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Abstract. The goal of this paper is to prove that 
oniveau spe
tral

sequen
es are motivi
ally fun
torial for all 
ohomology theories that


ould be fa
torized through motives. To this end the motif of a smooth

variety over a 
ountable �eld k is de
omposed (in the sense of Post-

nikov towers) into twisted (
o)motives of its points; this is generalized

to arbitrary Voevodsky's motives. In order to study the fun
torial-

ity of this 
onstru
tion, we use the formalism of weight stru
tures

(introdu
ed in the previous paper). We also develop this formalism

(for general triangulated 
ategories) further, and relate it with a new

notion of a ni
e duality (pairing) of (two distin
t) triangulated 
ate-

gories; this pie
e of homologi
al algebra 
ould be interesting for itself.

We 
onstru
t a 
ertain Gersten weight stru
ture for a triangulated


ategory of 
omotives that 
ontains DMeff
gm as well as (
o)motives of

fun
tion �elds over k. It turns out that the 
orresponding weight spe
-

tral sequen
es generalize the 
lassi
al 
oniveau ones (to 
ohomology of

arbitrary motives). When a 
ohomologi
al fun
tor is represented by a

Y ∈ ObjDMeff
− , the 
orresponding 
oniveau spe
tral sequen
es 
an

be expressed in terms of the (homotopy) t-trun
ations of Y ; this ex-

tends to motives the seminal 
oniveau spe
tral sequen
e 
omputations

of Blo
h and Ogus.

We also obtain that the 
omotif of a smooth 
onne
ted semi-lo
al

s
heme is a dire
t summand of the 
omotif of its generi
 point; 
o-

motives of fun
tion �elds 
ontain twisted 
omotives of their residue

�elds (for all geometri
 valuations). Hen
e similar results hold for any


ohomology of (semi-lo
al) s
hemes mentioned.
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Introduction

Let k be our perfe
t base �eld.

We re
all two very important statements 
on
erning 
oniveau spe
tral se-

quen
es. The �rst one is the 
al
ulation of E2 of the 
oniveau spe
tral se-

quen
e for 
ohomologi
al theories that satisfy 
ertain 
onditions; see [5℄ and

[8℄. It was proved by Voevodsky that these 
onditions are ful�lled by any the-

ory H represented by a motivi
 
omplex C (i.e. an obje
t of DMeff
− ; see [25℄);

then the E2-terms of the spe
tral sequen
e 
ould be 
al
ulated in terms of the

(homotopy t-stru
ture) 
ohomology of C. This result implies the se
ond one:

H-
ohomology of a smooth 
onne
ted semi-lo
al s
heme (in the sense of �4.4

of [26℄) inje
ts into the 
ohomology of its generi
 point; the latter statement

was extended to all (smooth 
onne
ted) primitive s
hemes by M. Walker.

The main goal of the present paper is to 
onstru
t (motivi
ally) fun
torial


oniveau spe
tral sequen
es 
onverging to 
ohomology of arbitrary motives;

there should exist a des
ription of these spe
tral sequen
es (starting from E2)

that is similar to the des
ription for the 
ase of 
ohomology of smooth varieties

(mentioned above).

A related obje
tive is to 
larify the nature of the inje
tivity result mentioned;

it turned our that (in the 
ase of a 
ountable k) the 
ohomology of a smooth


onne
ted semi-lo
al (more generally, primitive) s
heme is a
tually a dire
t

summand of the 
ohomology of its generi
 point. Moreover, the (twisted) 
o-

homology of a residue �eld of a fun
tion �eld K/k (for any geometri
 valuation

of K) is a dire
t summand of the 
ohomology of K. We a
tually prove more

in �4.3.
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Our main homologi
al algebra tool is the theory of weight stru
tures (in trian-

gulated 
ategories; we usually denote a weight stru
ture by w) introdu
ed in

the previous paper [6℄. In this arti
le we develop it further; this part of the

paper 
ould be interesting also to readers not a
quainted with motives (and


ould be read independently from the rest of the paper). In parti
ular, we

study ni
e dualities (
ertain pairings) of (two distin
t) triangulated 
ategories;

it seems that this subje
t was not previously 
onsidered in the literature at all.

This allows us to generalize the 
on
ept of adja
ent weight and t-stru
tures (t)
in a triangulated 
ategory (developed in �4.4 of [6℄): we introdu
e the notion

of orthogonal stru
tures in (two possibly distin
t) triangulated 
ategories. If Φ
is a ni
e duality of triangulated C,D, X ∈ ObjC, Y ∈ ObjD, t is orthogonal
to w, then the spe
tral sequen
e S 
onverging to Φ(X,Y ) that 
omes from

the t-trun
ations of Y is naturally isomorphi
 (starting from E2) to the weight

spe
tral sequen
e T for the fun
tor Φ(−, Y ). T 
omes from weight trun
ations of

X (note that those generalize stupid trun
ations for 
omplexes). Our approa
h

yields an abstra
t alternative to the method of 
omparing similar spe
tral se-

quen
es using �ltered 
omplexes (developed by Deligne and Paranjape, and

used in [22℄, [11℄, and [6℄). Note also that we relate t-trun
ations in D with

virtual t-trun
ations of 
ohomologi
al fun
tors on C. Virtual t-trun
ations for

ohomologi
al fun
tors are de�ned for any (C,w) (we do not need any trian-

gulated '
ategories of fun
tors' or t-stru
tures for them here); this notion was

introdu
ed in �2.5 of [6℄ and is studied further in the 
urrent paper.

Now, we explain why we really need a 
ertain new 
ategory of 
omotives (
on-

taining Voevodsky's DMeff
gm ), and so the theory of adja
ent stru
tures (i.e.

orthogonal stru
tures in the 
ase C = D, Φ = C(−,−)) is not su�
ient for our

purposes. It was already proved in [6℄ that weight stru
tures provide a power-

ful tool for 
onstru
ting spe
tral sequen
es; they also relate the 
ohomology of

obje
ts of triangulated 
ategories with t-stru
tures adja
ent to them. Unfortu-

nately, a weight stru
ture 
orresponding to 
oniveau spe
tral sequen
es 
annot

exist on DMeff
− ⊃ DMeff

gm sin
e these 
ategories do not 
ontain (any) motives

for fun
tion �elds over k (as well as motives of other s
hemes not of �nite type

over k; still 
f. Remark 4.5.4(5)). Yet these motives should generate the heart

of this weight stru
ture (sin
e the obje
ts of this heart should 
orepresent 
o-

variant exa
t fun
tors from the 
ategory of homotopy invariant sheaves with

transfers to Ab).

So, we need a 
ategory that would 
ontain 
ertain homotopy limits of obje
ts of

DMeff
gm . We su

eed in 
onstru
ting a triangulated 
ategory D (of 
omotives)

that allows us to rea
h the obje
tives listed. Unfortunately, in order to 
ontrol

morphisms between homotopy limits mentioned we have to assume k to be


ountable. In this 
ase there exists a large enough triangulated 
ategory Ds

(DMeff
gm ⊂ Ds ⊂ D) endowed with a 
ertain Gersten weight stru
ture w; its

heart is 'generated' by 
omotives of fun
tion �elds. w is (left) orthogonal to the

homotopy t-stru
ture on DMeff
− and (so) is 
losely 
onne
ted with 
oniveau

spe
tral sequen
es and Gersten resolutions for sheaves. Note still: we need k
to be 
ountable only in order to 
onstru
t the Gersten weight stru
ture. So
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those readers who would just want to have a 
ategory that 
ontains reasonable

homotopy limits of geometri
 motives (in
luding 
omotives of fun
tion �elds

and of smooth semi-lo
al s
hemes), and 
onsider 
ohomology theories for this


ategory, may freely ignore this restri
tion. Moreover, for an arbitrary k one


an still pass to a 
ountable homotopy limit in the Gysin distinguished triangle

(as in Proposition 3.6.1). Yet for an un
ountable k 
ountable homotopy limits

don't seem to be interesting; in parti
ular, they de�nitely do not allow to


onstru
t a Gersten weight stru
ture (in this 
ase).

So, we 
onsider a 
ertain triangulated 
ategory D ⊃ DMeff
gm that (roughly!)

'
onsists of' (
ovariant) homologi
al fun
tors DMeff
gm → Ab. In parti
ular,

obje
ts of D de�ne 
ovariant fun
tors SmV ar → Ab (whereas another 'big'

motivi
 
ategory DMeff
− de�ned by Voevodsky is 
onstru
ted from 
ertain

sheaves i.e. 
ontravariant fun
tors SmV ar → Ab; this is also true for all

motivi
 homotopy 
ategories of Voevodsky and Morel). Besides, DMeff
gm yields

a family of (weak) 
o
ompa
t 
ogenerators for D. This is why we 
all obje
ts of

D 
omotives. Yet note that the embedding DMeff
gm → D is 
ovariant (a
tually,

we invert the arrows in the 
orresponding '
ategory of fun
tors' in order to

make the Yoneda embedding fun
tor 
ovariant), as well as the fun
tor that

sends a smooth s
heme U (not ne
essarily of �nite type over k) to its 
omotif

(whi
h 
oin
ides with its motif if U is a smooth variety).

We also re
all the Chow weight stru
ture w′
Chow introdu
ed in [6℄; the 
orre-

sponding Chow-weight spe
tral sequen
es are isomorphi
 to the 
lassi
al (i.e.

Deligne's) weight spe
tral sequen
es when the latter are de�ned. w′
Chow 
ould

be naturally extended to a weight stru
ture wChow for D. We always have

a natural 
omparison morphism from the Chow-weight spe
tral sequen
e for

(H,X) to the 
orresponding 
oniveau one; it is an isomorphism for any bira-

tional 
ohomology theory. We 
onsider the 
ategory of birational 
omotives

Dbir i.e. the lo
alization of D by D(1) (that 
ontains the 
ategory of birational

geometri
 motives introdu
ed in [15℄; though some of the results of this unpub-

lished preprint are erroneous, this makes no di�eren
e for the 
urrent paper).

It turns our that w and wChow indu
e the same weight stru
ture w′
bir on Dbir.

