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Abstract. In this paper, we present a conjecture concerning the
classicality of a genus two overconvergent Siegel cusp eigenform whose
associated Galois representation happens to be geometric, and more
precisely, given by the Tate module of an abelian surface. This con-
jecture is inspired by the Fontaine-Mazur conjecture. It generalizes
known results in the genus one case, due to Kisin, Buzzard-Taylor
and Buzzard. The main difference in the genus two case is the com-
plexity of the arithmetic geometry involved. This is why most of the
paper consists in recalling (mostly with proofs) old and new results
on the bad reduction of parahoric type Siegel varieties, with some
consequences on their rigid geometry. Our conjecture would imply,
in certain cases, a conjecture posed by H. Yoshida in 1980 on the
modularity of abelian surfaces defined over the rationals.
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In a previous paper, we showed under certain assumptions (Theorem 4 of [26])
that a degree four symplectic Galois representation ρ with singular Hodge-
Tate weights which is congruent to a cohomological modular Galois represen-
tation (we say then that ρ is residually cohomologically modular) is p-adically
modular. The precise definitions of the expressions above can be found in
[26] Sect.2 and 4. As a corollary, we obtain that certain abelian surfaces
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A/Q do correspond, if they are residually cohomologically modular, to over-
convergent Siegel cusp forms of weight (2, 2) (see Theorem 8 of [26]), in the
sense that their Galois representations coincide. This result fits a Generalized
Shimura-Taniyama Conjecture due to H. Yoshida ([30], Section 8.2) according
to which for any irreducible abelian surface A defined over Q, there should ex-
ist a genus two holomorphic Siegel cusp eigenform g of weight (2, 2) such that
L(h1(A), s) = Lspin(g, s), where L(h1(A), s) is the Grothendieck L function
associated to the motive h1(A) and Lspin(g, s) is the degree four automorphic
L function associated to g (with Euler factors defined via Hecke parameters
rather than Langlands parameters, for rationality purposes). One should no-
tice that this conjecture presents a new feature compared to the genus one
analogue. Namely, contrary to the genus one case, the weight (2, 2) occuring
here is not cohomological; in other words, the Hecke eigensystem of g does not
occur in the singular cohomology of the Siegel threefold (it occurs however in
the coherent cohomology of this threefold). In particular, the only way to de-
fine the Galois representation ρg,p associated to such a form g, either classical
or overconvergent, is to use a p-adic limit process, instead of cutting a piece
in the étale cohomology with coefficients of a Siegel threefold. This can be
achieved in our case because g fits into a two-variable Hida family of p-nearly
ordinary cusp eigenforms. Note that, more generally, for a classical cusp eigen-
form g of weight (2, 2) with (finite) positive slopes for its Hecke eigenvalues at
p, one believes that two-variable Coleman families of cusp eigenforms passing
through g in weight (2, 2) could also be constructed, and this would allow a
similar construction of ρg,p.

For our p-nearly ordinary overconvergent g, Theorem 8 of [26] states that the
associated Galois representation ρg,p does coincide with the p-adic realization
of a motive h1(A). Therefore, ρg,p is geometric; several results in the analogue
situation for genus 1 (see [18], [6] and [7]) lead us to conjecture that this g is
actually classical.

The goal of the present paper is to generalize slightly and state precisely this
conjecture (Sect.4.2). We also take this opportunity to gather geometric facts
about Siegel threefolds with parahoric level p, which seem necessary for the
study of the analytic continuation of such overconvergent cusp eigenforms to
the whole (compactified) Siegel threefold; the rigid GAGA principle would
then imply the classicity of such g. We are still far from fulfilling this program.
However, we feel that the geometric tools presented here, although some of them
can actually be found in the literature, may be useful for various arithmetic
applications besides this one, for instance to establish the compatibility between
global and local Langlands correspondence for cusp forms of parahoric level for
GSp(4,Q).

As a final remark, we should point out that there exist other Generalized
Shimura-Taniyama Conjectures for submotives of rank 3 resp.4 of the motive
h1(A) for certain abelian threefolds resp. fourfolds A (see [3]). For those, The-
orem 8 of [26] seems transposable; the question of classicity for the resulting
overconvergent cusp eigenforms for unitary groups U(2, 1) resp. U(2, 2) could
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then be posed in a similar way. It would then require a similar study of the
(rigid) geometry of Shimura varieties of parahoric type for the corresponding
groups.
Part of this paper has been written during visits at NCTS (Taiwan) and CRM
(Montreal). The excellent working conditions in these institutions were appre-
ciated. The author wishes to express his thanks to Professors Jing Yu and A.
Iovita for their invitations, as well as the Clay Institute which financed part
of the stay in Montreal. Discussions with H. Hida, A. Iovita, C.-F. Yu and
especially A. Genestier were very useful to remove several falsities and add
truths to an earlier draft (but the author alone is responsible for the remaining
errors).
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1 Notations

Let
G = GSp(4) = {X ∈ GL4;

tXJX = ν · J}

be the split reductive group scheme over Z of symplectic simitudes for the anti-

symmetric matrix J , given by its 2× 2 block decomposition: J =

(
0 −s
s 0

)

where s is the 2 × 2 antidiagonal matrix whose non zero entries are 1. This
group comes with a canonical character ν : X 7→ ν(X) ∈ Gm called the simili-
tude factor. The center of G is denoted by Z, the standard (diagonal) maximal
torus by T and the standard (upper triangular) Borel by B; UB denotes its
unipotent radical, so that B = TUB . Let γP = t1/t2 resp. γQ = ν−1t22 be
the short, resp. the long simple root associated to the triple (G,B, T ). The
standard maximal parabolic P = MU , associated to γP , is called the Klingen
parabolic, while the standard maximal parabolic Q =M ′U ′, associated to γQ,
is the Siegel parabolic. The Weyl group of G is denoted WG. It is generated

by the two reflexions sP and sQ induced by conjugation on T by

(
s 0
0 s

)

resp.




1
s

1


 . Let us fix a pair of integers (a, b) ∈ Z2, a ≥ b ≥ 0; we

identify it with a dominant weight for (G,B, T ), namely the character

T ∋ t = diag(t1, t2, ν
−1t2, ν

−1t1) 7→ ta1t
b
2
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Let Va,b be a generically irreducible algebraic representation of G associated to
(a, b) over Z.
Let A = Af ×Q∞ be the ring of rational adeles. Fix a compact open subgroup
K of Gf = G(Af ); let N ≥ 1 be an integer such that K = KN × KN with
KN = G(ZN ) maximal compact and KN =

∏
ℓ|N Kℓ for local components Kℓ

to be specified later.
Let HN be the unramified Hecke algebra outside N (that is, the tensor prod-
uct algebra of the unramified local Hecke algebras at all prime-to-N rational
primes); for each rational prime ℓ prime to N , one defines the abstract Hecke
polynomial Pℓ ∈ H

N [X] as the monic degree four polynomial which is the min-
imal polynomial of the Hecke Frobenius at ℓ (see Remarks following 3.1.5 in
[12]).
Let C∞ be the subgroup of G∞ = G(Q∞) generated by the standard maximal
compact connected subgroup K∞ and by the center Z∞.
For any neat compact open subgroup L of G(Af ), the adelic Siegel variety of
level L is defined as: SL = G(Q)\G(A)/LC∞; it is a smooth quasi-projective
complex 3-fold. If L ⊂ L′ are neat compact open subgroups of Gf , we have a
finite etale transition morphism φL,L′ : SL → SL′ .

2 Integral models and local models

Let K be a compact open subgroup of G(Ẑ) such that K(N) ⊂ K. For any
integerM ≥ 1, we write KM resp. KM for the product of the local components
of K at places dividing M , resp. prime to M .
Let p be a prime not dividing N we denote by I, ΠP resp. ΠQ the Iwahori
subgroup, Klingen parahoric, resp. Siegel parahoric subgroup of G(Zp). We
considerKB(p) = K∩I×Kp, KP (p) = K∩ΠP×K

p andKQ(p) = K∩ΠQ×K
p

and the corresponding Shimura varieties SB(p), SP (p) resp. SQ(p).
Let us consider the moduli problems

F∅ : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η)/S}/ ∼,

FB : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η,H1 ⊂ H2 ⊂ A[p])/S}/ ∼,

FP : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η,H1 ⊂ A[p])/S}/ ∼

and

FQ : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η,H2 ⊂ A[p])/S}/ ∼

where A/S is an abelian scheme, λ is a principal polarisation on A, η is a K-
level structure (see end of Sect.6.1.1 of [12]), Hi is a rank pi finite flat subgroup
scheme of A[p] with H2 totally isotropic for the λ-Weil pairing.
As in Th.6.2.1 of [12] or [16] Prop.1.2, one shows
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Theorem 1 If K is neat, the functors above are representable by quasipro-
jective Z[ 1N ]-schemes X∅, XB(p), XP (p) and XQ(p). The first one is smooth
over Z[ 1N ] while the others are smooth away from p; the functors of forgetful-
ness of the level p structure provide proper morphisms πB,∅ : XB(p) → X∅,
πP,∅ : XP (p) → X∅, and πQ,∅ : XQ(p) → X∅ which are finite etale in generic
fiber.

We’ll see that these morphisms are not necessarily finite hence not necessarily
flat.
We’ll also consider a moduli problem of level Γ1(p). Let UB be the unipotent
radical of the Borel B of G. Let FUB

be the functor on Q−Sch sending S to
{A, λ, η, P1, P2)/S}/ ∼ where P1 is a generator of a rank p finite flat subgroup
scheme H1 of A[p] while P2 is a generator of the rank p finite flat group scheme
H2/H1 for H2 a lagrangian of A[p]. Over Q, it is not difficult to show that it
is representable by a scheme XUB

(p)Q.
Following [14] and [12] Sect.6.2.2, we define the Z[ 1N ]-scheme XUB

(p) as the
normalisation of XB(p) in XUB

(p)Q; it comes therefore with a morphism
πUB ,B : XUB

(p)→ XB(p) which is generically finite Galois of group T (Z/pZ).

Remark: All schemes above have geometrically connected generic fibers if and
only if ν(K) = Ẑ×. However, in general, the morphisms π∗,∅ induce bijections
between the sets of geometric connected components ofX∗(p) andX∅; therefore
the descriptions of irreducible components of the special fiber at p given below
should be interpreted as relative to an arbitrary given connected component of
the special fiber at p of X∅.
We still denote by X∗(p) the base change to Zp of X∗(p)/Z| 1

N
] (∗ = ∅, B, P,Q).

The results that we will explain below are essentially due to de Jong [16],
Genestier [11], Ngô-Genestier [22], Chai-Norman [9], C.-F. Yu [29]. As most
of these authors, we make first use of the theory of local models [23], which
allows to determine the local structure of X∗(p); then, one globalizes using the
surjectivity of the monodromy action due to [10]. This argument is sketched in
[16] for g = 2 and developed for any genus and for any parahoric level structure
in [29].
The determination of the local model and of its singularities has been done in
case ∗ = B by de Jong [16], in case ∗ = P in [12] Sect.6.3 (inspired by [14])
and in case ∗ = Q in [12] Appendix. Let us recall the results.

