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Introduction

Abrashkin [3] has found an analogue of the field of norms functor for higher-
dimensional local fields. His construction uses the theory of ramification groups
[24] for such fields. As an application of his results (include the transfer of
the ramification group structure from characteristic zero to characteristic p)
he obtains the analogue of Grothendieck’s anabelian conjecture for higher-
dimensional local fields.
In the first part of this paper we construct an analogue of the field of norms
for fairly general1 local fields with imperfect residue field. Like Abrashkin’s,
as a starting point it uses the alternative characterisation of the ring of inte-
gers of the (classical) field of norms as a subring of Fontaine’s ring R = Ẽ

+

(the perfection of oK ⊗ Fp). However we differ from him, and the original
construction by Fontaine and Wintenberger [12], [13], by making no appeal to

1The only requirement is that the residue field has a finite p-basis.
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higher ramification theory. We instead restrict to extensions which are “strictly
deeply ramified” (see §1.3 and Remark 1.3.8 below) and appeal instead to the
differential characterisation of deeply ramified extensions which forms the ba-
sis for Faltings’s approach to p-adic Hodge theory [10] (although we only use
the most elementary parts of Faltings’s work). These extensions are (in the
classical case) closely related to strictly APF extensions; one may hope that
by using Abbès and Saito’s higher ramification theory ([1], [2]) a theory for
all APF extensions could be developed. We hope to clarify this relation in a
subsequent paper. In any case, the theory presented here includes those ex-
tensions which arise in the theory of (φ,Γ)-modules. It is also perhaps worth
noting that in the classical case (perfect residue field), the 2 key propositions
on which the theory depends (1.2.1 and 1.2.8) are rather elementary.
In the second part of the paper we begin the study of (φ,Γ)-modules in this
setting, and prove the natural generalisation of Herr’s formula [15] for the
cohomology of a p-adic Galois representation. We also describe a natural family
of (non-abelian) extensions to which this theory applies. We hope to develop
this further in a subsequent paper.
This work grew out of the preparation of talks given during a study group at
Cambridge in winter 2004, and the author is grateful to the members of the
study group, particularly John Coates and Sarah Zerbes, for their comments
and encouragement, to Victor Abrashkin, Ivan Fesenko and Jan Nekovář for
useful discussions, to Pierre Colmez for letting me have some of his unpublished
work, and to the referee for his careful reading of the paper. He also wishes to
thank Bilkent University, Ankara, for their hospitality while parts of this paper
were being written.
As the referee has pointed out, the possibility of such constructions has been
known to the experts for some time (see for example the remarks on page 251
of [11]). After this paper was written the author received a copy of Andreatta
and Iovita’s preprints [4, 5], which construct rings of norms and compute the
cohomology of (φ,Γ)-modules for Kummer-like extensions of more general p-
adic base rings.

Notation

Throughout this paper p denotes a fixed prime number.
If A is an abelian group and ξ an endomorphism of A, or more generally an
ideal in a ring of endomorphisms of A, we write A/ξ for A/ξA, and A[ξ] for
the ξ-torsion subgroup of A.
If R is a ring of characteristic p, we denote by f = fR : x 7→ xp the Frobenius
endomorphism of R.
If K is any p-adically valued field and λ ∈ Q belongs to the value group of K,
we will by abuse of notation write pλ for the fractional ideal comprised of all
x ∈ K with vp(x) ≥ λ.
We use the sign = to denote equality or canonical isomorphism, and A := B
to indicate that A is by definition B.
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1 Fields of norms

1.1 Big local fields

By a big local field we mean a complete discretely-valued field, whose residue
field k has characteristic p and satisfies [k : kp] = pd for some d ≥ 0 (we then
talk of a “d-big local field”). If K is such a field we use the usual notations:
oK for its valuation ring, ̟K for a uniformiser (not always fixed), kK or (if
no confusion is likely) simply k for its residue field, and vK for the normalised
valuation on K with vK(̟K) = 1. When charK = 0, we write eK for its
absolute ramification degree, and vp for the p-adic valuation with vp(p) = 1.
Of course, d = 0 if and only if K is a local field in the usual sense (i.e., with
perfect residue field).
We recall for convenience some facts about big local fields and their extensions,
and fix some notation. If L/K is a finite separable extension of d-big local
fields, then [L : K] = ef0p

s where e = e(L/K) = vL(̟K) is the (reduced)
ramification degree, and f0 and ps are the separable and inseparable degrees
of the extension kL/kK , respectively, so that f = f0p

s = [kL : kK ].
If L/K is a finite separable extension of big local fields, the valuation ring oL

is not necessarily of the form oK [x]. There are two particular cases when this
is true:
(i) when the residue class extension kL/kK is separable [21, III, §6 Lemme 4].
Then there exists x ∈ oL with oL = oK [x]; and if kL = kK then x = ̟L

for any uniformiser ̟L will do, and its minimal polynomial is an Eisenstein
polynomial.
(ii) when ̟K = ̟L and the residue class extension is purely inseparable and
simple2. Let kL = kK(b) for some b with bq = a ∈ kK \ kpK , and let u ∈ oL

be any lift of b. Then oL = oK [u] where the minimal polynomial of u has the

form g(T ) = T q +
∑q−1

i=1 ciT
i − v, with ̟K |ci and a = v mod ̟K .

Conversely, let g = T q+
∑q−1

i=0 ciT
i ∈ oK [T ] be any polynomial. Let us say that

g is a fake Eisenstein polynomial if (a) its degree q is a power of p; (b) for every
i ≥ 1, ci ≡ 0 (mod ̟K); and (c) c0 is a unit whose reduction mod ̟K is not a
pth power. Then g is irreducible (since it is irreducible mod ̟K) and oK [T ]/(g)
is a discrete valuation ring. It is the valuation ring of a totally fiercely ramified
extension of K of degree q.
In particular, if L/K is Galois of prime degree then one of (i), (ii) applies, so
oL = oK [x].
For any big local field K of characteristic zero there exists a complete subfield
Ku ⊂ K which is absolutely unramified (that is, p is a uniformiser) having the
same residue field as K. (This holds by the existence of Cohen subrings; see
for example [EGA4, 19.8.6] or [18, pp. 211–212]). If d = 0 then Ku is unique;
otherwise (except when eK = 1) it is non-unique [EGA4, 19.8.7]. If L/K is
a finite extension it is not in general possible to find such subfields Ku ⊂ K,
Lu ⊂ L satisfying Ku ⊂ Lu (even when K itself is absolutely unramified).

2In the terminology of [24], L/K is totally fiercely ramified.
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Let K be a big local field with residue field k, and choose Ku ⊂ K as above.
Then for any m with 0 < m ≤ eK , the quotient oK/(̟m

K ) contains oKu
/(p) = k

and therefore oK/(̟m
K ) ≃ k[̟K ]/(̟m

K ). When k is perfect (but not in general)
this isomorphism is canonical, since the projection oK/(̟m

K ) →−→ k has a unique
section, whose image is the maximal perfect subring of oK/(̟m

K ).
If K is a big local field of characteristic p then it contains a coefficient field
(non-unique if d > 0), so that K ≃ kK((̟K)). If L/K is a finite separable
extension then one cannot in general find a coefficient field of L containing one
of K.
From now on, unless stated explicitly to the contrary, all big local fields will be
assumed to have characteristic zero. For a finite extension L/K we then write

δ(L/K) =
∑

δi(L/K) = vp(DL/K)

where the δi(L/K) are the p-adic valuations of the primary factors of Ω(L/K).

