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Introduction

0.1. Let M be a pure motive over Q with coefficients in a number field E.
Assume that the L-function L(M, s) is well defined. Fixinig an embedding
ι : E →֒ C we can consider it as a complex-valued Dirichlet series L(M, s) =
∞
∑

n=0
ann

−s which converges for s≫ 0 and is expected to admit a meromorphic

continuation to C with a functional equation of the form

Γ(M, s)L(M, s) = ε(M, s) Γ(M∗(1),−s)L(M∗(1),−s)

where Γ(M, s) is the product of some Γ-factors and the ε-factor has the form
ε(M, s) = abs.
Assume that M is critical and that L(M, 0) 6= 0. Fix a finite place λ|p of E
and assume that the λ-adic realization Mλ of M is semistable in the sense
of Fontaine [Fo3]. The (ϕ,N)-module Dst(Mλ) associated to Mλ is a finite
dimensional Eλ-vector space equipped with an exhaustive decreasing filtration
FiliDst(Mλ), a Eλ-linear bijective frobenius ϕ : Dst(Mλ) −→ Dst(Mλ) and
a nilpotent monodromy operator N such that N ϕ = pϕN. We say that a
(ϕ,N)-submodule D of Dst(Mλ) is regular if

Dst(Mλ) = D ⊕ Fil0Dst(Mλ)
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6 Denis Benois

as Eλ-vector spaces. The theory of Perrin-Riou [PR] suggests that to any reg-
ular D one can associate a p-adic L-function Lp(M,D, s) interpolating rational
parts of special values of L(M, s). In particular, the interpolation formula at
s = 0 should have the form

Lp(M,D, 0) = E(M,D)
L(M, 0)

Ω∞(M)

where Ω∞(M) is the Deligne period of M and E(M,D) is a certain product of
Euler-like factors. Therefore one can expect that Lp(M,D, 0) = 0 if and only
if E(M,D) = 0 and in this case one says that Lp(M,D, s) has a trivial zero at
s = 0.

0.2. According to the conjectures of Bloch and Kato [BK], the Eλ-adic
representation Mλ should have the following properties:

C1) The Selmer groups H1
f (Mλ) and H

1
f (M

∗
λ(1)) are zero.

C2) H0(Mλ) = H0(M∗
λ(1)) = 0 where we write H∗ for the global Galois

cohomology.
Moreover one expects that
C3) ϕ : Dst(Mλ) −→ Dst(Mλ) is semisimple (semisimplicity conjecture).
We also make the following assumption which is a direct generalization of the
hypothesis U) from [G].

C4) The (ϕ,Γ)-module D†
rig(Mλ) has no saturated subquotients of the form

Um,n where Um,n is the unique crystalline (ϕ,Γ)-module sitting in a non split
exact sequence

0 −→ RL(|x|x
m) −→ Um,n −→ RL(x

−n) −→ 0, L = Eλ

(see §1 for unexplained notations).

In [Ben2], we extended the theory of Greenberg [G] to L-adic pseudo geometric
representations which are semistable at p and satisfy C1-4). Namely to any
regular D ⊂ Dst(V ) of a reasonably behaved representation V we associated
an integer e > 0 and an element L(V,D) ∈ L which can be seen as a vast
generalization of the L-invariants constructed in [Mr] and [G]. If V = Mλ we
set L(M,D) = L(Mλ, D). A natural formulation of the trivial zero conjecture
states as follows:

Conjecture. Lp(M,D, s) has a zero of order e at s = 0 and

(0.1) lim
s→0

Lp(M,D, s)

se
= E+(M,D)L(M∗(1), D∗)

L(M, 0)

Ω∞(M)
,

where E+(M,D) is the subproduct of E(M,D) obtained by ”excluding zero
factors” and D∗ = Hom(Dst(V )/D,Dst(L(1))) is the dual regular module
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The ℓ-Invariant 7

(see [Ben2] for more details). We refer to this statement as Greenberg’s
conjecture because if Mλ is ordinary at p it coincides with the conjecture
formulated in [G], p.166. Remark that if Mλ is crystalline at p, Greenberg’s
conjecture is compatible with Perrin-Riou’s theory of p-adic L-functions [Ben3].

0.3. Consider the motive Mf attached to a normalized newform f =
∞
∑

n=1
anq

n

of weight 2k on Γ0(Np) with (N, p) = 1. The complex L-function of Mf is

L(f, s) =
∞
∑

n=1
ann

−s. The twisted motiveMf (k) is critical. The eigenvalues of ϕ

acting onDst(Mf,λ(k)) are α = p−kap and β = p1−kap with vp(ap) = k−1. The
unique regular submodule of Dst(Mf,k(k)) is D = Eλd where ϕ(d) = αd and
Lp(Mf (k), D, s) = Lp(f, s+ k) where Lp(f, s) is the classical p-adic L-function
associated to ap via the theory of modular symbols [Mn], [AV]. If ap = pk−1,
the function Lp(f, s) vanishes at s = k. In this case several constructions of the
L-invariant based on different ideas were proposed (see [Co1], [Tm], [Mr], [O],
[Br]). Thanks to the work of many people it is known that they are all equal and
we refer to [Cz3] and [BDI] for further information. As Mf (k) is self-dual (i.e.
Mf (k) ≃M∗

f (1−k)) one has L(M
∗
f (1−k), D

∗) = L(Mf (k), D) (see also section

0.4 below). Moreover it is not difficult to prove that L(Mf (k), D) coincides with
the L-invariant of Fontaine-Mazur LFM(f) [Mr] ([Ben2], Proposition 2.3.7) and
(0.1) takes the form of the Mazur-Tate-Teitelbaum conjecture

L′
p(f, k) = L(f)

L(f, k)

Ω∞(f)

where we write L(f) for an unspecified L-invariant and Ω∞(f) for the Shimura
period of f [MTT]. This conjecture was first proved by Greenberg and Stevens
in the weight two case [GS1] [GS2]. In the unpublished note [St], Stevens
generalized this approach to the higher weights. Other proofs were found by
Kato, Kurihara and Tsuji (unpublished but see [Cz2]), Orton [O], Emerton
[E] and by Bertolini, Darmon and Iovita [BDI]. The approach of Greenberg
and Stevens is based on the study of families of modular forms and their p-
adic L-functions. Namely, Hida (in the ordinary case) and Coleman [Co1] (in

general) constructed an analytic family fx =
∞
∑

n=1
an(x)q

n of p-adic modular

forms for x ∈ Cp passing through f with f = f2k. Next, Panchishkin [Pa]
and independently Stevens (unpublished) constructed a two-variable p-adic L-
function L-function Lp(x, s) satisfying the following properties:
• Lp(2k, s) = Lp(f, s).

• Lp(x, x− s) = −
〈

N
〉s−x

Lp(x, s).

• Lp(x, k) = (1− pk−1ap(x)
−1)L∗(x) where L∗

p(x) is a p-adic analytic function
such that L∗

p(2k) = L(f, k)/Ω∞(f).
From these properties it follows easily that

L′
p(f, k) = −2 d log ap(2k)

L(f, k)

Ω∞(f)
,
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8 Denis Benois

where d log ap(x) = ap(x)
−1 dap(x)

dx
. Thus the Mazur-Tate-Teitelbaum conjec-

ture is equivalent to the assertion that

(0.2) L(f) = −2 d log ap(2k).