2.1 The case ∗ = B

We first recall the definition of the local model MB of XB(p) over Zp.
Let St0 = Z4

p, with its canonical basis (e0, e1, e2, e3), endowed with the standard
unimodular symplectic form ψ: ψ(x, y) = txJy. We consider the standard

diagram St2
α2→ St1

α1→ St0 where αi+1 sends ei to pei and ej to ej (j 6= i).
We endow St2 resp. St0 with the unimodular standard symplectic form ψ,
which we prefer to denote ψ2 resp. ψ0. Let α2 = α1 ◦ α2; then we have
ψ0(α

2(x), α2(y)) = pψ2(x, y).
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Then,MB is the scheme representing the functor from Zp−Sch to Sets sending a
scheme S to the set of triples (ωi)i=0,1,2, where ωi is a direct factor of Sti⊗OS ,
ω0 and ω2 are totally isotropic, and αi+1(ωi+1) ⊂ ωi for i = 0, 1.
It is a closed subscheme of the flag variety over Zp G(St2, 2) × G(St1, 2) ×
G(St0, 2). Let ξ0 = (ω2, ω1, ω0) ∈MB(Fp) be the point given by ω2 = 〈e0, e1〉,
ω1 = 〈e0, e3〉 and ω0 = 〈e2, e3〉. Consider the affine neighborhood U of ξ0 in
MB given by ω2 = 〈e0 + c11e2 + c12e3, e1 + c21e2 + c22e3〉, ω1 = 〈e0 + b11e1 +
b12e2, e3 + b21e1 + b22e2〉 and ω0 = 〈e2 + a11e0 + a12e1, e3 + a21e0 + a22e1〉.
We’ll see below that it is enough to study the geometry of U because this open
set is “saturating” in MB (i.e. its saturation GBU for the action of the group
GB of automorphisms of MB is MB). Let us first study the geometry of U .
The equations of U are c11 = c22, a11 = a22,
pe1 + c21e2 + c22e3 = c22(e3 + b21e1 + b22e2),
e0 + c11e2 + c12e3 = e0 + b11e1 + b12e2 + c12(e3 + b21e1 + b22e2),
and similarly
pe0 + b11e1 + b12e2 = b12(e2 + a11e0 + a12e1),
e3 + b21e1 + b22e2 = e3 + a21e0 + a22e1 + b22(e2 + a11e0 + a12e1).
Equating the coordinates of the two members, one gets the set of equations (2)
of [16] Sect.5.
Putting x = a11, y = b12, a = c12, b = a12 and c = b22, an easy calculation
shows that U = specZp[x, y, a, b, c]/(xy − p, ax + by + abc). The special fiber
U0 ⊂ MB ⊗ Fp of U is an affine threefold given by the equations xy = 0 and
ax + by + abc = 0; it is the union of its four smooth irreducible components
Z00 = V (x, b), Z01 = V (x, y + ac), Z10 = V (y, a) and Z11 = V (y, x+ bc).
Let R = Zur

p [x, y, a, b, c]/(xy − p, ax + by + abc); then ξ0 has coordinates

(0, 0, 0, 0, 0) in U0(Fp). Let ζ0 = (x0, y0, a0, b0, c0) be an arbitrary point of
U0(Fp). Note that x0y0 = 0 and a0x0+b0(y0+a0c0) = b0y0+a0(x0+b0c0) = 0.
Let m0 be the maximal ideal of R corresponding to ζ0. The completion of R
at m0 is given by the following easy lemma ([16] Section 5).

Lemma 2.1 • If x0 + b0c0 6= 0, then if y0 6= 0, R̂m0

∼= Zur
p [[u, β, γ]],

• If x0 + b0c0 6= 0 and y0 = 0, then R̂m0

∼= Zur
p [[x, y, b, c]]/(xy − p),

• If a0 6= 0, if y0 = b0 = 0 then R̂m0

∼= Zur
p [[y, b, t, c]]/(ybt − p), and if

y0 6= 0 or b0 6= 0, if y0b0 = 0 then R̂m0
is Zur

p [[y, b, t, c]]/(yt− p), or it is

smooth if y0b0 6= 0,

• If c0 6= 0 and x0 = b0 = a0 = y0 = 0, if moreover c0 6= 0, then R̂m0

∼=
Zur
p [[x, y, u, v, w]]/(xy − p, uv − p),

• If x0 = b0 = a0 = y0 = c0 = 0, that is, if s0 = x0 (defined above), then

R̂m0

∼= Zur
p [[x, y, a, b, c]]/(xy − p, ax+ by + abc),

The other cases are brought back to those by permuting the variables x and y
resp. a and b.
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Proof: If x0 + b0c0 6= 0, and y0 6= 0, we choose liftings x0, a0, b0, c0 ∈ Zur
p and

y0 ∈ Zur
p

× and introduce new variables u, α, β, γ by putting y = y0 + u and

a = a0+α, b = b0+β, c = c0+γ (in case b0 = 0 for instance, we choose b0 = 0

so that β = b, and similarly for γ). Then, the relation ax+ by+abc = 0 in R̂m0

reads a(x+ bc) + by = 0, so that the image of the variable α can be expressed
as a series of the images of the variables u, β, γ; similarly, the relation xy = p
allows to express x as a series of u; in conclusion, we have R̂m0

∼= Zur
p [[u, β, γ]].

If x0 6= 0 = y0 = 0, this reasoning shows that R̂m0

∼= Zur
p [[x, y, β, γ]]/(xy − p).

If a0 6= 0, let us omit the centering at 0 of variables as above (needed for
instance if b0 6= 0 or y0 6= 0). Let us write the relation ax + by + abc = 0 as
x = −a−1by− bc = b(−a−1y− c). We introduce a new variable t = −a−1y− c.

Then we have p = xy = bty so that R̂m0

∼= Zur
p [[y, b, t, c]]/(ybt − p) unless, as

mentioned, b0 6= 0 or y0 6= 0 where things become simpler.
If x0 = b0 = a0 = y0 = 0 but c0 6= 0, then (x+bc)(y+ac) = p+c(ax+by+abc) =
p; hence, putting u = x+ bc and v = y + ac, one defines a change of variables
from the set of variables (x, y, a, b, c) to (x, y, u, v, c) (actually, as above, one
should use γ = c− c0 instead of c) and the conclusion follows.
The last case is clear.QED.

By the theory of local models, we have a diagram

WB

π ւ ց f
XB(p) MB

where WB classifies quintuples (A, λ,H1, H2;φ : St· ⊗ OS
∼= D(A·)) over a

scheme S (see Sect.3 of [16], especially Prop.3.6, for the definition of φ). One
sees easily that it is representable by a XB(p)-scheme π : WI → XB(p). The
morphism f consists in transporting the Hodge filtration from the Dieudonné
modules to St· by φ and π consists in forgetting φ. Recall that those morphisms
are smooth and surjective.
Given a point z = (A0 → A1 → A2, λ0, λ2;φ) ofWB(Fp), the degree p isogenies
A0 → A1 → A2 (defined by quotienting A = A0 by H1 and H2) give rise to
morphisms of filtered Dieudonné modules (writing Mi for D(Ai)S): M2 →
M1 → M0, sending ωi+1 into ωi. Let us consider the rank p finite flat group
schemes G0 = H1 = Ker (A0 → A1) and G1 = H2/H1 : Ker (A1 → A2). Then,
we have a canonical isomorphism
1) ωi/α(ωi+1) ∼= ωGi

.
Recall that ωA∨

i
= ω∨

i =Mi/ωi, hence by Th.1, Sect.15 of [20]), if G∨
i denotes

the Cartier dual of Gi, we have
2) ωG∨

i
=Mi/(ωi + α(Mi+1)).

For z ∈ WB(Fp) as above, let x = π(z) = (A0 → A1 → A2, λ0, λ2) and
s = f(z) = (ω2, ω1ω0).
We define σi(s) = dimωi/α(ωi+1) and τi(s) = dimMi/(ωi + α(Mi+1)).
Then,
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• if Gi is µp, σi(s) = 1 and τi(s) = 0

• if Gi is Z/pZ, σi(s) = 0 and τi(s) = 1

• if Gi is αp, σi(s) = 1 and τi(s) = 1

We define MB(Fp)
ord as the set of points s such that (σi(s), τi(s)) ∈

{(1, 0), (0, 1)} for i = 1, 2.
One determines its four connected components and we check their Zariski clo-
sures are the irreducible components of MB(Fp) as follows. The calculations of
the lemma above show that MB(Fp) ∩ U is the union of the loci

• (1) x = b = 0,

• (2) x = y + ac = 0,

• (3) y = a = 0,

• (4) y = x+ bc = 0,

Then, let us check that the component x = b = 0 is the Zariski closure of the
locus (m,m) where H1 and H2/H1 are multiplicative. This component consists
in triples (ω2, ω1, ω0) such that the generators of ω0 satisfy a11 = a12 = 0, that
is, by equations (1) of U0 in Sect.6 of [16], such that ω0 = 〈e2, e3〉. Then one
sees that α(ω1) = 〈b12e2, e3 + b22e2〉 has codimension 1 in ω0 if b12 = 0, and
codimension 0 otherwise, while α(ω2) = 〈e0 + c11e2 + c12e3, c21e2 + c22e3〉 has
codimension 1 if c11 = 0 and 0 otherwise.
On the other hand, α(M1) is generated by (e1, e2, e3) soM0/α(M1) is generated
by the image of e0; since ω0 = 〈e2, e3〉, we see that τ0(s) = 1 for any s ∈ Z00,
while α(M2) is generated by (e0, e2, e3) so that M1/α(M2) is generated by the
image of e1; since ω1 = 〈e0+b12e2, e3+b22e2〉, we see that τ1(s) = 1 also on Z00.
Hence the open dense locus defined by b12 6= 0 and c11 6= 0 is the ordinary locus
of this component (that is, the set of points s such that (σi(s), τi(s)) = (0, 1)
(i = 1, 2).
One can do similar calculations for the other components; to obtain the table
at bottom of page 20 of [16] (note however that our labeling of the components
is different).
This calculation proves the density of the ordinary locus in each irreducible
component in U0 and provides at the same time the irreducible components of
the non-ordinary locus and of the supersingular locus. We find

Lemma 2.2 The open subset U0 of MB ⊗ Fp is an affine scheme with four
irreducible components

• (1) x = b = 0, Zariski closure of the locus (m,m) where H1 and H2/H1

are multiplicative

• (2) x = y + ac = 0, Zariski closure of the locus (m, e) where H1 is
multiplicative and H2/H1 is étale
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• (3) y = a = 0, Zariski closure of the locus (e, e) where H1 and H2/H1

are étale

• (4) y = x + bc = 0, Zariski closure of the locus (e,m) where H1 is étale
and H2/H1 is multiplicative.

The singular locus U sing
0 can be viewed as the union of two loci: “H1 bicon-

nected”,whose equation is x = y = 0, and “H2/H1 biconnected”, whose equa-
tion is y + ac = x+ bc = 0. The intersection of those two is the supersingular
locus U ssing

0 .

The locus “H1 biconnected” is the union of U ssing
0 and two 2-dimensional irre-

ducible components

• (14) the locus x = b = y = 0,equation of the Zariski closure of the locus
where H1 is biconnected and H2/H1 is multiplicative,

• (23) the locus y = x = a = 0, equation of the Zariski closure of the locus
where H1 is biconnected and H2/H1 is étale,

where the label (ij) denotes the irreducible 2-dimensional intersection of (i) and
(j).

The supersingular locus U ssing
0 coincides with the intersection (2)∩ (4) which is

the union of one 2-dimensional component x = y = c = 0, which we denote by
(24) and one 1-dimensional component a = b = x = y = 0.

The locus “H2/H1 biconnected” is the union of U ssing
0 and of two irreducible

components

• (12) x = b = y+ac = 0, equation of the Zariski closure of the locus where
H1 is multiplicative and H2/H1 is biconnected,

• (34) y = a = x+bc = 0, equation of the Zariski closure of the locus where
H1 is étale and H2/H1 is biconnected .

with the same convention (ij) = (i) ∩ (j) (here, those are irreducible 2-
dimensional components);
Finally, the three irreducible components of the one-dimensional stratum asso-
ciated to the four irreducible components of U sing

0 are

• x = y = a = b = 0,

• x = y = a = c = 0,

• x = y = b = c = 0,

They are all contained in U ssing
0 . More precisely, the second and third are

contained in (24), and U ssing
0 is the union of the first and of (24).

Thus, the supersingular locus ofMB is not equidimensional, it is union of a two-
dimensional irreducible component, namely the Zariski closure of the locus (24),
and a one-dimensional irreducible component, closure of x = y = a = b = 0.
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Let us consider the Iwahori group scheme GB ; it is a smooth group scheme
over Zp representing the functor S 7→ AutS(St· ⊗OS). Its generic fiber is the
symplectic group G while its special fiber is extension of the upper triangular
Borel B by the opposite unipotent radical.
The complete list of the GB-orbits in MB⊗Fp follows from the analysis above.
There are thirteen such orbits. There are four 3-dimensional orbits (whose
Zariski closures are the irreducible components), five 2-dimensional orbits, three
1-dimensional orbits, and one 0-dimensional orbit, intersection of all the clo-
sures of the other orbits. These orbits can be detected from the irreducible
components as complement in an irreducible component of the union of the
other components of smaller dimension. In [13] p.594, they are described in
terms of thirteen alcoves in an apartment of the Bruhat-Tits building.
Let us explain now the property of saturation of U : GB · U = MB . To prove
this, we note that U0 meets all the orbits of GB because it contains the smallest
orbit, namely the point ξ0 defined above and that this point is in the closure
of all the other orbits. (cf. the remark of [11] above Lemma 3.1.1). This
observation, together with the previous lemma implies [16], [22]

Proposition 2.3 The scheme MB is flat, locally complete intersection over
Zp. Its special fiber is the union of four smooth irreducible components. Its or-
dinary locus coincides with the regular locus and is dense; the singular locus has
5 2-dimensional irreducible components, all smooth, and two one-dimensional
irreducible components, also smooth; the p-rank zero locus has 3 irreducible
components, all smooth; one is 2-dimensional and two are 1-dimensional.