1.2 Differentials and ramification

If L/K is an extension of big local fields, we usually write Ω(L/K) := Ω
oL/oK

for the module of relative Kähler differentials, which is an oL-module of finite
length. Then Ω(L/K) can be generated by ≤ (d+ 1) generators (for example,
by equation (1.2.2) below). The Fitting ideal of Ω(L/K) (the product of its
primary factors) equals the relative different DL/K , defined in the usual way as
the inverse of the oK -dual of oL with respect to the trace form; see for example
[10, Lemma 1.1].

Proposition 1.2.1. Let L/K be a finite extension of d-big local fields with
[L : K] = pd+1. Assume that there exists a surjection

Ω(L/K) −→−→ (oL/ξ)
d+1

for some ideal ξ ⊂ oK with 0 < vp(ξ) ≤ 1. Then e(L/K) = p and kL = k
1/p
K ,

and the Frobenius endomorphism of oL/ξ has a unique factorisation

oL/ξ

mod ξ′

����

f
// oL/ξ

oL/ξ
′ ∼ //❴❴❴❴❴❴❴ oK/ξ

?�

inclusion

OO

where ξ′ ⊂ oL is the ideal with valuation p−1vp(ξ). In particular, Frobenius
induces a surjection f : oL/ξ −→−→ oK/ξ.

Proof. Let ̟L be a uniformiser. We have [L : K] = pd+1 = ef0p
s, and if

pr = [kL : kpLk] then dimkL
ΩkL/k = r ≤ s. We have the exact sequence of

differentials

(̟L)/(̟
2
L) −→ Ω(L/K)⊗oL

kL −→ ΩkL/k −→ 0 (1.2.2)

Documenta Mathematica · Extra Volume Coates (2006) 685–709



Higher Fields of Norms and (φ,Γ)-Modules 689

and if e = 1 the first map is zero (taking ̟L = ̟k). It follows that

dimkL

(
Ω(L/K)⊗oL

kL
)
{
≤ 1 + r in general

= r if e = 1.

By definition, d = [kL : kpL] ≥ r and by hypothesis dimkL

(
Ω(L/K) ⊗oL

kL
)
≥

d+ 1, so we must have r = s = d, f0 = 1, e = p and kL = k1/p.
Let {tα | 1 ≤ α ≤ d} ⊂ o

∗
L be a lift of a p-basis for kL. Then d̟L, {dtα} is

a basis for Ω(L/K) ⊗ kL. Introduce a multi-index notation I = (i1, . . . , id),
tI =

∏
tiαα . Then the k-vector space oL/(̟K) has as a basis the reduction

mod ̟K of the pd+1 monomials {tI̟j
L | 0 ≤ j < p, 0 ≤ iα < p}. So by

Nakayama’s lemma,

oL = oK [̟L, {tα}] =
⊕

0≤j<p
0≤iα<p

tI̟j
LoK . (1.2.3)

Lemma 1.2.4. If x =
∑

0≤j<p, 0≤iα<p xI,jt
I̟j

L with xI,j ∈ oK , then

vp(x) = min
I,j

(
vp(xI,j) +

j

eL

)
.

Proof. If yI ∈ oK for 0 ≤ iα < p, then since the elements tI are linearly
independent mod (̟L), we have

̟L

∣∣∑

I

yIt
I ⇐⇒ for all I, yI ≡ 0 (mod ̟K) ⇐⇒ ̟K

∣∣∑

I

yIt
I

from which we see that

vK

(∑

I

yIt
I
)
= min

I
vK(yI) (1.2.5)

and that this is an integer. Therefore

vK

(
̟j

L

∑

I

xI,jt
I
)
≡ j

p
(mod Z)

and so

vp(x) = vp

(p−1∑

j=0

̟j
L

∑

I

xI,jt
I
)
= min

j

{
vp
(
̟j

L

∑

I

xI,jt
I
)}

.

Then the lemma follows from (1.2.5).

From (1.2.3) we obtain (d+ 1) relations in oL of the shape:

̟p
L =

p−1∑

j=0

Aj(t)̟
j
L, tpα =

p−1∑

j=0

Bα,j(t)̟
j
L (1 ≤ α ≤ d) (1.2.6)
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where Aj , Bα,j ∈ oK [X1, . . . , Xd] are polynomials of degree < p in each vari-
able. Write Dγ for the derivative with respect to Xγ , and δαγ for Kronecker
delta. Therefore in Ω(L/K) the following relations hold:

(
−p̟p−1

L +

p−1∑

j=1

jAj(t)̟
j−1
L

)
d̟L +

∑

γ

(p−1∑

j=0

DγAj(t)̟
j
L

)
dtγ = 0

(p−1∑

j=1

jBα,j(t)̟
j−1
L

)
d̟L − ptp−1

α dtα +
∑

γ

(p−1∑

j=0

DγBα,j(t)̟
j
L

)
dtγ = 0

The condition on Ω(L/K) forces all the coefficients in these identities to be
divisible by ξ. From (1.2.4) this implies that for all j > 0, Aj(t)̟

j−1
L ≡ 0 ≡

Bα,j(t)̟
j−1
L (mod ξ). Therefore

̟p
L ≡ A0(t) and tpα ≡ Bα,0(t) (mod ̟Lξ).

Similarly, for every γ and every j ≥ 0,

DγAj(t) ≡ DγBα,j(t) ≡ 0 (mod ̟−j
L ξ).

This last congruence implies that the nonconstant coefficients of Aj and Bα,j

are divisible by ̟−j
L ξ, so especially

A0(t) ≡ A0(0), Bα,0(t) ≡ Bα,0(0) (mod ξ).

The first of these congruences, together with 1.2.4 and the first equation of
(1.2.6), implies that vL(A0(0)) = p. We will therefore choose ̟K = A0(0) as
the uniformiser of K. Then

̟p
L ≡ ̟K , tpα ≡ bα (mod ξ)

where bα = Bα,0(0) ∈ o
∗
K . If m = vK(ξ) then, as noted just before the state-

ment of this Proposition, oK/ξ ∼−→ k[̟K ]/(̟m
K ). We fix such an isomorphism.

If b̄α ∈ k denotes the reduction of bα mod ̟K , then by (1.2.3) there are com-
patible isomorphisms

oL/ξ
∼−→ k[̟L, {tα}]/(̟mp

L , {tpα − b̄α})
oL/ξ

′ ∼−→ k[̟L, {tα}]/(̟m
L , {tpα − b̄α})

such that the inclusion oK/ξ −֒→ oL/ξ induces the identity on k and maps ̟K

to ̟p
L. Therefore

oL/ξ
′ ∼−−→

f
(oL/ξ)

p
= oK/ξ ⊂ oL/ξ

as required.
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Remark 1.2.7. It is perhaps worth noting that in the case d = 0 the proof just
given simplifies greatly; in this case L/K is totally ramified by hypothesis, so
̟L satisfies an Eisenstein polynomial over K, whose constant term we may
take to be −̟K . We then have canonical isomorphisms oK/ξ = k[̟K ]/(̟m

K ),
oL/ξ = k[̟L]/(̟

mp
L ), and the minimal polynomial of ̟L gives at once the

congruence ̟p
L ≡ ̟K (mod ξ) — cf. [21], Remark 1 after Proposition 13 of

§III.6.
Recall now the key lemma in the theory ([9], [10], [22]) of deep ramification of
local fields:

Proposition 1.2.8. (Faltings) Let L and K ′ be linearly disjoint finite exten-
sions of a d-big local field K, and set L′ = LK ′ ≃ L ⊗K K ′. Assume there
exists a surjection Ω(K ′/K) −→−→ (oK′/pλ)d+1 for some λ ≥ 0. Then

δ(L′/K ′) ≤ δ(L/K)− 1

d+ 2
min(λ, δ(L/K)).

