write R(F ′
∞/F∞) for the set of prime-to-p places of F ′

∞ which are
ramified in F ′

∞/F∞.

Theorem 3.1. Let f be a p-ordinary modular form such that Tf ⊗ k is irre-
ducible and p-distinguished. If µan(F∞, f) = 0, then µan(F ′

∞, f) = 0. More-
over, if this is the case, then

λan(F ′
∞, f) = [F ′

∞ : F∞] · λan(F∞, f) +
∑

w′∈R(F ′

∞
/F∞)

m(F ′
∞,w′/F∞,w, Vf ).

Proof. By Lemma 2.9, we may assume [F : Q] is prime-to-p. Indeed, let F0

be the maximal subfield of F of prime-to-p degree over Q. By Lemma 2.9,
knowledge of the theorem for the two extensions F ′/F0 and F/F0 would then
imply it for F ′/F as well. Furthermore, replacing F (resp. F ′) by the maximal
tamely ramified subextension of F∞ (resp. F ′

∞), we may assume that every
character of Gal(F/Q) and Gal(F ′/Q) is the product of a power of the mod p
cyclotomic character and a character unramified at p.
After making these reductions, we let M denote the (unique) p-extension of Q
inside of F ′ such that MF = F ′. Set G = Gal(F/Q) and H = Gal(M/Q), so
that Gal(F ′/Q) ∼= G×H. We have

(5) µan(F∞, f) =
∑

ψ∈Gal(F/Q)∨

µan(Q∞, fψ)

and

(6) µan(F ′
∞, f) =

∑

ψ∈Gal(F ′/Q)∨

µan(Q∞, fψ) =
∑

ψ∈G∨

∑

χ∈H∨

µan(Q∞, fψχ).

Since we are assuming that µan(F∞, f) = 0 and since these µ-invariants are non-
negative, from (5) it follows that µan(Q∞, fψ) = 0 for each ψ ∈ Gal(F/Q)∨.
Fix ψ ∈ G∨. For any χ ∈ H∨, ψχ is congruent to ψ modulo any prime over
p and thus fχ and fψχ are congruent modulo any prime over p. Then, since
µan(Q∞, fψ) = 0, by [1, Theorem 3.7.5] it follows that µan(Q∞, fψχ) = 0 for
each χ ∈ H∨. (Note that the results of [1] apply to twists of p-ordinary forms
by powers of the mod p cyclotomic character; this is why the reduction to the
tamely ramified case is necessary for this argument.) Therefore, by (6) we have
that µan(F ′

∞, f) = 0 proving the first part of the theorem.
For λ-invariants, we again have

λan(F∞, f) =
∑

ψ∈Gal(F/Q)∨

λan(Q∞, fψ).

and

(7) λan(F ′
∞, f) =

∑

ψ∈G∨

∑

χ∈H∨

λan(Q∞, fψχ).
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By [1, Theorem 3.7.7] the congruence between fχ and fψχ implies that

λan(Q∞, fψχ)− λan(Q∞, fψ) =
∑

v

(

mQ∞,v
(Vfψχ ⊗ ω−1)−mQ∞,v

(Vfψ ⊗ ω−1)
)

where the sum is over all places v of Q∞ at which χ is ramified. (Note that in
[1] the sum extends over all prime-to-p places; however, the terms are trivial
unless χ is ramified at v. Also note that the mod p cyclotomic characters that
appear are actually trivial since if Q∞,v has a ramified Galois p-extensions for
v ∤ p, then µp ⊆ Q∞,v.)
Combining this with (7) and the definition of m(M∞,v′/Q∞,v, Vfψ ), we con-
clude that

λan(F ′
∞, f) =

∑

ψ∈G∨

(

[F ′
∞ : F∞] · λan(Q∞, fψ)+

∑

v′∈R(M∞/Q∞)

m(M∞,v′/Q∞,v, Vfψ )
)

= [F ′
∞ : F∞] · λan(F∞, f)+

∑

v′∈R(M∞/Q∞)

∑

ψ∈G∨

m(M∞,v′/Q∞,v, Vfψ )

= [F ′
∞ : F∞] · λan(F∞, f) +

∑

v′∈R(M∞/Q∞)

gv′(F
′
∞/M∞)·

m(M∞,v′/Q∞,v,Z[Gal(F∞,w/Q∞,v)]⊗ Vf )

where gv′(F
′
∞/M∞) denotes the number of places of F ′

∞ above the place v′ of
M∞. By Frobenius reciprocity,

m(M∞,v′/Q∞,v,Z[Gal(F∞,w/Q∞,v)]⊗ Vf ) = m(F ′
∞,w′/F∞,w, Vf )

where w′ is the unique place of F ′
∞ above v′ and w. It follows that

λ(F ′
∞, f) = [F ′

∞ : F∞] · λan(F∞, f) +
∑

w′∈R(F ′

∞
/F∞)

m(F ′
∞,w′/F∞,w, Vf )

as desired. �

4. Additional Results

4.1. Hilbert modular forms. We illustrate our results in the case of the
two-dimensional representation Vf associated to a Hilbert modular eigenform
f over a totally real field F . Although in principle our analytic results should
remain true in this context, we focus on the less conjectural algebraic picture.
Fix a GF -stable lattice Tf ⊆ Vf and let Af = Tf ⊗K/O.
Let F ′ be a finite Galois p-extension of F unramified at all places dividing p;
for simplicity we assume also that F ′ is linearly disjoint from F∞. Let v be a
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place of F not dividing p and fix a place v′ of F ′ lying over v. For a character
ϕ of Gv, we define

h(ϕ) =











−1 ϕ ramified, ϕ|Gv′ unramified, and ϕ ≡ 1 mod π;