The local and global geometry of XB(p) is mostly contained in the following:

Theorem 2 The scheme XB(p) is flat, locally complete intersection over Zp.
The ordinary locus in the special fiber coincides with the regular locus; it is
therefore dense in the special fiber XB(p)⊗Fp; this scheme is the union of four
smooth irreducible components Xmm, Xme, Xem, Xee. They are the Zariski
closures of their ordinary loci, which are given respectively by the following
conditions on the filtration 0 ⊂ H1 ⊂ H2 ⊂ A[p]: H2 is multiplicative, H1 is
multiplicative and H2/H1 étale, H1 is étale and H2/H1 is multiplicative, H2 is
étale. The singular locus of XB(p)⊗ Fp is therefore the locus where either H1

or H2/H1 is étale-locally isomorphic to αp.

There exists a semistable model X̃B(p) of XB(p) over Zp with a proper mor-

phism h : X̃B(p) → XB(p) whose generic fiber h ⊗ Qp is an isomorphism and
whose special fiber h⊗ Fp is an isomorphism over the ordinary locus.

Remark:
The stratification of the special fiber of MB by the GB-orbits (called the
Kottwitz-Rapoport stratification) defines also a stratification of the special
fiber of XB(p); the stratum XS associated to the (irreducible) stratum S of
MB is defined as π(f−1(S)). The four orbits corresponding to the irreducible
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components are connected because of the monodromy theorem of [10] (due to
C.-F. Yu [29]). It has been pointed out to the author by A.Genestier that for
the 2-dimensional orbits, no such connexity result is available yet by a p-adic
monodromy argument. However, C.F. Yu explained to us how to prove that the
p-rank one stratum does consist of four 2-dimensional irrreducible components
as listed above for M sing

B . Indeed, for any p-rank one geometric closed point x
of XB(p) ⊗ Fp, we have Ax[p] = G1,1[p] × µp × Z/pZ where G1,1 denotes the
p-divisible group of a supersingular elliptic curve; hence the possibilities for the
pairs (H1, H2/H1) are (αp, µp), (αp,Z/pZ), (µp, αp), (Z/pZ, αp). This shows
that the p-rank one stratum has exactly four connected components, so that
the components of each type are irreducible.
For the supersingular locus XB(p)

ss, it is known by Li-Oort that the number
of irreducible components is in general strictly greater than 3 (which is the
number of irreducible components of M ss

B ).
Proof: By [16] Sect.4, the morphisms π : WB → XB(p) and f : WI → MB

are smooth and surjective and for any geometric point x of XB(p), there exists
a geometric point s ∈ f(π−1({x}) of MB and a local ring isomorphism

ÔXB(p),x
∼= ÔMB ,s

The description of the strictly henselian local rings ÔXB(p),x is therefore given
by the list of Lemma 2.2. They are flat, complete intersection over Zur

p .

The ordinary subcheme XB(p)
ord of the special fiber XB(p) ⊗ Fp is the locus

where the connected component of A[p] is of multiplicative type. By total
isotropy of H2 it follows easily that XB(p)

ord(Fp) = π(f−1(Mord
B )). Therefore,

XB(p)
ord is the disjoint union of four open subsets Xmm,ord, Xme,ord, Xem,ord,

Xee,ord, defined by the conditions: “the type of the pair (H1, H2/H1) is (m,m)
resp. (m, e), resp. (e,m), resp. (e, e), where m means multiplicative and e
means étale”. Let us denote by Xmm, Xme, Xem, Xmm their Zariski closures
in XB(p) ⊗ Fp. By density of the ordinary locus, one has XB(p) ⊗ Fp =
Xmm ∪ Xme ∪ Xem ∪ Xmm. Let us show that these four subschemes are
smooth irreducible. For i, j ∈ {0, 1}, let Mαβ

B ( α and β in {m, e}) be the

irreducible components ofMB⊗Fp such thatMαβ
B ∩U0 is the component (α, β)

in Lemma 2.2; then we have π(f−1(Mαβ
B )) = Xαβ . Thus, the smoothness of

the components Mαβ
B of MB ⊗ Fp yields the smoothness of Xαβ ∩ U0 for all α

and β in {m, e}. The connectedness of Xαβ follows from a simple argument due
to C.-F. Yu [29] which we repeat briefly, with a small correction (of the wrong
statement (2.2) p.2595). let A→ X∅ be the universal abelian variety; let Xo

∅ be
the ordinary locus ofX∅⊗Fp; then for any closed geometric point x, by Sect.V.7
of [10] the monodromy representation π1(X

o
∅ , x)→ GLg(Zp) is surjective; this

is equivalent to saying that the finite étale Xo
∅ -cover Ig(p) = IsomXo

∅
(µ2

p, A[p]
o)

is connected. Consider the scheme Igb(p) = IsomXo
∅
((µ2

p×(Z/pZ)
2, A[p]) where

the second member consists in symplectic isometries between the standard
symplectic space (for the pairing given by the matrix J) and A[p] endowed
with the Weil pairing.
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By extension of isomorphisms between lagrangians to symplectic isometries,
we see that Igb(p) is a purely inseparable torsor above Ig(p) under the group
scheme µp ⊗ U(Z/pZ) where U denotes the unipotent radical of the Siegel
parabolic. Hence Igb(p) is connected. Now, for each connected component
Xαβ,ord of XB(p)

ord, one can define a finite surjective morphism Igb(p) →
Xo,αβ . For instance for Xme,ord, we define a filtration inside µ2

p × (Z/pZ)2 by
Hme

1 = µp × 1 × 0 × 0 ⊂ Hme
2 = µp × 1 × Z/pZ × 0, and we define fme as

sending (A, λ, ξ) ∈ Ig(p) to (A, λ, 0 ⊂ ξ(Hme
1 ) ⊂ ξ(Hme

2 ) ⊂ A[p]) ∈ Xme,ord.
This shows the connectedness of Xme,ord. A similar argument applies to the
other components.
The construction of the GB-equivariant semistable model M̃B of MB has been
done first by de Jong [16] by blowing-up MB along either of the irreducible
components (m,m) or (e, e), while Genestier constructs a semistable scheme

L̃ by three consecutive blowing-ups of the lagrangian grassmannian L in such
a way that the resulting scheme has an action of GB ; then he shows that the
isomorphism from the generic fiber of L̃ to that of MB extends to a proper
morphism L̃ → MB . He also shows [11] Construction 2.4.1 that the two con-

structions coincide: M̃B = L̃.
Then, both authors define X̃B(p) as (WB ×MB

M̃B)/GB (for its diagonal ac-
tion). QED
Remark: The previous calculations show also that the proper morphism πB,∅

is not finite over the supersingular locus C of X∅, for instance the inverse image
π−1
B,∅(CSS) of the (zero dimensional) superspecial locus CSS ⊂ C coincides

with the locus where the lagrangian H2 coincides with the lagrangian αp × αp

of G1,1[p]×G1,1[p], and H1 ⊂ H2; thus by [20] Sect.15, Th.2, the fiber of πB,Q

at each superspecial point of XQ(p) is a projective line.
On the other hand, the morphism πQ,∅ : XQ(p)→ X∅ is finite.

2.1.1 The case ∗ = UB

Recall that UB denotes the unipotent radical of B. The study of XUB
(p)

can be deduced from that of XB(p) following the lines of [14] Sect.6, using
Oort-Tate theory. More precisely, let W be the GB-torsor considered above
and WU = f−1(U) the inverse image of the affine open subset U of MB (see
beginning of 2.1). The locus where H1 and H2/H1 are connected has equa-
tion x = b = 0. This locus can also be described by oort-Tate theory as
follows. There exist two line bundles L1, L2 on XB(p) and two global sections

ui ∈ H
0(XB(p),L

⊗(p−1)
i , i = 1, 2, together with scheme isomorphisms H1

∼=
Spec (OXB(p)[T ]/(T

p − u1T )), resp. H2/H1
∼= Spec (OXB(p)[T ]/(T

p − u2T ))
such that the neutral sections correspond to T = 0; then the locus where H1

and H2/H1 are connected is given by u1 = u2 = 0 in XB(p). Moreover, the
(ramified) covering XUB

(p)→ XB(p) is defined by p− 1st roots ti of ui. More
precisely, when L is a line bundle on a scheme X and u is a global section of L,
one defines the scheme X[u1/n] as the closed subscheme of Spec

X
(Symm•L)

given by the (well-defined) equation tn = u; it is finite flat over X.
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Hereafter, we pull back the line bundles and sections ui to WU . The divisor
x = 0 has two irreducible components: x = b = 0 and x = y + ac = 0 along
which u1 has a simple zero. Moreover, u1/x is well defined and does not vanish
on WU . Similarly, u2/(x + bc) is defined everywhere and does not vanish on
WU . By extracting p−1st roots of these nowhere vanishing sections, one defines
an etale covering Z → WU . Define ZUB

= XUB
×XB(p) Z. On this scheme,

the functions x and x + bc admit p − 1st roots. Moreover, one has a diagram
analogue to the local model theory:

XUB
(p)← ZUB

→ U ′ = U [f1, f2]/(f
p−1
1 − x, fp−1

2 − (x+ bc))

Lemma 2.4 The two morphisms of the diagram above are smooth and surjec-
tive. The scheme U ′ is a local model of XUB

(p).

Proof: The morphism Z → XB(p) is smooth since it is the composition of
an étale and a smooth morphism; the same holds therefore for its base change
ZUB

→ XUB
(p). The smoothness of the other morphism is proved in a similar

way, noticing that one also has ZUB
= Z ×U U

′.
The surjectivity of WU → XB(p) (hence of ZUB

→ XUB
(p)) follows because U

is GB-saturating. The surjectivity of ZUB
→ U ′ comes from the surjectivity of

W →MB .

Corollary 2.5 The singular locus of the reduced irreducible components of
XUB

(p) is either empty or zero-dimensional.

Let T ′ be the diagonal torus of the derived group G′ of G.

Proposition 2.6 The morphism πUB ,B : XUB
(p) → XB(p) is finite flat,

generically étale of Galois group T ′(Z/pZ). The special fiber XUB
(p) ⊗ Fp of

XUB
(p) has four irreducible components mapped by πUB ,B onto the respective ir-

reducible components of XB(p)⊗Fp; each irreducible component of XUB
(p)⊗Fp

has prime to p multiplicities and the singular locus of the underlying reduced
subscheme of each component is at most zero dimensional.

One can also describe a local model of the quasisemistable scheme X̃UB
(p) =

XUB
(p) ×XB(p) X̃B(p). Namely, recall that the map M̃B → MB restricted to

the affine subscheme U ⊂ MB as before, is described (in de Jong’s approach)
as the blowing-up of U along x = b = 0. It is the union of two charts V :
(b, [x/b]) and V ′ : (x, [b/x]); the first is more interesting as it is GB-saturating
in the blowing-up. In V , one has y = −([x/b] + c), hence after eliminating
y, one finds a single equation for V in the affine space of a, b, c, [x/b], namely:

p = −ab[x/b]([x/b] + c). Therefore the inverse image VUB
of V in X̃UB

(p) has
equations

p = −ab[x/b]([x/b] + c), fp−1
1 = b.[x/b], fp−1

2 = b · ([x/b] + c)
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This scheme is not regular, but has toric, hence mild, singularities. The re-
striction of Z̃UB

above V provides again a diagram

X̃UB
(p)← Z̃UB ,V → VUB

with smooth and surjective arrows (for the left one, the surjectivity comes from

the GB-saturating character of V ). Therefore, VUB
is a local model of X̃UB

(p).