Proof. (expanded from the proof of [10, Theorem 1.2]). For simplicity of nota-
tion write:

R = oK , S = oL, R
′ = oK′ , S′ = oL′

δ = δ(L/K), δi = δi(L/K), δ′ = δ(L′/K ′), δ′i = δi(L
′/K ′).

If M is an S′-module of finite length, write ℓp(M) for 1/eL′ times the length
of M (so ℓp(M) also equals the p-adic valuation of the Fitting ideal of M).
Consider the homomorphism γ = βα, which links the two exact3 sequences of
differentials in the commutative diagram:

0

��

S′ ⊗S ΩS/R

α

��

γ

%%❑
❑

❑

❑

❑

0 // S′ ⊗R′ ΩR′/R
// ΩS′/R β

// ΩS′/R′
// 0

In this diagram, all entries are torsion S′-modules which can be generated by
≤ (d+ 1) elements. We then have the following inequalities:

(a) ℓp(ker γ) ≥ min(λ, δ)

(b) ℓp(im γ) ≥ (d+ 2)δ′ − (d+ 1)δ

3See [20, p.420, footnote] or [10, Lemma 1.1]
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Since ℓp(im γ)+ ℓp(ker γ) = ℓp(S
′⊗ΩS/R) = δ, combining (a) and (b) gives the

desired inequality.
Proof of (a):
We have α : ker γ ∼−→ imα∩ kerβ. Therefore as there is a surjection ΩR′/R →
(R′/pλ)d+1, and as ΩS′/R can be generated by (d+ 1) elements, we have

kerβ ⊃ ΩS′/R[p
λ] ≃ (S′/pλ)d+1

and so

ker γ ⊃ S′ ⊗S ΩS/R[p
λ] ≃

d⊕

i=0

S′/pmin(λ,δi).

Therefore

ℓp(ker γ) ≥
∑

min(λ, δi) ≥ min(λ,
∑

δi) = min(λ, δ).

Proof of (b):
Evidently im γ = S′d(S) = S′d(R′S). Now since under the trace form we have
D

−1
L/K = HomR(S,R), it follows that

R′
D

−1
L/K = HomR′(R′ ⊗ S,R′) ⊃ HomR′(S′, R′) = D

−1
L′/K′

and so S′ ⊃ R′S ⊃ DL/KD
−1
L′/K′ = ̟jS′ say, where ̟ = ̟L′ is a uniformiser

and j = eL′(δ − δ′). Therefor we have inclusions

im γ ⊃ S′d(̟jS′) ⊃ ̟jΩS′/R′ = pδ−δ′ΩS′/R′ ≃
d⊕

i=0

S′/(pmax(0,δ′i−δ+δ′))

and therefore

ℓp(im γ) ≥
d∑

i=0

(δ′i − δ + δ′) = (d+ 2)δ′ − (d+ 1)δ.

1.3 Deep ramification and norm fields

In this section we will work with towers K0 ⊂ K1 ⊂ . . . of finite extensions
of d-big local fields. If K• = {Kn} is such a tower, write K∞ =

⋃
Kn. We

abbreviate on = oKn
, ̟n = ̟Kn

and kn = kKn
. Define an equivalence relation

on towers by setting K• ∼ K ′
•
if there exists r ∈ Z such that for every n

sufficiently large, K ′
n = Kn+r.

We shall say that a tower K• is strictly deeply ramified if there exists n0 ≥ 0
and an ideal ξ ⊂ on0

with 0 < vp(ξ) ≤ 1, such that the following condition
holds:

For every n ≥ n0, the extension Kn+1/Kn has degree pd+1, and there
exists a surjection Ω(Kn+1/Kn) −→−→ (on+1/ξ)

d+1.
(1.3.1)
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If K• is strictly deeply ramified then so is any equivalent tower (with the same ξ
and possible different n0). See 1.3.8 below for some comments on this definition.
Let K• be a strictly deeply ramified tower, and (n0, ξ) a pair for which (1.3.1)
holds. Then by 1.2.1, for every n ≥ n0 we have e(Kn+1/Kn) = p, and Frobenius
induces a surjection f : on+1/ξ −→−→ on/ξ. We can then choose uniformisers ̟n

of Kn such that ̟p
n+1 ≡ ̟n (mod ξ) for every n ≥ n0. Define

X+ = X+(K•, ξ, n0) := lim←−
n≥n0

(on/ξ, f)

and wite prn : X
+ −→−→ on/ξ for the nth projection in the inverse limit. Set

Π = (̟n mod ξ) ∈ X+.

Let k′ = lim←−
n≥n0

(kn, f); since kn+1 = k
1/p
n , the projections prn : k

′ → kn for any

n ≥ n0 are isomorphisms. (Note that the residue field k∞ of K∞ is then the
perfect closure (k′)1/p

∞

of k′.)

Theorem 1.3.2. X(K•, ξ, n0) is a complete discrete valuation ring of char-
acteristic p, with uniformiser Π, and residue field k′. Up to canonical iso-
morphism (described in the proof below) X+(K•, ξ, n0) depends only on the
equivalence class of the tower K•, and not on the choices of ξ and n0 satisfying
(1.3.1).

Proof. Define a partial order on triples (K•, ξ, n0) satisfying (1.3.1) by setting
(K ′

•
, ξ′, n′

0) ≥ (K•, ξ, n0) if and only if vp(ξ
′) ≤ vp(ξ) and for some r ≥ 0 one

has n′
0 + r ≥ n0 and K ′

n = Kn+r for every n ≥ 0. It is obvious that under this
order any two triples have an upper bound if and only if the associated towers
of extensions are equivalent.
If (K ′

•
, ξ′, n′

0) ≥ (K•, ξ, n0) and r is as above then there is a canonical map

X+(K•, ξ, n0)→ X+(K ′
•
, ξ′, n′

0)

g : (xn)n≥n0
7→ (xn+r mod ξ′)n≥n′

0
.

If ξ = ξ′, g is obviously an isomorphism. In general we can define a map h in
the other direction by

h : (yn)n≥n′
0
7→ (yp

s

n+s−r)n≥n0

which is well-defined and independent of s for s sufficiently large. Then g and h
are mutual inverses. For three triples (K ′′

•
, ξ′′, n′′

0) ≥ (K ′
•
, ξ′, n′

0) ≥ (K•, ξ, n0)
the isomorphisms just described are obviously transitive, so we obtain the de-
sired independence on choices.
Truncating K• if necessary we may therefore assume that n0 = 0 and ξ = ̟0.
We then have by 1.2.1

X+/(Πpm

) = lim←− on/(̟0, ̟
pm

n ) ∼−−→
prm

om/(̟0).
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Therefore lim←−X+/(Πpm

) = lim←− om/(̟0) = X+, so X+ is Π-adically complete

and separated, and Π is not nilpotent. Since X+/(Π) is a field, X+ is therefore
a discrete valuation ring with uniformiser Π.

To make the definition of X+ truly functorial, we define for an equivalence
class K of towers

X+
K := lim−→X+(K•, ξ, n0)

where the limit is taken over triples (K•, ξ, n0) with K• ∈ K and (ξ, n0) satis-
fying (1.3.1), and the transition maps are the isomorphisms g in the preceding
proof. We let ΠK denote any uniformiser of X+

K , and define kK = X+
K/(ΠK) to

be its residue field.