Conversely, starting from w′
bir one 
an 'glue' (from sli
es) the weight stru
tures

indu
ed by w and wChow on D/D(n) for all n > 0. Moreover, these stru
tures

belong to an interesting family of weight stru
tures indexed by a single integral

parameter! It 
ould be interesting to 
onsider other members of this family. We

relate brie�y these observations with those of A. Beilinson (in [3℄ he proposed

a 'geometri
' 
hara
terization of the 
onje
tural motivi
 t-stru
ture).
Now we des
ribe the 
onne
tion of our results with related results of F. Deglise

(see [9℄, [10℄, and [11℄; note that the two latter papers are not published at the

moment yet). He 
onsiders a 
ertain 
ategory of pro-motives whose obje
ts

are naive inverse limits of obje
ts of DMeff
gm (this 
ategory is not triangulated,

though it is pro-triangulated in a 
ertain sense). This approa
h allows to ob-

tain (in a universal way) 
lassi
al 
oniveau spe
tral sequen
es for 
ohomology

of motives of smooth varieties; Deglise also proves their relation with the homo-

topy t-trun
ations for 
ohomology represented by an obje
t of DMeff
− . Yet for
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ohomology theories not 
oming from motivi
 
omplexes, this method does not

seem to extend to (spe
tral sequen
es for 
ohomology of) arbitrary motives;

motivi
 fun
toriality is not obvious also. Moreover, Deglise didn't prove that

the pro-motif of a (smooth 
onne
ted) semi-lo
al s
heme is a dire
t summand

of the pro-motif of its generi
 point (though this is true, at least in the 
ase of

a 
ountable k). We will tell mu
h more about our strategy and on the relation

of our results with those of Deglise in �1.5 below. Note also that our methods

are mu
h more 
onvenient for studying fun
toriality (of 
oniveau spe
tral se-

quen
es) than the methods applied by M. Rost in the related 
ontext of 
y
le

modules (see [24℄ and �4 of [10℄).

The author would like to indi
ate the interdependen
ies of the parts of this

text (in order to simplify reading for those who are not interested in all of

it). Those readers who are not (very mu
h) interested in (
oniveau) spe
tral

sequen
es, may avoid most of se
tion 2 and read only ��2.1 �2.2 (Remark 2.2.2


ould also be ignored). Moreover, in order to prove our dire
t summands results

(i.e. Theorem 4.2.1, Corollary 4.2.2, and Proposition 4.3.1) one needs only a

small portion of the theory of weight stru
tures; so a reader very relu
tant

to study this theory may try to derive them from the results of �3 'by hand'

without reading �2 at all. Still, for motivi
 fun
toriality of 
oniveau spe
tral

sequen
es and �ltrations (see Proposition 4.4.1 and Remark 4.4.2) one needs

more of weight stru
tures. On the other hand, those readers who are more

interested in the (general) theory of triangulated 
ategories may restri
t their

attention to ��1.1� 1.2 and �2; yet note that the rest of the paper des
ribes in

detail an important (and quite non-trivial) example of a weight stru
ture whi
h

is orthogonal to a t-stru
ture with respe
t to a ni
e duality (of triangulated


ategories). Moreover, mu
h of se
tion �4 
ould also be extended to a general

setting of a triangulated 
ategory satisfying properties similar to those listed

in Proposition 3.1.1; yet the author 
hose not to do this in order to make the

paper somewhat less abstra
t.

Now we list the 
ontents of the paper. More details 
ould be found at the

beginnings of se
tions.

We start �1 with the re
olle
tion of t-stru
tures, idempotent 
ompletions, and

Postnikov towers for triangulated 
ategories. We des
ribe a method for extend-

ing 
ohomologi
al fun
tors from a full triangulated sub
ategory to the whole

C (after H. Krause). Next we re
all some results and de�nitions for Voevod-

sky's motives (this in
ludes 
ertain properties of Tate twists for motives and


ohomologi
al fun
tors). Lastly, we de�ne pro-motives (following Deglise) and


ompare them with our triangulated 
ategory D of 
omotives. This allows to

explain our strategy step by step.

�2 is dedi
ated to weight stru
tures. First we remind the basi
s of this theory

(developed in �[6℄). Next we re
all that a 
ohomologi
al fun
tor H from an

(arbitrary triangulated 
ategory) C endowed with a weight stru
ture w 
ould

be 'trun
ated' as if it belonged to some triangulated 
ategory of fun
tors (from

C) that is endowed with a t-stru
ture; we 
all the 
orresponding pie
es of H its

virtual t-trun
ations. We re
all the notion of a weight spe
tral sequen
e (intro-
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du
es in ibid.). We prove that the derived exa
t 
ouple for a weight spe
tral

sequen
e 
ould be des
ribed in terms of virtual t-trun
ations. Next we intro-

du
e the de�nition a (ni
e) duality Φ : Cop×D → A (here D is triangulated, A
is abelian), and of orthogonal weight and t-stru
tures (with respe
t to Φ). If w
is orthogonal to t, then the virtual t-trun
ations (
orresponding to w) of fun
-
tors of the type Φ(−, Y ), Y ∈ ObjD, are exa
tly the fun
tors 'represented via

Φ' by the a
tual t-trun
ations of Y (
orresponding to t). Hen
e if w and t are
orthogonal with respe
t to a ni
e duality, the weight spe
tral sequen
e 
onverg-

ing to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) is naturally isomorphi
 (starting

from E2) to the one 
oming from t-trun
ations of Y . We also mention some

alternatives and prede
essors of our results. Lastly we 
ompare weight de
om-

positions, virtual t-trun
ations, and weight spe
tral sequen
es 
orresponding

to distin
t weight stru
tures (in possibly distin
t triangulated 
ategories).

In �3 we des
ribe the main properties of D ⊃ DMeff
gm . The exa
t 
hoi
e of D is

not important for most of this paper; so we just list the main properties of D

(and its 
ertain enhan
ement D
′
) in �3.1. We 
onstru
t D using the formalism

of di�erential graded modules in �5 later. Next we de�ne 
omotives for (
ertain)

s
hemes and ind-s
hemes of in�nite type over k (we 
all them pro-s
hemes). We

re
all the notion of a primitive s
heme. All (smooth) semi-lo
al pro-s
hemes

are primitive; primitive s
hemes have all ni
e 'motivi
' properties of semi-lo
al

pro-s
hemes. We prove that there are no D-morphisms of positive degrees

between 
omotives of primitive s
hemes (and also between 
ertain Tate twists

of those). In �3.6 we prove that the Gysin distinguished triangle for motives

of smooth varieties (in DMeff
gm ) 
ould be naturally extended to 
omotives of

pro-s
hemes. This allows to 
onstru
t 
ertain Postnikov towers for 
omotives

of pro-s
hemes; these towers are 
losely related with 
lassi
al 
oniveau spe
tral

sequen
es for 
ohomology.

�4 is 
entral in this paper. We introdu
e a 
ertain Gersten weight stru
ture

for a 
ertain triangulated 
ategory Ds (DMeff
gm ⊂ Ds ⊂ D). We prove that

Postnikov towers 
onstru
ted in �3.6 are a
tually weight Postnikov towers with

respe
t to w. We dedu
e our (interesting) results on dire
t summands of 
omo-

tives of fun
tion �elds. We translate these results to 
ohomology in the obvious

way.

Next we prove that weight spe
tral sequen
es for the 
ohomology of X (
orre-

sponding to the Gersten weight stru
ture) are naturally isomorphi
 (starting

from E2) to the 
lassi
al 
oniveau spe
tral sequen
es if X is the motif of a

smooth variety; so we 
all these spe
tral sequen
e 
oniveau ones in the general


ase also. We also prove that the Gersten weight stru
ture w (on Ds) is or-

thogonal to the homotopy t-stru
ture t on DMeff
− (with respe
t to a 
ertain

Φ). It follows that for an arbitrary X ∈ ObjDMs
, for a 
ohomology theory

represented by Y ∈ ObjDMeff
− (any 
hoi
e of) the 
oniveau spe
tral sequen
e

that 
onverges to Φ(X,Y ) 
ould be des
ribed in terms of the t-trun
ations of
Y (starting from E2).

We also de�ne 
oniveau spe
tral sequen
es for 
ohomology of motives over

un
ountable base �elds as the limits of the 
orresponding 
oniveau spe
tral
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sequen
es over 
ountable perfe
t sub�elds of de�nition. This de�nition is 
om-

patible with the 
lassi
al one; so we establish motivi
 fun
toriality of 
oniveau

spe
tral sequen
es in this 
ase also.

We also prove that the Chow weight stru
ture for DMeff
gm (introdu
ed in �6 of

[6℄) 
ould be extended to a weight stru
ture wChow on D. The 
orresponding

Chow-weight spe
tral sequen
es are isomorphi
 to the 
lassi
al (i.e. Deligne's)

ones when the latter are de�ned (this was proved in [6℄ and [7℄). We 
ompare


oniveau spe
tral sequen
es with Chow-weight ones: we always have a 
ompar-

ison morphism; it is an isomorphism for a birational 
ohomology theory. We


onsider the 
ategory of birational 
omotives Dbir i.e. the lo
alization of D by

D(1). w and wChow indu
e the same weight stru
ture w′
bir on Dbir; one almost


an glue w and wChow from 
opies of w′
bir (one may say that these weight

stru
tures 
ould almost be glued from the same sli
es with distin
t shifts).

�5 is dedi
ated to the 
onstru
tion of D and the proof of its properties. We

apply the formalism of di�erential graded 
ategories, modules over them, and of

the 
orresponding derived 
ategories. A reader not interested in these details

may skip (most of) this se
tion. In fa
t, the author is not sure that there

exists only one D suitable for our purposes; yet the 
hoi
e of D does not a�e
t


ohomology of (
omotives of) pro-s
hemes and of Voevodsky's motives.

We also explain how the di�erential graded modules formalism 
an be used to

de�ne base 
hange (extension and restri
tion of s
alars) for 
omotives. This

allows to extend our results on dire
t summands of 
omotives (and 
ohomology)

of fun
tion �elds to pro-s
hemes obtained from them via base 
hange. We also

de�ne tensoring of 
omotives by motives (in parti
ular, this yields Tate twist

for D), as well as a 
ertain 
ointernal Hom (i.e. the 
orresponding left adjoint

fun
tor).

�6 is dedi
ated to properties of 
omotives that are not (dire
tly) related with

the main results of the paper; we also make several 
omments. We re
all the

de�nition of the additive 
ategory D
gen

of generi
 motives (studied in [9℄). We

prove that the exa
t 
onservative weight 
omplex fun
tor 
orresponding to w
(that exists by the general theory of weight stru
tures) 
ould be modi�ed to

an exa
t 
onservative WC : Ds → Kb(Dgen). Next we prove that a 
ofun
-

tor Hw → Ab is representable by a homotopy invariant sheaf with transfers

whenever is 
onverts all produ
ts into dire
t sums.