2.2 The case ∗ = P

We follow the same method (see [12] Sect.6 for a slightly different proof). We
keep the same notations (so p is prime to the level N of the neat group K). In
order to study XP (p) over Zp, we consider the diagram of morphisms

WP

π ւ ց f
XP (p) MP

WP is the Zp-scheme which classifies isomorphism classes of (A, λ, η,H1, φ)
where φ : St· ⊗OS →M·(A) is an isomorphism between two diagrams.
The first is St·⊗OS , ψ0 where Sti = Z4

p (i = 0, 1) and the diagram St· consists
in the inclusion α1 : St1 → St0, α1(e0) = pe0 and α1(ei) = ei (i 6= 0), and as
before, ψ0 is the standard unimodular symplectic pairing on St0 given by J .
The second is given by the inclusion of Dieudonné modules D(A1) → D(A0)
associated to the p-isogeny A0 → A1 where A0 = A and A1 = A/H1.
Let GP be the group scheme representing the functor S 7→ AutS (St· ⊗ OS);
is is a smooth group scheme of dimension 11 over Zp whose generic fiber is G
and the special fiber is an extension of the Klingen parahoric P by the opposite
unipotent radical. Then π : cWP → XP (p) is a GP -torsor .
The local modelMP is the projective Zp-scheme classifying isomorphism classes
of pairs (ω1, ω0) of rank 2 direct factors ωi ⊂ Sti (i = 0, 1) such that α1(ω1) ⊂
ω0 and ω0 is totally isotropic for ψ0. The map f send a point ofWP to the pair
obtained by transporting the Hodge filtrations to St·⊗OS via the isomorphism
φ
We introduce again an open neighborhood U of the point ξ0 = (ω1, ω0) in MP

with ω1 = 〈e0, e3〉 and ω0 = 〈e2, e3〉. Its importance, as in the Iwahori case,
stems from the fact that it is GP -saturating GPU =MP (same proof as above).
It consists in the points (ω1, ω0) where ω1 = 〈e0+b11e1+b12e2, e3+b21e1+b22e2〉
and ω0 = 〈e2 + a11e0 + a12e1, e3 + a21e0 + a22e1〉.
The condition α1(ω1) ⊂ ω0 yields the relations p = b12a11, b11 = b12a12,
0 = a21+ b22a11 and b21 = a22+ b22a12. The isotropy relation yields a11 = a22.
By putting x = a11, y = b12, z = a12, t = b22, we find that U = specR where
R = Zp[x, y, z, t]/(xy − p), so that for any maximal ideal m0 corresponding

to (x0, y0, z0, t0) of U(Fp), the completion R̂m0
is Zur

p [[x, y, z, t]]/(xy − p), if
x0y0 = 0, and smooth otherwise. In any case, the local rings are Zp-regular.
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Via transitive action of GP we conclude that MP is semistable, with special
fiber a union of two smooth irreducible components Z0 (locally: x = 0) and Z1

(locally: y = 0).
In this situation, it is natural to consider only the maps

σ0 : s 7→ dimω0(s)/α1(ω1(s)) and τ0 : s 7→ dimM0/ω0(s) + α1(M1)

as above; the regular locus Mr
P of MP ⊗ Fp coincides with the locus where

(σ0(s), τ0(s)) ∈ {(0, 1), (1, 0)}.
As for ∗ = B, we conclude that

Theorem 3 The scheme XP (p) is flat, semistable over Zp. The ordinary locus
in the special fiber is dense, strictly contained in the regular locus. The special
fiber XB(p) ⊗ Fp is the union of two smooth irreducible components Xm and
Xe where Xm−Xe is the locus where H1 is multiplicative, and Xe−Xm is the
locus where H1 is étale. The singular locus of XP (p)⊗ Fp is a smooth surface;
it is the locus where H1 is étale-locally isomorphic to αp.

The proof of the density of the ordinary locus is as follows. The forgetful
morphism XB(p) → XP (p) sends the ordinary locus of XB(p) onto the one
of XP (p); hence the density of the first implies that of of the second. The
singular locus is the intersection of the two components; it is the locus where
H1 is étale-locally isomorphic to αp.
Remark: We give an ad hoc proof of the density of the ordinary locus of
XP (p)⊗ Fp in[12] Prop.6.4.2.

2.3 The case ∗ = Q

Again, the same method applies; however, in order to study XQ(p) over Zp

and find a semistable model X̃Q(p) → XQ(p), we’ll first perform calculations
in the flavor of de Jong’s method [16], as a motivation for Genestier’s approach
([11] Sect.3.3.0 and 3.3.3 and [12] Appendix) which we will follow and further
a little.
We consider the diagram of morphisms

WQ

π ւ ց f
XQ(p) MQ

where πQ :WQ → XQ(p) is the XQ(p)-scheme classifying isomorphism classes
of (A, λ, η,H2, φ) where φ : St· ⊗ OS → M·(A) is a symplectic isomorphism
between two diagrams.
The first is St· ⊗ OS , ψ0, ψ2 where Sti = Z4

p (i = 0, 2) and the diagram St·
consists in the inclusion α2 : St2 → St0, α

2(ei) = pei (i = 0, 1) and α1(ei) =
ei (i > 1), and as before, ψ0 and ψ2 both denote the standard unimodular
symplectic pairing on Z4

p given by J . Note that α2 is a symplectic similitude
of similitude factor p: ψ2(α

2(x), α2(y)) = p · ψ0(x, y).
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Let GQ be the Zp-group scheme of automorphisms of MQ. It acts on WQ as
well and πQ is a GQ-torsor.
Let L be the grassmannian of lagrangian direct factors in St0 over Zp. Fol-
lowing [11] and [12] Appendix, we shall construct a GQ-equivariant birational
proper morphism L(2) → L over Zp, composition of two blowing-up morphisms
along closed subschemes of the special fiber such that L(2) is semistable and
is endowed with a canonical GQ-equivariant proper morphism h : L(2) → MQ

(an isomorphism in generic fiber). We shall call h the Genestier morphism for
(GSp4, Q). For the easiest case (GSp2g, P ), see Prop.6.3.4. of [12].
As a motivation for the detailed construction below by two blowing-ups, we
introduce the open subset U of MQ consisting of pairs (ω2, ω0) ∈ MQ where
ω0 is spanned by e3 + a21e0 + a11e1 and e2 + a22e0 + a12e1 (with a12 = a21)
and ω2 = 〈e1 + c21e2 + c11e3, αe0 + c22e2 + c12e3〉 (with c12 = c21), such that
α2(ω2) ⊂ ω0; it is therefore isomorphic to the affine set of A6

Zp
consisting of

pairs (A,C) of 2× 2 symmetric matrices such that AC = p12 by the map

(A,C) 7→

(
s
sC

)
,

(
sA
s

)

Its special fiber has three irreducible components, given by A = 0, B = 0 and
the Zariski closure of the locally closed set: rkA = rkB = 1. One then defines
Ũ in M̃Q as the quotient by Gm of the affine open set of triples (λ,A′, µ) such
that A′ 6= 0 is symmetric and λµdetA′ = p, the action of Gm being given by
t · (λ,A′, µ) = ((tλ, t−1A′, tµ). The map (λ,A′, µ) 7→ (A,C) given by A = λA′,
C = µtcom(A′) is the blowing-up of U along the component A = 0.

Remark: One checks easily that Ũ is also the blowing-up of U along C = 0.
Hence the projection is invariant under the symmetry (A,C) 7→ (C,A). This

allows the definition of an involution W on Ũ . This involution will extend to
M̃B . See after Prop. below. Note however that the following construction
is dyssymmetrical, and does not make explicit use of the open set U defined
above.

The first blowing-up L(1) of the lagrangian grassmannian L over Zp along the
closure of Q · ω23 where ω23 is the Fp-lagrangian spanned by e2 and e3.
Note that by functoriality of the blowing-up, L(1) is endowed with a natural
action of GQ (which acts on L through the canonical morphism GQ → G and
leaves the center of blowing-up stable).
Namely, let us consider the affine open subset Ω0 of L consisting of the la-
grangian planes ω0 = 〈e3 + a11e0 + a12e1, e2 + a21e0 + a22e1〉 (with a12 = a21),
the blowing-up L(1)|Ω0 is the closed Zp-subscheme of A3 × P3 of points
(a11, a12, a22; [A11, A12, A22, S]) such that

a11A12 − a12A11 = 0, a11A22 − a22A11 = 0, a12A22 − a22A12, = 0

and
pA11 = a11S, pA12 = a12S, pA22 = a22S.

Documenta Mathematica · Extra Volume Coates (2006) 781–817



798 J. Tilouine

The scheme L(1)|Ω0 can be described as the quotient by Gm of the locally closed
Zp-subscheme T1 of the affine space A5 defined in terms of the coordinates
(λ0, P0, A11, A12, A22) as the intersection of the closed subscheme λ0P0 = p
with the complement of the closed subscheme P0 = A11 = A12 = A22 = 0. The
action of Gm is given by multiplication by λ−1 on the first variable and by λ
on the rest.
Indeed, the quotient map T1 → L

(1)|Ω0 is

(λ0, P0, A11, A12, A22) 7→ (a11, a12, a22; [A11, A12, A22, S])

where a11 = λ0A11, a12 = λ0A12, a22 = λ0A22, S = P0.
To take care of equation (1), following [11] Theorem, one forms the blow-

up L(2) of L(1) along the strict transform Z
c,(1)
02 of the Zariski closure Zc

02 of
Z02 = Q · ω02 where ω02 is the lagrangian spanned by e0 and e2.
The equations of L(2)|Ω0 can be determined as follows. First, one notes that

Z
c,(1)
02 |Ω0 is given as a Zp-subscheme of L(1)|Ω0 by the equations A11A22−A

2
12 =

P0 = 0. Its inverse image in T1 is given by the same equations (this time, viewed
in an affine space). Let δ = A11A22 −A

2
12.

Then, the blowing-up T (2) of T1 along this inverse image is the subscheme of
T1 × P1 with coordinates (λ0, P0, A11, A12, A22, [P1, δ1]) given by the equation
δP1 = δ1P0 (with (P1, δ1) 6= (0, 0)).
Introducing λ1 such that P0 = λ1P1, and δ = λ1δ1, one can rewrite T (2)

as the quotient by Gm of the affine locally closed subscheme T2 of A7 with
affine coordinates (λ0, λ1, P1, A11, A12, A22, δ1) and equations λ0λ1P1 = p and
λ1δ1 = A11A22 − A2

12 in the open subset of A7 intersection of the locus
(λ1P1, A11, A12, A22) 6= (0, 0, 0, 0) with (δ1, P1) 6= (0, 0); the action of µ ∈ Gm

being the trivial one on λ0 and Aij , the multiplication by µ−1 on λ1 and the
multiplication by µ on P1 and δ1.
The quotient map is

(λ0, λ1, P1, A11, A12, A22, δ1) 7→ (λ0, P0, A11, A12, A22, [P1, δ1])

with P0 = λ1P1.
We can thus write L(2)|Ω0 as a quotient T2/G

2
m, for the action of (λ, µ) ∈ G2

m

on (λ0, λ1, P1, A11, A12, A22, δ1) ∈ T2 by multiplication by λ−1 on λ0, µ
−1 on

λ1, by λµ on P1, by λ on Aij and λ2µ on δ1.
The Zp-scheme T2 is clearly semistable. It implies by Lemme 3.2.1 of [11] that
L(2)|Ω0 is also semistable. Since GQ · L

(2)|Ω0 = L(2), the same holds for L(2).
Let us consider the forgetful morphism π0 :MQ → L, (ω2, ω0) 7→ ω0; the open
subset U ′′ = π−1(Ω0) ⊂MQ. This open set is not affine, it is dyssymmetrical,
it contains the affine open set U defined above.
We can now define the Genestier morphism h on L(2)|Ω0. It is given by the
G2

m-invariant map

T2 → U ′′, (λ0, λ1, P1, A11, A12, A22, δ1) 7→ (ω2, ω0)
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where ω0 is given by aij = λ0Aij and ω2 is given in terms of its Plücker
coordinates on the basis (e0 ∧ e1, e0 ∧ e2, e0 ∧ e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3):
[δ1, P1A11,−P1A12, P1A12, P1A22, λ1P

2
1 ]. This point of P5 is well defined be-

cause if δ1 = 0, we have P1 6= 0 and if λ1 = 0, one of the Aij 6= 0. It is invariant
by the action of G2

m hence factors through L(2)|Ω0. Moreover it corresponds
to an isotropic plane because the third and fourth coordinates are opposite.
By [11] Sect.3 before Lemme3.1.1, the saturation of Ω0 under GQ is L, hence
by GQ equivariance, it is defined everywhere on L(2). One sees easily the
surjectivity of h restricted to L(2)|Ω0 onto U ′′ (which consists of points in P5

[u0, u1, u2,−u2, u3, u4] such that u0u4 = u1u3−u
2
2), hence by GQ-equivariance,

to the whole of MQ.