Definition. The field of fractions XK of X+
K is the norm field of K.

Of course this is illogical terminology, because when d > 0 this has nothing to
do with norms. But when d = 0 it is just the field of norms XK(K∞) for the
extension K∞/K in the sense of Fontaine and Wintenberger ([12], [13], and
[23] — especially 2.2.3.3), and for d > 0 see also remark 1.3.9 below.
Let K• be a tower of d-big local fields, K its equivalence class, and L∞/K∞ a
finite extension. Then there exists a finite extension L0/K0 contained in L∞

such that L∞ = K∞L0; write Ln = KnL0. The equivalence class L of L•

depends only on L∞.

Theorem 1.3.3. Let K and L be as above. Then if K is strictly deeply ramified
so is L.
Proof. The condition on the extension degrees is clear. By Proposition 1.2.8
with (K,K ′, L, L′) = (Kn,Kn+1, Ln, Ln+1) we have

δ(Ln+1/Kn+1) ≤ δ(Ln/Kn)−
1

d+ 2
min(vp(ξ), δ(Ln/Kn))

and so δ(Ln/Kn)→ 0 as n→∞. Using the exact sequences of differentials for
the extensions Ln+1/Ln/Kn and Ln+1/Kn+1/Kn, it follows that the annihila-
tors of the kernel and cokernel of the canonical map

oLn+1
⊗oKn+1

Ω(Kn+1/Kn)→ Ω(Ln+1/Ln)

have p-adic valuation tending to zero as n→∞. Therefore L• satisfies (1.3.1)
for any ξ′ with 0 < vp(ξ

′) < vp(ξ) (and suitable n0).

Theorem 1.3.4. Let K• be strictly deeply ramified, K its equivalence class and
L∞/K∞ a finite extension.

(i) XL is a finite separable extension of XK. More generally, if L′
∞/K∞ is

another finite extension and τ : L∞ → L′
∞ is a K∞-homomorphism, the

maps τ : oLn
/ξ →֒ oL′

n
/ξ, for n sufficiently large and vp(ξ) sufficiently

small, induce an injection XK(τ) : X
+
L →֒ X+

L′ which makes XL′/XL a
separable extension of degree [L′

∞ : τL∞].
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(ii) The sequences (e(Ln/Kn)), (s(Ln/Kn)) and (f0(Ln/Kn)) are stationary
for n sufficiently large. Their limits equal e(XL/XK), s(XL/XK) and
f0(XL/XK) respectively.

(iii) There exists a constant c ≥ 0 such that δ(Ln/Kn) = cp−n for n suffi-
ciently large.

Proof. It suffices in (i) to consider the case of a single extension L∞/K∞. Let
m = [L∞ : K∞]. Changing ξ and n0 if necessary, we can assume that (1.3.1)
holds for both K• and L• with the same ξ and n0, and that [Ln : Kn] = [L∞ :
K∞] = m for n ≥ n0. Then for every n ≥ n0, oLn

/ξ is a finite flat on/ξ-algebra
of rank m. Therefore by Nakayama’s lemma X+

L is a finite flat X+
K -algebra of

rank m, so XL/XK is a finite extension of degree m.
Consider the discriminant d = dXL/XK

⊂ X+
K of X+

L /X+
K . The projection of d

to on/ξ equals the discriminant of oLn
/ξ over on/ξ. Since δ(Ln/Kn) → 0 the

latter is nonzero for n sufficiently large. So XL/XK is separable. Its residue
field extension is isomorphic to kLn

/kn for n sufficiently large. So the sequences
(f0(Ln/Kn)) and (s(Ln/Kn)) are ultimately stationary, hence the same holds
for e(Ln/Kn) = [Ln : Kn]/f(Ln/Kn).
Let vXK

(d) = r; then for n ≥ n0, (̟
r
n) equals the discriminant of oLn

/ξ over
on/ξ. So for n sufficiently large, vp(̟

r
n) = mδ(Ln/Kn). Therefore δ(Ln/Kn) =

p−nc where c equals rpn/meKn
, which is constant for n sufficiently large.

So if K is strictly deeply ramified, for any finite L∞/K∞ we may define

X+
K (L∞) := X+

L , XK(L∞) := XL

which by the above is a functor from the category of finite extensions of K∞

to that of XK.

Theorem 1.3.5. The functor XK(−) defines an equivalence between the cate-
gory of finite extensions of K∞ and the category of finite separable extensions
of XK.

Proof.
The functor is fully faithful. It is enough to show that if L∞/K∞ is a fi-
nite Galois extension then any non-trivial σ ∈ Gal(L∞/K∞) induces a non-
trivial automorphism XK(σ) of XK(L∞) = XL. In that case since [XL :
XK] = [L∞ : K∞] it follows that XL/XK is a Galois extension, and that
XK(−) : Gal(L∞/K∞) ∼−→ Gal(XL/XK), from which the fully faithfulness is
formal by Galois theory.
Assume that XK(σ) = 1. Then replacing σ by a suitable power, we may assume
it has prime order. Replacing K∞ by the fixed field of σ, and truncating the
tower if necessary we may then assume that L∞/K∞ is cyclic of prime degree
ℓ, with Galois group G say.
In this case for n sufficiently large, Ln/Kn is cyclic of degree ℓ and so oLn

=
oKn

[xn] for some xn ∈ oLn
. If gn ∈ oKn

[T ] is the minimal polynomial of xn
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then

DLn/Kn
= (g′n(xn)) =

∏

1 6=σ∈G

(xn − σxn).

So since δ(Ln/Kn)→ 0, it follows that if 1 6= σ ∈ G and n is sufficiently large,
then σxn 6≡ xn (mod ξ). So σ acts nontrivially on oLn

/ξ hence also on XL.
The functor is essentially surjective.
Using fully faithfulness, it is enough to show that if Y/XK is a finite Galois
extension then there exists L∞/K∞ and a XK-isomorphism XK(L∞) ∼−→ Y .
Let Y + ⊂ Y be the valuation ring of Y . Building the extension step-by-step
we are reduced to the cases:
(a) Y/XK is unramified. The categories of finite unramified extensions of XK

and K∞ are equivalent to the categories of finite separable extensions of their
respective residue fields kK and k∞. But as k∞ is the perfect closure of kK
these categories are equivalent.
(b) Y/XK is ramified and of prime degree ℓ. There are two subcases:
(b1) e(Y/XK) = ℓ. Then Y + = X+

K [ΠY ] where the uniformiser ΠY satisfies an
Eisenstein polynomial G(T ) ∈ X+

K [T ].
Choose n0 such that (1.3.1) holds and vp(ξ) > vp(̟n0

). For every n ≥ n0,
let gn ∈ on[T ] be any monic polynomial such that ḡn = prn(G) ∈ (on/ξ)[T ].
Then gn is an Eisenstein polynomial, and gn(T

p) ≡ gn+1(T )
p (mod ξ). Fix an

algebraic closure K of K∞ and let ō be its valuation ring.

Claim: There exist n1 ≥ n0, ξ
′ ∈ on1

with vp(ξ
′) ≤ vp(ξ), and roots xn ∈ ō of

gn, such

(i) For every n ≥ n1, x
p
n+1 ≡ xn (mod ξ′)

(ii) If Ln := Kn(xn) ⊂ K then Ln+1 = Kn+1Ln for all n ≥ n1.

(iii) If n ≥ n1 then (oLn+1
/ξ′)p = oLn

/ξ′, and there is an isomorphism of
X+

K -algebras

Y + ∼−→ lim←−
n≥n1

(
oLn

/ξ′, f
)

mapping ΠY to (xn mod ξ′)n.

