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Abstract. Let α be an algebraic integer and define a sequence of
rational integers dn(α) by the condition

dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)}.
We show that dn(α) is a strong divisibility sequence and that it sat-
isfies log dn(α) = o(n) provided that no power of α is in Z and no
power of α is a unit in a quadratic field. We completely analyze
some of the exceptional cases by showing that dn(α) splits into subse-
quences satisfying second order linear recurrences. Finally, we provide
numerical evidence for the conjecture that aside from the exceptional
cases, dn(α) = d1(α) for infinitely many n, and we ask whether the
set of such n has postive (lower) density.
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Introduction

A sequence of positive integers {dn} is called a divisibility sequence if it has the
property

(1) m|n =⇒ dm|dn.

Well-known examples of divisibility sequences include sequences of the form
dn = an − 1, the Fibonacci sequence Fn, and elliptic divisibility sequences Dn.
The first two also satisfy a linear recurrence. A complete characterization
of linear recurrence divisibility sequences is given in [2]. Elliptic divisibility
sequences are associated to points of infinite order on elliptic curves. Thus if
P ∈ E(Q), then the sequence Dn is formed by writing x(nP ) = An/D2

n, see [9].
In this paper we investigate divisibility sequences (dn(α))n≥1 associated to

algebraic integers α ∈ Z̄ by the rule

(2) dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)}.
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(We assume throughout that α 6= 0 and that α is not a root of unity.) It is
not difficult to show that dn(α) is a divisibility sequence, and indeed that it
satisfies the stronger divisibility property

gcd
(

dm(α), dn(α)
)

= dgcd(m,n)(α),

see Proposition 2.
These sequences are interesting in their own right as generalizations of the

classical divisibility sequences an − 1 with a ∈ Z. They are also interesting
as a special case of divisibility sequences attached to points of infinite order
on algebraic groups (see [8, Section 6]) for which we can prove unconditional
results.

We now briefly summarize the contents of this paper. We begin in Section 1
with the proof that dn(α) is a strong divisibility sequence. Section 2 contains a
variety of numerical examples illustrating varied behaviors of dn(α) for different
choices of α. In Section 3 we prove a useful result on linear dependence of Galois
conjugates, and in Section 4 we combine this with a deep result of Corvaja and
Zannier [5] to prove:

Theorem 1. Let α ∈ Z̄ and let dn(α) be the associated divisibility sequence (2).
Then

lim
n→∞

log dn(α)

n
= 0

unless either some power of α is in Z or some power of α is a unit in a quadratic

extension of Q.

The theorem says that aside from a few specific cases, the sequences dn(α)
grow slower than exponentially. One of the exceptional cases is easy to analyze.
If αr ∈ Z with |αr| ≥ 2 and if no smaller power of α is in Z, then one easily
checks that

dn(α) =

{

|αn − 1| if r|n,

1 if r ∤ n.

In particular, dn(α) contains a subsequence that grows exponentially.
In Section 5 we analyze the other exceptional case and give a complete de-

scription of dn(α) for real quadratic units α = u + v
√

D. If the norm of α is 1,
we prove that dn(α) satisfies a fourth order linear recurrence. More precisely,
we show that the subsequences d2n(α) and d2n+1(α) both satisfy the same sec-
ond order linear recurrence, but with different starting values. If the norm of α
is −1, then we prove that dn(α) = 1 for all of the odd values of n. The subse-
quence of even terms d2n(α) = dn(α2) satisfies a fourth order linear recurrence,
since α2 has norm 1. The proofs of these statements involve elementary, but
rather intricate, calculations.

Finally, in Section 6 we observe that except in the two exceptional cases, the
sequences dn(α) appear to include many small values. Theorem 1 says that
log dn(α) = o(n), and dn(α) does contain arbitrarily large values, but exper-
imentally one finds for example that dn(α) is frequently equal to d1(α). We
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Divisibility Sequences and Algebraic Integers 713

present one such experiment in Section 6 and use it to conjecture that the set

{n ≥ 1 : dn(α) = d1(α)}
is infinite (generalizing a conjecture of Ailon and Rudnick [1]) and to ask
whether this set in fact has positive (lower) density.

Acknowledgements. The author thanks Mike Rosen for his assistance in sim-
plifying the proof of Proposition 3.

1. Divisibility sequences associated to algebraic integers

We begin by reminding the reader of some classical definitions.

Definition 1. A divisibility sequence is a sequence of of positive inte-
gers (dn)n≥1 with the property that

(3) m|n =⇒ dm|dn.