Definition 2.7 We put M̃Q = L(2), it is a semistable Zp-scheme; its special

fiber has three smooth irreducible components. We define X̃Q(p) = (WQ ×

M̃Q)/GQ; it is a semistable model of XQ(p) over Zp with smooth irreducible
components; their number is at least three. It comes with a proper birational
morphism hX : X̃Q(p) → XQ(p) which we call the Genestier morphism which
is an isomorphism on the generic fiber.

What precedes is a developed version of [12] Appendix, which may be useful
to non expert algebraic geometers. We give now some new information on h
and hX .
For any geometric point s = (ω2, ω0) of the special fiber of MQ, let k = k(s)
be the residue field; we define

σ(s) = dimω0/α
2(ω2), τ(s) = dimM0/(α

2(M2) + ω0)

Let x = (A, λ,H2) be a geometric point of XQ(p) corresponding to s. Note
that σ(s) is the p-rank of the connected component H0

2 of the group scheme
H2, while τ(s) is the p-rank of the connected component of the Cartier dual
Ht

2 of H2. It can be identified by the Weil pairing to A[p]/H2. From this it is
easy to verify that the condition

(Ord) (σ(s), τ(s)) ∈ {(0, 2), (2, 0), (1, 1)}

is equivalent to the ordinarity of the point x. Let Mord
Q be the locus where

(Ord) is satisfied. Then the ordinary locus of XQ(p)
ord of XQ(p)× Fp is equal

to π(f−1(Mord
Q ).

We have a partitionMord
Q =M ee,ord

Q ⊔Mmm,ord
Q ⊔M em,ord

Q . corresponding to the
conditions (σ(s), τ(s)) ∈ {(0, 2), resp. (σ(s), τ(s)) ∈ {(2, 0), resp. (σ(s), τ(s)) ∈
{(1, 1).

Similarly, by taking the inverse images in M̃Q by h, we can define a similar

partition of M
ord

Q :

M̃ord
Q = M̃ ee,ord

Q ⊔ M̃mm,ord
Q ⊔ M̃ em,ord

Q .
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Let M̃ reg
Q resp. M̃ sing

Q be the regular locus resp. singular locus of the special

fiber of M̃Q.

Let us determine the locus M ee,ord
Q ∩ U ′′ where (σ(s), τ(s)) = (0, 2) in U ′′,

together with its inverse image M̃ ee,ord
Q |Ω0 by h. The condition τ(s) = 2

translates as a11 = a12 = a22 = 0; this implies λ0 = 0. On the other hand,
σ(s) = 0 implies, using Plücker coordinates, that λ1P1 6= 0. One checks easily
that actually (σ(s), τ(s)) = (0, 2) if and only if λ0 = 0 and λ1P1 6= 0.

In particular,M̃ ee,ord
Q |Ω0 coincides with the (smooth) irreducible component

λ0 = 0 deprived from M̃ sing
Q ; moreover, h induces an isomorphism between

M̃ ee,ord
Q |Ω0 and M ee,ord

Q ∩ U ′′.
Similarly for the locus Mmm

Q ∩ U ′′ where (σ(s), τ(s)) = (2, 0) in U ′′; the

condition τ(s) = 0 is given by the equation a11a22 − a212 6= 0, that is,
λ20λ1δ1 6= 0; while σ(s) = 2 implies P1 = 0. Conversely, one sees easily that
(σ(s), τ(s)) = (2, 0) if and only if P1 = 0 and λ0λ1 6= 0.

Therefore,M̃mm,ord
Q |Ω0 coincides with the smooth irreducible component P1 = 0

minus M̃ sing
Q .

Finally, we consider the locusMem
Q ∩U

′′ where (σ(s), τ(s)) ∈ {(1, 1)} in U ′′. We

see that τ(s) = 1 is equivalent to a11a22−a
2
12 = 0 and (a11, a12, a22) 6= (0, 0, 0),

that is, λ20λ1δ1 = 0 and (λ0Aij 6= (0, 0, 0). While σ(s) = 1 implies λ1P
2
1 = 0.

Conversely, one sees easily that
(σ(s), τ(s)) ∈ {(1, 1)} if and only if λ1 = 0 and λ0P1 6= 0. In other words

M̃ em,ord
Q |Ω0 coincides with the smooth irreducible component λ1 = 0 minus

M̃ sing
Q .

In the three cases, one deduces also from the previous calculations that h
induces an isomorphism between M̃αβ,ord

Q |Ω0 and Mαβ,ord
Q ∩ U ′′.

We define then the Zariski closuresMαβ
Q ofMαβ,ord

Q and M̃αβ
Q of M̃αβ,ord

Q . Using

GQ-equivariance, we define X̃
αβ as (WQ×M

αβ
Q )/GQ for all α, β ∈ {e,m} (with

the convention that em = me )
We can then conclude

Theorem 4 The scheme XQ(p) is flat, locally complete intersection over Zp.
The ordinary locus in the special fiber is dense in every irreducible component;
it is contained in the regular locus. The special fiber XQ(p) ⊗ Fp is the union
of three irreducible components Xmm and Xme and Xem which are the Zariski
closures respectively of the locus where H2 is of multiplicative type, the locus
where, locally for the étale topology, H2 = µp × Z/pZ and the locus where H2

is étale. The singular locus of XQ(p) ⊗ Fp is the locus where H2 étale-locally
contains αp.
There is a semistable model together with a blowing-up morphism hX :
X̃Q(p) → XQ(p) whose center is in the special fiber; the special fiber of

X̃Q(p) consists of three smooth irreducible components X̃mm, X̃me and X̃em
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crossing transversally. The ordinary locus X̃Q(p)
ord coincides with the regu-

lar locus X̃Q(p)
reg.The restriction of hX induces proper surjective morphisms

X̃αβ → Xαβ (α, β ∈ {e,m}) which are isomorphisms between the respective
ordinary loci.

The irreducibility of the components Xαβ follows from [29] as explained above.

This implies the irreducibility of the three components X̃αβ because hX is an
isomorphism between the two dense open subsets X̃αβ,ord and Xαβ,ord, the
latter being irreducible.
Remark: Note that we have thus recovered part of the results of [9]; how-
ever, this paper contains extra informations: the singular locus of XQ(p)⊗ Fp

coincides with the finite set of superspecial abelian surfaces (that is, the carte-
sian products of supersingular elliptic curves); these isolated singularities are
Cohen-Macaulay. The description of the intersections two by two and of the
three components is given in Sect.6.2 there.
Finally, we introduce an involution W of the Zp-schemes XQ(p) and XQ(p)
compatible with hX . The automorphism of the functor FQ given by
(A, λ, η,H2) 7→ (A, λ, η,H2) where A = A/H2, λ, resp. η is the quotient polar-
ization resp. Γ-level structure on A deduced from λ resp. η and H2 = A[p]/H2,
induces an involution of the Z[1/N ]-scheme XQ(p), hence of its pull-back to
Zp. If one writes the test objects as (α : A0 → A2, η0, η2) where Ai’s are
principally polarized abelian varieties, α is an isogeny with lagrangian ker-
nel in A[p] respecting the polarizations and the Γ-level structures ηi on Ai,
we see that the involution W can be written as the duality α 7→ tα followed
by the identifications of the dual abelian varieties tAi to Ai; hence W maps
(α : A0 → A2, η0, η2) to (tα : A2 → A0, η2, η0).
This involutionW therefore extends to the torsorWQ by replacing the diagram
M·(A) = (M(α) : M(A2)→ M(A0)) by its dual M(tA) = (M(tα) : M(A0)→
M(A2)) and by interchanging the two isomorphisms φ0 and φ2 in the isomor-
phism of diagrams φ : St· ⊗OS →M·(A) to obtain φ′ : St· ⊗OS →M·(A).
The involutionW onWQ is compatible with the forgetful morphismWQ →MQ

where W on MQ is given by taking the dual of α2 : St2 → St0 with respect to
the standard symplectic pairings ψ0 and ψ2, and exchanging ω0 and ω2.
Hence, the involution acts on the diagram XQ(p)←WQ →MQ.
Remark: By taking symplectic bases, its matricial interpretation is(

0 −s
p · s 0

)
; note that this matrix normalizes the automorphism group

GQ of the diagram St·.
The involution W exchanges the two extreme irreducible components Xee and
Xmm of XQ(p)⊗ Fp and it leaves the intermediate component Xem stable.
Remarks:
1) There is another construction of the morphism h : M̃Q → MQ by noticing
that the restriction of h above the open subset U introduced at the beginning
of the present section coincides with the map Ũ → U defined above and is
GQ-equivariant. Since U , Ũ and h|Ũ is symmetric under (A,C) 7→ (C,A); W
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extends by GQ-action to an involution of M̃Q-still denotedW , compatible to h.

We thus obtain an involution W of the Zp-scheme X̃Q(p) = (WQ × M̃Q)/GQ

compatible to hX : X̃Q(p) → XQ(p); it exchanges the irreducible components

X̃ee and X̃mm of X̃Q(p)⊗ Fp and leaves X̃em stable.

2) Genestier’s construction [11] of the semistable model M̃B of the local model

MB of XB(p) in a way similar to that of M̃Q implies that the forgetful mor-
phism MB → MQ, (ω2, ω1, ω0) 7→ (ω2, ω0) extends to the semistable models

M̃B → M̃Q; an easy argument provides then a canonical morphism between

the Genestier models X̃B(p) → X̃Q(p). However, it should be noted that the
morphism MB →MQ is NOT a local model of the morphism XB(p)→ XQ(p).
This is already false for the case of the classical modular curve X0(p) and the
classical modular curve X of level prime to p.
Finally, note that as explained in the case ∗ = Q, there is a Fricke-Weil in-
volution W on XB(p); it extends to the semistable models and the forgetful
morphism π̃B,Q is compatible with W .

2.4 Rigid geometry of Siegel varieties

We gather here some informations concerning the rigid geometry of the Siegel
varieties X = X∅ and XQ(p). Some (Prop.2.6, 2) are used in the formulation
of the conjecture of Sect.4.3. We hope to develop them in another paper for
studying analytic continuation of overconvergent Siegel cusp eigenforms.

Let Xrig, X∗,rig resp. X
rig

be the rigid analytic space associated to the p-adic
completion of its corresponding Zp-scheme (for the toroidal compactification,
we assume throughout this section that we fixed a fine Γ-admissible polyedral
cone decomposition Σ).
Choosing a ΓQ(p)-admissible refinement Σ′ of Σ, one can define a smooth
toroidal compactification XQ(p)/Qp

of the Qp-scheme XQ(p) ⊗ Qp (actually,

by [10], it exists as a proper smooth scheme over Z[ 1
Np ]). Because of the

compatibility of Σ and Σ′, we see that the forgetful morphism π = πQ∅ :
XQ(p)→ X extends uniquely as a morphism π : XQ(p)→ X.
Let XQ(p)

rig be the rigid space over Qp corresponding to the scheme XQ(p)/Qp

(cf. Chapter 9, Ex.2 of [5]). Let X be the formal completion of X along the

special fiber. The ordinary locus X
ord

is an open formal subscheme of X ;

let X
rig,ord

be the corresponding admissible rigid open subset of X
rig
. Let

XQ(p)
rig,ord be the inverse image of X

rig,ord
by πrig.

We want to describe the connected components of this admissible rigid open
set and strict neighborhoods thereof, in terms of a suitable model of XQ(p)

rig.

For this purpose, we write simply XG for the semistable model X̃Q(p) of XQ(p)
over Zp. We briefly explain the construction of a “toroidal compactifcation of
XG” associated to Σ′, by which we mean a proper regular Zp-scheme XG

together with a toroidal open immersion XG →֒ XG such that XG ⊗ Qp is
the (smooth) toroidal compactification XQ(p)/Qp

associated to Σ′ mentioned
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above. Details on this construction, specific to the genus 2 case, should appear
in the thesis of a student of A. Genestier. The model of XQ(p)

rig that we are
looking for is then defined as the formal completion XG of XG along the special
fiber.
The construction is as follows. One first takes the normalization of the Zp-
toroidal compactification X associated to Σ, in the finite étale morphism
XQ(p)/Qp

→ X/Qp
. Let XQ(p)

Σ be this normalization. The morphism
XG → XQ(p) is an isomorphism outside the supersingular locus XQ(p)

ss and
this locus is proper (because we are in genus 2). We can therefore glue the
schemes XQ(p)

Σ and XG along their common open subscheme XQ(p)\XQ(p)
ss.