Granted this claim, L∞ :=
⋃

Ln is an extension with XK(L∞) ≃ Y .

Proof of claim. (i) Let Sn = {xn,i | 1 ≤ i ≤ ℓ} ⊂ ō be the set of roots of gn.
Then for all n ≥ 0 and all i we have

ℓ∏

j=1

(xp
n+1,i − xn,j) = gn(x

p
n+1,i) ≡ gn+1(xn+1,i)

p ≡ 0 (mod ξ).

Choose n1 ≥ n0 and ξ′ ⊂ on1
such that 0 < vp(ξ

′) ≤ ℓ−1vp(ξ). Then for each i
there exists j with xp

n+1,i ≡ xn,j (mod ξ′). Choosing such a j for each i then
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determines a map Sn+1 → Sn, and by compactness lim←−Sn is nonempty. Let

(xn) be any element of the inverse limit; then (i) is satisfied.
If Ln = Kn(xn), then [Ln : Kn] = e(Ln/Kn) = ℓ. Since it satisfies an
Eisenstein polynomial, xn is a uniformiser of Ln, and oLn

/ξ′ = (on/ξ
′)[xn] =

(on/ξ
′)[T ]/ḡn(T ). Therefore for each n there is a unique surjection

f : oLn+1
/ξ′ −→−→ oLn

/ξ′ (1.3.6)

which is Frobenius on on+1/ξ and maps xn+1 to xn (mod ξ′).
Let µn : Y

+ −→−→ oLn
/ξ′ be the map taking ΠY to xn, and whose restriction

to X+
K is prn. The different of Y/XK is (G′(ΠY )), and it is nonzero since

Y/XK is separable. Let r = vY (G
′(ΠY )). Then ḡ′n(xn) = µn(G

′(ΠY )) equals
xr
n times a unit. Therefore if n is large enough so that vLn

(ξ) > r, we have
vLn

(g′n(xn)) = r. Therefore δ(Ln/Kn) = vp(g
′
n(xn)) → 0. Order the roots of

gn so that xn = xn,1. Since
∏

i6=1

(xp
n+1 − xn,i) ≡

∏

i6=1

(xn − xn,i) ≡ g′n(xn) (mod ξ)′

it follows that for n sufficiently large, xp
n+1 is closer to xn than to any of the

other roots {xn,i | i 6= 1} of gn. By Krasner’s lemma, xn ∈ Kn(x
p
n+1), so

Ln ⊂ Ln+1 and the map (1.3.6) is induced by the Frobenius endomorphism of
oLn+1

/ξ′ (by its uniqueness).
We have to check that Ln+1 = Kn+1Ln for n sufficiently large. Since [Ln+1 :
Kn+1] = ℓ = [Ln : Kn] it is enough to show that the extensions Ln/Kn and
Kn+1/Kn are linearly disjoint. If not, since [Ln : Kn] is prime, there exists a
Kn-homomorphism τ : Ln → Kn+1, and so ℓ = p. But as δ(Ln/Kn) → 0 and
Ω(Kn+1/Kn) surjects onto (on+1/ξ)

d+1 this implies that for n sufficiently large,
Ω(Kn+1/τLn) surjects onto kd+1

n+1, which is impossible as [Kn+1 : τLn] = pd.
Finally, making n1 sufficiently large, we have a commutative diagram

X+
K

prn+1

����

� � // Y +

µn+1

����
µn

�� ��
✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

on+1/ξ
′ �
�

//

f
%% %%❏

❏

❏

❏

❏

❏

❏

❏

❏

oLn+1
/ξ′

f
$$ $$■

■

■

■

■

■

■

■

■

on/ξ
′ �
�

// oLn
/ξ′

(1.3.7)

where Ln+1 = Kn+1Ln for n ≥ n1, inducing a X+
K -homorphism

Y + → X+
K (L∞) = lim←−

n≥n1

(oLn
/ξ′, f).

Since Y + and X+
K (L∞) are both valuation rings of extensions of XK of the

same degree, this is an isomorphism.
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(b2) e = 1 and s = 1. Then Y + = X+
K [U ] for some U ∈ (Y +)∗, whose reduction

mod ΠK generates kY /kK. As in (b1), let G be the minimal polynomial of U ,
and get ḡn ∈ (on/ξ)[T ] be its image, and gn ∈ on[T ] any monic lift. Then gn
is a fake Eisenstein polynomial (cf. §1.1) hence is irreducible; just as above
we find roots un ∈ ō of gn such that up

n+1 ≡ un (mod ξ′) for n sufficiently
large and suitable ξ′. The remainder of the argument proceeds exactly as for
(b1).

Remark 1.3.8. The condition 1.3.1 is closely related, in the case d = 0, to that
of strictly arithmetically profinite extension [23, §1.2.1]. It is possible to weaken
the condition without affecting the results: one could instead just require that
there exist surjections Ω(Kn+1/Kn) −→−→ (on+1/ξn+1)

d+1 where ξn ⊂ on is a
sequence of ideals whose p-adic valuations do not tend too rapidly to zero.

Remark 1.3.9. Suppose that K (and therefore also XK) is a (d+1)-dimensional
local field. Then, as Fesenko and Zerbes have remarked to the author, local
class field theory for higher dimensional local fields [17] gives a reciprocity
homomorphism KM

d+1(K) → Gal(K/K)ab, where KM
∗ () is Milnor K-theory,

which becomes an isomorphism after passing to a suitable completion ̂KM
d+1(K).

Therefore there is a commutative diagram

lim←−
norms

̂KM
d+1(Kn)

∼−−−−→ ̂KM
d+1(XK)

‖ ‖

lim←−Gal(K/Kn)
ab = Gal(K/K∞)ab ∼−−−−→ Gal(XK/XK)

ab

which may be viewed as the generalisation of the Fontaine-Wintenberger def-
inition (for d = 0) of XK as the inverse limit of the Kn with respect to the
norm maps.

2 (φ,Γ)-modules

2.1 Definitions

We review Fontaine’s definition [11] of the (φ,Γ)-module associated to a p-adic
representation, in an appropriately axiomatic setting. The key assumptions
making the theory possible are (2.1.1) and (2.1.2) below.
We begin with a strictly deeply ramified tower K• of d-big local fields (always
of characteristic zero) such that Kn/K0 is Galois for each n, and set K = K0,
ΓK = Gal(K∞/K). Fixing an algebraic closure K of K containing K∞, write
GK = Gal(K/K) ⊃ HK = Gal(K/K∞). All algebraic extensions of K will be
tacitly assumed to be subfields of K.
Let EK = XK be the norm field of the tower K•, and E

+
K its valuation ring. To

be consistent with the notation established in [8], we write π̄, or when there is
no confusion simply π, for a uniformiser of EK . Then E

+
K is (noncanonically)
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isomorphic to kK[[π̄]]. For a finite extension L/K, one writes EL for the norm
field of the tower LK•, and E for lim−→EL (the limit over all finite extensions

L/K). The group GK then acts continuously (for the valuation topology) on
E = E

sep
K , and this action identifies the subgroup HK with Gal(E/EK).

If E is any of these rings of characteristic p, write Erad for the perfect closure
p∞
√
E of E, and Ẽ for the completion of Erad. In particular, Ẽ+ is the valu-

ation ring of the algebraic closure of EK , and can be alternatively described
as lim←−(oK/p, f), also known as R. By continuity the action of GK on E ex-

tends uniquely to a continuous action on E
rad and Ẽ, and for any L on has

ẼL = Ẽ
HL .