This formula was first proved for weight two by Greenberg and Stevens. In the
higher weight case several proofs of (0.2) have been proposed:
1. By Stevens [St], working with Coleman’s L-invariant LC(f) defined in [Co1].
2. By Colmez [Cz5], working with the Fontaine-Mazur’s L-invariant LFM(f)
defined in [Mr].
3. By Colmez [Cz6], working with Breuil’s L-invariant LBr(f) defined in [Br].
4. By Bertolini, Darmon and Iovita [BDI], working with Teitelbaum’s L-
invariant LT(f) [Tm] and Orton’s L-invariant LO(f) [O].

0.4. In this paper, working with the L-invariant defined in [Ben2] we generalize
(0.2) to some infinitesimal deformations of pseudo geometric representations.
Our result is purely algebraic and is a direct generalization of Theorem 2.3.4
of [GS2] using the cohomology of (ϕ,Γ)-modules instead Galois cohomology.
Let V be a pseudo-geometric representation with coefficients in L/Qp which
satisfies C1-4). Fix a regular submodule D. In view of (0.1) it is convenient
to set

ℓ(V,D) = L(V ∗(1), D∗).

Suppose that e = 1. Conjecturally this means that the p-adic L-function has

a simple trivial zero. Then either Dϕ=p−1

or (D∗)ϕ=p
−1

has dimension 1 over

L. To fix ideas, assume that dimLD
ϕ=p−1

= 1. Otherwise, as one expects
a functional equation relating Lp(M,D, s) and Lp(M

∗(1), D∗,−s) one can
consider V ∗(1) and D∗ instead V and D. We distinguish two cases. In each
case one can express ℓ(V,D) directly in terms of V and D.

• The crystalline case: Dϕ=p−1

∩ N
(

Dst(V )ϕ=1
)

= {0}. Let D†
rig(V ) be the

(ϕ,Γ)-module over the Robba ring RL associated to V [Ber1], [Cz1]. Set
D−1 = (1 − p−1ϕ−1)D and D0 = D. The two step filtration D−1 ⊂ D0 ⊂
Dst(V ) induces a filtration

F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ D†

rig(V )

such that gr0D
†
rig(V ) ≃ RL(δ) is the (ϕ,Γ)-module of rank 1 associated to a

character δ : Q∗
p −→ L∗ of the form δ(x) = |x|xm with m > 1. The cohomology

of (ϕ,Γ)-modules of rank 1 is studied in details in [Cz4]. Let η : Q∗
p −→ L∗ be

a continuous character. Colmez proved that H1(RL(η)) is a one dimensional
L-vector space except for η(x) = |x|xm with m > 1 and η(x) = x−n with
n 6 0. In the exceptional cases H1(RL(η)) has dimension 2 and can be canon-
ically decomposed into direct sum of one dimensional subspaces

(0.3) H1(RL(η)) ≃ H1
f (RL(η))⊕H1

c (RL(η)), η(x) = |x|xm or η(x) = x−n
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The ℓ-Invariant 9

([Ben2], Theorem 1.5.7). The condition C1) implies that

(0.4) H1(V ) ≃
⊕

l∈S

H1(Ql, V )

H1
f (Ql, V )

for a finite set of primes S. This isomorphism defines a one dimensional
subspace H1(D,V ) of H1(V ) together with an injective localisation map
κD : H1(D,V ) −→ H1(RL(δ)). Then ℓ(V,D) is the slope of Im(κD) with
respect to the decomposition of H1(RL(δ)) into direct sum (0.3). Let

0 −→ V −→ Vx −→ L −→ 0

be an extension in the category of global Galois representations such that

cl(x) ∈ H1(D,V ) is non zero. We equip D†
rig(Vx) with a canonical filtration

{0} ⊂ F−1D
†
rig(Vx) ⊂ F0D

†
rig(Vx) ⊂ F1D

†
rig(Vx) ⊂ D†

rig(Vx)

such that FiD
†
rig(Vx) = FiD

†
rig(V ) for i = −1, 0 and gr1D

†
rig(Vx) ≃ RL. Let

VA,x be an infinitesimal deformation of Vx over A = L[T ]/(T 2) endowed with

a filtration FiD
†
rig(VA,x) such that FiD

†
rig(V ) = FiD

†
rig(VA,x)⊗A L. Write

gr0D
†
rig(VA,x) ≃ RA(δA,x), gr1D

†
rig(VA,x) ≃ RA(ψA,x)

with δA,x, ψA,x : Q∗
p −→ A∗.

Theorem 1. Assume that
d(δA,xψ

−1
A,x)(u)

dT

∣

∣

∣

∣

T=0

6= 0 for u ≡ 1 (mod p2). Then

ℓ(V,D) = − log(u)
d log(δA,xψ

−1
A,x)(p)

d log(δA,xψ
−1
A,x)(u)

∣

∣

∣

∣

T=0

(note that the right hand side does not depend on the choice of u).

• The semistable case: Dϕ=p−1

⊂ N
(

Dst(V )ϕ=1
)

. Set D−1 = (1− p−1ϕ−1)D,

D0 = D and D1 = N−1(Dϕ=p−1

) ∩Dst(V )ϕ=1. The filtration

D−1 ⊂ D0 ⊂ D1 ⊂ Dst(V )

induces a filtration

F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ F1D

†
rig(V ) ⊂ D†

rig(V )

Then gr0D
†
rig(V ) ≃ RL(δ) and gr1D

†
rig(V ) ≃ RL(ψ) where the characters δ

and ψ are such that δ(x) = |x|xm and ψ(x) = x−n for some m > 1 and

n > 0. SetM = F1D
†
rig(V )/F−1D

†
rig(V ) and consider the map κD : H1(M) −→

H1(RL(ψ)) induced by the projection M −→ RL(ψ). The image of κD is a one
dimensional L-subspace of H1(RL(ψ)) and ℓ(V,D) is the slope of Im(κD) with
respect to (0.3).
Assume that VA is an infinitesimal deformation of V equipped with a filtration

FiD
†
rig(VA) such that FiD

†
rig(V ) = FiD

†
rig(VA) ⊗A L. Write gr0D

†
rig(VA) ≃

RA(δA) and gr1D
†
rig(VA) ≃ RA(ψA).
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10 Denis Benois

Theorem 2. Assume that

(0.5)
d(δAψ

−1
A )(u)

dT

∣

∣

∣

∣

T=0

6= 0 for u ≡ 1 (mod p2).

Then

ℓ(V,D) = − log(u)
d log(δAψ

−1
A ) (p)

d log(δAψ
−1
A )(u)

∣

∣

∣

∣

T=0

.

Remark that in the semistable case ℓ(V,D) = L(V,D).

For classical modular forms the existence of deformations having the above
properties follows from the theory of Coleman-Mazur [CM] together with deep
results of Saito and Kisin [Sa], [Ki]. Applying Theorem 2 to the representation
Mf,λ(k) we obtain a new proof of (0.2) with the Fontaine-Mazur L-invariant.
Remark that the local parameter T corresponds to the weight of a p-adic
modular form and (0.5) holds automatically. In the general case the existence
of deformations satisfying the above conditions should follow from properties
of eigenvarieties of reductive groups [BC].

The formulations of Theorems 1 and 2 look very similar and the proof is
essentially the same in the both cases. The main difference is that in the
crystalline case the ℓ-invariant is global and contains information about the
localisation map H1(V ) −→ H1(Qp, V ). In the proof of Theorem 1 we consider
Vx as a representation of the local Galois group but the construction of Vx
depends on the isomorphism (0.4). In the semistable case the definition of
ℓ(V,D) is purely local and the hypothesis C1-2) can be omitted. However
C1-2) are essential for the formulation of Greenberg conjecture because (0.1)
is meaningless if L(M, 0) = 0. One can compare our results with Hida’s paper
[Hi] where the case of ordinary representations over totally real ground field is
studued.