We obtain a Zp-scheme denoted X
Σ

G. Let Z(Σ
′)/Qp

be the closed subscheme of

XQ(p)
Σ
/Qp

which is the center of the blowing-up morphism

XQ(p)/Qp
= XQ(p)

Σ′

/Qp
→ XQ(p)

Σ
/Qp

We consider the Zariski closure Z(Σ′) of Z(Σ′)/Qp
in the Zp-scheme X

Σ

G. The

blowing-up of X
Σ

G along Z(Σ′) is the desired scheme. It is denoted XG; by
restricting the construction to the local charts of Faltings-Chai, it can be proven
that XG is regular over Zp and that XG →֒ XG is toroidal, although the divisor
at infinity doesn’t have good reduction.

Remark: For the sake of completion, let us mention another abstract con-
struction. Let XG be the formal completion of XG along the special fiber. One
can apply the notion of normalization studied in[4] to define the “normaliza-

tion” X
(Ui)

G of XG along XQ(p)
rig associated to an admissible affinoid cover of

XQ(p)
rig (we denote by Ui the formal scheme associated to the affinoid Ui).

The Zp-formal scheme X
(Ui)

G is endowed with an open immersion of formal

schemes XG → X
(Ui)

G . However, this construction does depend on the choice
of the covering. This is why the specific construction described above is better
suited for our purpose.

We still denote by π the morphism XG → X as well as its p-adic completion

XG → X . We define the ordinary locus X
ord

G as the inverse image in XG of the

ordinary locus X
ord

of X .

We observe that X
ord

G is smooth. Its underlying Fp-scheme is denoted by X
ord

G .

Let X̃αβ,ord (α, β ∈ {e,m}) be the three connected components of XG⊗Fp. We

denote by X
αβ,ord

G the Zariski closure of X̃αβ,ord in X
ord

G . We have a partition
into three smooth open subschemes

X
ord

G = X
mm,ord

G ⊔X
me,ord

G ⊔X
ee,ord

G

Therefore, by taking the inverse image by the specialization map associated to
the model XG, we obtain three connected components of the open admissible
subset XQ(p)

rig,ord:
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XQ(p)
rig,ord =]X

mm,ord

G [⊔]X
me,ord

G [⊔]X
ee,ord

G [

We need to extend this to admissible quasi-compact neighborhoods of
XQ(p)

rig,ord. First we fix a lifting E of the Hasse invariant (see [15] Sect.3,

or see next section below). Let Grig → X
rig

be the rigid analytification of the
semi-abelian scheme G → X (as in Chap.9, ex.2 of [5]). By a Theorem of
Abbès and Mokrane [1] Prop.8.2.3 (and [2] for an improved radius of conver-

gence), the open subdomain X
rig
(p−a) of X

rig
defined as the locus where the

lifting E of the Hasse invariant satisfies |E|p > p−a (a = 1
p(p−1) for [1], and

a = p−1
2p−1 for [2]) is endowed with a finite flat group scheme Ccan of rank p2

whose restriction to the ordinary locus is canonically isomorphic to G[p]0. For
each r ∈]p−a, 1[∩pQ, we define

X{r} = {x ∈ X
rig
(L); |E|p ≥ r}

These domains are admissible, quasi-compact relatively compact neighbor-
hoods of XQ(p)

rig,ord (cf.[19] Sect.3.1.6). Let XQ(p){r} be the inverse image
of X{r} by πrig.

Proposition 2.8 1) For any r sufficiently close to 1, the neighborhood

XQ(p){r} has still three connected components denoted X
αβ

G {r} (α, β ∈

{e,m}); X
αβ

G {r} is defined as the largest connected subset of XQ(p){r} con-

taining ]X
αβ,ord

G [.

2) For any r ∈]p−a, 1[, the isomorphism ]X
mm,ord

G [∼= X
rig,ord

induced by the

forgetful morphism extends to an isomorphism X
mm,rig

G {r} ∼= X{r} (the inverse
morphism being given by the canonical subgroup).

Proof: Since we won’t need the first part of the proposition, we won’t prove
it in this paper. For the second statement, which is crucial to our conjecture,
we notice that by definition, the morphism π sends X

mm

G {r} into X{r} while
the inverse map is provided by the canonical subgroup as in [1] Prop.8.2.3.
Finally, we note that the involution W extends to the toroidal compactifica-

tions hence defines an involution of XQ(p)
rig which exchanges ]X

mm,ord

G [ and

]X
ee,ord

G [ resp. X
mm

G {r} and X
ee

G {r} and leaves stable the middle component

]X
em,ord

G [ resp. X
em

G {r}.

Finally, we can consider in a similar way the extension to compatible toroidal
compactifications XUB

(p) and XB(p) of the morphisms πUB ,B and πB,Q. We
shall consider the inverse image by

πB,Q ◦ πUB ,B : XUB
(p)rig → XQ(p)

rig

of X
mm

G {r}.
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3 Siegel modular forms

3.1 Arithmetic Siegel modular forms and q-expansion

In [26], care has been taken to define the arithmetic Siegel varieties and modular
forms adelically. However, here for simplicity, we restrict our attention to one
connected component X corresponding to a discrete subgroup Γ ⊂ Sp4(Z).
We assume that X has a geometrically connected model over Z[1/N ]. We also
assume that Γ is neat, so that the problem of classifying principally polarized
abelian surfaces with Γ-level structure is a fine moduli problem (if it is not the
case, see [26] Section 3 where X is only a coarse moduli problem).
Let f : A → X be the universal principally polarized abelian surface with Γ-
level structure η over Z[1/N ]. We put ω = e∗ΩA/X , where e denotes the unit
section.
For any pair of integers κ = (k, ℓ) (k ≥ ℓ), we consider the rational represen-
tation of GL(2): Wκ(Q) = Symk−ℓ ⊗ detℓ St2. Here, St2 denotes the standard
two-dimensional representation of GL(2); the standard Levi M of the Siegel
parabolic of Sp4 is identified to GL(2) by
(4.1.1) U 7→ diag(U, stU−1s)
The twist by s occurs because our choice of the symplectic matrix J defining
G involves the matrix s instead of 12. We use (4.1.1) to identify M to GL(2).
Let BM = TNM be the Levi decomposition of the standard Borel of M (cor-
responding to the group of upper triangular matrices in GL(2)). In order to
define integral structures on the space of Siegel modular forms, it will be use-
ful to consider an integral structure of Wκ(Q). Since there is in general an
ambiguity for such an integral structure, we need to make our choice explicit:
following [15] Sect.3, we take it to be the induced Z-module Wκ = IndMBM

κ.
For any ring R, we put Wκ(R) =Wκ ⊗R.
Let T = IsomX(O2

X , ω) be the right GL(2)-torsor over X of isomorphisms
φ : O2

X → ω. By putting ω1 = φ((1, 0)) and ω1 = φ((0, 1)), it can also be
viewed as the moduli scheme classifying quintuples (A, λ, η, ω1, ω2) where A, λ
is a principally polarized abelian varieties with a Γ level structure η over a
base S, endowed with a basis (ω1, ω2) of ωA/S . One writes π : T → X for the
structural map. Note that π∗OT carries a left action (by right translation) of
GL(2).
Then, for any κ = (k, ℓ) ∈ Z2, one defines the locally free sheaf ωκ over
X as (π∗OT )

NM [κ−1]. Its sections are functions on T such that for any
φ ∈ IsomX(O2

X , ω), for any t ∈ T and any n ∈ NM , f(A, λ, η, φ ◦ tn) =
κ(t)−1f(A, λ, η, φ).
One sees easily that π∗ωκ = Wκ(OT ), so that ωκ is a locally free sheaf which
is non zero if and only if k ≥ ℓ.

We briefly recall some notations concerning toroidal compactifications, canon-
ical extensions of sheaves and q-expansions. It will allow us in particular to
define the cuspidal subsheaf ωκ of the canonical extension of ωκ.
For any ring R, let S2(R) be the module of symmetric 2 × 2-matrices with
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entries in R. Recall that the bilinear form Tr : S2(R) × S2(R) → R identifies

the dual of S2(Z) to the module S of matrices

(
a 1

2b
1
2b c

)
, a, b, c ∈ Z.

Let S2(R)
+ be the cone of definite positive matrices in S2(R) and S̃2 the cone

of semi-definite positive matrices whose kernel is Q-rational.

A standard rational boundary component of level N is a pair (Z, φ : 1
NZ/Z →

(Z/NZ)r) where Z is a free non zero quotient of Z2 (of rank r) and φ is an
isomorphism. Let us view Z2 as the standard lagrangian 〈e1, e2〉 of Z

4 endowed
with the symplectic pairing txJy, Then, a general rational boundary component
of level N is the image of a standard one by the action of Sp4(Z) on the space
of lagrangians and on the projective space of Z4.

We denote by RBC1, RBCN , resp. SRBC1, SRBCN , the set of rational
boundary components, resp. the set of standard rational boundary compo-
nents. We can partition S̃2 ∩ S2(Z) as ⊔Z∈SRBC1

S(Z)+ where S(Z)+ denotes
the set of semidefinite symmetric matrices of S2(Z) which induce a positive
definite quadratic form on Z.

Let Σ = {ΣZ}Z∈RBC1
be an Sp4(Z)-admissible family of rational polyhedral

cone decompositions ΣZ of S(Z)+ (see [8] Chapt.I Def.5.8.2). As explained in
[10] p.126, this decomposition can be used for any level N congruence subgroup
Γ, since it is a fortiori Γ-admissible. To Σ, one can associate a toroidal com-
pactification X over Z[ 1N ] of X as in [10] IV.6.7; it is smooth if Σ is sufficiently
fine; this is assumed in the sequel.

The compactificationX carries a degenerating semi-abelian scheme G extending
A (see [10] Th.IV.5.7 and IV.6.7). One still denotes by ω the sheaf e∗ΩG/X

where e is the unit section of G → X.

Recall that X is a projective smooth, geometrically connected scheme over
Z[ 1N ]. It is endowed with a projection map b to the minimal compactification

X∗
Z[ 1

N
]
. Let D = X\X = b−1(∂X∗); it is a relative Cartier divisor with normal

crossings; its irreducible components are smooth.

The rank two vector bundle ω over X does not descend as a vector bundle on
X∗; however its determinant ω = detω descends as an ample line bundle.

The GL(2)-torsor T = IsomX(O2
X
, ω) (with structural map π : T → X) allows

to define “the canonical extension” of the vector bundles ωκ to X: one can
either define this extension as

ωκ = (π∗OT )
NM [κ−1]

(k ≥ ℓ). Or one can also use the Z-structure Wκ = IndMBM
κ of the rational

representation Wκ(Q) of GL(2) in order to give an equivalent definition of

ωκ as the sections of the X-vector bundle T
GL2

× Wκ; here, as usual, the
contraction product is the quotient of the product by the equivalence relation
(φ ◦ g, w) ∼ (φ, g ·w) for any φ ∈ T , g ∈ GL2 and w ∈Wκ. For details see [10]
Chapter 4 and 6, [21] Sect.4 and [15] Sect.3.
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Let ωκ = ωκ(−D) the sub-vector bundle of ωκ on X whose sections vanish
along D. Recall the Koecher principle: H0(X ⊗ C, ωκ) = H0(X ⊗ C, ωκ). We
define

Definition 3.1 For any Z[1/N ]-algebra R one defines the R-module of arith-
metic Siegel modular forms resp. cusp forms, as H0(X ⊗ R,ωκ) resp.
H0(X ⊗R,ωκ) which we write also H0(X ⊗R,ωκ) by convention.

For R = C, these vector spaces canonically identify to the corresponding spaces
of classical Siegel modular forms of level Γ and weight κ (see [15] Th.3.1).