In the theory of (φ,Γ)-modules there are two kinds of rings of characteristic
zero which appear. The first are those with perfect residue ring, which are
completely canonical. These are:

• Ã
+ = W (Ẽ+) ⊂ Ã = W (Ẽ);

• ÃL = W (ẼL), for any finite L/K;

• Ã
+
L = W (Ẽ+

L ) = Ã
+ ∩ ÃL

They carry a unique lifting of Frobenius (namely the Witt vector endomor-

phism F ), and the action of GK on Ẽ defines an action on Ã. The ring Ã

has a canonical topology (also called the weak topology) which is the weakest

structure of topological ring for which Ã → Ẽ is continuous (for the valua-

tion topology on Ẽ). Equivalently, in terms of the definition of W (Ẽ) as Ẽ
N

with Witt vector multiplication and addition, it is the product of the valuation
topologies on the factors. The GK -action is evidently continuous with respect
to the canonical topology. The other natural topology to put on Ã is the p-adic
(or strong) topology.
The other rings of characteristic zero have imperfect residue rings, and depend
on certain choices. Let A

+
K be a complete regular local ring of dimension 2,

together with an isomorphism A
+
K/(p) ≃ E

+
K . Such a lift of E+

K exists and is
unique up to nonunique isomorphism. If C is a p-Cohen ring with residue field
k, then any A

+
K is (non-canonically) isomorphic to C[[π]]. Define AK to be

the p-adic completion of (A+
K)(p); it is a p-Cohen ring with residue field EK .

Fix a principal ideal I = (π) of A+
K lifting (π̄) ⊂ E

+
K . Then AK is the p-adic

completion of A+
K [1/π]. The essential choice to be made is a lifting φ : A+

K →
A

+
K of the absolute Frobenius endomorphism of E+

K , which is required to satisfy
two conditions. The first is simply

φ(I) ⊂ I. (2.1.1)

It is clear that φ extends to an endomorphism of AK , whose reduction mod p
is the absolute Frobenius of EK .
For any finite extension L/K there exists a finite étale extension AL/AK ,
unique up to unique isomorphism, with residue fieldEL. LetAK = lim−→AL, the
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direct limit taken over finite extensions L/K, and let A be the p-adic comple-
tion of AK . Then AK is the maximal unramified extension of AK , and the iso-
morphism HK ≃ Gal(E/EK) extends to an isomorphism with Aut(AK/AK).
This in turn extends to a unique action of HK on A, continuous for both the
canonical and p-adic topologies, and for any finite L/K one has AHL = AL by
the Ax-Sen-Tate theorem [6].
Since AL/AK is étale there is a unique extension of φ to an endomorphism of
AL whose reduction mod p is Frobenius; by passage to the limit and comple-
tion it extends to an endomorphism of A. We use φ to denote any of these
endomorphisms.
The lifting φ of Frobenius determines (see [7, Ch,IX, §1, ex.14] and [11, 1.3.2])
a unique embedding

µK : AK −֒→W (EK)

such that µ◦φ = F ◦µ, which maps A+
K into W (E+

K). We identify AK with its
image under this map. An alternative description of µK is as follows: consider
the direct limit

φ−∞
AK = lim−→(AK , φ)

on which φ is an automorphism. Its p-adic completion is a complete unramified
DVR of characteristic zero, with perfect residue field E

rad
K , hence is canonically

isomorphic to W (Erad
k ). Likewise the action of φ on A determines an embed-

ding µ : A →֒ W (E), which is uniquely characterised by the same properties

as µK . The embeddings AK →֒ A →֒ W (Ẽ) induce topologies on AK and

A. One writes A
+ = A ∩ Ã

+. Then A
+/pA+ ≃ E

+ by [11, 1.8.3], and a
basis of neighbourhoods of 0 for the canonical topology on A is the collection
of A+-submodules

pmA+ πn
A

+, m, n ≥ 0.

The reduction map A → E is HK -equivariant by construction, and so µ is
HK-equivariant. The second, and much more serious, condition to be satisfied
by φ is:

A ⊂ Ã is stable under the action of GK . (2.1.2)

In particular, A inherits an action of GK , and AK and A
+
K inherit an action

of ΓK , continuous for the canonical topology.
A Zp-representation of GK is by definition a Zp-module of finite type with
a continuous action of GK . Assuming (2.1.1) and (2.1.2) above are satisfied,
Fontaine’s theory associates to a Zp-representation of GK the AK -module of
finite type

D(V ) = DK(V ) := (A⊗Zp
V )HK .

The functor D is faithful and exact. The AK -module D(V ) has commuting
semilinear actions of φ and ΓK . Being a finitely-generated AK-module, D(V )
has a natural topology (which is the quotient topology for any surjectionA

d
K →

D(V )), for which the action of ΓK is continuous. Therefore D(V ) has the
structure of an étale (φ,ΓK)-module, and just as in [11] we have:
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Theorem 2.1.3. Assume conditions (2.1.1) and (2.1.2) are satisfied. The func-
tor D is an equivalence of categories

(Zp-representations of GK) −→ (étale (φ,ΓK)-modules over AK)

and an essential inverse is given by D 7→ (A⊗AK
D)φ=1.

Lemma 2.1.4. (i) The sequences

0→ Zp → A
φ−1−→ A→ 0 (2.1.5)

0→ Zp → A
+ φ−1−→ A

+ → 0 (2.1.6)

are exact, and for every n > 0, the map

φ− 1: πn
A

+ → πn
A

+ (2.1.7)

is an isomorphism.
(ii) For any n > 0 and for any L/K, the map φ− 1: E+

L → E
+
L is an isomor-

phism.

Proof. It suffices (by passage to the limit) to prove the corresponding state-
ments mod pm. By dévissage it is enough to check them mod p. There-
fore (2.1.5), (2.1.6) follow from the Artin–Schreier sequences for E and E

+,
and (2.1.7) follows from (ii), since A

+/pA+ = E
+. Rewriting the map as

πn(p−1)φ− 1: E+
L → E

+
L , by Hensel’s lemma it is an isomorphism.

2.2 Cohomology

We assume that we are in the situation of the previous subsection. In par-
ticular, we assume that conditions (2.1.1) and (2.1.2) are satisfied. If G is a
profinite group and M a topological abelian group with a continuous G-action,
by H∗(G,M) we shall always mean continuous group cohomology. Write
C•(G,M) for the continuous cochain complex of G with coefficients in M , so
that H∗(G,M) = H∗(C•(G,M)). If φ ∈ EndG(M) write C•φ(G,M) for the sim-

ple complex associated to the double complex [C•(G,M)
φ−1−→ C•(G,M)]. Write

H∗
φ(G,M) for the cohomology of C•φ(G,M), and H∗

φ(M) for the cohomology of

the complex M
φ−1−→M (in degrees 0 and 1).

If H ⊂ G is a closed normal subgroup and M is discrete then there are two
Hochschild–Serre spectral sequences converging to H∗

φ(G,M), whose E2-terms
are respectively

Ha(G/H,Hb
φ(H,M)) and Ha

φ(G/H,Hb(H,M)),

and which reduce when H = {1} and H = G respectively to the long exact
sequence

Ha(G,Mφ=1)→ Ha
φ(G,M)→ Ha−1(G,M/(φ− 1))→ Ha+1(G,Mφ=1)
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and the short exact sequences

0→ Hb−1(G,M)/(φ− 1)→ Hb
φ(G,M)→ Hb(G,M)φ=1 → 0.