Here goes the organization of this paper. The §1 contains some background
material. In section 1.1 we review the theory of (ϕ,Γ)-modules and in section
1.2 recall the definition of the ℓ-invariant following [Ben2]. The crystalline and
semistable cases of trivial zeros are treated in §2 and §3 respectively. I would
like to thank Pierre Parent for several very valuable discussions which helped
me with the formulation of Theorem 1 and the referee for pointing out several
inaccuracies in the first version of this paper.

It is a great pleasure to dedicate this paper to Andrei Alexandrovich Suslin on
the occasion of his 60th birthday.
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The ℓ-Invariant 11

§1. The ℓ-invariant

1.1. (ϕ,Γ)-modules. ([Fo1], [Ber1], [Cz1])

1.1.1. Let p be a prime number. Fix an algebraic closure Qp of Qp and set

GQp = Gal(Qp/Qp). We denote by Cp the p-adic completion of Qp and write
| · | for the absolute value on Cp normalized by |p| = 1/p. For any 0 6 r < 1 set

B(r, 1) = {z ∈ Cp | p
−1/r

6 |z| < 1}.

Let χ : GQp −→ Z∗
p denote the cyclotomic character. Set HQp = ker(χ) and

Γ = GQp/HQp . The character χ will be often considered as an isomorphism

χ : Γ
∼
→ Z∗

p. Let L be a finite extension of Qp. For any 0 6 r < 1 we denote

by B†,r
rig,L the ring of p-adic functions f(π) =

∑

k∈Z

akπ
k (ak ∈ L) which are

holomorphic on the annulus B(r, 1). The Robba ring over L is defined as RL =
⋃

r
B†,r

rig,L. Recall that RL is equipped with commuting, L-linear, continuous

actions of Γ and a frobenius ϕ which are defined by

γ(f(π)) = f((1 + π)χ(γ) − 1), γ ∈ Γ,

ϕ(f(π)) = f((1 + π)p − 1).

Set t = log(1+π) =
∞
∑

n=1

(−1)n−1 π
n

n
. Remark that γ(t) = χ(γ) t and ϕ(t) = p t.

A finitely generated free RL-module D is said to be a (ϕ,Γ)-module if it
is equipped with commuting semilinear actions of Γ and ϕ and such that
RLϕ(D) = D. The last condition means simply that ϕ(e1), . . . , ϕ(ed) is a
basis of D if e1, . . . , ed is.
Let δ : Q∗

p −→ L∗ be a continuous character. We will write RL(δ) for the
(ϕ,Γ)-module RLeδ of rank 1 defined by

ϕ(eδ) = δ(p) eδ, γ(eδ) = δ(χ(γ)) eδ, γ ∈ Γ.

For any D we let D(χ) denote the ϕ-module D endowed with the action of Γ
twisted by the cyclotomic character χ.
Fix a topological generator γ ∈ Γ. For any (ϕ,Γ)-module D we denote by
Cϕ,γ(D) the complex

0 −→ D
f
−→ D⊕D

g
−→ D −→ 0

with f(x) = ((ϕ− 1)x, (γ− 1)x) and g(y, z) = (γ− 1)y− (ϕ− 1)z ([H1], [Cz4]).
We shall write H∗(D) for the cohomology of Cϕ,γ(D). The main properties of
these groups are the following
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12 Denis Benois

1) Long cohomology sequence. A short exact sequence of (ϕ,Γ)-modules

0 −→ D′ −→ D −→ D′′ −→ 0

gives rise to an exact sequence

0 −→ H0(D′) −→ H0(D) −→ H0(D)
∆0

−−→ H1(D′) −→ · · · −→ H2(D′′) −→ 0.

2) Euler-Poincaré characteristic. Hi(D) are finite dimensional L-vector spaces
and

χ(D) =

2
∑

i=0

(−1)i dimLH
i(D) = −rg(D).

(see [H1] and [Li]).
3) Computation of the Brauer group. The map

cl(x) 7→ −

(

1−
1

p

)−1

(logχ(γ))−1res(xdt)

is well defined and induces an isomorphism inv : H2(RL(χ))
∼
→ L (see [H2]

[Ben1] and [Li]).
4) The cup-products. Let D and M be two (ϕ,Γ)-modules. For all i and j
such that i+ j 6 2 define a bilinear map

∪ : Hi(D)×Hj(M) −→ Hi+j(D⊗ M)

by

cl(x) ∪ cl(y) = cl(x⊗ y) if i = j = 0,

cl(x) ∪ cl(y1, y2) = cl(x⊗ y1, x⊗ y2) if i = 0, j = 1,

cl(x1, x2) ∪ cl(y1, y2) = cl(x2 ⊗ γ(y1)− x1 ⊗ ϕ(y2)) if i = 1, j = 1,

cl(x) ∪ cl(y) = cl(x⊗ y) if i = 0, j = 2.

These maps commute with connecting homomorphisms in the usual sense.
5) Duality. Let D∗ = HomRL

(D,RL). For i = 0, 1, 2 the cup product

(1.1) Hi(D)×H2−i(D∗(χ))
∪
−→ H2(RL(χ)) ≃ L

is a perfect pairing ([H2], [Li]).

1.1.2. Recall that a filtered (ϕ,N)-module with coefficients in L is a finite
dimensional L-vector space M equipped with an exhausitive decreasing filtra-
tion FiliM , a linear bijective map ϕ : M −→ M and a nilpotent operator
N : M −→ M such that ϕN = pϕN. Filtered (ϕ,N)-modules form a ⊗-
category which we denote by MFϕ,N . A filtered (ϕ,N)-module M is said to
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The ℓ-Invariant 13

be a Dieudonné module if N = 0 on M . Filtered Dieudonné modules form
a full subcategory MFϕ of MFϕ,N . It is not difficult to see that the series
log(ϕ(π)/πp) and log(γ(π)/π) (γ ∈ Γ) converge in RL. Let log π be a transcen-
dental element over the field of fractions of RL equipped with actions of ϕ and
Γ given by

ϕ(log π) = p log π + log

(

ϕ(π)

πp

)

, γ(log π) = log π + log

(

γ(π)

π

)

.

Thus the ring RL,log = RL[log π] is equipped with natural actions of ϕ and

Γ and the monodromy operator N = −

(

1−
1

p

)−1
d

d log π
. For any (ϕ,Γ)-

module D set
Dst(D) = (D⊗RL

RL,log[1/t])
Γ

with t = log(1+π). Then Dst(D) is a finite dimensional L-vector space equipped
with natural actions of ϕ and N such that Nϕ = pϕN.Moreover, it is equipped
with a canonical exhaustive decreasing filtration FiliDst(D) which is induced

by the embeddings ιn : B†,r
rig,L →֒ L∞[[t]], n ≫ 0 constructed in [Ber1] (see

[Ber2] for more details). Set

Dcris(D) = Dst(D)N=0 = (D[1/t])Γ.

Then
dimLDcris(D) 6 dimLDst(D) 6 rg(D)

and one says that D is semistable (resp. crystalline) if dimLDcris(D) = rg(D)
(resp. if dimLDst(D) = rg(D)). If D is semistable, the jumps of the filtration
FiliDst(D) are called the Hodge-Tate weights of D and the tangent space of D
is defined as tD(L) = Dst(D)/Fil0Dst(D).