The sequence is normalized if d1 = (1), which can always be arranged by
replacing dn by dn/d1. A strong divisibility sequence satisfies the more stringent
requirement that

(4) dgcd(m,n) = gcd(dn, dm) for all m,n ∈ N.

Examples of strong divisibility sequences include the Fibonacci sequence and
elliptic divisibility sequences.

Our principal objects of study in this note are the sequences (dn(α)) defined
by (2). Our first task is to show that they are strong divisibility sequences.

Proposition 2. Let α ∈ Z̄ be a nonzero algebraic integer. The associated

sequence (dn(α))n≥1 defined by (2) is a strong divisibility sequence.

Proof. We begin by verifying that (dn) is a divisibility sequence, i.e., it satis-
fies (3). Let m,n ∈ N satisfy m|n and write

αm − 1 = dmv and αn − 1 = dnw.

By assumption, m|n, so we can use the identity

XN − 1 = (X − 1)(XN−1 + XN−2 + · · · + X + 1)

with X = αm and N = n/m to obtain

αn − 1 = (αm − 1)z with z ∈ Z̄.

Let g = gcd(dm, dn) and write

dmx + dny = g with x, y ∈ Z.

We multiply through by w and substitute to obtain

gw = dmxw + dnyw = dmxw + dmvzy = dm(xw + vzy).

Subtituting this in above yields (note that g|dm)

αn − 1 = dn · dm

g
· (xw + vzy).
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Thus dndm/g divides αn − 1. But dn is, by definition, the largest natural
number dividing αn − 1, so dm = g. This shows that dm|dn, so (dn) is a
divisibility sequence.

We next show that (dn) is a strong divisibility sequence, i.e., it satisfies (4).
Let m,n ∈ N be arbitrary and let k = gcd(m,n). Then k|m and k|n, so from
above we know that dk|dm and dk|dn. Therefore dk| gcd(dm, dn).

To prove the opposite divisibility, we write m = kM and n = kN . Then
gcd(M,N) = 1, so there are polynomials A(X), B(X) ∈ Z[X] satisfying

A(X) · (XM − 1) + B(X) · (XN − 1) = X − 1.

(To see this, it is enough to observe that the resultant of XM−1
X−1 and XN−1

X−1

is 1.) Substituting X = αk yields

A(αk) · (αm − 1) + B(αk) · (αn − 1) = αk − 1.

As above, write αm − 1 = amv and αn − 1 = anw and let g = gcd(am, an).
Then

g ·
(

A(αk) · dm

g
· v + B(αk) · dn

g
· w

)

= αk − 1,

where the quantity in parentheses is in Z̄. It follows that g ≤ dk, since dk is
the largest natural number dividing αk − 1. We have now shown that g ≤ dk

and dk|g, which completes the proof that dk = g = gcd(dm, dn). �

Remark 1. The fact that dn(α) is a divisibility sequence follows from the [8,
Proposition 8] applied to the torus obtained by restriction of scalars from Z[α]
to Z of the multiplicative group Gm. Thus Proposition 2 strengthens [8] (for
certain tori) by showing that the divisibility sequence is strong. To avoid
introducing unnecessary machinery, we have been content to prove here the
case that we need, but we note that it is not difficult to generalize Proposition 2
to the more general setting of commutative algebraic groups studied in [8].

2. Numerical examples

In this section we look at numerical examples that illustrate different sorts of
behavior.

Example 1. The most elementary example is α ∈ Z with |α| > 1, which yields
most classical examples an = αn − 1 of divisibility sequences. However, there
are many deep open problems for even this simple case. For example, are there
infinitely many values of n for which an(2) is prime?

Example 2. Let α = 1 + i. The associated sequence is

(an(1 + i)) = 1, 1, 1, 5, 1, 1, 1, 15, 1, 1, 1, 65, 1, 1, 1, 255, 1, 1, 1, 1025, . . .

The pattern is clear and, using the fact that α4 = −4, it is easy to verify

an = |(−4)n/4 − 1| if 4|n, and otherwise an = 1.
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Although very elementary, we point out that for this example we have

(5) lim sup
n→∞

log(an)

n
=

1

4
log(4) > 0.

Example 3. We again work in the Gaussian integers, but now we take α = 2+i.
The associated sequence is

(an(2 + i)) = 1, 2, 1, 8, 1, 2, 1, 48, 1, 2, 1, 104, 1, 2, 1, 1632, 1, 2, 1, 8, 1, 2, 1, . . .

The pattern for α = 2+i is less regular than for α = 1+i, but the data certainly
suggest that all of the odd entries are equal to 1. Unfortunately, it turns out
that this is not true, since a27 = 109. Indeed, 914 of the first 1000 an’s with n
odd are equal to 1, but some of them get quite large, for example a1917 =
835921. (Question: Are there infinitely many n satisfying an(2 + i) = 1?)