Theorem 2.2.1. Let V be a Zp-representation of GK , and set D = DK(V ).
There are isomorphisms

H∗(GK , V ) ∼−→ H∗
φ(ΓK , D) (2.2.2)

H∗(HK , V ) ∼−→ H∗
φ(D) (2.2.3)

which are functorial in V , and compatible with restriction and corestriction.

Remarks. (i) In the case when K has perfect residue field, and K∞ is the
cyclotomic Zp-extension, we recover Théorème 2.1 of [15], since taking γ to be
a topological generator of ΓK ≃ Zp, the complex

D
(φ−1

γ−1)−→ D ⊕D
(γ−1,1−φ)−−−−−−−→ D

computes H∗
φ(ΓK , D).

(ii) An oversimplified version of the proof runs as follows: from the short
exact sequence (2.1.5) we have, tensoring with V and applying the functor
RΓ(HK ,−), an isomorphism (in an unspecified derived category)

RΓ(HK , V ) ∼−→ RΓ(HK ,A⊗ V
φ−1−→ A⊗ V ). (2.2.4)

But for i > 0, Hi(HK ,A⊗V ) = 0, and H0(HK ,A⊗V ) = D, so the right-hand

side of (2.2.4) is isomorphic to [D
φ−1−→ D]. Applying RΓ(ΓK ,−) then would

give

RΓ(GK , V ) ∼−→ RΓ(ΓK , D
φ−1−→ D).

Since the formalism of derived categories in continuous cohomology requires
extra hypotheses (see for example [16] or [19, Ch.4]) which do not hold in
the present situation, we fill in this skeleton by explicit reduction to discrete
modules. (Note that in general these Galois cohomology groups will not be of
finite type over Zp, hence need not commute with inverse limits.)

Proof. We construct a functorial isomorphism (2.2.2); once one knows that it
is compatible with restriction, one may obtain (2.2.3) by passage to the limit
over finite extensions L/K; alternatively it can be proved directly (and more
simply) by the same method as (2.2.2). The compatibility of the constructed
isomorphisms with restriction and corestriction is an elementary verification
which we leave to the interested reader.
Write Vm = V/pmV and Dm = D/pmD; we have Dm = DK(Vm) since DK is
exact. A basis of neighbourhoods of 0 in Dm is given by the open subgroups

Dm ∩ (πn
A

+ ⊗ Vm) = (πn
A

+ ⊗ Vm)HK
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which are stable under ΓK and φ. Write also

Dm,n = Dm/(πn
A

+ ⊗ Vm)HK

which is a discrete ΓK-module; we have topological isomorphisms

Dm = lim←−
n

(Dm,n), D = lim←−
m

(Dm)

and H∗
φ(ΓK , D) is the cohomology of lim←−

m,n

C•φ(ΓK , Dm,n).

From 2.1.4 we obtain for every m,n ≥ 1 a short exact sequence

0→ Vm → (A/πn
A

+)⊗ Vm
φ−1−→ (A/πn

A
+)⊗ Vm → 0

and so the canonical map

C•(GK , Vm)→ C•φ(GK , (A/πn
A

+)⊗ Vm) (2.2.5)

is a quasi-isomorphism, for every m,n ≥ 1.
The inclusion Dm,n −֒→ (A/πn

A
+)⊗ Vm induces a morphism of complexes

αm,n : C•φ(ΓK , Dm,n)→ C•φ(GK , (A/πn
A

+)⊗ Vm).

Passing to the inverse limit and taking cohomology, this together with (2.2.5)
defines a functorial map

H∗
φ(ΓK , D)→ H∗(GK , V ) (2.2.6)

whose inverse will be (2.2.2). To prove it is an isomorphism, it is enough to
show:

Proposition 2.2.7. For every m ≥ 1, lim←−
n

(αm,n) is a quasi-isomorphism.

Proof. First note that the exactness of D implies that there is a short exact
sequence

0→ Dm → Dm+1 → D1 → 0

which clearly has a continuous set-theoretical splitting (it is enough to give a
continuous section of the surjection AK → EK which is easy), so gives rise to
a long exact sequence of continuous cohomology. Suppose the result is shown
for m = 1. Then (2.2.6) is an isomorphism for every V with pV = 0, and so
by the 5-lemma it is an isomorphism for every V of finite length, whence the
result holds for all m ≥ 1. So we may assume for the rest of the proof that
pV = 0 and m = 1, and therefore replace A by E.
Fix a finite Galois extension L/K such that HL acts trivially on V . We then
have a natural map

D1,n =
(E⊗ V )HK

(πnE+ ⊗ V )HK
→ (E⊗ V )HL

(πnE+ ⊗ V )HL
= EL/π

n
E

+
L ⊗ V.
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The map α1,n therefore factors as the composite of two maps

C•φ(ΓK , D1,n)
βn−−→ C•φ(Gal(L∞/K),EL/π

n
E

+
L ⊗ V )

γn−→ C•φ(GK ,E/πn
E

+ ⊗ V )

which we treat in turn:

(a) γn is a quasi-isomorphism. We may compute the induced map H∗(γn)
on cohomology using the morphism of associated spectral sequences, which on
E2-terms is the map

Ha(Gal(L∞/K), Hb
φ(EL/π

n
E

+
L )⊗ V )

→ Ha(Gal(L∞/K), Hb
φ(HL,EL/π

n
E

+
L)⊗ V ) (2.2.8)

We then have a commutative square (where E is regarded as a discrete HL-
module)

Hb
φ(EL) −−−−→ Hb

φ(EL/π
n
E

+
L)y

y

Hb
φ(HL,E) −−−−→ Hb

φ(HL,E/πn
E

+)

in which all the arrows are isomorphisms; in fact by 2.1.4(ii), the horizontal
arrows are isomorphisms, and since Hb(HL,E) = 0 for b > 0 the same is true
of the left vertical arrow. Therefore the maps (2.2.8) are isomorphisms, and
hence γn is a quasi-isomorphism, for every n ≥ 1.

(b) lim←−(βn) is a quasi-isomorphism. We consider the cohomology of the finite

group ∆ = Gal(L∞/K∞) acting on the short exact sequence

0→ πn
E

+
L ⊗ V → EL ⊗ V → EL/π

n
E

+
L ⊗ V → 0. (2.2.9)

Lemma 2.2.10. (i) Hj(∆,EL ⊗ V ) = 0 for j > 0.
(ii) There exists r ≥ 0 such that for all j > 0 and n ∈ Z, the group
Hj(∆, πn

E
+
L ⊗ V ) is killed by πr.

Proof. It is enough to prove (ii) for n = 0 (since π is fixed by ∆) and since
EL = lim−→π−n

E
+
L , (ii) implies (i). It is therefore enough to know that if M

is any E
+
L -module with a semilinear action of ∆, then there exists r ≥ 0 such

that πrHj(∆,M) = 0 for any j > 0, which is standard.4

To complete the computation of βn, we next recall [16, 1.9] that an inverse
system (Xn) of abelian groups isML-zero if for every n there exists r = r(n) ≥ 0

4Let M → N• be the standard resolution. Choose y ∈ E
+
L such that x = trEL/EK

(y) 6= 0,

and let λ(m) =
∑

g∈∆ g(ym). Then the composite (N•)∆ −֒→N• λ
−→ (N•)∆ is multiplica-

tion by x, hence by passing to cohomology, multiplication by x kills Hj(∆,M) for j > 0.
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such that Xn+r → Xn is the zero map. The class of ML-zero inverse systems
is a Serre subcategory [16, 1.12]. A morphism (Xn) → (Yn) is said to be an
ML-isomorphism if its kernel and cokernel are ML-zero, and if this is so, the
induced maps

lim←−Xn → lim←−Yn, R1 lim←−Xn → R1 lim←−Yn (2.2.11)

are isomorphisms. This implies that if (fn) : (X
•
n) → (Y •

n ) is a morphism of
inverse systems of complexes with surjective transition maps Xi

n+1 → Xi
n,

Y i
n+1 → Y i

n, then if (H∗(fn)) : (H
∗(X•

n)) → (H∗(Y •
n )) is an ML-isomorphism,

the map lim←−(fn) : lim←−X•
n → lim←−Y •

n is a quasi-isomorphism. (Consider the

induced map between the exact sequences [16, (2.1)] for X•
n and Y •

n .)