We let denote by Mϕ,Γ
pst and Mϕ,Γ

cris the categories of semistable and crystalline
representations respectively. In [Ber2] Berger proved that the functors

( 1.2) Dst : Mϕ,Γ
pst −→ MFϕ,N , Dcris : Mϕ,Γ

cris −→ MFϕ

are equivalences of ⊗-categories.

1.1.3. As usually, H1(D) can be interpreted in terms of extensions. Namely,
to any cocycle α = (a, b) ∈ Z1(Cϕ,γ(D)) one associates the extension

0 −→ D −→ Dα −→ RL −→ 0

such that Dα = D ⊕RLe with ϕ(e) = e + a and γ(e) = e + b. This defines a
canonical isomorphism

H1(D) ≃ Ext1(RL,D).
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14 Denis Benois

We say that cl(α) ∈ H1(D) is crystalline if dimLDcris(Dα) = dimLDcris(D)+1
and define

H1
f (D) = {cl(α) ∈ H1(D) | cl(α) is crystalline }.

It is easy to see that H1
f (D) is a subspace of H1(D). If D is semistable (even

potentially semistable), one has

H0(D) = Fil0Dst(D)ϕ=1,N=0,

dimLH
1
f (D) = dimL tD(L) + dimLH

0(D)(1.3)

(see [Ben2], Proposition 1.4.4 and Corollary 1.4.5). Moreover, H1
f (D) and

H1
f (D

∗(χ)) are orthogonal complements to each other under duality (1.1)

([Ben2], Corollary 1.4.10).

1.1.4. Let D be semistable (ϕ,Γ)-module of rank d. Assume that Dst(D)ϕ=1 =
Dst(D) and that the all Hodge-Tate weights ofD are > 0. SinceNϕ = pϕN this
implies that N = 0 on Dst(D) and D is crystalline. The results of this section
are proved in [Ben2] (see Proposition 1.5.9 and section 1.5.10). The canonical
map DΓ −→ Dcris(D) is an isomorphism and therefore H0(D) ≃ Dcris(D) = DΓ

has dimension d over L. The Euler-Poincaré characteristic formula gives

dimLH
1(D) = d+ dimLH

0(D) + dimLH
0(D∗(χ)) = 2d.

On the other hand dimLH
1
f (D) = d by (1.3). The group H1(D) has the

following explicit description. The map

iD : Dcris(D)⊕Dcris(D) −→ H1(D),

iD(x, y) = cl(−x, logχ(γ) y)

is an isomorphism. (Remark that the sign −1 and logχ(γ) are normalizing
factors.) We let denote iD,f and iD,c the restrictions of iD on the first and
second summand respectively. Then Im(iD,f ) = H1

f (D) and we set H1
c (D) =

Im(iD,c). Thus we have a canonical decomposition

H1(D) ≃ H1
f (D)⊕H1

c (D)

([Ben2], Proposition 1.5.9).

Now consider the dual module D∗(χ). It is crystalline, Dcris(D
∗(χ))ϕ=p

−1

=
Dcris(D

∗(χ)) and the all Hodge-Tate weights of D∗(χ) are 6 0. Let

[ , ]D : Dcris(D
∗(χ))×Dcris(D) −→ L

denote the canonical pairing. Define

iD∗(χ) : Dcris(D
∗(χ))⊕Dcris(D

∗(χ)) −→ H1(D∗(χ))

by
iD∗(χ)(α, β) ∪ iD(x, y) = [β, x]D − [α, y]D.

As before, let iD∗(χ), f and iD∗(χ), c denote the restrictions of iD on the first

and second summand respectively. From H1
f (D

∗(χ)) = H1
f (D)⊥ it follows that

Im(iD∗(χ), f ) = H1
f (D

∗(χ)) and we set H1
c (D

∗(χ)) = Im(iD∗(χ), c).

Write ∂ for the differential operator (1 + π)
d

dπ
.
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Proposition 1.1.5. Let RL(|x|x
m) be the (ϕ,Γ)-module RLeδ associated to

the character δ(x) = |x|xm (m > 1). Then
i) Dcris(RL(|x|x

m)) is the one-dimensional L-vector space generated by

t−meδ. Moreover Dcris(RL(|x|x
m)) = Dcris(RL(|x|x

m))ϕ=p
−1

and the unique
Hodge-Tate weight of RL(|x|x

m) is −m.
ii) H0(RL(|x|x

m)) = 0 and H1(RL(|x|x
m)) is the two-dimensional

L-vector space generated by α∗
m = −

(

1−
1

p

)

cl(αm) and β∗
m =

(

1−
1

p

)

logχ(γ) cl(βm) where

αm =
(−1)m−1

(m− 1)!
∂m−1

(

1

π
+

1

2
, a

)

eδ

with a ∈ R+
L = RL ∩ L[[π]] such that (1− ϕ) a = (1− χ(γ)γ)

(

1

π
+

1

2

)

and

βm =
(−1)m−1

(m− 1)!
∂m−1

(

b,
1

π

)

eδ

with b ∈ RL such that (1−ϕ)

(

1

π

)

= (1−χ(γ)γ) b.Moreover im,f (1) = α∗
m and

im,c(1) = β∗
m where im denotes the map i defined in 1.1.4 for RL(|x|x

m). In
particular, H1

f (RL(|x|x
m)) is generated by α∗

m andH1
c (RL(|x|x

m)) is generated
by β∗

m.
iii) Let x = cl(u, v) ∈ H1(RL(|x|x

m)). Then

x = a cl(αm) + b cl(βm)

with a = res(utm−1dt) and b = res(vtm−1dt).
iv) The map

Resm : RL(|x|x
m) −→ L,

Resm(α) = −

(

1−
1

p

)−1

(logχ(γ))−1res
(

αtm−1dt
)

induces an isomorphism invm : H2(RL(|x|x
m)) ≃ L. Moreover

invm (ωm) = 1 where ωm = (−1)m
(

1−
1

p

)

logχ(γ)

(m− 1)!
cl
(

∂m−1(1/π)
)

Proof. The assertions i) and ii) are proved in [Cz4], sections 2.3-2.5 and [Ben2],
Theorem 1.5.7 and (16). The assertions iii) and iv) are proved in [Ben2],
Proposition 1.5.4 iii) Corollary 1.5.5.
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16 Denis Benois

1.1.6. In [Fo1], Fontaine worked out a general approach to the classification
of p-adic representations in terms of (ϕ,Γ)-modules. Thanks to the work of
Cherbonnier-Colmez [CC] and Kedlaya [Ke] this approach allows to construct
an equivalence

D†
rig : RepL(GQp) −→ Mϕ,Γ

ét

between the category of L-adic representations of GQp and the category Mϕ,Γ
ét

of étale (ϕ,Γ)-modules in the sense of [Ke]. If V is a L-adic representation of
GQp , define

Dst(V ) = Dst(D
†
rig(V )), Dcris(V ) = Dcris(D

†
rig(V )).

Then Dst and Dcris are canonically isomorphic to classical Fontaine’s func-
tors [Fo2], [Fo3] defined using the rings Bst and Bcris ([Ber1], Theorem 0.2).
The continuous Galois cohomology H∗(Qp, V ) = H∗

cont(GQp , V ) is functorially

isomorphic to H∗(D†
rig(V )) ([H1], [Li]). and under this isomorphism

H1
f (D

†
rig(V )) ≃ H1

f (Qp, V )

where H1
f (Qp, V ) = ker(H1(Qp, V ) −→ H1(Qp, V ⊗Bcris)) is H

1
f of Bloch and

Kato [BK].