The an with even n seem to fluctuate more than the odd n, and in particular,
many large values appear, as is apparent from the following longer list of values:

(an(2 + i)) = 1, 2, 1, 8, 1, 2, 1, 48, 1, 2, 1, 104, 1, 2, 1, 1632, 1, 2, 1, 8, 1, 2, 1, 1872,

1, 2, 109, 232, 1, 1342, 1, 3264, 1, 2, 1, 3848, 149, 2, 1, 1968, 1, 2,

1, 712, 1, 2, 1, 445536, 1, 2, 1, 424, 1, 218, 1, 1392, 1, 2, 1, 69784,

1, 2, 1, 6528, 1, 2, 1, 8, 1, 2, 1, 15168816, 1, 298, 1, 8, 1, 2, 1, . . .

It is not hard to see that sup an = ∞. More precisely, if p is a rational
prime with p ≡ 1 (mod 4), then αp−1 ≡ 1 (mod p), so p|ap−1. Hence there
are infinitely many n such that log(an) ≥ log(n). However, this is much slower
growth than (5), so we might ask whether log(an)/n has a positive limsup.
Table 1 lists the values of an for those n < 3000 satisfying an > am for all
m < n. The table suggests that

lim sup
n→∞

log(an(2 + i))

n
= 0.

In Section 4 we use [5] to prove that this is indeed the case, but we note that [5]
itself relies on Schmidt’s subspace theorem, so is far from elementary.

Example 4. Let α = 2 +
√

3. The associated sequence is

(an(2 +
√

3 )) = 1, 2, 5, 8, 19, 30, 71, 112, 265, 418, 989, 1560, 3691, 5822,

13775, 21728, 51409, 81090, 191861, 302632, 716035, 1129438,

2672279, 4215120, 9973081, 15731042, 37220045, 58709048, . . .

The sequence clearly grows quite rapidly and regularly. We will show that it
satisfies the linear recurrence

an+4 = 4an+2 − an.

In other words, if we define two subsequences using the odd and even terms,
respectively,

bn = a2n−1 and cn =
1

2
a2n for n = 1, 2, 3, . . . ,

Then bn and cn satisfy the linear recurrence, xn+2 = 4xn+1 −xn, with starting
values 1 and 5 for bn and 1 and 4 for cn. This is typical for the division
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n an log(an)/n

1 1 0.0000
2 2 0.3466
4 8 0.5199
8 48 0.4839

12 104 0.3870

16 1632 0.4623
24 1872 0.3139
32 3264 0.2528
36 3848 0.2293
48 445536 0.2710

72 15168816 0.2296
96 2679453504 0.2261

144 4682401135776 0.2026
288 73018777396433948352 0.1588
576 16262888139288561844854144 0.1008

1152 28839207217834356759345681513216 0.0629
1440 118208444086469083866098414522688 0.0513
1728 194974704634639262404276022769124992 0.0470
2016 773127404949837686996635213979409984 0.0410
2160 54208082000209968285932117562946424303904 0.0434

Table 1. Growth of an(2 + i)

sequences associated to units in real quadratic fields (see Section 5). As the
next example shows, nonunits appear to behave quite differently.

Example 5. Let α = 2 + 3
√

3. The associated sequence is

(an(2 + 3
√

3 )) = 1, 6, 13, 24, 1, 234, 1, 48, 13, 66, 1, 34632, 1, 6, 13, 96,

1, 702, 1, 264, 13, 6, 1, 346320, 1, 6, 13, 24, 59, 2574, . . .

Notice the striking difference between this sequence and the sequence for 2+
√

3
examined in Example 4. We will show that

log
(

an(2 + 3
√

3 )
)

= o(n),

so this example resembles Example 3.

3. Linear dependence of Galois conjugates

In this section we prove an elementary result on the linear dependence of Galois
conjugates. With an eye towards future applications and since the proof is no
more difficult, we give a result that is more general than needed in this paper.

Proposition 3. Let K be a field with separable closure Ks, let X/K be a

commutative algebraic group, which we write additively, and let x ∈ X(Ks).
Suppose that for every σ ∈ GKs/K , the points x and xσ are dependent in X.

Then one of the following two conditions is true:

(a) There is an n ≥ 1 such that nx ∈ X(K).
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(b) There is an n ≥ 1 such that

[K(nx) : K] = 2, and also TraceK(x)/K(x) ∈ X(K)tors.

Conversely, if either (a) or (b) is true, then x and xσ are dependent for every

σ ∈ GKs/K .