We also note that our theory 
ould be easily extended to (
o)motives with 
o-

e�
ients in an arbitrary ring. Next we note (after B. Kahn) that reasonable

motives of pro-s
hemes with 
ompa
t support do exist in DMeff
− ; this obser-

vation 
ould be used for the 
onstru
tion of an alternative model for D. Lastly

we des
ribe whi
h parts of our argument do not work (and whi
h do work) in

the 
ase of an un
ountable k.
A 
aution: the notion of a weight stru
ture is quite a general formalism for

triangulated 
ategories. In parti
ular, one triangulated 
ategory 
an support

several distin
t weight stru
tures (note that there is a similar situation with

t-stru
tures). In fa
t, we 
onstru
t an example for su
h a situation in this

paper (
ertainly, mu
h simpler examples exist): we de�ne the Gersten weight
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stru
ture w for Ds and a Chow weight stru
ture wChow for D. Moreover, we

show in �4.9 that these weight stru
tures are 
ompatible with 
ertain weight

stru
tures de�ned on the lo
alizations D/D(n) (for all n > 0). These two series
of weight stru
tures are de�nitely distin
t: note that w yields 
oniveau spe
tral

sequen
es, whereas wChow yields Chow-weight spe
tral sequen
es, that general-

ize Deligne's weight spe
tral sequen
es for étale and mixed Hodge 
ohomology

(see [6℄ and [7℄). Also, the weight 
omplex fun
tor 
onstru
ted in [7℄ and [6℄

is quite distin
t from the one 
onsidered in �6.1 below (even the targets of the

fun
tors mentioned are 
ompletely distin
t).

The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.

Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for their

interesting remarks. The author gratefully a
knowledges the support from

Deligne 2004 Balzan prize in mathemati
s. The work is also supported by

RFBR (grants no. 08-01-00777a and 10-01-00287a).

Notation. For a 
ategory C, A,B ∈ ObjC, we denote by C(A,B) the set of
A-morphisms from A into B.

For 
ategories C,D we write C ⊂ D if C is a full sub
ategory of D.

For additive C,D we denote by AddFun(C,D) the 
ategory of additive fun
tors
from C toD (we will ignore set-theoreti
 di�
ulties here sin
e they do not a�e
t

our arguments seriously).

Ab is the 
ategory of abelian groups. For an additive B we will denote by B∗

the 
ategory AddFun(B,Ab) and by B∗ the 
ategory AddFun(Bop, Ab). Note
that both of these are abelian. Besides, Yoneda's lemma gives full embeddings

of B into B∗ and of Bop
into B∗

(these send X ∈ ObjB to X∗ = B(−, X) and
to X∗ = B(X,−), respe
tively).
For a 
ategory C, X, Y ∈ ObjC, we say that X is a retra
t of Y if idX 
ould

be fa
torized through Y . Note that when C is triangulated or abelian then

X is a retra
t of Y if and only if X is its dire
t summand. For any D ⊂ C
the sub
ategory D is 
alled Karoubi-
losed in C if it 
ontains all retra
ts of

its obje
ts in C. We will 
all the smallest Karoubi-
losed sub
ategory of C

ontaining D the Karoubization of D in C; sometimes we will use the same

term for the 
lass of obje
ts of the Karoubization of a full sub
ategory of C
(
orresponding to some sub
lass of ObjC).
For a 
ategory C we denote by Cop

its opposite 
ategory.

For an additive C an obje
t X ∈ ObjC is 
alled 
o
ompa
t if C(
∏

i∈I Yi, X) =⊕
i∈I C(Yi, X) for any set I and any Yi ∈ ObjC su
h that the produ
t exists

(here we don't need to demand all produ
ts to exist, though they a
tually will

exist below).

For X,Y ∈ ObjC we will write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC we

will write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ C we will denote

by D⊥
the 
lass

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Sometimes we will denote by D⊥
the 
orresponding full sub
ategory of C.

Dually,

⊥D is the 
lass {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}. This 
onvention is
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opposite to the one of �9.1 of [21℄.

In this paper all 
omplexes will be 
ohomologi
al i.e. the degree of all di�eren-

tials is +1; respe
tively, we will use 
ohomologi
al notation for their terms.

For an additive 
ategory B we denote by C(B) the 
ategory of (unbounded)


omplexes over it. K(B) will denote the homotopy 
ategory of 
omplexes. If

B is also abelian, we will denote by D(B) the derived 
ategory of B. We will

also need 
ertain bounded analogues of these 
ategories (i.e. Cb(B), Kb(B),
D−(B)).

C and D will usually denote some triangulated 
ategories. We will use the

term 'exa
t fun
tor' for a fun
tor of triangulated 
ategories (i.e. for a for a

fun
tor that preserves the stru
tures of triangulated 
ategories).

A will usually denote some abelian 
ategory. We will 
all a 
ovariant additive

fun
tor C → A for an abelian A homologi
al if it 
onverts distinguished tri-

angles into long exa
t sequen
es; homologi
al fun
tors Cop → A will be 
alled


ohomologi
al when 
onsidered as 
ontravariant fun
tors C → A.

H : Cop → A will always be additive; it will usually be 
ohomologi
al.

For f ∈ C(X,Y ), X,Y ∈ ObjC, we will 
all the third vertex of (any) distin-

guished triangle X
f
→ Y → Z a 
one of f . Note that di�erent 
hoi
es of 
ones

are 
onne
ted by non-unique isomorphisms, 
f. IV.1.7 of [13℄. Besides, in C(B)
we have 
anoni
al 
ones of morphisms (see se
tion �III.3 of ibid.).

We will often spe
ify a distinguished triangle by two of its morphisms.

When dealing with triangulated 
ategories we (mostly) use 
onventions and

auxiliary statements of [13℄. For a set of obje
ts Ci ∈ ObjC, i ∈ I, we will

denote by 〈Ci〉 the smallest stri
tly full triangulated sub
ategory 
ontaining all

Ci; for D ⊂ C we will write 〈D〉 instead of 〈ObjD〉.

We will say that Ci generate C if C equals 〈Ci〉. We will say that Ci weakly


ogenerate C if for X ∈ ObjC we have C(X,Ci[j]) = {0} ∀i ∈ I, j ∈ Z =⇒
X = 0 (i.e. if

⊥{Ci[j]} 
ontains only zero obje
ts).

We will 
all a partially ordered set L a (�ltered) proje
tive system if for any

x, y ∈ L there exists some maximum i.e. a z ∈ L su
h that z ≥ x and z ≥ y. By
abuse of notation, we will identify L with the following 
ategory D: ObjD = L;
D(l′, l) is empty whenever l′ < l, and 
onsists of a single morphism otherwise;

the 
omposition of morphisms is the only one possible. If L is a proje
tive

system, C is some 
ategory, X : L → C is a 
ovariant fun
tor, we will denote

X(l) for l ∈ L by Xl. We will write Y = lim
←−l∈L

Xl for the limit of this

fun
tor; we will 
all it the inverse limit of Xl. We will denote the 
olimit of

a 
ontravariant fun
tor Y : L → C by lim
−→l∈L

Yl and 
all it the dire
t limit.

Besides, we will sometimes 
all the 
ategori
al image of L with respe
t to su
h

an Y an indu
tive system.

Below I, L will often be proje
tive systems; we will usually require I to be


ountable.

A subsystem L′
of L is a partially ordered subset in whi
h maximums exist

(we will also 
onsider the 
orresponding full sub
ategory of L). We will 
all L′

unbounded in L if for any l ∈ L there exists an l′ ∈ L′
su
h that l′ ≥ l.

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



Coniveau Spectral Sequences for Motives 43

k will be our perfe
t base �eld. Below we will usually demand k to be 
ountable.
Note: this yields that for any variety the set of its 
losed (or open) subs
hemes

is 
ountable.

We also list 
entral de�nitions and main notation of this paper.

First we list the main (general) homologi
al algebra de�nitions. t-stru
tures, t-
trun
ations, and Postnikov towers in triangulated 
ategories are de�ned in �1.1;

weight stru
tures, weight de
ompositions, weight trun
ations, weight Postnikov

towers, and weight 
omplexes are 
onsidered in �2.1; virtual t-trun
ations and
ni
e exa
t 
omplexes of fun
tors are de�ned in �2.3; weight spe
tral sequen
es

are studied in �2.4; (ni
e) dualities and orthogonal weight and t-stru
tures are
de�ned in De�nition 2.5.1; right and left weight-exa
t fun
tors are de�ned in

De�nition 2.7.1.

Now we list notation (and some de�nitions) for motives. DMeff
gm ⊂ DMeff

− ,

HI and the homotopy t-stru
ture forDMeff
gm are de�ned in �1.3; Tate twists are


onsidered in �1.4; D
naive

is de�ned in �1.5; 
omotives (D and D
′
) are de�ned

in �3.1; in �3.2 we dis
uss pro-s
hemes and their 
omotives; in �3.3 we re
all the

de�nition of a primitive s
heme; in �4.1 we de�ne the Gersten weight stru
ture

w on a 
ertain triangulated Ds; we 
onsider wChow in �4.7; Dbir and w′
bir are

de�ned in �4.9; several di�erential graded 
onstru
tions (in
luding extension

and restri
tion of s
alars for 
omotives) are 
onsidered in �5; we de�ne D
gen

and WC : Ds → Kb(Dgen) in �6.1.

1 Some preliminaries on triangulated categories and motives

�1.1 we re
all the notion of a t-stru
ture (and introdu
e some notation for it),

re
all the notion of an idempotent 
ompletion of an additive 
ategory; we also

re
all that any small abelian 
ategory 
ould be faithfully embedded into Ab (a
well-known result by Mit
hell).

In �1.2 we des
ribe (following H. Krause) a natural method for extending 
o-

homologi
al fun
tors from a full triangulated C ′ ⊂ C to C.
In �1.3 we re
all some de�nitions and results of Voevodsky.

In �1.4 we re
all the notion of a Tate twist; we study the properties of Tate

twists for motives and homotopy invariant sheaves.

In �1.5 we de�ne pro-motives (following [9℄ and [10℄). These are not ne
essary

for our main result; yet they allow to explain our methods step by step. We

also des
ribe in detail the relation of our 
onstru
tions and results with those

of Deglise.

1.1 t-structures, Postnikov towers, idempotent completions, and
an embedding theorem of Mitchell

To �x the notation we re
all the de�nition of a t-stru
ture.

Definition 1.1.1. A pair of sub
lasses Ct≥0, Ct≤0 ⊂ ObjC for a triangulated


ategory C will be said to de�ne a t-stru
ture t if (Ct≥0, Ct≤0) satisfy the

following 
onditions:
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(i) Ct≥0, Ct≤0
are stri
t i.e. 
ontain all obje
ts of C isomorphi
 to their ele-

ments.

