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ABSTRACT. A conjecture of Fontaine and Mazur states that a geo-
metric odd irreducible p-adic representation p of the Galois group of
Q comes from a modular form ([10]). Dieulefait proved that, under
certain hypotheses, p is a member of a compatible system of ¢-adic
representations, as predicted by the conjecture ([9]). Thanks to recent
results of Kisin ([15]), we are able to apply the method of Dieulefait
under weaker hypotheses. This is useful in the proof of Serre’s con-
jecture ([20]) given in [11], [14],[12],[13].
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1 INTRODUCTION.

Let Q be an algebraic closure of Q. For L a finite extension of Q contained in
Q, we write G, for the Galois group of Q/L. For £ a prime number, we write
Qy for the field of ¢-adic numbers and Q, for an algebraic closure of Q.

An /{-adic representation p of G, of dimension d is a continuous morphism p
from G, to GL4(Qy). In fact, p has values in GLgq(M), for M a finite extension
of Q¢ contained in Q (lemma 2.2.1.1. of [6]). Such a representation p is said
to be geometric if it satisfies the following two conditions ([10]):

- for £ a prime of L above /¢, the restriction of p to the decomposition subgroup
D satisfies the potentially semi-stable condition of Fontaine’s theory (exp. 8
of [1]) ;

- there exists a finite set S of primes of L such that p is unramified outside S
and the primes above /.

A geometric f-adic Galois representation defines for each prime £ of L an
isomorphy class of representations of the Weil-Deligne group WD, in GL4(Qy)
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([8], exp. 8 of [1], [10]). We call r(p) its F-semisimplification. It is attached to
the restriction of p to the decomposition group D,. When L is of characteristic
£, in order to define r,, one needs to use the action of WD, on the filtered
Dieudonné module attached to the restriction of p to D, via Fontaine’s theory
(see remark 1 of section 4).
Let E be a finite extension of Q contained in Q. By a compatible system of
geometric representations of G, with coefficients in E of dimension d, we mean
the following data :
- for each ¢ and for each embedding ¢ of E in Q, a geometric representation
P, GL — GLd(QZ),
- a finite set S of primes of L, and for each prime £ of L, an F-semisimple
representation 7z of WD, in GL4(E), such that :

- r is unramified if £ ¢ S ;

- for each ¢ as above, ¢ o . is isomorphic to rz(p,).
We fix a prime p. Let p be a p-adic geometric irreducible odd representation of
dimension 2 of Gg. By odd, we mean that p(c) has eigenvalues 1 et —1, for ¢
a complex conjugation. We suppose that p has Hodge-Tate weights (0, k — 1),
where k is an integer > 2 : we shall say that p is of weight k. It is conjectured
by Fontaine and Mazur that p comes from a modular form of weight k.
More precisely, let £k > 2 and N > 1 be integers. Let f =q¢+ ... +a,q¢" + ...
be a primitive modular form on I'1 (V) of weight k. Let E(f) be its coefficient
field, i.e. the field generated by the coefficients of f and the values of the
character of f. The field E(f) is a finite extension of Q. It is classical that
one can associate a p-adic representation p(f), : Go — GL2(Q,) to f and an
embedding ¢ of E(f) in Q,. The representation p(f), is unramified at ¢ if ¢ is
# p and does not divide NV and is characterized by :

tr(p(f).(Frobe)) = w(ar),

for these ¢. Furthermore, p(f), is absolutely irreductible, odd, geometric, of
conductor N and of weight k (Hodge-Tate weights (0,k — 1)). The conjecture
of Fontaine and Mazur states that p is isomorphic to p(f), for an f and a «.
A consequence of the conjecture of Fontaine and Mazur is that p is a member
of a compatible system of Galois representations. Dieulefait proved that it is
the case under certain hypotheses ([9]). Using a recent result of Kisin ([15]),
we give weaker hypotheses under which the result of Dieulefait is true.

The main tool of the proof is a theorem of Taylor ([26] and [25]). There exists
a totally real number field F' which is Galois over Q and such that p g, comes
from an cuspidal automorphic representation 7 of GLo(Ap) of parallel weight
k (or a Hilbert modular form for F'). By Arthur-Clozel ([2]), for each F’ such
that the Galois group of F/F’ is solvable, p|g,, comes from an automorphic
representation wp for GLa(Ap/). Using Brauer’s theorem, we put together the
compatible systems associated to the automorphic representations mp/, and we
obtain the compatible system of representations of Gg.
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2  TAYLOR’S THEOREM.

Let p be an odd irreducible geometric p-adic representation of Gg of dimension
2 of weight k, k an integer > 2.