Proof. Let V = X(Ks) ⊗ Q and for any y ∈ X(Ks), let Vy be the vector sub-
space (over Q) of V generated by y and all of its Galois conjugates. Then GKs/K

acts continuously on Vy and we obtain a represenation ρy : GKs/K → GL(Vy).
The image is a finite subgroup of GL(Vy), which in general will yield informa-
tion about y if dim(Vy) is smaller than [K(y) : K]. We have yσ = ρy(σ)y in V ,
so there are torsion points tσ ∈ X(Ks)tors so that yσ = ρy(σ)y + tσ in X(Ks).
There are only finitley many distinct tσ, so we can find an integer n ≥ 1 such
that

(6) (ny)σ = ρy(σ)(ny) for all σ ∈ GKs/K .

We start with the assumption that x and xσ are dependent for all σ ∈ GKs/K ,
or equivalently, that Vx has dimension 1. Hence ρx : GKs/K → GL(Vx) = Q∗,
and since the image has finite order, it lies in {±1}. We consider two cases
depending on this image.

First, if Image(ρx) = {1}, then (6) tells us that nx is fixed by GKs/K .
Hence x ∈ X(K), which verifies that x satisfies (a).

Second, suppose that Image(ρx) = {±1}, and let L be the fixed field of the
kernel of ρx, so [L : K] = 2. Then (6) tells us that nx is fixed by GKs/L, so
nx ∈ X(L), and further it tells us that if σ /∈ GKs/L, then (nx)σ = −nx. Thus
nx /∈ G(K), so L = K(nx), which gives the first part of (b). For the second
part, we use the fact that nx ∈ X(L) to compute

nTraceK(x)/K(x) = TraceK(x)/K(nx)

=
[K(x) : L]

n
TraceL/K(nx) = nx + (−nx) = 0.

This shows that TraceK(x)/K(x) is in X(K)tors, which completes the proof
that x satisfies (b)

We will not need the opposite implication, but for completeness, we sketch
the proof. First, if nx ∈ X(K), then for every σ ∈ GKs/K we have xσ = x+ tσ
for some n-torsion point ts ∈ X(Ks)tors. Hence nxσ −nx = 0, so xσ and x are
dependent.

Next suppose that [K(nx) : K] = 2 and Trace(x) ∈ X(K)tors. Let σ ∈
GKs/K . If σ fixes K(nx), then (nx)σ−nx = 0, so (nx)σ and nx are dependent.
If σ does not fix K(nx), then

[K(x) : K(nx)]
(

(nx)σ + nx
)

= [K(x) : K(nx)] TraceK(nx)/K(nx)

= TraceK(x)/K(nx)

= nTraceK(x)/K(x) ∈ X(K)tors.

This proves that (nx)σ and nx are dependent, which completes the proof of
the theorem. �
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We state as a corollary the special case that is needed later.

Corollary 4. Let α ∈ Q̄∗ and suppose that for every σ ∈ GQ̄/Q, the ele-

ments α and ασ are multiplicatively dependent. Then there is an integer n ≥ 1
so that one of the following is true.

(a) αn ∈ Q.

(b) [Q(αn) : Q] = 2 and N(α) = ±1.

Proof. Apply Proposition 3 to the multiplicative group Gm/Q and note that
the torsion subgroup of Gm(Q) consists only of ±1. �

4. The growth of divisibility sequences

In this section we apply Corvaja and Zannier’s recent results [5] on generalized
greatest common divisors (see also [3, 4]) to bound the growth rate of divisibility
sequences (dn(α)). More precisely, Theorem 5 describes precise conditions that
force a divisibility sequence (dn(α)) to grow slower than exponentially. We note
that [5] is itself an application of Schmidt’s subspace theorem, so although the
proof of the theorem is not long, it describes a deep property of divisibility
sequences associated to algebraic integers.

Theorem 5. Let α ∈ Z̄ be a nonzero algebraic integer and let (dn(α)) be the

associated divisibility sequence,

dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)}.
Assume that one of the following two conditions is true:

(a) [Q(αr) : Q] ≥ 3 for all r ≥ 1.
(b) [Q(αr) : Q] ≥ 2 for all r ≥ 1 and NK/Q(α) 6= ±1.

Then

lim sup
n→∞

log(dn(α))

n
= 0.

In other words, dn(α) grows slower than exponentially.

Proof. To ease notation, we write dn for dn(α). Let K = Q(α), let L/Q be the
Galois closure of K and let OL be the ring of integers of L. By definition we
have

αn − 1 ∈ dnR,

so in particular αn − 1 ∈ dnOL. Applying an automorphism σ ∈ GL/Q, we see
that (ασ)n − 1 ∈ dnOL, since dn ∈ Z. Hence for every prime ideal p of L we
have

min
{

ordp(α
n − 1), ordp(α

σn − 1)
}

≥ ordp(dn).