(ii) Ct≥0 ⊂ Ct≥0[1], Ct≤0[1] ⊂ Ct≤0
.

(iii) Orthogonality. Ct≤0[1] ⊥ Ct≥0
.

(iv) t-de
omposition. For any X ∈ ObjC there exists a distinguished triangle

A→ X → B[−1]→A[1] (1)

su
h that A ∈ Ct≤0, B ∈ Ct≥0
.

We will need some more notation for t-stru
tures.

Definition 1.1.2. 1. A 
ategory Ht whose obje
ts are Ct=0 = Ct≥0 ∩ Ct≤0
,

Ht(X,Y ) = C(X,Y ) for X,Y ∈ Ct=0
, will be 
alled the heart of t. Re
all (
f.

Theorem 1.3.6 of [2℄) that Ht is abelian (short exa
t sequen
es in Ht 
ome

from distinguished triangles in C).

2. Ct≥l
(resp. Ct≤l

) will denote Ct≥0[−l] (resp. Ct≤0[−l]).

Remark 1.1.3. 1. The axiomati
s of t-stru
tures is self-dual: if D = Cop
(so

ObjC = ObjD) then one 
an de�ne the (opposite) weight stru
ture t′ on D by

taking Dt′≤0 = Ct≥0
and Dt′≥0 = Ct≤0

; see part (iii) of Examples 1.3.2 in [2℄.

2. Re
all (
f. Lemma IV.4.5 in [13℄) that (1) de�nes additive fun
tors C →
Ct≤0 : X → A and C → Ct≥0 : X → B. We will denote A,B by Xt≤0

and

Xt≥1
, respe
tively.

3. (1) will be 
alled the t-de
omposition of X. If X = Y [i] for some Y ∈ ObjC,
i ∈ Z, then we will denote A by Y t≤i

(it belongs to Ct≤0
) and B by Y t≥i+1

(it belongs to Ct≥0
), respe
tively. Sometimes we will denote Y t≤i[−i] by t≤iY ;

t≥i+1Y = Y t≥i+1[−i−1]. Obje
ts of the type Y t≤i[j] and Y t≥i[j] (for i, j ∈ Z)

will be 
alled t-trun
ations of Y .

4. We denote by Xt=i
the i-th 
ohomology of X with respe
t to t i.e. (Y t≤i)t≥0

(
f. part 10 of �IV.4 of [13℄).

5. The following statements are obvious (and well-known): Ct≤0 = ⊥Ct≥1
;

Ct≥0 = Ct≤−1⊥
.

Now we re
all the notion of idempotent 
ompletion.

Definition 1.1.4. An additive 
ategory B is said to be idempotent 
omplete

if for any X ∈ ObjB and any idempotent p ∈ B(X,X) there exists a de
om-

position X = Y
⊕

Z su
h that p = i ◦ j, where i is the in
lusion Y → Y
⊕

Z,
j is the proje
tion Y

⊕
Z → Y .

Re
all that any additive B 
an be 
anoni
ally idempotent 
ompleted. Its idem-

potent 
ompletion is (by de�nition) the 
ategory B′
whose obje
ts are (X, p)

for X ∈ ObjB and p ∈ B(X,X) : p2 = p; we de�ne

A′((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′f = fp = f}.
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It 
an be easily 
he
ked that this 
ategory is additive and idempotent 
omplete,

and for any idempotent 
omplete C ⊃ B we have a natural full embedding

B′ → C.
The main result of [1℄ (Theorem 1.5) states that an idempotent 
ompletion

of a triangulated 
ategory C has a natural triangulation (with distinguished

triangles being all retra
ts of distinguished triangles of C).
Below we will need the notion of a Postnikov tower in a triangulated 
ategory

several times (
f. �IV2 of [13℄)).

Definition 1.1.5. Let C be a triangulated 
ategory.

1. Let l ≤ m ∈ Z.

We will 
all a bounded Postnikov tower for X ∈ ObjC the following data:

a sequen
e of C-morphisms (0 =)Yl → Yl+1 → · · · → Ym = X along with

distinguished triangles

Yi → Yi+1 → Xi (2)

for some Xi ∈ ObjC; here l ≤ i < m.

2. An unbounded Postnikov tower for X is a 
olle
tion of Yi for i ∈ Z that

is equipped (for all i ∈ Z) with: 
onne
ting arrows Yi → Yi+1 (for i ∈ Z),

morphisms Yi → X su
h that all the 
orresponding triangles 
ommute, and

distinguished triangles (2).

In both 
ases, we will denote X−p[p] by Xp
; we will 
all Xp

the fa
tors of out

Postnikov tower.

Remark 1.1.6. 1. Composing (and shifting) arrows from triangles (2) for two

subsequent i one 
an 
onstru
t a 
omplex whose terms are Xp
(it is easily seen

that this is a 
omplex indeed, 
f. Proposition 2.2.2 of [6℄). This observation

will be important for us below when we will 
onsider 
ertain weight 
omplex

fun
tors.

2. Certainly, a bounded Postnikov tower 
ould be easily 
ompleted to an un-

bounded one. For example, one 
ould take Yi = 0 for i < l, Yi = X for i > m;

then Xi = 0 if i < l or i ≥ m.

Lastly, we re
all the following (well-known) result.

Proposition 1.1.7. For any small abelian 
ategory A there exists an exa
t

faithful fun
tor A→ Ab.

Proof. By the Freyd-Mit
hell's embedding theorem, any small A 
ould be fully

faithfully embedded into R − mod for some (asso
iative unital) ring R. It

remains to apply the forgetful fun
tor R−mod→ Ab.

Remark 1.1.8. 1. We will need this statement below in order to assume that

obje
ts of A 'have elements'; this will 
onsiderably simplify diagram 
hase.

Note that we 
an assume the existen
e of elements for a not ne
essarily small

A in the 
ase when a reasoning deals only with a �nite number of obje
ts of A
at a time.

2. In the proof it su�
es to have a faithful embedding A → R − mod; this
weaker assertion was also proved by Mit
hell.
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1.2 Extending cohomological functors from a triangulated sub-
category

We des
ribe a method for extending 
ohomologi
al fun
tors from a full trian-

gulated C ′ ⊂ C to C (after H. Krause). Note that below we will apply some of

the results of [17℄ in the dual form. The 
onstru
tion requires C ′
to be skele-

tally small i.e. there should exist a (proper) subset D ⊂ ObjC ′
su
h that any

obje
t of C ′
is isomorphi
 to some element of D. For simpli
ity, we will some-

times (when writing sums over ObjC ′
) assume that ObjC ′

is a set itself. Sin
e

the distin
tion between small and skeletally small 
ategories will not a�e
t our

arguments and results, we will ignore it in the rest of the paper.

If A is an abelian 
ategory, then AddFun(C ′op, A) is abelian also; 
omplexes in

it are exa
t whenever they are exa
t 
omponentwisely.

Suppose that A satis�es AB5 i.e. it is 
losed with respe
t to all small 
oprod-

u
ts, and �ltered dire
t limits of exa
t sequen
es in A are exa
t.

Let H ′ ∈ AddFun(C ′op, A) be an additive fun
tor (it will usually be 
ohomo-

logi
al).

Proposition 1.2.1. I Let A,H ′
be �xed.

1. There exists an extension of H ′
to an additive fun
tor H : C → A. It is


ohomologi
al whenever H is. The 
orresponden
e H ′ → H de�nes an additive

fun
tor AddFun(C ′op, A)→ AddFun(Cop, A).

2. Moreover, suppose that in C we have a proje
tive system Xl, l ∈ L, equipped
with a 
ompatible system of morphisms X → Xl, su
h that the latter system

for any Y ∈ ObjC ′
indu
es an isomorphism C(X,Y ) ∼= lim

−→
C(Xl, Y ). Then

we have H(X) ∼= lim
−→

H(Xl).

II Let X ∈ ObjC be �xed.

1. One 
an 
hoose a family of Xl ∈ ObjC and fl ∈ C(X,Xl) su
h that (fl)
indu
e a surje
tion ⊕H ′(Xl) → H(X) for any H ′, A, and H as in assertion

I1.

2. Let F ′ f ′

→ G′ g′

→ H ′
be a (three-term) 
omplex in AddFun(C ′op, A) that

is exa
t in the middle; suppose that H ′
is 
ohomologi
al. Then the 
omplex

F
f
→ G

g
→ H (here F,G,H, f, g are the 
orresponding extensions) is exa
t in

the middle also.

Proof. I1. Following �1.2 of [17℄ (and dualizing it), we 
onsider the abelian 
at-

egory C = C ′∗ = AddFun(C ′, Ab) (this is Mod C ′op
in the notation of Krause).

The de�nition easily implies that dire
t limits in C are exa
tly 
omponentwise

dire
t limits of fun
tors. We have the Yoneda's fun
tor i′ : Cop → C that sends

X ∈ ObjC to the fun
tor X∗ = (Y 7→ C(X,Y ), Y ∈ ObjC ′); it is obviously

ohomologi
al. We denote by i the restri
tion of i′ to C ′

(i is opposite to a full
embedding).

By Lemma 2.2 of [17℄ (applied to the 
ategory C ′op
) we obtain that there exists

an exa
t fun
tor G : C → A that preserves all small 
oprodu
ts and satis�es

G ◦ i = H ′
. It is 
onstru
ted in the following way: if for X ∈ ObjC we have an
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exa
t sequen
e (in C)

⊕j∈J X∗
j → ⊕l∈LX

∗
l → X∗ → 0 (3)

for Xj , Xl ∈ C ′
, then we set

G(X) = Coker⊕j∈JH
′(Xj)→ ⊕l∈LH

′(Xl). (4)

We de�ne H = G ◦ i′; it was proved in lo
.
it. that we obtain a well-de�ned

fun
tor this way. As was also proved in lo
.
it., the 
orresponden
e H ′ 7→ H
yields a fun
tor; H is 
ohomologi
al if H ′

is.

2. The proof of lo
.
it. shows (and mentions) that G respe
ts (small) �ltered

inverse limits. Now note that our assertions imply: X∗ = lim
−→

X∗
l in C.

II 1. This is immediate from (4).

2. Note that the assertion is obviously valid if X ∈ ObjC ′
. We redu
e the

general statement to this 
ase.

Applying Yoneda's lemma to (3) is we obtain (
anoni
ally) some morphisms

fl : X → Xl for all l ∈ L and glj : Xl → Xj for all l ∈ L, j ∈ J , su
h that: for

any l ∈ L almost all glj are 0; for any j ∈ J almost all glj is 0; for any j ∈ J
we have

∑
l∈L glj ◦ fl = 0.

Now, by Proposition 1.1.7, we may assume that A = Ab (see Remark 1.1.8).