We say that p is potentially modular if there exists a Galois totally real finite
extension F of Q contained in Q such that the restriction of p to Gr comes
from a cuspidal automorphic representation 7 of GL2(Ap) of parallel weight k.
The theorem of Taylor states in many cases that p is potentially modular. In
fact, Taylor proves that the reduction p of p is potentially modular, with F'
unramified (resp. split) at p if the restriction of p to D, is reducible (resp.
irreducible). Then, the modularity of p|¢, follows from modularity theorems.
According to which modularity theorem one applies, one get different state-
ments. We write the following statement which is needed for our work with
Khare on Serre’s conjecture.

THEOREME 1 Let p : Go — GL2(Q,) be a p-adic representation, absolutely
wrreducible, odd, unramified outside a finite set of primes. One supposes that
the reduction p of p has non solvable image and, if p # 2, that p has Serre’s
weight k(p) in the range [2,p+1]. Then p is potentially modular in the following
cases :

-al) p#2 and pp, is crystalline of weight k = k(p) ;

- a2) p =2, k(p) = 2 and pp, is Barsotti-Tate ;

-b)p # 2 and k(p) # p+ 1, pp, is potentially Barsotti-Tate, Barsotti-Tate
after restriction to Qp(pp), and the restriction of the representation of the Weil-
Deligne group WD, to inertia is (wS*Q @ 1), where wy is the Teichmuller lift
of the cyclotomic character modulo p ;

-c¢)p#2and k(p) =p+1 orp=2and k(p) =4 and pp, is semistable of
weight 2.

The theorem follows from the potential modularity of p ([26], [25]) and the
modularity theorem stated in 8.3. of [13].

Remark. Using Skinner-Wiles modularity theorem ([22]), Taylor gives a variant
of this statement in a lot of ordinary cases.

3 FIELD OF COEFFICIENTS OF p.

Let p : Gg — GL2(Q,) be as in the preceeding section. Furthermore, we
suppose that p is potentially modular.

PROPOSITION 1 There is a finite extension E of Q and an embedding ¢, : E —
@p and for each prime £, a F-semisimple representation ry of the Weil-Deligne
group WDy with values in GLa(E) such that for each ¢, the F-semisimplification
re(p) of the representation of the Weil-Deligne group WDy associated to p is
isomorphic to 1, o 7y.
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Proof. Let F and 7 as in the theorem of Taylor. Let F’ be a subfield of F
such that F//F' has solvable Galois group. By Arthur and Clozel, we know that
the restriction of p to G- is also associated to a cuspidal representation 7ps of
GL2(Ap) ([2]). It follows that there exists a finite extension Eps of Q such that
the F-semisimplification of the representation of the Weil-Deligne group WD,
associated to the restriction of p to Gps can be realized in Ep/ for each prime £
of F'. The rationality properties of mp/ follows from Shimura for the unramified
primes and from Rogawski-Tunnell for the ramified primes ([21], see also [19] ;
[18]). The compatiblity of global and local Langlands correspondances follows
for £ of characteristic # p from Carayol completed by Taylor ([7],[23]) and for
L of characteristic p from Saito and Kisin ([19],[15]).

Take for E an extension of Q containing the images by all embeddings in Q of
the fields Eps. Let £ be a prime of F. Let F. be the subfield of F' which is fixed
by the decomposition subgroup of Gal(F/Q) for L. Let L’ be the restriction of
L to F}. The representation of the Weil-Deligne group WD,/ defined by the
restriction of p to F'; can be realized in E F- As the Weil-Deligne groups WD,
and WD, coincide, the proposition follows.

Remark. Particular cases of the compatibility between global and local Lang-
lands correspondences for the primes dividing the characteristic follows from
Breuil, Berger and Taylor ([5],[3],[24]).

4 CONSTRUCTION OF THE COMPATIBLE SYSTEM.

THEOREME 2 Let p be as in the preceeding section. Then, there exists a com-
patible system (p,) of geometric representations of Gg with coefficients in a
number field E such that there exists an embedding 1, : E — Q, with Pe,
isomorphic to p. The p, are irreducible, odd and of weight k.

Proof. If p is induced from the p-adic representation associated to a Hecke’s
character ¥ of an imaginary quadratic field, then one takes for (p,) the compat-
ible system induced from the one defined by the Hecke character. Otherwise,
p remains absolutely irreducible after restriction to any open subgroup of Gg.
We suppose this from now.

Let F, m, E(m) and ¢, such that p|g,, is isomorphic to the Galois representation
p(m)., attached to 7, and the embedding ¢, of the coefficient field E(7) of m
in @p. As in Taylor’s 5.3.3. of [27], one applies Brauer’s theorem to the trivial
representation of Gal(F/Q). There exist fields F; C F, such that each F/F;
has a solvable Galois group, integers m; € Z and characters ¥; of Gal(F/F;)
such that the trivial representation of Gal(F/Q) equals :

> miIndge ;.

One has :

G
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As in the proof of proposition 1, it follows from the theorems of Taylor and
Arthur-Clozel that p|g r, is the Ga101s representation p(mw;) attached to an au-
tomorphic reprebentatlon m; of GL2(AFp,) whose coeflicient field is embedded in
E.