Multiplying by an appropriate multiple of log NL/Q p and summing over primes
yields

(7) log gcd(αn − 1, ασn − 1) ≥ log dn,

where gcd is the generalized greatest common divisor used in [5, 8].
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Suppose now that α and ασ are multiplicatively independent in Q̄∗. Then [5,
Proposition] tells us that for every ǫ > 0 there is an n0 = n0(ǫ, α, ασ) with the
property that

(8) log gcd(αn − 1, ασn − 1) ≤ ǫn for all n ≥ n0.

Combining (7) and (8) yields the desired result.
So we are reduced to the case that for every σ ∈ GL/Q, the elements α and ασ

are multiplicatively dependent. Corollary 4 says that in this case, there is an
integer r with the property [Q(αr) : Q] ≤ 2, which completes the proof of the
theorem if α satisfies condition (a). If in addition [Q(αs) : Q] 6= 1 for all s ≥ 1,
then Corollary 4 says that α has norm ±1, which proves the theorem when α
satisfies condition (b). �

The theorem says that except in special cases, the sequence dn(α) cannot
grow too rapidly. One might ask if dn(α) is frequently very small. We consider
this question later in Section 6.

5. Real quadratic divisibility sequences

Theorem 5 says that dn(α) grows slowly except in a few specified instances.
In this section we analyze the cases that dn(α) may grow rapidly. We assume
throughout that α is not a root of unity.

The first case allowed by Theorem 5 is when there is an r ≥ 1 such that
αr ∈ Z. By assumption, |αr| ≥ 2, so we find that

drn(α) = |αrn − 1| ≥ |αr|n − 1 ≥ 2n − 1.

Thus this “Kummer case” yields

lim sup
n→∞

log(dn(α))

n
≥ log 2

r
> 0.

Further, if αr is the smallest power of α that is in Z, then it is easy to see that
dn(α) = 1 if r ∤ n.

The more interesting case arises when αr lies in a real quadratic extension
of Q and has norm ±1. The following elementary identities will be useful in
analyzing this case.

Lemma 6. For each n ∈ N, let An, Bn ∈ Q[X,X−1] be the Laurent polynomials

An(X,X−1) =
Xn + X−n

2
and Bn(X,X−1) =

Xn − X−n

2
.

Then the following identities hold in Q[X,X−1].

(a) A2n − 1 = 2B2
n

(b) B2n = 2AnBn

(c) (A1 + 1)(A2n−1 − 1) = (Bn + Bn−1)
2

(d) B1B2n−1 = B2
n − B2

n−1
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Proof. Substitute the definition of An and Bn into each of the stated identi-
ties and use elementary algebra to simplify. We illustrate with (c). First we
compute

2(Bn + Bn−1) = Xn − X−n + Xn−1 − X−n+1

= Xn−1(X + 1) − X−n(1 + X)

= (X + 1)(Xn−1 − X−n).

Replacing X by X−1 introduces a minus sign into Bn and Bn−1, so

2(Bn + Bn−1) = −(X−1 + 1)(X−n+1 − Xn).

Now multiplying these two expressions yields

4(Bn + Bn−1)
2 = −(X + 1)(X−1 + 1)(Xn−1 − X−n)(X−n+1 − Xn)

= (X + X−1 + 2)(X2n−1 + X−2n+1 − 2)

= 4(A1 + 1)(A2n−1 − 1).

The other parts are similar. �

The next two propositions give a complete description of dn(α) for α =

u + v
√

D with u, v ∈ Z. The other cases of real quadratic irrationalities are
handled similarly. The details are left to the reader.

Theorem 7. Let D ≥ 2 be an integer that is not a perfect square, and let

α = u + v
√

D ∈ Z[
√

D] be the unit associated to a nontrivial positive solution

(i.e., u, v > 0) of the Pell equation

u2 − v2D = 1.

Write

αn =
(

u + v
√

D
)n

= un + vn

√
D,

so the divisibility sequence associated to α is given by

dn(α) = gcd(un − 1, vn).

Then

dn(α) =







2vn/2 if n is even,

gcd(u − 1, v)
v(n+1)/2 + v(n−1)/2

v
if n is odd.

The sequence dn(α) satisfies the fourth order linear recursion

dn+4 = 2udn+2 − dn

whose characteristic polynomial is

T 4 − 2uT 2 + 1 =
(

T 2 − (u + v
√

D )
)(

T 2 − (u − v
√

D )
)

.