We should 
he
k: if for a ∈ G(X) we have g∗(a) = 0, then a = f∗(b) for some

b ∈ F (X).
Using additivity of C ′

and C, we 
an gather �nite sets of Xl and Xj into single

obje
ts. Hen
e we 
an assume that a = G(fl0)(c) for some c ∈ G(Xl) (=
G′(Xl)), l0 ∈ L and that g∗(c) ∈ H(gl0j0)(H(Xj0)) for some j0 ∈ J , whereas

gl0j0 ◦ fl0 = 0. We 
omplete Xl0 → Xj0 to a distinguished triangle Y
α
→

Xl0

gl0j0→ Xj0 ; we 
an assume that B ∈ ObjC ′
. We obtain that fl0 
ould be

presented as α ◦β for some β ∈ C(X,Y ). Sin
e H ′
is 
ohomologi
al, we obtain

that H(α)(g∗(c)) = 0. Sin
e Y ∈ ObjC, the 
omplex F (Y ) → G(Y ) → H(Y )
is exa
t in the middle; hen
e G(α)(c) = f∗(d) for some d ∈ F (Y ). Then we


an take b = F (β)(d).

1.3 Some definitions of Voevodsky: reminder

We use mu
h notation from [25℄. We re
all (some of) it here for the 
onvenien
e

of the reader, and introdu
e some notation of our own.

V ar ⊃ SmV ar ⊃ SmPrV ar will denote the 
lass of all varieties over k, resp.
of smooth varieties, resp. of smooth proje
tive varieties.

We re
all that for 
ategories of geometri
 origin (in parti
ular, for SmCor de-

�ned below) the addition of obje
ts is de�ned via the disjoint union of varieties

operation.

We de�ne the 
ategory SmCor of smooth 
orresponden
es. ObjSmCor =
SmV ar, SmCor(X,Y ) =

⊕
U Z for all integral 
losed U ⊂ X × Y that are

�nite over X and dominant over a 
onne
ted 
omponent of X; the 
omposition
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of 
orresponden
es is de�ned in the usual way via interse
tions (yet, we do not

need to 
onsider 
orresponden
es up to an equivalen
e relation).

We will write · · · → Xi−1 → Xi → Xi+1 → . . . , for X l ∈ SmV ar, for the

orresponding 
omplex over SmCor.

PreShv(SmCor) will denote the (abelian) 
ategory of additive 
ofun
tors

SmCor → Ab; its obje
ts are usually 
alled presheaves with transfers.

Shv(SmCor) = Shv(SmCor)Nis ⊂ PreShv(SmCor) is the abelian 
ategory

of additive 
ofun
tors SmCor → Ab that are sheaves in the Nisnevi
h topology

(when restri
ted to the 
ategory of smooth varieties); these sheaves are usually


alled sheaves with transfers.

D−(Shv(SmCor)) will be the bounded above derived 
ategory of

Shv(SmCor).

For Y ∈ SmV ar (more generally, for Y ∈ V ar, see �4.1 of [25℄) we 
onsider

L(Y ) = SmCor(−, Y ) ∈ Shv(SmCor). For a bounded 
omplex X = (Xi)
(as above) we will denote by L(X) the 
omplex · · · → L(Xi−1) → L(Xi) →
L(Xi+1)→ · · · ∈ Cb(Shv(SmCor)).

S ∈ Shv(SmCor) is 
alled homotopy invariant if for any X ∈ SmV ar the

proje
tion A
1 × X → X gives an isomorphism S(X) → S(A1 × X). We will

denote the 
ategory of homotopy invariant sheaves (with transfers) by HI; it
is an exa
t abelian sub
ategory of SmCor by Proposition 3.1.13 of [25℄.

DMeff
− ⊂ D−(Shv(SmCor)) is the full sub
ategory of 
omplexes whose 
oho-

mology sheaves are homotopy invariant; it is triangulated by lo
.
it. We will

need the homotopy t-stru
ture on DMeff
− : it is the restri
tion of the 
anon-

i
al t-stru
ture on D−(Shv(SmCor)) to DMeff
− . Below (when dealing with

DMeff
− ) we will denote it by just by t. We have Ht = HI.

We re
all the following results of [25℄.

Proposition 1.3.1. 1. There exists an exa
t fun
tor RC :
D−(Shv(SmCor)) → DMeff

− right adjoint to the embedding DMeff
− →

D−(Shv(SmCor)).

2. DMeff
− (Mgm(Y )[−i], F ) = H

i(F )(Y ) (the i-th Nisnevi
h hyper
ohomology

of F 
omputed in Y ) for any Y ∈ SmV ar.

3. Denote RC ◦ L by Mgm. Then the 
orresponding fun
tor Kb(SmCor) →

DMeff
− 
ould be des
ribed as a 
ertain lo
alization of Kb(SmCor).

Proof. See �3 of [25℄.

Remark 1.3.2. 1. In [25℄ (De�nition 2.1.1) the triangulated 
ategory DMeff
gm

(of e�e
tive geometri
 motives) was de�ned as the idempotent 
ompletion of a


ertain lo
alization of Kb(SmCor). This de�nition is 
ompatible with a di�er-

ential graded enhan
ement for DMeff
gm ; 
f. �5.3 below. Yet in Theorem 3.2.6 of

[25℄ it was shown that DMeff
gm is isomorphi
 to the idempotent 
ompletion of

(the 
ategori
al image) Mgm(Cb(SmCor)); this des
ription of DMeff
gm will be

su�
ient for us till �5.
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2. In fa
t, RC 
ould be des
ribed in terms of so-
alled Suslin 
omplexes (see

lo
.
it.). We will not need this below. Instead, we will just note that RC sends

D−(Shv(SmCor))t≤0
to DMeff

−
t≤0

.

1.4 Some properties of Tate twists

Tate twisting in DMeff
− ⊃ DMeff

gm is given by tensoring by the obje
t Z(1)
(it is often denoted just by −(1)). Tate twist has several des
riptions and ni
e

properties. We will only need a few of them; our main sour
e is �3.2 of [25℄; a

more detailed exposition 
ould be found in [20℄ (see ��8�9).

In order to 
al
ulate the tensor produ
t of X,Y ∈ ObjDMeff
− one should take

any preimages X ′, Y ′
of X,Y in ObjD−(Shv(SmCor)) with respe
t to RC (for

example, one 
ould take X ′ = X, Y ′ = Y ); next one should resolve X,Y by

dire
t sums of L(Zi) for Zi ∈ SmV ar; lastly one should tensor these resolutions
using the identity L(Z)⊗L(T ) = L(Z×T ) for Z, T ∈ SmV ar, and apply RC to

the result. This tensor produ
t is 
ompatible with the natural tensor produ
t

for Kb(SmCor).

We note that any obje
t D−(Shv(SmCor))
t≤0

has a resolution 
on
entrated

in negative degrees (the 
anoni
al resolution of the beginning of �3.2 of [25℄).

It follows that DMeff
−

t≤0 ⊗DMeff
−

t≤0 ⊂ DMeff
−

t≤0
(see Remark 1.3.2(2); in

fa
t, there is an equality sin
e Z ∈ ObjHI).
Next, we denote A

1 \ {0} by Gm. The morphisms pt→ Gm → pt (the point is
mapped to 1 in Gm) indu
e a splitting Mgm(Gm) = Z ⊕ Z(1)[1] for a 
ertain

(Tate) motif Z(1); see De�nition 3.1 of [20℄. For X ∈ ObjDMeff
− we denote

X ⊗ Z(1) by X(1).
One 
ould also present Z(1) as Cone(pt → Gm)[−1]; hen
e the Tate twist

fun
tor X 7→ X(1) is 
ompatible with the fun
tor − ⊗ (Cone(pt → Gm)[−1])

on Cb(SmCor) via Mgm. We also obtain that DMeff
−

t≤0(1) ⊂ DMeff
−

t≤1
.

Now we de�ne 
ertain twists for fun
tors.

Definition 1.4.1. For an G ∈ AddFun(DMeff
gm , Ab), n ≥ 0, we de�ne

G−n(X) = G(X(n)[n]).

Note that this de�nition is 
ompatible with those of �3.1 of [26℄. Indeed, for

X ∈ SmV ar we have G−1(Mgm(X)) = G(Mgm(X × Gm))/G(Mgm(X)) =
Ker(G(Mgm(X × Gm)) → G(Mgm(X))) (with respe
t to natural morphisms

X × pt→ X ×Gm → X × pt); G−n for larger n 
ould be de�ned by iterating

−−1.

Below we will extend this de�nition to (
o)motives of pro-s
hemes.

For F ∈ ObjDMeff
− we will denote by F∗ the fun
tor X 7→ DMeff

− (X,F ) :
DMeff

gm → Ab.

Proposition 1.4.2. Let X ∈ SmV ar, n ≥ 0, i ∈ Z.

1. For any F ∈ ObjDMeff
− we have: F∗−n(Mgm(X)[−i]) is a retra
t of

H
i(F )(X ×G×n

m ) (whi
h 
an be des
ribed expli
itly).
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2. There exists a t-exa
t fun
tor Tn : DMeff
− → DMeff

− su
h that for any

F ∈ ObjDMeff
− we have F∗−n

∼= (Tn(F ))∗.

Proof. 1. Proposition 1.3.1 along with our des
ription of Z(1) yields the result.
2. For F represented by a 
omplex of F i ∈ ObjShv(SmCor) (i ∈ Z) we

de�ne Tn(F ) as the 
omplex of Tn(F
i), where Tn : PreShv(SmCor) →

PreShv(SmCor) is de�ned similarly to −−n in De�nition 1.4.1. Tn(F
i) are

sheaves sin
e Tn(Fi)(X), X ∈ SmV ar, is a fun
torial retra
t of Fi(X ×Gn
m).

In order to 
he
k that we a
tually obtain a well-de�ned a t-exa
t fun
tor this
way, it su�
es to note that the restri
tion of Tn to Shv(SmCor) is an exa
t

fun
tor by Proposition 3.4.3 of [9℄.

Now, it su�
es to 
he
k that Tn de�ned satis�es the assertion for n = 1. In this

ase the statement follows easily from Proposition 4.34 of [26℄ (note that it is

not important whether we 
onsider Zariski or Nisnevi
h topology by Theorem

5.7 of ibid.).