Let ¢ be an embedding of F in @q for a prime q. We enlarge F such that it
contains the values of the characters W;. One defines the virtual representa-
tion R, in the Grothendieck group of irreducible representations of Gg with
coefficients in Q, by :

R, = milndg? (p(m). ® W),

Let us prove that R, is a true representation. For ¢ and j, let {7}, 7 € Gg
be a set of representatives of the double classes G, \Gq/GF,. Let us call Fjj,
the compositum of F; and 7(F}). One has :

Indggj (p(m5)e @ ¥5)iGp, Zlnd ( p(mi). & ;) 0 int(Tlc_l))‘GFi'jk) .

It follows that the scalar product < R,, R, > in the Grothendieck group is
equal to the sum over 4, j, k of :

mim; < ((p(ﬂ'j)L W, )o int(Tk_l))|GF1;jk ,(p(mi), ® \Ili)IGFijk > .

We see that the scalar product of R, with itselfis ), .k Mty with €55, =1
or 0 depending whether

((p(ms)e @ ¥y) 0 int(m ) g, = (p(mi). ® V)i,

or not. One has a similar calculation for the scalar product of p with itself in
the Grothendieck group of irreducible representations of G with coefficients in
Qp. The calculation gives Eijk mimjtgjk, with t;jk = 1 or 0 depending whether

(p® ;)0 int(Tk_l))lGFijk ~(p® \I]i)‘GFijk

or not. As p(m;), and p|,, are irreducible and have the same characteristic
polynomial of Frobenius outside a finite set of primes, one has t;;;, = tgjk. As
< p,p >= 1, it follows that the scalar product of R, with itself is 1. As the
dimensions of R, and p are both > 2m;[Gg : GF,], we have dim(R,) = 2. We
see that R, is a true representation of dimension 2. We call it p,.

It follows from the formula defining R, that the restriction of p, to G is as-
sociated to 7. By Blasius-Rogawski ([4]), (p.)|c, comes from a motive, except
perhaps if & = 2. It then follows by Tsuji that the restriction of p, to the
decomposition group for the characteristic ¢ of ¢ is potentially semi-stable of
weight & ([28]). The case k = 2 and p, is constructed as a limit of g-adic rep-
resentations attached to automorphic forms with one local component discrete
series is taken care by Kisin ([23],[15]).

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 819-827



824 J.-P. WINTENBERGER

The F-semisimple representation of the Weil-Deligne group WDy, on p, is iso-
morphic to :

> m; (Z Indp, (re(m) ® ‘I’z')) ;
i L

where L describes the set of primes of F; over £. The compatibility follows from
the fact that m; — p(m;) is compatibility with local Langlands correspondance
(see the references quoted in the proof of proposition 1).

By an argument of Ribet, it follows from compatibility that p, is absolutely
irreducible ([17]). As the restriction of p, to G is associated to =, it is odd
and p, is odd. This finishes the proof of the theorem.

Remarks.

1) Let M be a finite extension of Q, contained in Q, and let v : Gy —
GL4(E) be a potentially semistable representation of the Galois group Gy
with coefficients in a finite extension E of Q,. Let WDy be the Weil-Deligne
group. Let My be the maximal unramified extension of Q, contained in M.
Fontaine has defined a representation of WDy, on the filtered Dieudonné D
module attached to v (exp. 8 of [1]). Let us recall how it defines, up to
conjugacy, a representation r of WDy in GL4(Q,). The filtered Dieudonné
module D is a L ®q, E-module D, L a finite unramified extension of My in @p,
with an action of WDy, commuting with the action of L ®q, E. One knows
that the £ ®q, L-module D is free. Let us briefly recall why. Let us choose
such an embedding of E in Q,, and let us call E; = EN L. For each element
7 of the Galois group of E1/Q,, let D, be the sub-module of the elements x of
D such that (e® 1)x = (1 ® 7(e))x for every e € Ey. As the Frobenius ¢ of D
acts semi-linearly relatively to the action of L and commutes with the action
of F, ¢ transitively permutes the D, and the D, have the same dimension.
This implies the freeness. As the action of the Weil-Deligne group WD, on D
commutes with the action of E ®q, L, it follows that WD), acts on each D..
One defines r as the F-simplification of the action of WD,; on Dig.

2) One can describe the projective representation associated to p, as in [29]. Let
F and 7 as in Taylor’s theorem. Let p, the Galois-representation associated
to m and ¢. The multiplicity one theorem ([16]) implies that for 0 € Gg,
the automorphic representations 7 and “m are isomorphic. It follows that the
Galois representations p, and p, oint(c) are isomorphic. That means that there
exists g, € PGL3(Q,) such that :

p, o int(o) ~ int(g,) o p,.

This characterizes g, as pr,q is absolutely irreducible. Then, o — g, defines
a projective representation which is the projective representation associated to
p.- As in [29], one can show directly that this projective representation lifts to
a representation in GL2(Q,).
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