The arithmetic q-expansion (at the ∞ cusp) is defined as follows.
Let η = (Z, φ) ∈ SRBCN with Z = Z2 and with φ the canonical identification
1
NZ2/Z2 = Z/NZ2 (it is called the infinity cusp).

Consider the rational polyhedral cone decomposition (RPCD) Ση of S2(R)
+

corresponding to η. Let Dη = D ∩ b−1({η}). By definition, the com-
pletion of X along Dη admits an open cover by affine formal schemes Uσ
(σ ∈ Ση) with a canonical surjective finite etale cover φσ : Sσ → Uσ where
Sσ = Spf Z[1/N ][[qT ;T ∈ S ∩σ∨]]. The morphism φσ is Galois; its group is the
stabilizer Γσ of σ in the image Γ of Γ ∩ Q by the projection Q → Q/U = M .
Recall that M(Z) = GL(2,Z) acts on S2(Z)

+ by g · S = gStg. Moreover, φσ is
uniquely determined by the property that the pull-back by φσ of the restriction
of G to Uσ is the canonical Mumford family

fσ : Gσ → Sσ

deduced by Mumford’s construction (see [10] p.54) from the canonical de-
generescence data in DDample on the global torus G̃σ = G

2
m over Sσ, together

with the standard level N structure µ2
N × (Z/NZ)2 → G̃σ[N ];

Given f ∈ H0(X,ωκ), for any rational polyedral cone σ, we restrict f to Uσ
and pull it back to Sσ by φσ. The bundle ωGσ/Sσ

of the Mumford family is

trivial, hence the pull-back of the torsor T to Sσ is trivial too; it is isomorphic
to Sσ × GL(2). In consequence, φ∗σω

κ is the trivial bundle Wκ ⊗ Sσ. Hence
φ∗σf yields a series in Wκ[[q

T ;T ∈ S ∩ σ∨]] which is invariant by Γ where

the action of γ ∈ Γ is given by γ · (
∑

T aT q
T ) =

∑
T ρκ(γ)(aT )q

γT tγ . These
series are compatible when one varies the cone σ either by restricting to its
faces of by letting Γ act (this action permutes the cones in Ση); recall that⋂

σ∈Ση
σ∨ = S̃2; this implies that there exists one well-defined series which

belongs to the intersectionWκ[[q
T ;T ∈ S∩S̃2]] of the ringsWκ[[q

T ;T ∈ S∩σ∨]]
and which is fixed by Γ. It is called the q-expansion or Fourier expansion (at
the infinity cusp) of f :

FE(f) ∈Wκ[[q
T ;T ∈ S ∩ S̃2]]

Γ

For any Z[1/N ]-algebra R and any form f ∈ H0(X × R,ωκ) defined over R,
one defines an analogue series FER(f) with coefficients in Wκ(R) =Wκ ⊗R.
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Proposition 3.2 1) (q-expansion principle) If f is any form defined over R,
if the coefficients of its q-expansion vanish in Wκ(R), then f = 0.
2) The map FE sends the submodule of cusp forms over any ring R to the

submodule of Wκ(R)[[q
T ;T ∈ S∩ S̃2]]

Γ of series whose coefficients aT ∈Wκ(R)
vanish unless T ∈ S ∩ S2(R)

+.

The first point follows from the irreducibility of the modular scheme; the second
from the examination of φ∗σ(f) along φ

∗
σD.

Remark: By comparing the two definitions of ωκ given above, one sees that

Wκ[[q
T ;T ∈ S ∩ σ∨]] = (π∗OT )

NM [κ−1]⊗OX
Z[[qT ;T ∈ S ∩ σ∨]]

We shall use this when comparing q-expansion of classical forms to q-expansion
of p-adic forms.

3.2 p-adic Siegel modular forms and q-expansion

LetX as in the previous subsection. We fix a fine Γ-admissible family of rational
polyedral cone decompositions Σξ; we denote by For any integer m ≥ 1, let Xm

be the pull-back of X to Z/pmZ. Let Sm be the ordinary locus and for each
n ≥ 1, consider Tm,n = IsomSm

(µ2
pn , A[pn]0) = IsomSm

(A[pn]et, (Z/pnZ)2); for
any n ≥ 1, Tm,n is a connected Galois cover of Sm of Galois group GL2(Z/p

nZ)
(see [10] Prop.7.2).
Let Vm,n = H0(Tm,n,OTm,n

), Vm,∞ =
⋃

n≥1 Vm,n. One can define the Σ-

”toroidal compactification” Sm of Sm as the locus of Xm over which G[p]0 is
of multiplicative type; similarly, define Tm,n as

IsomX⊗Z/pmZ(µ
2
pn ,G[pn]0)

We still denote by D the pull-back to Tm,n of the divisor at ∞. We can
now define V!,m,n = H0(Tm,n,OTm,n

(−D)) and V!,m,∞ =
⋃

m V!,m,n. We also
consider the corresponding p-adic limits: S∞ = lim−→Sm, T∞,∞ = lim−→Tm,∞,
V = lim←−Vm,∞ and V! = lim←−V!,m,∞. These last two spaces are respectively the
space of generalized p-adic modular forms resp. cusp forms.
Let M resp. NM be the group of Zp-points of M = GL2 resp. NM the unipo-
tent radical of the standard Borel BM of M . Then, T∞,∞ → S∞ is a right
M étale torsor, hence M acts on the left (by right translations) on V (and
V!) by m · f(ψ) = f(ψ ◦ m). Let LC(M/NM,Z/pmZ) resp. C(M/NM,Zp)
be the ring of Z/pmZ-valued locally constant, resp. Zp-valued continous func-
tions on M/NM, viewed as a left M-module via the left translation action.
In particular, these modules are Γ-modules. Note that C(M/NM,Zp) =
projlimLC(M/NM,Z/pmZ).
Let us define now the p-adic q-expansion map. It is a ring homomorphism

FE : V NM →
(
C(M/NM,Zp)[[q

T ;T ∈ S ∩ S̃2]]
)Γ
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given as follows.
For the infinity cusp η defined above, and for any σ ∈ Ση, we consider the
base change φσ,m of the morphism φσ : Sσ → Uσ to Z/pmZ. As noticed above,
the canonical Mumford family fσ : Gσ → Sσ admits a canonical rigidification
ψcan : µ2

p∞
∼= Gσ[p

∞]0 induced from the tautological rigidification of G̃σ = G
2
m.

This provides a canonical lifting Φσ,m : Sσ → Tm,∞ of φσ,m. These liftings are
compatible when m grows, this gives rise to a lifting Φσ : Sσ (̂p) → T∞,∞ of
φσ : Sσ (̂p) → Uσ (̂p) (the hat means p-adic completion).
For f ∈ V , one can therefore take the pull-back of f mod pm by Φσ,m (resp. of f
by Φσ). The resulting series belongs toOSσ

⊗Z/pmZ = Z/pmZ[[qT ;T ∈ S∩σ∨]]
resp. OSσ

⊗ Zp = Zp[[q
T ;T ∈ S ∩ σ∨]]. It is however useful for further use

to view it as belonging to OSσ
⊗ LC(M,Z/pmZ) resp. to OSσ

⊗̂C(M,Zp) =
C(M,Zp)[[q

T ;T ∈ S ∩σ∨]] in the following way: the map x ∈M 7→ Φ∗
σ,m(x ·f)

is an OSσ
⊗ Z/pmZ-valued locally constant map on M. The evaluation of

this function at 1 ∈M gives the Z/pmZ[[qT ;T ∈ S ∩ σ∨]]-valued q-expansion
mentioned above. By taking the inverse limit over m, one gets the desired
q-expansion with coefficients in C(M,Zp). Both Zp-coefficient and C(M,Zp)-
coefficient q-expansions are compatible to restriction to faces; however, only
the C(M,Zp)-coefficient expansion is compatible to the action of Γ; we con-
clude that the functions x ∈ M 7→ Φ∗

σ(x · f) for all σ’s give rise to an ele-

ment of the submodule H0(Γ, C(M,Zp)[[q
T ;T ∈ S ∩ S̃2]]) of Γ- invariants of

C(M,Zp)[[q
T ;T ∈ S ∩ S̃2]]. We finally restrict our attention to f ∈ V NM ; thus

we obtain a q-expansion in

C(M/NM,Zp)[[q
T ;T ∈ S ∩ S̃2]]

We list below some well-known facts for which we refer to [15].

Proposition 3.3 1) (p-adic q-expansion principle) For any σ ∈ Ση, for any
m ≥ 1, V/pmV ⊂ Vm,∞ →֒ Z/pmZ[[qT ;T ∈ S ∩ σ∨]] is injective with flat
cokernel. In particular, the ring homomorphism FE is injective.
2) The restriction of FE to the ideal V! of cusp forms takes values in the ideal
generated by qT for T ∈ S ∩ S2(R)

+. and the q-expansion principle holds for
cusp forms for any cone σ and any m ≥ 1 as above.

We simply recall that the first point results from the irreducibility of Tm,∞

(Igusa irreducibility theorem, [10] V.7.2) and the second from direct examina-
tion of Φ∗

σ(f).

It remains to compare the classical and p-adic modular forms resp. q-
expansions. The embedding of classical forms into V comes from the canon-
ical morphism ι : T∞,∞ → T |S∞ given by the fact that for an abelian vari-
ety A (of dimension 2) over a base S where p is nilpotent, any rigidification
ψ : µ2

p∞
∼= A[p∞]0 gives rise to an isomorphism O2

S
∼= ωA/S . One checks easily

that ι∗ : H0(X,ωκ)→ V NM [κ] and ι∗ : H0(X,ωκ)→ V NM

! [κ].
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Thus given a classical form, we first view it as a section of (π∗OT )
NM , then one

restricts it to the ordinary locus and one takes its pull-back by the morphism
ι.

The comparison of the two definitions of ωκ provides a commutative square
expressing the compatibility of classical and p-adic q-expansions:

V NM → H0(Γ, C(M/NM,Zp)[[q
T ;T ∈ S ∩ S̃2]])

↑ ↑

H0(X,ωκ) → H0(Γ,Wκ(Zp)[[q
T ;T ∈ S ∩ S̃2]])

In the case where κ is diagonal so that Wκ(Zp) is free of rank one, one can
formulate more simply the diagram by composing both horizontal maps by the
evaluation of functions on M/NM at 1, sending f : M/NM → Zp to f(1). We
thus get a commutative square

V NM → Zp[[q
T ;T ∈ S ∩ S̃2]])

↑ ↑

H0(X,ωκ) → H0(Γ,Wκ(Zp)[[q
T ;T ∈ S ∩ S̃2]])

Let H ∈ H0(X1, det
p−1ω) be the Hasse invariant on X1. We fix an integer

t ≥ 1 sufficiently large such that Ht lifts to X over Zp. This can be achieved
because detω is ample. We denote by E such a lifting. Recall that FE(E) ≡ 1

(mod p); this is because FE(H) = 1 in Z/pZ[[qT ;T ∈ S ∩ S̃2]].

By [15] Sect.3.6, the Hecke operators Up,1 = [NMdiag(1, 1, p, p)NM] and

Up,2 = p−3[NMdiag(1, p, p, p2)NM] do act on V NM

! . Let e = lim (Up,1Up,2)
n!

be the corresponding idempotent of EndZp
V NM

! . The module eV NM

! is called
the module of ordinary p-adic cusp forms (with strict Iwahori p-level). Hida’s
control theorem [15] Th.1.1 says that for any weight κ (not necessarily coho-
mological), the cokernel of the inclusion eH0(S∞, ωκ) ⊂ eV

NM

! [κ] is finite.

Comment: Actually, Th.1.1 of [15] also contains a “classicity statement”,
but only for very regular weights. Since we need in [26] an analogue of this
statement including all cohomological weights (including those such that k = ℓ),
we prove it there for all cohomological weights after localisation to a non-
Eisenstein maximal ideal of the Hecke algebra.

This theorem is crucial for us in [26] in order to produce overconvergent cusp
forms g satisfying

(LIM) The q-expansion of g is the p-adic limit of q-expansions of cusp eigen-
forms of cohomological weight.