0 ϕ 6≡ 1 mod π or ϕ|Gv′ ramified;

ev(F
′/F )− 1 ϕ unramified and ϕ ≡ 1 mod π

where ev(F
′/F ) denotes the ramification index of v in F ′/F and Gv′ is the

decomposition group at v′. Set

hv(f) =











h(ϕ1) + h(ϕ2) f principal series with characters ϕ1, ϕ2 at v;

h(ϕ) f special with character ϕ at v;

0 f supercuspidal or extraordinary at v.

For example, if f is unramified principal series at v with Frobenius character-
istic polynomial

x2 − avx+ cv,

then

hv(f) =











2(ev(F
′/F )− 1) av ≡ 2, cv ≡ 1 mod π

ev(F
′/F )− 1 av ≡ cv + 1 6≡ 2 mod π

0 otherwise.

Theorem 4.1. Assume that f is ordinary (in the sense that for each place v
dividing p the Galois representation Vf has a unique one-dimensional quotient
unramified at v) and that

H0(F,Af [π]) = H0
(

F,Hom(Af [π], µp)
)

= 0.

If Sel(F∞, Af ) is Λ-cotorsion with µalg(F∞, Af ) = 0, then also Sel(F ′
∞, Af ) is

Λ-cotorsion with µalg(F ′
∞, Af ) = 0 and

λalg(F ′
∞, A) = [F ′

∞ : F∞] · λalg(F∞, A) +
∑

v

gv(F
′
∞/F ) · hv(f);

here the sum is over the prime-to-p places of F ramified in F ′
∞ and gv(F

′
∞/F )

denotes the number of places of F ′
∞ lying over such a v.

Proof. Fix a place v of F not dividing p and let w denote a place of F∞ lying
over v. Since there are exactly gv(F∞/F ) such places, by Theorem 2.8 it suffices
to prove that

(8) hv(f) = m(F ′
∞,w′/F∞,w, Vf ) :=

∑

χ∈Gal(F ′

∞,w′
/F∞,w)∨

(

mF∞,w
(Vf )−mF∞,w

(Vf,χ)
)

.

This is a straightforward case analysis. We will discuss the case that Vf is
special associated to a character ϕ at v; the other cases are similar. In the
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special case, we have

Vf,χ|IF∞,w
=

{

K ′(χϕ) χϕ|GF∞,w
unramified;

0 χϕ|GF∞,w
ramified.

Since an unramified character has trivial restriction to GF∞,w
if and only if it

has trivial reduction modulo π, it follows that

mF∞,w
(Vf,χ) =

{

1 ϕ ≡ 1 mod π and χϕ|GF∞,w
unramified;

0 otherwise.

In particular, the sum in (8) is zero if ϕ 6≡ 1 mod π or if ϕ is ramified when
restricted to GF ′

∞,w′
(as then χϕ is ramified for all χ ∈ G∨

v ). If ϕ ≡ 1 mod π and

ϕ itself is unramified, then mF∞,w
(Vf ) = 1 while mF∞,w

(Vf,χ) = 0 for χ 6= 1,
so that the sum in (8) is [F ′

∞,w′ : F∞,w]−1 = ev(F
′/F )−1, as desired. Finally,

if ϕ ≡ 1 mod π and ϕ is ramified but becomes unramified when restricted to
Gv′ , then mF∞,w

(Vf ) = 0, while mF∞,w
(Vf,χ) = 1 for a unique χ, so that the

sum is −1. �

Suppose finally that f is in fact the Hilbert modular form associated to an
elliptic curve E over F . The only principal series which occur are unramified
and we have cv ≡ 1 (mod π) (since the determinant of Vf is cyclotomic and
F∞ has a p-extension (namely, F ′

∞) ramified at v), so that

hv(f) 6= 0 ⇔ av ≡ 2 ⇔ E(Fv) has a point of order p

in which case hv(f) = 2(ev(F
′/F )−1). The only characters which may occur in

a special constituent are trivial or unramified quadratic, and we have hv(f) =
ev(F

′/F )− 1 or 0 respectively. Thus Theorem 4.1 recovers [3, Theorem 3.1] in
this case.