1.5 Pro-motives vs. comotives; the description of our strategy

Below we will embed DMeff
gm into a 
ertain triangulated 
ategory D of 
omo-

tives. Its 
onstru
tion (and 
omputations in it) is rather 
ompli
ated; in fa
t,

the author is not sure whether the main properties of D (des
ribed below)

spe
ify it up to an isomorphism. So, before working with 
o-motives we will

(following F. Deglise) des
ribe a simpler 
ategory of pro-motives. The latter

is not needed for our main results (so the reader may skip this subse
tion);

yet the 
omparison of the 
ategories mentioned would 
larify the nature of our

methods.

Following �3.1 of [9℄, we de�ne the 
ategory D
naive

as the additive 
ategory

of naive i.e. formal (�ltered) pro-obje
ts of DMeff
gm . This means that for any

X : L→ DMeff
gm , Y : J → DMeff

gm we de�ne

D
naive(lim

←−l∈L
Xl, lim←−j∈J

Yj) = lim
←−j∈J

(lim
−→l∈L

DMeff
gm (Xl, Yj)). (5)

The main disadvantage ofD
naive

is that it is not triangulated. Still, one has the

obvious shift for it; following Deglise, one 
an de�ne pro-distinguished triangles

as (�ltered) inverse limits of distinguished triangles in DMeff
gm . This allows to


onstru
t a 
ertain motivi
 
oniveau exa
t 
ouple for a motif of a smooth variety

in �4.2 of [10℄ (see also �5.3 of [9℄). This 
onstru
tion is parallel to the 
lassi
al


onstru
tion of 
oniveau spe
tral sequen
es (see �1 of [8℄). One starts with


ertain 'geometri
' Postnikov towers in DMeff
gm (Deglise 
alls them triangulated

exa
t 
ouples). For Z ∈ SmV ar we 
onsider �ltrations ∅ = Zd+1 ⊂ Zd ⊂
Zd−1 ⊂ · · · ⊂ Z0 = Z; Zi is everywhere of 
odimension ≥ i in Z for all i.
Then we have a system of distinguished triangles relating Mgm(Z \ Zi) and

Mgm(Z \ Zi → Z \ Zi+1); this yields a Postnikov tower. Then one passes

to the inverse limit of these towers in D
naive

(here the 
onne
ting morphisms
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are indu
ed by the 
orresponding open embeddings). Lastly, the fun
torial

form of the Gysin distinguished triangle for motives allows Deglise to identify

Xi = lim
←−

(Mgm(Z \ Zi → Z \ Zi+1)) with the produ
t of shifted Tate twists of

pro-motives of all points of Z of 
odimension i. Using the results of see �5.2

of [9℄ (the relation of pro-motives with 
y
le modules of M. Rost, see [24℄) one


an also 
ompute the morphisms that 
onne
t Xi
with Xi+1

.

Next, for any 
ohomologi
al H : DMeff
gm → A, where A is an abelian 
ategory

satisfying AB5, one 
an extend H to D
naive

via the 
orresponding dire
t limits.

ApplyingH to the motivi
 
oniveau exa
t 
ouple one gets the 
lassi
al 
oniveau

spe
tral sequen
e (that 
onverges to the H-
ohomology of Z). This allows

to extend the seminal results of �6 of [5℄ to a 
omprehensive des
ription of

the 
oniveau spe
tral sequen
e in the 
ase when H is represented by Y ∈
ObjDMeff

− (in terms of the homotopy t-trun
ations of Y ; see Theorem 6.4 of

[11℄).

Now suppose that one wants to apply a similar pro
edure for an arbitrary

X ∈ ObjDMeff
gm ; say, X = Mgm(Z1 f

→ Z2) for Z1, Z2 ∈ SmV ar, f ∈
SmCor(Z1, Z2). One would expe
t that the desired exa
t 
ouple for X 
ould

be 
onstru
ted from those for Zj
, j = 1, 2. This is indeed the 
ase when f satis-

�es 
ertain 
odimension restri
tions; 
f. �7.4 of [6℄. Yet for a general f it seems

to be quite di�
ult to relate the �ltrations of distin
t Zj
(by the 
orresponding

Zj
i ). On the other hand, the formalism of weight stru
tures and weight spe
-

tral sequen
es (developed in [6℄) allows to 'glue' 
ertain weight Postnikov towers

for obje
ts of a triangulated 
ategories equipped with a weight stru
ture; see

Remark 4.1.2(3) below.

So, we 
onstru
t a 
ertain triangulated 
ategory D that is somewhat similar

to D
naive

. Certainly, we want distinguished triangles in D to be 
ompatible

with inverse limits that 
ome from 'geometry'. A well-known re
ipe for this is:

one should 
onsider some 
ategory D
′
where (
ertain) 
ones of morphisms are

fun
torial and pass to (inverse) limits in D
′
; D should be a lo
alization of D

′
.

In fa
t, D
′

onstru
ted in �5.3 below 
ould be endowed with a 
ertain (Quillen)

model stru
ture su
h that D is its homotopy 
ategory. We will never use this

fa
t below; yet we will sometimes 
all inverse limits 
oming from D
′
homotopy

limits (in D).

Now, in Proposition 4.3.1 below we will prove that 
ohomologi
al fun
tors

H : DMeff
gm → A 
ould be extended to D in a way that is 
ompatible with

homotopy limits (those 
oming from D
′
). So one may say that obje
ts of D

have the same 
ohomology as those of D
naive

. On the other hand, we have

to pay the pri
e for D being triangulated: (5) does not 
ompute morphisms

between homotopy limits in D. The 'di�eren
e' 
ould be des
ribed in terms

of 
ertain higher proje
tive limits (of the 
orresponding morphism groups in

DMeff
gm ).

Unfortunately, the author does not know how to 
ontrol the 
orresponding

lim
←−

2
(and higher ones) in the general 
ase; this does not allow to 
onstru
t

a weight stru
ture on a su�
iently large triangulated sub
ategory of D if k
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is un
ountable (yet see �6.5, espe
ially the last paragraph of it). In the 
ase

of a 
ountable k only lim
←−

1
is non-zero. In this 
ase the morphisms between

homotopy limits in D are expressed by the formula (28) below. This allows

to prove that there are no morphisms of positive degrees between 
ertain Tate

twists of 
omotives of fun
tion �elds (over k). This immediately yields that one


an 
onstru
t a 
ertain weight stru
ture on the triangulated sub
ategory Ds of

D generated by produ
ts of Tate twists of 
omotives of fun
tion �elds (in fa
t,

we also idempotent 
omplete Ds). Now, in order to prove that Ds 
ontains

DMeff
gm it su�
es to prove that the motif of any smooth variety X belongs

to Ds. To this end it 
learly su�
es to de
ompose Mgm(X) into a Postnikov

tower whose fa
tors are produ
ts of Tate twists of 
omotives of fun
tion �elds.

So, we lift the motivi
 
oniveau exa
t 
ouple (
onstru
ted in [10℄) from D
naive

to D. Sin
e 
ones in D
′
are 
ompatible with inverse limits, we 
an 
onstru
t a

tower whose terms are the homotopy limits of the 
orresponding terms of the

geometri
 towers mentioned. In fa
t, this 
ould be done for an un
ountable k
also; the di�
ulty is to identify the analogues of Xi in D. If k is 
ountable,

the homotopy limits 
orresponding to our tower are 
ountable also. Hen
e (by

an easy well-known result) the isomorphism 
lasses of these homotopy limits


ould be 
omputed in terms of the 
orresponding obje
ts and morphisms in

DMeff
gm . This means: it su�
es to 
ompute Xi

in D
naive

(as was done in [10℄);

this yields the result needed. Note that we 
annot (
ompletely) 
ompute the

D-morphisms Xi → Xi+1
; yet we know how they a
t on 
ohomology.

The most interesting appli
ation of the results des
ribed is the following one.

We prove that there are no positive D-morphisms between (
ertain) Tate twists

of 
omotives of smooth semi-lo
al s
hemes (or primitive s
hemes, see below);

this generalizes the 
orresponding result for fun
tion �elds. It follows that

these twists belong to the heart of the weight stru
ture on Ds mentioned.

Therefore 
omotives of (
onne
ted) primitive s
hemes are retra
ts of 
omotives

of their generi
 points. Hen
e the same is true for the 
ohomology of the


omotives mentioned and also for the 
orresponding pro-motives. Also, the


omotif of a fun
tion �eld 
ontains as retra
ts twisted 
omotives of its residue

�elds (for all geometri
 valuations); this also implies the 
orresponding results

for 
ohomology and pro-motives.

Remark 1.5.1. In fa
t, Deglise mostly 
onsiders pro-obje
ts for Voevodsky's

DMgm and of DMeff
− ; yet the distin
tions are not important sin
e the full

embeddings DMeff
gm → DMgm and DMeff

gm → DMeff
− obviously extend to full

embedding of the 
orresponding 
ategories of pro-obje
ts. Still, the embeddings

mentioned allow Deglise to extend several ni
e results for Voevodsky's motives

to pro-motives.

2. One of the advantages of the results of Deglise is that he never requires k to

be 
ountable. Besides, our 
onstru
tion of weight Postnikov towers mentioned

heavily relies on the fun
toriality of the Gysin distinguished triangle for motives

(proved in [10℄; see also Proposition 2.4.5 of [9℄).
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2 Weight structures: reminder, truncations, weight spectral se-
quences, and duality with t-structures

In �2.1 we re
all basi
 de�nitions of the theory of weight stru
tures (it was

developed in [6℄; the 
on
ept was also independently introdu
ed in [23℄). Note

here that weight stru
tures (usually denoted by w) are natural 
ounterparts of t-
stru
tures. Weight stru
tures yield weight trun
ations; those (vastly) generalize

stupid trun
ations in K(B): in parti
ular, they are not 
anoni
al, yet any

morphism of obje
ts 
ould be extended (non-
anoni
ally) to a morphism of

their weight trun
ations. We re
all several properties of weight stru
tures in

�2.2.

We re
all virtual t-trun
ations for a (
ohomologi
al) fun
tor H : C → A (for C
endowed with a weight stru
ture) in �2.3 (these trun
ations are de�ned in terms

of weight trun
ations). Virtual t-trun
ations were introdu
ed in �2.5 of [6℄;

they yield a way to present H (
anoni
ally) as an extension of a 
ohomologi
al

fun
tor that is positive in a 
ertain sense by a 'negative' one (as if H belonged

to some triangulated 
ategory of fun
tors C → A endowed with a t-stru
ture).
We study this notion further here, and prove that virtual t-trun
ations for a

ohomologi
al H 
ould be 
hara
terized up to a unique isomorphism by their

properties (see Theorem 2.3.1(III4)). In order to give some 
hara
terization

also for the 'dimension shift' (
onne
ting the positive and the negative virtual

t-trun
ations of H), we introdu
e the notion of a ni
e (strongly exa
t) 
omplex

of fun
tors. We prove that 
omplexes of representable fun
tors 
oming from

distinguished triangles in C are ni
e, as well as those 
omplexes that 
ould be

obtained from ni
e strongly exa
t 
omplexes of fun
tors C ′ → A for some small

triangulated C ′ ⊂ C (via the extension pro
edure given by Proposition 1.2.1).