The sequence grows exponentially,

(9) lim
n→∞

log dn(α)

n
=

1

2
log(α) > 0.
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Theorem 8. Let D,α, un, vn, dn(α) be as in the statement of Theorem 7 except

now we assume that

u2 − v2D = −1.

Then

dn(α) =















1 if n ≡ 1 (mod 2),

2vn/2 if n ≡ 0 (mod 4),

vn/2+1 + vn/2−1

u
if n ≡ 2 (mod 4),

In particular, the even terms d2n(α) satisfy a linear recurrence and grow expo-

nentially, but the odd terms d2n+1(α) form a constant sequence.

Proof of Theorem 7. Letting ᾱ = u − v
√

D, we have the usual formulas

(10) un =
αn + ᾱn

2
and vn =

αn − ᾱn

2
√

D
.

The sequences (un) and (vn) satisfy the recurrence

xn+2 = 2uxn+1 − xn

with initial values

u0 = 1, u1 = u, v0 = 0, v1 = v.

We observe that v|vn for every n ≥ 0, so if we define a reduced sequence by
ṽn = vn/v, then ṽn is the linear recursion sequence defined by

(11) ṽ0 = 0, ṽ1 = 1, ṽn+2 = 2uṽn+1 − ṽn.

By assumption, αᾱ = 1, so we have ᾱ = α−1 and the identities in
Lemma 6(a,b) with X = α yield

u2n − 1 = d2n − 1 = 2B2
n = 2v2

nD,(12)

v2n =
B2n√

D
=

2AnBn√
D

= 2unvn,(13)

Using these, it is easy to compute the even terms of the divisibility sequence,

d2n(α) = gcd(2v2
nD, 2unvn) = 2vn gcd(vnD,un) = 2vn.

For the last equality, we use the fact that u2
n − Dv2

n = 1 to conclude that un

and vnD are relatively prime.
Similarly, the identities in Lemma 6(c,d) with X = α give

(u + 1)(u2n−1 − 1) = (A1 + 1)(d2n−1 − 1)

= (Bn + Bn−1)
2 = (vn + vn−1)

2D,(14)

vv2n−1 =
B1B2n−1

D
=

B2
n − B2

n−1

D
= v2

n − v2
2n−1.(15)

These give us a somewhat complicated formula for the odd terms in the divis-
ibility sequence,

(16) d2n−1(α) = gcd

(

(vn + vn−1)
2D

u + 1
,
v2

n − v2
n−1

v

)

.
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Using the reduced sequence ṽn = vn/v, we observe that

(vn + vn−1)
2D = (ṽn + ṽn−1)

2v2D = (ṽn + ṽn−1)
2(u2 − 1),

so we can rewrite (16) as

d2n−1(α) = gcd

(

(ṽn + ṽn−1)
2(u2 − 1)

u + 1
,
(ṽ2

n − ṽ2
n−1)v

2

v

)

= gcd
(

(ṽn + ṽn−1)
2(u − 1), (ṽ2

n − ṽ2
n−1)v

)

= (ṽn + ṽn−1) gcd ((ṽn + ṽn−1)(u − 1), (ṽn − ṽn−1)v) .(17)

It remains to show the the gcd is equal to gcd(u − 1, v).
A first observation is that adjacent terms of the sequence (ṽn) are rela-

tively prime, i.e., gcd(ṽn, ṽn−1) = 1, and further, they are alternately odd and
even. This follows easily by induction from the initial values and recursive
formula (11) satisfied by the sequence (ṽn). Hence

(18) gcd (ṽn + ṽn−1, ṽn − ṽn−1) = 1,

since the gcd certainly divides gcd(2ṽn, 2ṽn−1) = 2, and it cannot equal 2 since
ṽn + ṽn−1 is odd.

It is convenient to write out explicitly the closed sum for ṽn:

ṽn =
vn

v
=

(u + v
√

D)n − (u − v
√

D)n

2
√

Dv

=
1

2
√

Dv

n
∑

k=0

(

n

k

)

un−k(v
√

D)k(1 − (−1)k)

=

⌊(n−1)/2⌋
∑

k=0

(

n

2k + 1

)

un−2k−1v2kDk.

In particular, there are rational integers En ∈ Z such that

(19) ṽn = nun−1 + v2DEn.

We first compute (using v2D = u2 − 1)

ṽn − ṽn−1 =
(

nun−1 + v2DEn

)

−
(

(n − 1)un−2 + v2DEn−1

)

= nun−2(u − 1) + un−2 + (u2 − 1)(En − En−1)

≡ 1 (mod u − 1).