From the exact sequence of cohomology of (2.2.9) and the lemma, we deduce
that:

• for all j > 0, the inverse system (Hj(∆,EL/π
n
E

+
L ⊗ V ))n is ML-zero;

• the map of inverse systems

(D1,n)n → (H0(∆,EL/π
n
E

+
L ⊗ V ))n

is an ML-isomorphism.

We now have a spectral sequence of inverse systems of abelian groups
(nE

ij
2 )n ⇒ (nE

i+j
∞ )n with

nE
ij
2 = Hi

φ(ΓK , Hj(∆,EL/π
n
E

+
L ⊗ V ))

nE
k
∞ = Hk

φ(Gal(L∞/K),EL/π
n
E

+
L ⊗ V ).

such that, for all i ≥ 0 and j > 0, the inverse system (nE
ij
2 )n are ML-zero.

Therefore the edge homomorphism

(nE
i0
2 )n → (nE

i
∞)n

is an ML-isomorphism. Moreover for all i ≥ 0 the map of inverse systems

(Hi
φ(ΓK , Dm,n))n → (nE

i0
2 )n

is an ML-isomorphism, so composing with the edge homomorphism gives an
ML-isomorphism

(Hi
φ(ΓK , D1,n))n → (Hi

φ(Gal(L∞/K),EL/π
n
E

+
L ⊗ V ))n.

Hence lim←−(βn)n is a quasi-isomorphism.
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2.3 Kummer towers

Let F be any local field of characteristic 0, with perfect residue field. Set
̟ = ̟F , k = kF , o = oF . (Later in this section we will require further that F
is absolutely unramified.)

Let K ⊃ F be any d-big local field such that oK/oF is formally smooth (i.e., ̟
is a uniformiser of K). Let {tα | 1 ≤ α ≤ d} ⊂ o

∗
K be a set of units whose

reductions {t̄α} ⊂ kK form a p-basis for kK .

Fix an algebraic closure K of K. Let (εn)n≥0 be a compatible system of
primitive pn-th roots of unity inK, and for each α let (tα,n)n≥0 be a compatible
system of pn-th roots of tα.

Set Fn = F (εn), on = oFn
, kn = kFn

,K ′
n = K(t1,n, . . . , td,n) andKn = K ′

n(εn).

The tower {Fn} is strictly deeply ramified; choose n0 ≥ 0, ξ ∈ Kn0
with

0 < vp(ξ) ≤ 1, and uniformisers ̟n ∈ on such that ̟p
n+1 ≡ ̟p

n (mod ξ) for all
n ≥ n0. Let XF be the field of norms of {Fn} and kF = lim←−(kn, f) its residue
field. Put π̄ = ΠF , so that XF ≃ kF [[π̄]], and the isomorphism is canonical
once the uniformisers ̟n are fixed (since kF is perfect). Write for reduction
mod ξ.

We have oK′
n
= oK [t1,n, . . . , td,n] since this ring is a DVR, and so ̟n satisfies

an Eisenstein polynomial over K ′
n as well as over F . Hence oKn

= oK′
n
[̟n] =

on ⊗o oK [{tα,n}], and so

oKn
/ξ = on/ξ ⊗k kK [t̄1,n, . . . , t̄d,n] = on/ξ ⊗k k

1/pn

K

and we have a commutative diagram

on+1/ξ ⊗k k
1/pn+1

K

1⊗fn+1

∼ //

f

��

on+1/ξ ⊗
f−n−1, k

kK

f⊗1

��

on/ξ ⊗k k
1/pn

K

1⊗fn

∼ // on/ξ ⊗
f−n, k

kK

≀

��

kn[̟n]/(̟
rpn

n ) ⊗
f−n, k

kK

Therefore

E
+
K = X+

K = lim←−
n≥n0

kn[̟n]/(̟
rpn

n ) ⊗
f−n, k

kK = kF [[π̄]] ⊗̂
f−∞, k

kK
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where f−∞ : k −֒→ kF is the homomorphism making the diagram

kF
∼ // . . . ∼

f
// kn+1

∼
f

// kn

k

� ?

OO

∼
f

// k

� ?

OO

∼
fn

// k
f−∞

^^

commute. In other words, if we view kF as an extension of k via the map f−∞

just defined, we have E
+
K = kF [[π̄]]⊗̂kkK .

Set K ′
∞ =

⋃
K ′

n ⊂ K∞. Define the various Galois groups

ΓK = Gal(K∞/K) = ΓF×∆K/F

ΓF = Gal(K∞/K ′
∞) = Gal(F∞/F ) →֒ Z∗

p

∆K/F = Gal(K∞/F∞) ≃ Zd
p

acting on K∞ as follows: if a ∈ Z∗
p is the image of γa ∈ ΓF and b ∈ Zd

p the
image of δb ∈ ∆K/F then

γa : εn 7→ εan δb : εn 7→ εn

tα,n 7→ tα,n tα,n 7→ εbαn tα,n.

To be more precise we suppose from now on that F/Qp is unramified, so that
on = o[εn], and we may choose ̟n = εn − 1. Then the projections kF → k,
kK → kK are isomorphisms, and ΓK acts on E

+
K = kK [[π̄]] as follows: for

a ∈ Z∗
p,

γa : Π 7→ (1 + Π)a − 1, γa = identity on kcK

and for b ∈ Zd
p, δb is the unique automorphism of E+

K whose reduction mod (π̄)
is the identity, and which satisfies

δb : π̄ 7→ π̄, t̄α 7→ (1 + π̄)bα t̄α.

Such a unique automorphism exists since kK is formally étale over
Fp(t̄1, . . . , t̄d).

To lift to characteristic 0, set A
+
K = oK [[π]], with the obvious surjection to

E
+
K = kK [[π̄]]. The lifting φ of Frobenius is given as follows: on oK it is the

unique lifting of Frobenius for which φ(ti) = tpi ; and φ(π) = (1 + π)p − 1. It is
then immediate that the conditions (2.1.1), (2.1.2) hold, and the action of ΓK

on A
+
K satisfies

γa : π 7→ (1 + π)a − 1 δb : π 7→ π

γa = identity on oK tα 7→ (1 + π)bαtα.
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Remark 2.3.1. There is a natural generalisation of this construction for a Lubin-
Tate formal group G over oF associated to a distinguished polynomial g ∈
oF [X]. One takes F∞/F to be the Lubin-Tate extension generated by the
division points of G, and K ′

n = K({tα,n}) where g(tα,n+1) = tα,n. Then A
+
K is

the affine algebra of G over oK ; the lifting of Frobenius is given by g. For some
details when d = 0, and indications of what does and what does not extend,
see Lionel Fourquaux’s Ph.D. thesis [14, §1.4.1].
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