In �2.4 we 
onsider weight spe
tral sequen
es (introdu
ed in ��2.3�2.4 of [6℄).

We prove that the derived exa
t 
ouple for the weight spe
tral sequen
e T (H)
(for H : C → A) 
ould be naturally des
ribed in terms of virtual t-trun
ations
of H. So, one 
an express T (H) starting from E2 (as well as the 
orresponding

�ltration of H∗
) in these terms also. This is an important result, sin
e the basi


de�nition of T (H) is given in terms of weight Postnikov towers for obje
ts of C,
whereas the latter are not 
anoni
al. In parti
ular, this result yields 
anoni
al

fun
torial spe
tral sequen
es in 
lassi
al situations (
onsidered by Deligne; 
f.

Remark 2.4.3 of [6℄; note that we do not need rational 
oe�
ients here).

In �2.5 we introdu
e the de�nition a (ni
e) duality Φ : Cop × D → A, and
of (left) orthogonal weight and t-stru
tures (with respe
t to Φ). The latter

de�nition generalizes the notion of adja
ent stru
tures introdu
ed in �4.4 of

[6℄ (this is the 
ase C = D, A = Ab, Φ = C(−, )). If w is orthogonal to

t then the virtual t-trun
ations (
orresponding to w) of fun
tors of the type

Φ(−, Y ), Y ∈ ObjD, are exa
tly the fun
tors 'represented via Φ' by the a
tual

t-trun
ations of Y (
orresponding to t). We also prove that (ni
e) dualities


ould be extended from C ′
to C (using Proposition 1.2.1). Note here that

(to the knowledge of the author) this paper is the �rst one whi
h 
onsiders

'pairings' of triangulated 
ategories.
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In �2.6 we prove: if w and t are orthogonal with respe
t to a ni
e duality, the

weight spe
tral sequen
e 
onverging to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) is

naturally isomorphi
 (starting from E2) to the one 
oming from t-trun
ations

of Y . Moreover even when the duality is not ni
e, all Epq
r for r ≥ 2 and the

�ltrations 
orresponding to these spe
tral sequen
es are still 
anoni
ally iso-

morphi
. Here ni
eness of a duality (de�ned in �2.5) is a somewhat te
hni
al


ondition (de�ned in terms of ni
e 
omplexes of fun
tors). Ni
eness gener-

alizes to pairings (C × D → A) the axiom TR3 (of triangulated 
ategories:

any 
ommutative square in C 
ould be 
ompleted to a morphism of distin-

guished triangles; note that this axiom 
ould be des
ribed in terms of the fun
-

tor C(−,−) : C×C → Ab). We also dis
uss some alternatives and prede
essors

of our methods and results.

In �2.7 we 
ompare weight de
ompositions, virtual t-trun
ations, and weight

spe
tral sequen
es 
orresponding to distin
t weight stru
tures (in possibly dis-

tin
t triangulated 
ategories, 
onne
ted by an exa
t fun
tor).

2.1 Weight structures: basic definitions

We re
all the de�nition of a weight stru
ture (see [6℄; in [23℄ D. Pauksztello

introdu
ed weight stru
tures independently and 
alled them 
o-t-stru
tures).

Definition 2.1.1 (De�nition of a weight stru
ture). A pair of sub
lasses

Cw≤0, Cw≥0 ⊂ ObjC for a triangulated 
ategory C will be said to de�ne a

weight stru
ture w for C if they satisfy the following 
onditions:

(i) Cw≥0, Cw≤0
are additive and Karoubi-
losed (i.e. 
ontain all retra
ts of

their obje
ts that belong to ObjC).

(ii) "Semi-invarian
e" with respe
t to translations.

Cw≥0 ⊂ Cw≥0[1]; Cw≤0[1] ⊂ Cw≤0
.

(iii) Orthogonality.

Cw≥0 ⊥ Cw≤0[1].
(iv) Weight de
omposition.

For any X ∈ ObjC there exists a distinguished triangle

B[−1]→ X → A
f
→ B (6)

su
h that A ∈ Cw≤0, B ∈ Cw≥0
.

A simple example of a 
ategory with a weight stru
ture is K(B) for any addi-

tive B: positive obje
ts are 
omplexes that are homotopy equivalent to those


on
entrated in positive degrees; negative obje
ts are 
omplexes that are homo-

topy equivalent to those 
on
entrated in negative degrees. Here one 
ould also


onsider the sub
ategories of 
omplexes that are bounded from above, below,

or from both sides.

The triangle (6) will be 
alled a weight de
omposition of X. A weight de-


omposition is (almost) never unique; still we will sometimes denote any pair

(A,B) as in (6) by Xw≤0
and Xw≥1

. Besides, we will 
all obje
ts of the type
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(X[i])w≤0[j] and (X[i])w≥0[j] (for i, j ∈ Z) weight trun
ations of X. A shift of

the distinguished triangle (6) by [i] for any i ∈ Z, X ∈ ObjC (as well as any

its rotation) will sometimes be 
alled a shifted weight de
omposition.

In K(B) (shifted) weight de
ompositions 
ome from stupid trun
ations of 
om-

plexes.

We will also need the following de�nitions and notation.

Definition 2.1.2. Let X ∈ ObjC.

1. The 
ategory Hw ⊂ C whose obje
ts are Cw=0 = Cw≥0 ∩ Cw≤0
,

Hw(Z, T ) = C(Z, T ) for Z, T ∈ Cw=0
, will be 
alled the heart of the

weight stru
ture w.

2. Cw≥l
(resp. Cw≤l

, resp. Cw=l
) will denote Cw≥0[−l] (resp. Cw≤0[−l],

resp. Cw=0[−l]).

3. We denote Cw≥l ∩ Cw≤i
by C [l,i]

.

4. Xw≤l
(resp. Xw≥l

) will denote (X[l])w≤0
(resp. (X[l − 1])w≥1

).

5. w≤iX (resp. w≥iX) will denote Xw≤i[−i] (resp. Xw≥i[−i]).

6. w will be 
alled non-degenerate if

∩lC
w≥l = ∩lC

w≤l = {0}.

7. We 
onsider Cb = (∪i∈ZC
w≤i) ∩ (∪i∈ZC

w≥i) and 
all it the 
lass of

bounded obje
ts of C.

For X ∈ Cb
we will usually take w≤iX = 0 for i small enough, w≥iX = 0

for i large enough.

We will also denote by Cb
the 
orresponding full sub
ategory of C.

8. We will say that (C,w) is bounded if Cb = C.

9. We will 
all a Postnikov tower for X (see De�nition 1.1.5) a weight Post-

nikov tower if all Yi are some 
hoi
es for w≥1−iX. In this 
ase we will 
all

the 
omplex whose terms are Xp
(see Remark 1.1.6) a weight 
omplex for

X.

We will 
all a weight Postnikov tower for X negative if X ∈ Cw≤0
and

we 
hoose w≥jX to be 0 for all j > 0 here.

10. D ⊂ ObjC will be 
alled extension-stable if for any distinguished triangle

A→ B → C in C we have: A,C ∈ D =⇒ B ∈ D.

We will also say that the 
orresponding full sub
ategory is extension-

stable.

11. D ⊂ ObjC will be 
alled negative if for any i > 0 we have D ⊥ D[i].
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Remark 2.1.3. 1. One 
ould also dualize our de�nition of a weight Postnikov

tower i.e. build a tower from w≤lX instead of w≥lX. Our de�nition of a

weight Postnikov tower is more 
onvenient for our purposes sin
e in �3.6 below

we will 
onsider Yi = j(Z0 \ Zi) instead of = j(Z0 \ Zi → Z0)[−1]. Yet this

does not make mu
h di�eren
e; see �1.5 of [6℄ and Theorem 2.2.1(12) below. In

parti
ular, our de�nition of the weight 
omplex for X 
oin
ides with De�nition

2.2.1 of ibid. Note also, that De�nition 1.5.8 of ibid (of a weight Postnikov

tower) 
ontained both 'our' part of the data and the dual part.

2. Weight Postnikov towers for obje
ts of C are far from being unique; their

morphisms (provided by Theorem 2.2.1(15) below) are not unique also (
f.

Remark 1.5.9 of [6℄). Yet the 
orresponding weight spe
tral sequen
es for 
o-

homology are unique and fun
torial starting from E2; see Theorem 2.4.2 of ibid.

and Theorem 2.4.2 below for more detail. In parti
ular, all possible 
hoi
es of

a weight 
omplex for X are homotopy equivalent (see Theorem 3.2.2(II) and

Remark 3.1.7(3) in [6℄).

2.2 Basic properties of weight structures

Now we list some basi
 properties of notions de�ned. In the theorem below

we will assume that C is endowed with a �xed weight stru
ture w everywhere

ex
ept in assertions 18 � 20.

Theorem 2.2.1. 1. The axiomati
s of weight stru
tures is self-dual: if

D = Cop
(so ObjC = ObjD) then one 
an de�ne the (opposite) weight

stru
ture w′
on D by taking Dw′≤0 = Cw≥0

and Dw′≥0 = Cw≤0
.

2. We have

Cw≤0 = Cw≥1⊥
(7)

and

Cw≥0 = ⊥Cw≤−1. (8)

3. For any i ∈ Z, X ∈ ObjC we have a distinguished triangle w≥i+1X →
X → w≤iX (given by a shifted weight de
omposition).

4. Cw≤0
, Cw≥0

, and Cw=0
are extension-stable.

5. All Cw≤i
are 
losed with respe
t to arbitrary (small) dire
t produ
ts

(those, whi
h exist in C); all Cw≥i
and Cw=i

are additive.

6. For any weight de
omposition of X ∈ Cw≥0
(see (6)) we have A ∈ Cw=0

.

7. If A→ B → C → A[1] is a distinguished triangle and A,C ∈ Cw=0
, then

B ∼= A⊕ C.

8. If we have a distinguished triangle A → B → C for B ∈ Cw=0
, C ∈

Cw≤−1
then A ∼= B

⊕
C[−1].
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9. If X ∈ Cw=0
, X[−1] → A

f
→ B is a weight de
omposition (of X[−1]),

then B ∈ Cw=0
; B ∼= A⊕X.