This condition provides the framework for the conjecture stated in the present
paper. On the other hand, it would be very interesting to generalize Hida
theorem to p-adic forms with finite slope for Up,1 different from 0. Such a
generalization would produce new overconvergent forms satisfying (LIM).
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3.3 Overconvergence

We endow Cp with the p-adic norm such that ||p = p−1. For any extension L of
Qp contained in Cp and for any real number r ∈]0, 1[, we consider the L-vector
space of r-overconvergent Siegel modular forms

Sκ(Γ; r) = H0(X{r} × L, ωκ)

If r is in |L×|p, this is a Banach space for the norm |f | = supx∈X{r}(L)|f(x)|p
by [5] Th.4.1.6. In particular, for any r < r′ in ]p−a, 1[∩|L×|p, the inclusions

resr,r′ : Sκ(K; r) →֒ Sκ(K; r′)

are completely continuous by [19] 2.4.1.
It should be noted that the above fact does not require the assumption that
the weight κ be cohomological (that is k1 ≥ k2 ≥ 3). In [26], we indeed apply
this to κ = (2, 2).

Let a be either the Abbès-Mokrane bound (a = 1
p(p−1) ) or the Andreatta-

Gasbarri’s bound (a = p−1
2p−1 ). By [1] Lemma 8.2.1 and [2], for any r ∈]p−a, 1[,

the canonical lifting Fcan of the Frobenius endomorphism is defined as a rigid

morphism X{r} → X
rig
.

The following two results are contained in [26] Sect.4.5

Proposition 3.4 There exists r ∈]p−a, 1[∩pQ such that Fcan maps X{r} into
X{rp} and is finite flat of degree p3. It yields a continous homomorphism of
Banach spaces φ = F ∗

can : Sκ(Γ; r
p) → Sκ(K; r) and a trace homomorphism

Trφ : Sκ(Γ; r)→ Sκ(Γ; r
p).

Corollary 3.5 There exists r ∈]p−a/p, 1[∩|L×|p, the composition ψ =
resrp,r◦Trφ defines a completely continuous endomorphism of the Banach space
Sκ(Γ; r).

The evaluation on the rigid Mumford families Grigη → Sσ (for all polyedral
cones σ in Ση as above) defines a L-linear homomorphism

FE : Sκ(K; r) →֒ L[[qT ;T ∈ S ∩ S2(R)
+]].

The overconvergent q-expansion principle says that FE is injective. It follows

directly from the connectedness of X
rig

.
We define Up,1 as p−3ψ the operator corresponding to the weight κ = (2, 2).
We denote by S2(Γ; r) the L-Banach space of r-overconvergent forms of weight
(2, 2). Then it follows immediately from Cor.3.3 that

Corollary 3.6 There exists r ∈]p−a/p, 1[∩|L×|p such that the operator Up,1 is
completely continuous on the Banach space S2(Γ; r) of weight 2 overconvergent
p-adic cusp forms.
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Recall that by [24] Prop.7, one can define a Fredholm determinant P (t) =
det(1 − tUp,1) which is a p-adic entire function of t and such that λ ∈ Qp

is a non-zero eigenvalue of Up,1 if and only if P (λ−1) = 0; so that the non-
zero eigenvalues of Up,1 form a sequence decreasing to 0. By Prop.12 and
Remark 3 following this proposition in [24], each spectral subspace associated
to a non-zero eigenvalue is finite dimensional (its dimension being equal to the
multiplicity of the root λ−1 of P ) and there is a direct sum decomposition of
the Banach space as the sum of the (finite dimensional) spectral subspace and
the largest closed subspace on which Up,1 − λ is invertible.

In particular, for any positive number α, the set of eigenvalues λi ∈ Qp of Up,1

such that ordp(λi) ≤ α is finite. Moreover one has a direct sum decomposition
of the Banach space S2(Γ, r) as S2(Γ, r)

≤α ⊕ S2(Γ, r)
>α, where the first space

is finite dimensional, defined as the direct sum of the spectral subspaces for
all eigenvalues λi with ordp(λi) ≤ α, and the second is the (closed) largest
subspace on which all the operators Up,1 − λi are invertible.

4 Galois representations of low weight and overconvergent
modular forms

4.1 Eichler-Shimura maps

Let κ = (k, ℓ) be a cohomological weight, that is, a pair of integers such that
k ≥ ℓ ≥ 3. Let k = a + 3, ℓ = b + 3. Then, (a, b), a ≥ b ≥ 0 is a dominant
weight for (G,B, T ); let Va,b be the local system on the Siegel variety associated
to the irreducible representation of G of highest weight (a, b); recall that the
central character of this representation is z 7→ za+b. For any (neat) compact
open subgroup L of Gf , for a

′ ≥ b′ ≥ 0 and k′ = a′ + 3, ℓ′ = b′ + 3, there is a
canonical Hecke-equivariant linear injection

H0(SL, ωκ) →֒ H3(SL, Va,b(C))

See Section 3.8 of [15] where it is explained how to make it canonical, and
where it is called the Eichler-Shimura map. Actually the image is contained in
H3

! = Im(H3
c → H3). It follows for instance from Th.5.5, Chapter VI of [10].

4.2 Galois representation associated to a cohomological cusp
eigenform

Let f be a cusp eigenform of cohomological weight κ = (k, ℓ). Let k = a + 3,
ℓ = b+ 3. By the EIchler-Shimura injection, the Hecke eigensystem associated
to f occurs in H3(X(C), Va,b(C)). For any prime q prime to N , let Pf,q ∈ C[X]
be the degree four Hecke polynomial at q for the eigensystem of f (see [26]).

Let E be the number field generated by the eigenvalues of the Hecke operators
outside N . We fix a p-adic embedding ιp of Q; let F ⊂ Qp be a p-adic field
containing ιp(E) ( big enough but of finite degree).
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The Galois representation Wf = H3(SK , Va,b(F )))f (largest subspace where
Hecke acts as on f) is E-rational and pure of Deligne weight w = 3 + a+ b.
Let S be the set of prime divisors of N , and Γ be the Galois group of the
maximal algebraic extension of Q unramified outside S and p. By a series of
papers (due to R. Taylor, Laumon and Weissauer) there exists a degree four
Galois representation Rf,p : Γ → GL4(Qp) such that for any ℓ /∈ S ∪ {p},
det(X · 14 −Rf,p(Frℓ)) = Pπ,ℓ(X).
Its relation to Wf is: W 4

f = Rm
f,p, where m = dimWf .

We take F big enough for Rf,p to be defined over it.
Remark: Let ǫ : Γ → Z×

p be the p-adic cyclotomic character. With the
convention above, we have ν ◦ ρπ,p = ǫ−w · ωf , where ωf is a finite order
character modulo N , given as the Galois avatar of the companion character
of f (this can viewed using Poincaré duality for Wf , see for instance [25],
beginning of Sect.2).
Remark: Given a classical cusp eigenform g ∈ H0(X,ω(2,2)), there is no geo-
metric construction of an associated Galois representation (there is no Eichler-
Shimura map to transport the eigensystem to the étale cohomology). See below
for a p-adic construction, if the q-expansion of g is a p-adic limit of q-expansions
of cohomological weight cusp eigenforms.

4.3 A conjecture

Let g ∈ H0(X{r}, ω(2,2)) be an overconvergent cusp eigenform of weight (2, 2)

and auxiliary level group K (unramified at p). By Prop.2.6, 2, since X{r} is
canonically identified to X

mm

G {r} ⊂ XQ(p)
rig, one can view g as an element

of H0(X
mm

G {r}, ω(2,2)), where X
mm

G {r} is a strict neighborhood of ]X
mm

G [ in

XQ(p)
rig. We shall actually need to consider the pull-back of g by πB,Q ◦πUB ,B

as a section of ω2,2 over the quasi-compact relatively compact rigid open

(πB,Q ◦ πUB ,B)
−1(X

mm

G {r})

in XUB
(p)rig.

Assume that

(LIM-EIG) there exists a sequence (gi) of classical cusp eigenforms gi ∈
H0(XUB

(p), ωκi
) with cohomological weights κi = (ki, ℓi) and level K (that

is, prime to p, equal to the auxiliary level of g) such that the q-expansions of
the gi’s converge p-adically to that of g.

Let ΠUB
be the subgroup of matrices in G(Zp) whose reduction modulo p

belongs to UB(Z/pZ).

Comments: 1) Note that the key-point in this assumption is that the forms
gi are eigenforms. If we insist that the sequence of p-adic weights satisfies
κi ≡ (2, 2) (mod p − 1)pi, we cannot assume in general that the level of the
gi’s is prime to p; then we simply need to replace Kp = G(Zp) by ΠUB

as
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p-component of the level group in (LIM-EIG). We can motivate the choice of
the p-level group ΠUB

by recalling that both in the proof of the main theorem
of [6] and in the Control Theorem for the Iwahori levels for GSp(4) of [27], it
has been natural to consider the pull-back of g by πB,Q ◦ πUB ,B as a section of
ω2,2 over the strict neighborhood

(πB,Q ◦ πUB ,B)
−1(X

mm

G {r})

in XUB
(p)rig. This is the analogue of Hida’s p-stabilization for p-adic modular

forms.
2) Note also that it is a well-known theorem [15] that any p-adic cusp form is
the p-adic limit (in the sense of q-expansions) of prime-to-p level classical cusp
forms of weights κi satisfying κi ≡ (2, 2) (mod p − 1), where however, the
forms gi’s are not necessarily eigen even if g is.

Recall then that for any weight κ, there is a q-expansion map (always at the
infinity cusp)

H0((πB,Q ◦ πUB ,B)
−1(X

mm

G {r}), ωκ)→Wκ(Qp)[[q
T ;T ∈ S ∩ S̃2]]

Γ

These maps are compatible with the p-adic q-expansion map via the canonical
injection of H0((πB,Q ◦ πUB ,B)

−1(X
mm

G {r}), ωκ) into the space of p-adic cusp
forms.
We give below a conjectural criterion for the analytic continuation of g to
XUB

(p)rig.
Let ρg,p : Gal(Q/Q)→ GL4(Qp) be the Galois representation associated to the
limit of the pseudo-representations of the gi’s. We call it the Galois represen-
tation associated to g. Note that by Sen theory (Bull. Soc. Math. de France
1999), if the κi converge to (2, 2) in Z/(p−1)Z×Zp and if ρg,p is Hodge-Tate, its
p-adic Hodge-Tate weights should be 0, 0, 1, 1. Our conjecture reads as follows.

Conjecture: Let g ∈ S2,2(K, r) be an overconvergent cusp eigenform satis-
fying (LIM-EIG); assume that there exists an abelian surface A defined over
Q such that ρg,p is isomorphic to the contragredient ρ∨A,p of the representa-
tion on the p-adic Tate module of A. Then, g extends to a global section
g ∈ H0(XUB

(p)rig, ω(2,2)) thus defining by the rigid GAGA principle a classical
cusp form of weight (2, 2) and level Kp ×ΠUB

.
If the abelian variety has good reduction at p, the cusp eigenform has level
prime to p.

Remark: The minimal level group Πg,p at p of the classical cusp eigenform
g satisfies ΠUB

⊂ Πg,p ⊂ G(Zp); the compatibility between gobal and local
Langlands correspondences predicts that the (local) Weil-Deligne representa-
tion associated to Dpst(ρg,p) determines Πg,p.

The main result (Theorem 4) of [26] provides under certain assumptions (pri-
marily the assumption of near ordinarity) such pairs of an overconvergent cusp

Documenta Mathematica · Extra Volume Coates (2006) 781–817



Siegel Varieties and p-Adic Siegel Modular Forms 815

eigenform g with a converging sequence (gi) of cusp eigenforms, together with
an abelian surface A defined over Q with potential good ordinary reduction at
p.
Actually one starts there from an abelian surface satisfying certain condition,
the most stringent being that the Galois representation ρ∨A,p must be congruent
modulo p to the representation ρf,p associated to a cusp eigenform of level K
prime to p, ordinary at p with cohomological weight. Then Hida theory ([26]
Lemma 4.2) yields a sequence (gi) converging to a limit g which is overconver-
gent of weight (2, 2) and auxiliary level K.
Note that once a generalization of Coleman Families Theory to the Siegel case
is available, there might be new examples of such forms g.
In the situation treated in [26], the representation ρg,p = ρ∨A,p is potentially
crystalline but not crystalline, which implies that the eigenforms gi are indeed
p-new of p-level ΠUB

, hence the presence of ΠUB
as conjectural p-level group

of g.
The conjecture above would imply that the L function of the motive h1(A)
is automorphic: L(h1(A), s) = Lspin(g, s), hence, by a classical theorem of
Piatetskii-Shapiro, it would have analytic continuation and functional equation.
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