1.2. The ℓ-invariant.
1.2.1. The results of this section are proved in [Ben2], 2.1-2.2. Denote by
Q (S)/Q the maximal Galois extension of Q unramified outside S ∪ {∞} and
set GS = Gal(Q (S)/Q). If V is a L-adic representation of GS we write H∗(V )
for the continuous cohomology of GS with coefficients in V . If V is potentially
semistable at p, set

H1
f (Q l, V ) =

{

ker(H1(Ql, V ) −→ H1(Qnr
l , V ) if l 6= p,

H1
f (D

†
rig(V )) if l = p.

The Selmer group of Bloch and Kato is defined by

H1
f (V ) = ker

(

H1(V ) −→
⊕

l∈S

H1(Ql, V )

H1
f (Ql, V )

)

.

Assume that V satisfies the condition C1-4) of 0.2.
The Poitou-Tate exact sequence together with C1) gives an isomorphism

(1.4) H1(V ) ≃
⊕

l∈S

H1(Ql, V )

H1
f (Ql, V )

.
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The ℓ-Invariant 17

Recall that a (ϕ,N)-submodule D of Dst(V ) is said to be regular if the canon-
ical projection D −→ tV (L) is an isomorphism. To any regular D we associate
a filtration on Dst(V )

{0} ⊂ D−1 ⊂ D0 ⊂ D1 ⊂ Dst(V )

setting

Di =











(1− p−1ϕ−1)D +N(Dϕ=1) if i = −1,

D if i = 0,

D +Dst(V )ϕ=1 ∩N−1(Dϕ=p−1

) if i = 1.

By (1.2) this filtration induces a filtration on D†
rig(V ) by saturated (ϕ,Γ)-

submodules

{0} ⊂ F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ F1D

†
rig(V ) ⊂ D†

rig(V ).

Set W = F1D
†
rig(V )/F−1D

†
rig(V ). In [Ben2], Proposition 2.1.7 we proved that

(1.5) W ≃W0 ⊕W1 ⊕M,

where W0 and W1 are direct summands of gr0

(

D†
rig(V )

)

and gr1

(

D†
rig(V )

)

of

ranks dimLH
0(W ∗(χ)) and dimLH

0(W ) respectively. Moreover M seats in a
non split exact sequence

0 −→M0
f
−→M

g
−→M1 −→ 0

with rg(M0) = rg(M1), gr0

(

D†
rig(V )

)

=M0 ⊕W0 and gr1

(

D†
rig(V )

)

=M1 ⊕

W1. Set
e = rg(W0) + rg(W1) + rg(M0).

Generalizing [G] we expect that the p-adic L-function Lp(V,D, s) has a zero of
order e at s = 0.
If W0 = 0, the main construction of [Ben2] associates to V and D an ele-
ment L(V,D) ∈ L which can be viewed as a generalization of Greenberg’s
L-invariant to semistable representations. Now assume that W1 = 0. Let
D∗ = Hom(Dst(V )/D,Dst(Qp(1))) be the dual regular space. As the decom-
positions (1.5) for the pairs (V,D) and (V ∗(1), D∗) are dual to each other, one
can define

ℓ(V,D) = L(V ∗(1), D∗).

In this paper we do not review the construction of the L-invariant but give a
direct description of ℓ(V,D) in terms of V and D in two important particular
cases.
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18 Denis Benois

1.2.2. The crystalline case: W = W0 (see [Ben2], 2.2.6-2.2.7 and 2.3.3).

In this case W is crystalline, W1 =M = 0 and F0D
†
rig(V ) = F1D

†
rig(V ). From

the decomposition (1.5) it is not difficult to obtain the following description of
H1
f (Qp, V ) in the spirit of Greenberg’s local conditions:

(1.6) H1
f (Qp, V ) = ker

(

H1(F0D
†
rig(V )) −→

H1(W )

H1
f (W )

)

.

Let H1(D,V ) denote the inverse image of H1(F0D
†
rig(V ))/H1

f (Qp, V ) under

the isomorphism (1.4). Thus one has a commutative diagram

(1.7) H1(D,V ) //

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

H1(F0D
†
rig(V ))

��
H1(D†

rig(V ))

where the vertical map is injective ([Ben2], section 2.2.1). From (1.6) it follows
that the composition map

κD : H1(D,V ) −→ H1(F0D
†
rig(V )) −→ H1(W )

is injective. By construction, Dcris(W ) = D/D−1 = Dϕ=p−1

. As D is regular,
the Hodge-Tate weights of W are 6 0. Thus one has a decomposition

iW : Dcris (W )⊕Dcris (W ) ≃ H1
f (W )⊕H1

c (W ) ≃ H1 (W ) .

Denote by pD,f and pD,c the projection of H1 (W ) on the first and the second
direct summand respectively. We have a diagram

Dcris(W )

H1(D,V )

ρD,f
88qqqqqqqqqq

κD //

ρD,c &&▼▼
▼▼

▼▼
▼▼

▼▼
H1(W )

pD,f

OO

pD,c

��
Dcris(W )

where ρD,c is an isomorphism. Then

ℓ(V,D) = detL

(

ρD,f ◦ ρ
−1
D,c | Dcris(W )

)

.
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1.2.3. The semistable case: W =M (see [Ben2], 2.2.3-2.2.4 and 2.3.3). In
this case W is semistable , W0 =W1 = 0 and

(1.8) H1
f (Qp, V ) = ker

(

H1(F1D
†
rig(V )) −→ H1(M1)

)

.

Let H1(D,V ) be the inverse image of H1(F1D
†
rig(V ))/H1

f (Qp, V ) under the

isomorphism (1.4). Consider the exact sequence

H1(M0)
h1(f) // H1(M)

h1(g) // H1(M1)
∆1

// H2(M0) // 0 .

H1(D,V )

κD

OO
κ̄D

88rrrrrrrrrr

By (1.8), the map κ̄D is injective and it is not difficult to prove that the
image of H1(D,V ) in H1(M1) coincides with Im(h1(g)) ([Ben2], section 2.2.3).
Thus in the semistable case the position of H1(D,V ) in H1(M1) is completely
determined by the the restriction of V on the decomposition group at p. By
construction, Dst(M1) = D1/D where (D1/D)ϕ=1 = D1/D and the Hodge-
Tate weights of M1 are > 0. Again, one has an isomorphism

iM1
: Dcris (M1)⊕Dcris (M1) ≃ H1

f (M1)⊕H1
c (M1) ≃ H1 (M1)

which allows to construct a diagram

Dst(M1)

Im(h1(g))

ρD,f
88qqqqqqqqqq

κD //

ρD,c &&▼▼
▼▼

▼▼
▼▼

▼▼
H1(M1)

pD,f

OO

pD,c

��
Dst(M1).

Then

(1.9) ℓ(V,D) = L(V,D) = detL

(

ρD,f ◦ ρ
−1
D,c | Dst(M1)

)

.

From (1.5) it is clear that if e = 1 then either W = W0 with rg(W0) = 1 or
W =M with rg(M0) = rg(M1) = 1. We consider these cases separately in the
rest of the paper.
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§2. The crystalline case

2.1. Let A = L[T ]/(T 2) and let VA be a free finitely generated A-module
equipped with a A-linear action of GS . One says that VA is an infinitesimal
deformation of a p-adic representation V if V ≃ VA⊗AL.Write RA = A⊗LRL

and extend the actions of ϕ and Γ to RA by linearity. A (ϕ,Γ)-module over
RA is a free finitely generated RA-module DA equipped with commuting
semilinear actions of ϕ and Γ and such that RAϕ(DA) = DA. We say that DA

is an infinitesimal deformation of a (ϕ,Γ)-module D over RL if D = DA⊗A L.