This proves that

(20) gcd(u − 1, ṽn − ṽn−1) = 1.

If we could prove that gcd(ṽn + ṽn−1, v) = 1, we would be done, but unfor-
tunately it is easy to produce examples where this fails to be true. To obtain
a weaker identity that suffices, we begin with the formula

ṽn + ṽn−1 = nun−1 + (n − 1)un−2 + v2D(En + En−1)

≡ un−2
(

n(u + 1) − 1
)

(mod v).(21)
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Multiplying by u − 1 yields

(ṽn + ṽn−1)(u − 1)

≡ un−2
(

n(u2 − 1) − (u − 1)
)

(mod v) from (21),

≡ un−2(nv2D − (u − 1)) (mod v) since u2 − 1 = v2D,

≡ −un−2(u − 1) (mod v).

Hence

gcd ((ṽn + ṽn−1)(u − 1), v) = gcd
(

−un−2(u − 1), v
)

= gcd(u − 1, v),(22)

since u and v are relatively prime.
Combining the above gcd computations, we find that

gcd
(

(ṽn + ṽn−1)(u − 1), (ṽn − ṽn−1)v
)

= gcd ((ṽn + ṽn−1)(u − 1), v) from (18) and (20),

= gcd(u − 1, v) from (22).

We are finally able to substitute this into (17) to obtain the formula

d2n−1(α) = (ṽn + ṽn−1) gcd
(

(ṽn + ṽn−1)(u − 1), (ṽn − ṽn−1)v
)

= (ṽn + ṽn−1) gcd(u − 1, v)

=
(vn + vn−1) gcd(u − 1, v)

v
,

which completes the proof of the stated formula for the odd terms in the divis-
ibility sequence dn(α).

In order to prove that dn(α) satisfies a recurrence relation and to measure its
exponential growth, we observe that we have proven that there are constants c1

and c2 (depending on u and v) so that

d2n(α) = c1vn,

d2n−1(α) = c2(vn + vn−1).
(23)

The sequence vn satisfies vn+2 = 2uvn+1−vn, so (23) implies the two recursions

d2n+4(α) = 2ud2n+2(α) − dn(α)

d2n+3(α) = 2ud2n+1(α) − d2n−1(α).

Thus the sequence dn(α) satisfies the recursive formula xn+4 = 2uxn+2 − xn

whose characteristic polynomial is

T 4 − 2uT 2 + 1 = (T 2 − α)(T 2 − ᾱ),

since α+ᾱ = 2u and αᾱ = 1. Finally, since we have chosen α to satisfy |α| > 1,
the limit formula (9) follows from (23) and the fact that

lim
n→∞

log vn

n
= lim

n→∞

log

(

αn − α−n

2
√

D

)

n
= log(α).
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This completes the proof of Theorem 7. �

Proof of Theorem 8. Clearly we have d2n(α) = dn(α2) directly from the defini-
tion. Let β = α2. Then ββ̄ = (αᾱ)2 = (−1)2 = 1, so the divisibility sequence
dn(β) is of exactly the type described in Theorem 8. In order to obtain an
explicit formula for dn(β) = d2n(α), we observe that

vn/2(β) = vn(α) for even n,

v(n±1)/2(β) = vn±1(α) for odd n,

u(β) − 1 = u2(α) − 1 = u2 + v2D − 1 = 2v2D,

v(β) = v2(α) = 2uv,

gcd
(

u(β) − 1, v(β)
)

= gcd(2v2D, 2uv) = 2v.

(Note that here u and v are given by α = u+v
√

D.) We substitute these values
into the formula for an(β) provided by Theorem 8. Thus if n is even we find
that

d2n(α) = dn(β) = 2vn/2(β) = 2vn(α),

and if n is odd we obtain

d2n(α) = dn(β) =
gcd(u(β) − 1, v(β))(v(n+1)/2(β) + v(n−1)/2(β))

v(β)

=
2v(vn+1(α) + vn−1(α))

2uv

=
(vn+1(α) + vn−1(α))

u

This completes the proof of the formula for the even terms in the se-
quence dn(α). It remains to show that dn(α) = 1 when n is odd.

We assume henceforth that n is odd. Then u2
n−v2

nD = −1, which we rewrite
as

(24) (un + 1)(un − 1) − v2
nD = −2.