4.2. The main conjecture. Let f be a p-ordinary elliptic modular eigenform
of weight at least two and arbitrary level with associated Galois representation
Vf . Let F be a finite abelian extension of Q with cyclotomic Zp-extension
F∞. Recall that the p-adic Iwasawa main conjecture for f over F asserts
that the Selmer group Sel(F∞, Af ) is Λ-cotorsion and that the characteristic
ideal of its dual is generated by the p-adic L-function Lp(F∞, f). In fact,
when the residual representation of Vf is absolutely irreducible, it is known
by work of Kato that Sel(F∞, Af ) is indeed Λ-cotorsion and that Lp(F∞, f)
is an element of the characteristic ideal of Sel(F∞, Af ). In particular, this
reduces the verification of the main conjecture for f over F to the equality
of the algebraic and analytic Iwasawa invariants of f over F . The identical
transition formulae in Theorems 2.8 and 3.1 thus yield the following immediate
application to the main conjecture.

Theorem 4.2. Let F ′/F be a finite p-extension with F ′ abelian over Q. If the
residual representation of Vf is absolutely irreducible and p-distinguished, then
the main conjecture holds for f over F with µ(F∞, f) = 0 if and only if it holds
for f over F ′ with µ(F ′

∞, f) = 0 .
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For an example of Theorem 4.2, consider the eigenform

∆ = q
∏

n≥1

(1− qn)24

of weight 12 and level 1. We take p = 11. It is well known that ∆ is congruent
modulo 11 to the newform associated to the elliptic curve X0(11). The 11-adic
main conjecture is known for X0(11) over Q; it has trivial µ-invariant and λ-
invariant equal to 1 (see, for instance, [1, Example 5.3.1]. We should be clear
here that the non-triviality of λ in this case corresponds to a trivial zero of the
p-adic L-function; we are using the Greenberg Selmer group which does account
for the trivial zero.) It follows from [1] that the 11-adic main conjecture also
holds for ∆ over Q, again with trivial µ-invariant and λ-invariant equal to 1.
Theorem 4.2 thus allows us to conclude that the main conjecture holds for ∆
over any abelian 11-extension of Q.
For a specific example, consider F = Q(ζ23)

+; it is a cyclic 11-extension of
Q. We can easily use Theorem 4.1 to compute its λ-invariant: using that
τ(23) = 18643272 one finds that h23(∆) = 0, so that λ(Q(ζ23)

+,∆) = 11.
For a more interesting example, take F to be the unique subfield of Q(ζ1123)
which is cyclic of order 11 over Q. In this case we have

τ(1123) ≡ 2 (mod 11)

so that we have h1123(∆) = 20. Thus, in this case, Theorem 4.1 shows that
λ(F,∆) = 31.

4.3. The supersingular case. As mentioned in the introduction, the un-
derlying principle of this paper is that the existence of a formula relating the
λ-invariants of congruent Galois representations should imply a Kida-type for-
mula for these invariants. We illustrate this now in the case of modular forms
of weight two that are supersingular at p.
Let f be an eigenform of weight 2 and level N with Fourier coefficients in K
some finite extension of Qp. Assume further than p ∤ N and that ap(f) is
not a p-adic unit. In [8], Perrin-Riou associates to f a pair of algebraic and
analytic µ-invariants over Q∞ which we denote by µ⋆±(Q∞, f). (Here ⋆ denotes
either “alg” or “an” for algebraic and analytic respectively.) Moreover, when
µ⋆+(Q∞, f) = µ⋆−(Q∞, f) or when ap(f) = 0, she also defines corresponding
λ-invariants λ⋆±(Q∞, f). When ap(f) = 0 these invariants coincide with the
Iwasawa invariants of [6] and [9]. We also note that in [8] only the case of
elliptic curves is treated, but the methods used there generalize to weight two
modular forms.
We extend the definition of these invariants to the cyclotomic Zp-extension of
an unramified abelian extension F of Q. We define

µ⋆±(F∞, f) =
∑

ψ∈Gal(F/Q)∨

µ⋆±(Q∞, fψ) and λ⋆±(F∞, f) =
∑

ψ∈Gal(F/Q)∨

λ⋆±(Q∞, fψ)

for ⋆ ∈ {alg, an}.
The following transition formula follows from the congruence results of [2].
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Theorem 4.3. Let f be as above and consider a p-extension of number fields
F ′/F with F ′/Q unramified at p. If µ⋆±(F∞, f) = 0, then µ⋆±(F

′
∞, f) = 0.

Moreover, if this is the case, then

λ⋆±(F
′
∞, f) = [F ′

∞ : F∞] · λ⋆±(F∞, f) +
∑

w′∈R(F ′

∞
/F∞)

m(F ′
∞,w′/F∞,w, Vf ).

In particular, if the main conjecture is true for f over F (with µ⋆±(F∞, f) = 0),
then the main conjecture is true for f over F ′ (with µ⋆±(F

′
∞, f) = 0).

Proof. The proof of this theorem proceeds along the lines of the proof of The-
orem 3.1 replacing the appeals to the results of [1, 11] to the results of [2].
The main result of [2] is a formula relating the λ⋆±-invariants of congruent su-
persingular weight two modular forms. This formula has the same shape as
the formulas that appear in [1] and [11] which allows for the proof to proceed
nearly verbatim. �
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