2.2. Let V be a p-adic representation of GS which satisfies the conditions C1-
4) and such that W = W0. Moreover we assume that rg(W ) = 1. Thus W is

a crystalline (ϕ,Γ)-module of rank 1 with Dcris(W ) = Dcris(W )ϕ=p
−1

and such
that Fil0Dcris(W ) = 0. This implies that

(2.1) W ≃ RL(δ) with δ(x) = |x|xm, m > 1.

(see for example [Ben2], Proposition 1.5.8). Note that the Hodge-Tate weight
of W is −m. The L-vector space H1(D,V ) is one dimensional. Fix a basis
cl(x) ∈ H1(D,V ). We can associate to cl(x) a non trivial extension

0 −→ V −→ Vx −→ L −→ 0.

This gives an exact sequence of (ϕ,Γ)-modules

0 −→ D†
rig(V ) −→ D†

rig(Vx) −→ RL −→ 0.

From (1.7) it follows that there exists an extension in the category of (ϕ,Γ)-
modules

0 −→ F0D
†
rig(V ) −→ Dx −→ RL −→ 0

which is inserted in a commutative diagram

0 // F0D
†
rig(V ) //

��

Dx
//

��

RL
//

=

��

0

0 // D†
rig(V ) // D†

rig(Vx)
// RL

// 0.

Define a filtration

{0} ⊂ F−1D
†
rig(Vx) ⊂ F0D

†
rig(Vx) ⊂ F1D

†
rig(Vx) ⊂ D†

rig(Vx)

by FiD
†
rig(Vx) = FiD

†
rig(V ) for i = −1, 0 and F1D

†
rig(Vx) = Dx. Set

Wx = F1D
†
rig(Vx)/F−1D

†
rig(Vx).
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Thus one has a diagram

0 // F0D
†
rig(V ) //

��

Dx
//

��

RL
//

=

��

0

0 // W // Wx
// RL

// 0.

2.3. Let VA,x be an infinitesimal deformation of Vx. Assume that D†
rig(VA,x)

is equipped with a filtration by saturated (ϕ,Γ)-modules over RA:

{0} ⊂ F−1D
†
rig(VA,x) ⊂ F0D

†
rig(VA,x) ⊂ F1D

†
rig(VA,x) ⊂ D†

rig(VA,x)

such that FiD
†
rig(VA,x)⊗AL ≃ FiD

†
rig(Vx) for all i. The quotients gr0D

†
rig(VA,x)

and gr1D
†
rig(VA,x) are (ϕ,Γ)-modules of rank 1 over RA and by [BC], Propo-

sition 2.3.1 there exists unique characters δA,x, ψA,x : Q∗
p −→ A∗ such that

gr0D
†
rig(VA,x) ≃ RA(δA,x) and gr1D

†
rig(VA,x) ≃ RA(ψA,x). It is clear that δA,x

(mod T ) = δ and ψA,x (mod T ) = 1. One has a diagram

0 // F0D
†
rig(VA)

//

��

F1D
†
rig(VA,x)

//

��

RA(ψA) //

=

��

0

0 // WA
// WA,x // RA(ψA) // 0

with WA = gr0D
†
rig(VA,x) and WA,x = F1D

†
rig(VA,x)/F−1D

†
rig(VA,x). Assume

that
d(δA,xψ

−1
A,x)(u)

dT

∣

∣

∣

∣

T=0

6= 0, u ≡ 1 (mod p2)

(as the multiplicative group 1 + p2Zp is procyclic it is enough to assume that
this holds for u = 1 + p2.)

Theorem 1. Let VA,x be an infinitesimal deformation of Vx which satisfies the
above conditions. Then

ℓ(V,D) = − logχ(γ)
d log(δA,xψ

−1
A,x)(p)

d log(δA,xψ
−1
A,x)(χ(γ))

∣

∣

∣

∣

T=0

.

This theorem will be proved in section 2.5. We start with an auxiliary result
which plays a key role in the proof. Set δ(x) = |x|xm (m > 1) and fix a
character δA : Q∗

p −→ A∗ such that δA (mod T ) = δ. Consider the exact
sequence

0 −→ RL(δ) −→ RA(δA) −→ RL(δ) −→ 0

and denote by Biδ the connecting maps Hi(RL(δ)) −→ Hi+1(RL(δ)).
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Proposition 2.4. One has

invm
(

B1
δ(α

∗
m)
)

= (logχ(γ))−1d logδA(χ(γ))
∣

∣

T=0
,

invm
(

B1
δ(β

∗
m)
)

= d logδA(p)
∣

∣

T=0
.

Proof. a) Recall that

α∗
m = −

(

1−
1

p

)

(−1)m−1

(m− 1)!
cl

(

∂m−1

(

1

π
+

1

2
, a

)

eδ

)

.

Let eA,δ be a generator of RA(δA) such that eδ = eA,δ (mod T ). Directly from
the definition of the connecting map

B1
δ(α

∗
m) = −

(

1−
1

p

)

(−1)m−1

(m− 1)!
cl

(

1

T

(

(γ − 1)

(

∂m−1

(

1

π
+

1

2

)

eA,δ

)

−

− (ϕ− 1) (∂m−1(a)eA,δ)
))

.

Write

(γ − 1)

(

∂m−1

(

1

π
+

1

2

)

eA,δ

)

− (ϕ− 1) (∂m−1(a)eA,δ) =

=
(

χ(γ)−mδA(χ(γ))− 1
)

∂m−1

(

1

π
+

1

2

)

eA,δ + z

where

z =
(

γ − χ(γ)−m
)

∂m−1

(

1

π
+

1

2

)

δA(χ(γ))eA,δ −
(

δA(p)ϕ− 1
)

∂m−1(a)eA,δ.

Since δA(χ(γ)) ≡ χ(γ)m (mod T ), from the definition of a it follows that z ≡ 0
(mod T ). On the other hand, as a ∈ R+

L and

(

γ − χ(γ)−m
)

∂m−1

(

1

π
+

1

2

)

∈ R+
L

we obtain that z/T ∈ R+
Leδ. Thus the class of z/T in H2(RL(δ)) is zero. On

the other hand, writing δA in the form

δA(u) = um + T
dδA(u)

dT

∣

∣

∣

∣

T=0

one finds that

χ(γ)−mδA(χ(γ))− 1

T
= d log δA(χ(γ))

∣

∣

T=0
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and the first formula follows from Proposition 1.1.5 iv).
b) By the definition of B1

δ

B1
δ(β

∗
m) =

(

1−
1

p

)

(−1)m−1 logχ(γ)

(m− 1)!
cl

(

1

T

(

(γ − 1)
(

∂m−1(b)eA,δ
)

−

− (ϕ− 1)
(

∂m−1
(

1/π
)

eA,δ
)))

.

As

δA(p)
(

ϕ− δ(p)−1
) (

∂m−1
(

1/π
))

=
δA(p)

δ(p)
(δ(χ(γ)) γ − 1) ∂m−1(b)

we can write

(γ − 1)
(

∂m−1(b)eA,δ
)

− (ϕ− 1)
(

∂m−1
(

1/π
)

eA,δ
)

=

= −(δ(p)−1δA(p)− 1) ∂m−1
(

1/π
)

+ w

where

w = (δA(χ(γ)) γ − 1) (∂m−1b) eA,δ +
δA(p)

δ(p)
(δ(χ(γ)) γ − 1) (∂m−1b)eA,δ.