This equation shows that gcd(un−1, vn) divides 2. However, it cannot equal 2,
since otherwise the lefthand side of (24) would be divisible by 4. This completes
the proof that dn(α) = gcd(un − 1, vn) = 1 when n is odd. �

6. Small entries in divisibility sequences

Theorem 5 tells us that except in a few specified cases, the sequence dn(α) grows
slower than exponentially, and although the values do occasionally get quite
large, we find experimentally that dn(α) is also often quite small. This leads us
to make the following conjecture, which is the analog of a conjecture of Ailon
and Rudnick [1] regarding gcd(an − 1, bn − 1) for multiplicatively independent
integers a and b.
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n ≤ dn = 1 dn = 2 dn = 3 dn = 4 dn = 5 dn = 6

1000 67.30 % 6.30 % 3.90 % 2.80 % 1.10 % 0.30 %

5000 66.32 % 6.10 % 3.72 % 2.50 % 0.78 % 0.32 %

10000 65.91 % 6.03 % 3.66 % 2.47 % 0.77 % 0.33 %

15000 65.82 % 5.99 % 3.60 % 2.42 % 0.78 % 0.33 %

20000 65.59 % 5.98 % 3.60 % 2.40 % 0.76 % 0.32 %

Table 2. Frequency of {n : dn(α) = k} for α3 − α − 1 = 0

Conjecture 9. Let α ∈ Z̄ be a nonzero algebraic integer and let (dn(α))
be the associated divisibility sequence (2). Assume that α satisfies one of the

conditions (a) or (b) in Theorem 5. Then
{

n ≥ 1 : dn(α) = d1(α)
}

is infinite.

Example 6. It is worthwhile looking at a nontrivial example numerically. Let
α be root of T 3 − T − 1. We find that the associated sequence starts

(dn) = 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 3, 1, 8,

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 1, 1, 35, 2, 1, 1, 3, 1,

1, 1, 16, 1, 59, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 5, 1, 1, 1, 1, 2, 9, 1,

1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 35, 1, 4, 1, 101, . . .

The data appears to support Conjecture 9 that dn = 1 for infinitely many
values of n. From this small amount of data it is less clear how often we should
expect to have, say, dn = 2 or dn = 3. Table 2 gives the frequency of dn = k
for each k = 1, 2, . . . , 6 and n ≤ N for various values of N . The table suggests
that the set {n ∈ N : dn = k} is infinite, and indeed possibly that it has a
positive density.

However, it is easily seen that there are some values of k for which the set is
empty. For example, we claim that dn(α) 6= 7 for all n. The reason is that the
smallest power of α satsifying αn ≡ 1 (mod 7) is α48 and

α48 − 1 = 128800 + 226030α + 170625α2 = 35(3680 + 6458α + 4875α2).

Thus
7|dn =⇒ 48|n =⇒ 35|dn,

so dn will never equal 7. It would be interesting to characterize the set
{k ∈ N : dn(α) 6= k for all n}.

Based on this and various other examples, it is tempting to make a conjecture
of the following sort, although given the scanty evidence, it seems safer to phrase
it as a question.

Question 1. Let α ∈ Z̄ be a nonzero algebraic integer and let (dn(α)) be the
associated divisibility sequence (2) as usual. For each k ∈ N, let

Sα(k) =
{

n ∈ N : dn(α) = k
}

.
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Is it true that either Sα(k) = ∅ or else Sα(k) has positive (lower) density in N.

If Question 1 has an affirmative answer, it then becomes a very interesting
question to describe the density of Sα(k) in terms of arithmetic properties of α,
even for the initial nontrivial case Sα(d1(α)).

Remark 2. The divisibility sequences dn(α) studied in this paper can be defined
in far more generality, for example using an element α in a ring of the form R =
Z[T ]/(F (T )) for a monic polynomial F (T ) ∈ Z[T ]. Thus dn(α) is the largest
rational integer d such that αn − 1 is divisible by d in the ring R.

As a particular example, consider the ring R = Z[T ]/(T 2 − T ) and element
α = T + 2. The natural isomorphism

R ∼= Z[T ]/(T ) × Z[T ]/(T − 1)

identifies α ↔ (2, 3), so dn(α) = gcd(2n − 1, 3n − 1). Ailon and Rudnick [1]
conjecture in this case that dn(α) = 1 for infinitely many n, and more generally
they conjecture that if a, b ∈ Z are multiplicatively independent, then

(25) gcd(an − 1, bn − 1) = gcd(a − 1, b − 1) for infinitely many n ≥ 1.

Thus Conjecture 9 may be viewed as a generalization of Ailon and Rudnick’s
conjecture, and Question 1 suggests a strengthened statement. Ailon and Rud-
nick prove a strong version of (25) with Z replaced by the polynomial ring C[T ].
See also [6] and [7] for analogs over Fq[T ] and for elliptic curves and [8, Sec-
tion 7] for a more general conjecture on the infinitude, although not the density,
of values of divisibility sequences associated to commutative group schemes.
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