Remark that
δ(p)−1δA(p)− 1

T
= −d log δA(p)

∣

∣

T=0

On the other hand
res
(

∂m−1(b) tm−1dt
)

= 0

(see [Ben2], proof of Corollary 1.5.6). As res
(

(χ(γ)mγ − 1) ∂m−1(b) tm−1dt
)

=

0, this implies that res
(

γ(∂m−1b) tm−1dt
)

= 0 and we obtain that Resm(w) = 0.
Thus

invm(B1
δ(β

∗
m)) = −dlog δA(p)

∣

∣

T=0
Resm(ωm) = dlog δA(p)

∣

∣

T=0

and the Proposition is proved.

2.5. We pass to the proof of Theorem 1. By Proposition 1.1.5, H1(W ) is a two
dimensional L-vector space generated by α∗

m and β∗
m. One has a commutative

diagram with exact rows

0

��

0

��

0

��
0 // W //

��

Wx
//

��

RL
//

��

0

0 // WA
//

��

WA,x //

��

RA(ψA,x) //

��

0

0 // W //

��

Wx
//

��

RL
//

��

0

0 0 0
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Twisting the middle row by ψ−1
A,x and taking into account that ψA,x ≡ 1

(mod T ) we obtain

(2.2) 0

��

0

��

0

��
0 // W //

��

Wx
//

��

RL
//

��

0

0 // WA(ψ
−1
A,x)

//

��

WA,x(ψ
−1
A,x)

//

��

RA
//

��

0

0 // W //

��

Wx
//

��

RL
//

��

0

0 0 0

The connecting map ∆0 : H0(RL) −→ H1(W ) sends 1 to y = κD(cl(x)) and
we can write

y = aα∗
m + b β∗

m

with a, b ∈ L. Directly from the definition of the ℓ-invariant one has

(2.3) ℓ(V,D) = b−1a.

The diagram (2.2) gives rise to a commutative diagram

H0(RL)

B0

��

∆0

// H1(W )

B1

W

��
H1(RL)

∆1

// H2(W ).

Since the rightmost vertical row of (2.2) splits, the connecting map B0 is zero
and

aB1
W (α∗

m) + bB1
W (β∗

m) = B1
W (y) = 0.

As WA(ψ
−1
A,x) ≃ RA(δA,xψ

−1
A,x), Proposition 2.4 gives

invm(B1
W (α∗

m)) = (log(χ(γ))−1d log(δA,xψ
−1
A,x)(χ(γ))

∣

∣

T=0
,

invm(B1
W (β∗

m)) = d log(δA,xψ
−1
A,x)(p)

∣

∣

T=0
.

Together with (2.3) this gives the Theorem.
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§3. The semistable case

3.1. In this section we assume that V is a p-adic representation which satisfies
the conditions C1-4) and such that W =M . Thus one has an exact sequence

(3.1) 0 −→M0
f
−→W

g
−→M1 −→ 0

where M0 and M1 are such that e = rg(M0) = rg(M1). We will assume that
e = 1. Then

M0 = RLeδ ≃ RL(δ), δ(x) = |x|xm, m > 1,

M1 = RLeψ ≃ RL(ψ), ψ(x) = x−n, n > 0

(see for example [Ben2], Lemma 1.5.2 and Proposition 1.5.8). Thus

{0} ⊂ F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ F1D

†
rig(V ) ⊂ D†

rig(V )

with gr0D
†
rig(V ) ≃ RL(δ) and gr1D

†
rig(V ) ≃ RL(ψ). Assume that VA is an

infinitesimal deformation of V and that D†
rig(VA) is equipped with a filtration

by saturated (ϕ,Γ)-modules over RA

{0} ⊂ F−1D
†
rig(VA) ⊂ F0D

†
rig(VA) ⊂ F1D

†
rig(VA) ⊂ D†

rig(VA)

such that
FiD

†
rig(VA)⊗L A ≃ FiD

†
rig(V ), −1 6 i 6 1.

Then
gr0D

†
rig(VA) ≃ RA(δA), griD

†
rig(VA) ≃ RA(ψA),

where δA, ψA : Q∗
p −→ A∗ are such that δA (mod T ) = δ and ψA (mod T ) = ψ.

As before, assume that

d(δAψ
−1
A )(u)

dT

∣

∣

∣

∣

T=0

6= 0, u ≡ 1 (mod p2).

Theorem 2. Let VA be an infinitesimal deformation of V which satisfies the
above conditions. Then

(3.2) ℓ(V,D) = − logχ(γ)
d log(δAψ

−1
A )(p)

d log(δAψ
−1
A )(χ(γ))

∣

∣

∣

∣

T=0

3.2. Proof of Theorem 2. The classes x∗n = −cl(tneψ, 0) and y∗n =
logχ(γ) cl(0, tneψ) form a basis of H1(M1) and H1

f (M1) is generated by x∗n
(see section 1.1.4). Consider the long cohomology sequence associated to (3.1):

· · · −→ H1(M0)
h1(f)
−−−→ H1(W )

h1(g)
−−−→ H1(M1)

∆1

−−→ H2(M0) −→ · · · .
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We can also consider the dual sequence 0 −→M∗
1 (χ) −→ W ∗(χ) −→M∗

0 (χ) −→ 0
and write

· · · −→ H0(M∗
0 (χ))

∆0

∗−−→ H1(M∗
1 (χ)) −→ H1(W ∗(χ)) −→ H1(M∗

0 (χ)) −→ · · · .

AsM∗
0 (χ) = RLeδ−1χ is isomorphic to RL(x

1−m), the cohomology H0(M∗
0 (χ))

is the one dimensional L-vector space generated by ξ = tm−1eδ−1χ. Write

∆0
∗(ξ) = aα∗

n+1 + b β∗
n+1,

where α∗
n+1, β

∗
n+1 is the canonical basis of H1(M∗

1 (χ)) ≃ RL(|x|x
n+1). From

the duality it follows that Im(∆0
∗) is orthogonal to ker(∆1) under the pairing

H1(RL(|x|x
n+1))×H1(RL(x

−n))
∪
−→ L

Since

α∗
n+1 ∪ x

∗
n = β∗

n+1 ∪ y
∗
n = 0, α∗

n+1 ∪ y
∗
n = −1, β∗

n+1 ∪ x
∗
n = 1

(see Proposition 1.1.5 ii), we obtain that Im(h1(g)) = ker(∆1) is generated by
ax∗n + by∗n. By the definition of the L-invariant

(3.3) L(V,D) = b−1a.

Set WA = F1D
†
rig(V )/F−1D

†
rig(V ). One has a commutative diagram

0

��

0

��

0

��
0 // RL(ψ

−1χ) //

��

W ∗(χ) //

��

RL(δ
−1χ) //

��

0

0 // RA(ψ
−1
A χ) //

��

W ∗
A(χ)

//

��

RA(δ
−1
A χ) //

��

0

0 // RL(ψ
−1χ) //

��

W ∗(χ) //

��

RL(δ
−1χ) //

��

0

0 0 0

Now the theorem can be proved either by twisting this diagram by δAχ
−1 and

applying the argument used in the proof of Theorem 2.3 or by the following
direct computation. One has an anticommutative square

H0(RL(δ
−1χ))

∆0

∗ //

B0

δ−1χ

��

H1(RL(ψ
−1χ))

B1

ψ−1χ

��
H1(RL(δ

−1χ))
∆1

∗ // H2(RL(ψ
−1χ)).
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Thus

(3.4) B1
ψ−1χ∆

0
∗(ξ) = −∆1

∗B
0
δ−1χ(ξ).

From Proposition 2.3 it follows that

(3.5)

invn+1

(

B1
ψ−1χ∆

0
∗(ξ)

)

= a invn+1

(

B1
ψ−1χ(α

∗
n+1)

)

+ b
(

B1
ψ−1χ(β

∗
n+1)

)

=

= −a log(χ(γ))−1d logψA(χ(γ))
∣

∣

T=0
− b d logψA(p)

∣

∣

T=0
.

Fix a generator eA,δ−1χ of RA(δ
−1
A χ). We can assume that eA,δ−1χ is a lifting

of eδ−1χ and set ξA = tm−1eA,δ−1χ. Directly by the definition of the connecting
map

B0
δ−1χ(ξ) =

1

T
cl((ϕ− 1) ξA, (γ − 1) ξA) =

=
1

T
cl((pm−1δ−1

A (p)− 1) ξA, (χ(γ)
mδ−1

A (χ(γ))− 1) ξA) =

= −cl
(

d log δA(p) ξ, d log δA(χ(γ)) ξ
)∣

∣

T=0
.

Let ξ̂ be a lifting of ξ in W ∗(χ). Then

∆1
∗B

0
δ−1χ(ξ) = −cl

(

d log δA(p) (γ − 1) ξ̂ − d log δA(χ(γ)) (ϕ− 1) ξ̂
)∣

∣

T=0
.

On the other hand, ∆0
∗(ξ) = cl((ϕ−1) ξ̂, (γ−1) ξ̂) and by Proposition 1.1.5 iii)

res
(

(ϕ− 1) (ξ̂) tndt
)

=

(

1−
1

p

)

a,

res
(

(γ − 1) (ξ̂) tndt
)

= log(χ(γ))

(

1−
1

p

)

b.

Thus,

(3.6) invn+1

(

∆1
∗B

0
δ−1χ(ξ)

)

=

= b d log δA(p)
∣

∣

T=0
+ a log(χ(γ))−1d log δA(χ(γ))

∣

∣

T=0
.

From (3.4), (3.5) and (3.6) we obtain that

a (logχ(γ))−1dlog(δAψ
−1
A )(χ(γ))

∣

∣

T=0
= −b d log(δAψ

−1
A ) (p)

∣

∣

T=0
.

Together with (3.3) this prove the theorem.

3.4. Remark. It would be interesting to generalize Theorems 1 and 2 to the
case e > 1. For this one should first understand what kind of filtrations on
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D†
rig(V ) appears naturally if V comes from automorphic forms [BC].

3.5. Modular forms. Let f be a normalized newform of weight x0 = 2k
which is split multiplicative at p. Let V = Mf,λ be the λ-adic representation
associated to f by Deligne [D]. The structure of Dst(V ) is well known (see for
example [Cz2]) Namely, Dst(V ) = Ld1 + Ld2 with N(d2) = d1, N(d1) = 0,

ϕ(d2) = pkd2 and ϕ(d1) = pk−1d1. Thus Dst(V (k)) = Ld
(k)
1 + Ld

(k)
2 with

ϕ(d
(k)
2 ) = d

(k)
2 , ϕ(d

(k)
1 ) = p−1d

(k)
1 and D = Dcris(V (k)) = Ld

(k)
1 is the unique

regular subspace of Dst(V (k)). It is clear that D−1 = 0, D1 = Dst(V (k))

and for the associated filtration on D†
rig(V (k)) we have F0D

†
rig(V (k)) = (D ⊗

RL[1/t])∩D
†
rig(V (k)), F1D

†
rig(V (k)) = D†

rig(V (k)). In [Ben2], Proposition 2.2.6

it is proved that L(V (k), D) coincides with the L-invariant of Fontaine-Mazur
LFM(f).
In [Co2], Coleman constructed an analytic family of overconvergent modular

forms fx =
∞
∑

n=1

an(x)q
n on an affinoid disk U containing 2k which satisfies the

following conditions
• For any x ∈ N ∩ U the form fx is classical.
• fx0

= f .
Moreover, one can interpolate the p-adic representations associated to classical
forms fx (x ∈ N ∩ U) and construct a two dimensional representation V of GQ

over the Tate algebra O(U) of U such that
• For any integer x ∈ N in U the Galois representation Vx obtained by spe-
cialization of V at x is isomorphic to the λ-adic representation associated to
fx [CM]. In particular, it is semistable with the Hodge-Tate weights (0, x− 1)
[Fa]. By continuity this implies that for all x ∈ U the Hodge-Tate-Sen weights
of Vx are (0, x− 1).

• ∧2Vx ≃ Lx

(

χ1−2k 〈χ〉
2k−x

)

where as usually 〈χ〉 denotes the projection of χ

and Lx is the field of coefficients of Vx.

•
(

B
ϕ=ap(x)
cris ⊗̂V

)GQp

is locally free of rank 1 on U [Sa], [Ki].

Let Ox0
denote the local ring of U at x0 and let A = Ox0

/(T 2) where T = x−x0
is a local parameter at x0. Then VA = V⊗O(U)Ox0

of V = Vx0
is an infinitesimal

deformation of V = Vx0
. It is not difficult to see that

F0D
†
rig(VA) = RA ⊗L Dcris(D

†
rig(VA))

ϕ=ap(x)

is a saturated (ϕ,Γ)-submodule of D†
rig(VA) ( [BC], Lemma 2.5.2 iii)). We

see immediately that F0D
†
rig(VA) ≃ RA(δA) where δA(u) = 1 for u ∈ Z∗

p and

δA(p) = ap(2k) + a′p(2k)T (mod T 2) with ap(2k) = pk−1. Set F1D
†
rig(VA) =

D†
rig(VA). As

〈χ(γ)〉 = exp
(

(2k − x) logχ(γ)
)

= 1− (logχ(γ))T (mod T 2)
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we obtain that

(ψAδA) (p) = 1, (ψAδA) (χ(γ)) = 1− (logχ(γ))T (mod T 2)

Thus ψA(χ(γ)) = 1 − logχ(γ)T (mod T 2) and d logψA(χ(γ))
∣

∣

T=0
=

− logχ(γ). Twisting VA by χk we obtain an infinitesimal deformation VA(k) of
V (k). The formula (3.2) writes

L(V (k), D) = −2 d log ap(2k).

In particular we obtain that LFM(f) = −2 d log ap(2k). The first direct proof
of this result was done in [Cz5] using Galois cohomology computations inside
the rings of p-adic periods. Remark that in [Cz6], Colmez used the theory of
(ϕ,Γ)-modules to prove this formula with Breuil’s L-invariant. His approach is
based on the local Langlands correspondence for two-dimensional trianguline
representations.
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baki 2001/02, Astérisque 290 (2003), 53-101.

[Cz2] P. Colmez, La conjecture de Birch et Swinnerton-Dyer p-adique,
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(1994), 113-184.

[G] R. Greenberg, Trivial zeros of p-adic L-functions, Contemp. Math. 165
(1994), 149-174.

[GS1] R. Greenberg and G.Stevens, p-adic L-functions and p-adic periods of
modular forms, Invent. Math. 111 (1993), 407-447.

[GS2] R. Greenberg and G.Stevens, On the conjecture of Mazur, Tate and
Teitelbaum, Contemp. Math. 165 (1994), 183-211.

[H1] L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc.
math. France 126 (1998), 563-600.

[H2] L. Herr, Une approche nouvelle de la dualité locale de Tate, Math.
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