10. Let l ≤ m ∈ Z, X,X ′ ∈ ObjC; let weight de
ompositions of X[m] and
X ′[l] be �xed. Then any morphism g : X → X ′


an be 
ompleted to a

morphism of distinguished triangles

w≥m+1X −−−−→ X
c

−−−−→ w≤mX




y

a





y

g





y

b

w≥l+1X
′ −−−−→ X ′ d

−−−−→ w≤lX
′

(9)

This 
ompletion is unique if l < m.

11. Consider some 
ompletion of a 
ommutative triangle w≥m+1X →
w≥l+1X → X (that is uniquely determined by the morphisms w≥m+1X →
X and w≥l+1X → X 
oming from the 
orresponding shifted weight de-


ompositions; see the previous assertion) to an o
tahedral diagram:

w≤lX

[1]

&&▼▼
▼▼

▼▼
▼▼

▼▼

[1]

��

Xoo

w≥l+1X

88rrrrrrrrrrr

xxqqq
qq
qq
qq
q

w[l+1,m]X
[1] // w≥m+1X

ff▲▲▲▲▲▲▲▲▲▲

OO

w≤lX

[1]

��

X

yyrrr
rr
rr
rr
rr

oo

w≤mX

ff▲▲▲▲▲▲▲▲▲▲

[1]

%%❑❑
❑❑

❑❑
❑❑

❑❑

w[l+1,m]X

99rrrrrrrrrr [1] // w≥m+1X

OO

Then w[l+1,m]X ∈ C [l+1,m]
; all the distinguished triangles of this o
tahe-

dron are shifted weight de
ompositions.

12. For X,X ′ ∈ ObjC, l, l′,m,m′ ∈ Z, l < m, l′ < m′
, l > l′, m > m′

, 
on-

sider two o
tahedral diagrams: (11) and a similar one 
orresponding to

the 
ommutative triangle w≥m+1X → w≥l+1X → X and w≥m′+1X
′ →

w≥l′+1X → X (i.e. we �x some 
hoi
es of these diagrams). Then any

g ∈ C(X,X ′) 
ould be uniquely extended to a morphism of these dia-

grams. The 
orresponding morphism h : w[l+1,m]X → w[l′+1,m′]X
′
is


hara
terized uniquely by any of the following 
onditions:
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(i) there exists a C-morphism i that makes the squares

w≥l+1X −−−−→ X




y

i





y

g

w≥l′+1X
′ −−−−→ X ′

(10)

and

w≥l+1X −−−−→ w[l+1,m]X




y

i





y

h

w≥l′+1X
′ −−−−→ w[l′+1,m′]X

′

(11)


ommutative.

(ii) there exists a C-morphism j that makes the squares

X −−−−→ w≤mX




y

g





y

j

X ′ −−−−→ w≤m′X ′

(12)

and

w[l+1,m]X −−−−→ w≤mX




y

h





y

j

w[l′+1,m′]X
′ −−−−→ w≤m′X ′

(13)


ommutative.

13. For any 
hoi
e of w≥iX there exists a weight Postnikov tower for X (see

De�nition 2.1.2(9)). For any weight Postnikov tower we have Cone(Yi →
X) ∈ Cw≤−i

; Xi ∈ Cw=0
.

14. Conversely, any bounded Postnikov tower (for X) with Xi ∈ Cw=0
is a

weight Postnikov tower for it.

15. For X,X ′ ∈ ObjC and arbitrary weight Postnikov towers for them, any

g ∈ C(X,X ′) 
an be extended to a morphism of Postnikov towers (i.e.

there exist morphisms Yi → Y ′
i , Xi → X ′i

, su
h that the 
orresponding

squares 
ommute).

16. For X,X ′ ∈ Cw≤0
, suppose that f ∈ C(X,X ′) 
an be extended to a

morphism of (some of) their negative Postnikov towers that establishes

an isomorphism X0 → X ′0
. Suppose also that X ′ ∈ Cw=0

. Then f yields

a proje
tion of X onto X ′
(i.e. X ′

is a retra
t of X via f).

17. Cb
is a Karoubi-
losed triangulated sub
ategory of C. w indu
es a non-

degenerate weight stru
ture for it, whose heart equals Hw.
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18. For a triangulated idempotent 
omplete C let D ⊂ ObjC be negative.

Then there exists a unique weight stru
ture w on the Karoubization T
of 〈D〉 in C su
h that D ⊂ Tw=0

. Its heart is the Karoubization of the


losure of D in C with respe
t to (�nite) dire
t sums.

19. For the weight stru
ture mentioned in the previous assertion, Tw≤0
is the

Karoubization of the smallest extension-stable sub
lass of ObjC 
ontain-

ing ∪i≥0D[i]; Tw≥0
is the Karoubization of the smallest extension-stable

sub
lass of ObjC 
ontaining ∪i≤0D[i].

20. For the weight stru
ture mentioned in two previous assertions we also

have

Tw≤0 = (∪i<0D[i])⊥; Tw≥0 = ⊥(∪i>0D[i]).

Proof. 1. Obvious; 
f. Remark 1.1.3 of [6℄ (and Remark 1.1.2 of ibid. for

more detail).

2. These are parts 1 and 2 of Proposition 1.3.3 of ibid.

3. Obvious (sin
e [i] is exa
t up to 
hange of signs of morphisms); 
f. Remark

1.2.2 of ibid.

4. This is part 3 of Proposition 1.3.3 of ibid.

5. Obvious from the de�nition and parts 4 of lo
.
it.

6. This is part 6 of Proposition 1.3.3 of ibid.

7. This is part 7 of lo
.
it.

8. It su�
es to note that C(B,C) = 0, hen
e the triangle splits.

9. This is part 8 of lo
.
it.

10. This is Lemma 1.5.1 of ibid.

11. The only non-trivial statement here is that w[l+1,m]X ∈ C [l+1,m]
(it

easily implies: the left hand side of the lower 
ap in (11) also yields

a shifted weight de
omposition). (11) yields distinguished triangles:

T1 = (w≥l+1X → w[l+1,m]X → w≥m+1X[1]) and T2 = (w≤lX →
w[l+1,m]X[1]→ w≤mX[1]). Hen
e assertion 4 yields the result.

12. By assertion 10, g extends uniquely to a morphism of the following dis-

tinguished triangles: from T3 = (w≥m+1X → X → w≤mX) to T ′
3 =

(w≥m′+1X
′ → X ′ → w≤m′X), and from T4 = (w≥l+1X → X → w≤lX)

to T ′
4 = (w≥l′+1X

′ → X ′ → w≤l′X); next we also obtain a unique mor-

phism from T1 (as de�ned in the proof of the previous assertion) to its

analogue T ′
1. Putting all of this together: we obtain unique morphisms

of all of the verti
es of our o
tahedra, whi
h are 
ompatible with all

the edges of the o
tahedra expe
t (possibly) those that belong to T2 (as
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de�ned above). We also obtain that there exists unique i and h that


omplete (10) and (11) to 
ommutative squares.

Now, the morphism w≤lX → w[l+1,m]X 
ould be de
omposed into the


omposition of morphisms belonging to T1 and T3. Hen
e in order to ver-

ify that we have a
tually 
onstru
ted a morphism of o
tahedral diagrams,

it remains to verify the 
ommutativity of the squares

w≤mX −−−−→ w≤lX




y

g





y

j

w≤m′X ′ −−−−→ w≤l′X
′

(14)

and (13) i.e. we should 
he
k that the two possible 
ompositions of ar-

rows for ea
h of the squares are equal. Now, assertion 10 implies: the


ompositions in question for (14) both equal the only morphism q that

makes the square

X −−−−→ w≤mX




y

g





y

q

X ′ −−−−→ w≤l′X
′


ommutative. Similarly, the 
ompositions for (13) both equal the only

morphism r that makes the square

w≥l+1X −−−−→ w[l+1,m]X




y





y

r

X ′ −−−−→ w≤m′X ′


ommutative. Here we use the part of the o
tahedral axiom that says

that the square

w≥l+1X −−−−→ w[l+1,m]X




y





y

X −−−−→ w≤mX

is 
ommutative (as well as the 
orresponding square for (X ′, l′,m′)).

Lastly, as we have already noted, the 
ondition (i) 
hara
terizes h
uniquely; for similar (a
tually, exa
tly dual) reasons the same is true

for (ii). Sin
e the morphism w[l+1,m]X → w[l′+1,m′]X
′

oming from the

morphism of the o
tahedra 
onstru
ted satis�es both of these 
onditions,

it is 
hara
terized by any of them uniquely.

13. Immediate from part 2 of (Proposition 1.5.6) of lo
.
it (and also from

assertion 11).

14. Immediate from Remark 1.5.9(2) of ibid.
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15. Immediate from part 1 (of Remark 1.5.9) of lo
.
it.

16. It su�
es to prove that Cone f ∈ Cw≤−1
. Indeed, then the distinguished

triangle X
f
→ X ′ → Cone f ne
essarily splits.

We 
omplete the 
ommutative triangle Xw≤−1 → X ′w≤−1 → X0(= X ′0)
to an o
tahedral diagram. Then we obtain Cone f ∼= Cone(Xw≤−1 →
X ′w≤−1)[1]; hen
e Cone f ∈ Cw≤−1

indeed.

17. This is Proposition 1.3.6 of ibid.

18. By Theorem 4.3.2(II1) of ibid., there exists a unique weight stru
ture on

〈D〉 su
h that D ⊂ 〈D〉w=0
. Next, Proposition 5.2.2 of ibid. yields that

w 
an be extended to the whole T ; along with part Theorem 4.3.2(II2)

of lo
.
it. it also allows to 
al
ulate Tw=0
in this 
ase.

19. Immediate from Proposition 5.2.2 of ibid. and the des
ription of 〈H〉w≤0

and 〈H〉w≥0
in the proof of Theorem 4.3.2(II1) of ibid.

20. If X ∈ Tw≤0
then the orthogonality 
ondition for w immediately yields:

Y ⊥ X for any Y ∈ ∪i<0D[i].

Conversely, suppose that for some X ∈ ObjT we have Y ⊥ X for all

Y ∈ ∪i<0D[i]. Then Y ⊥ X also for all Y belonging to the smallest

extension-stable sub
lass of ObjC 
ontaining ∪i<0D[i]. Hen
e this is also
true for all Y ∈ Tw≥1

(see the previous assertion). Hen
e (7) yields:

X ∈ Tw≤0
. We obtain the �rst part of the assertion.

The se
ond part of the assertion is dual to the �rst one (and easy from

(8)).

Remark 2.2.2. 1. In the notation of assertion 10, for any a (resp. b) su
h
that the left (resp. right) hand square in (9) 
ommutes there exists some

b (resp. some a) that makes (9) a morphism of distinguished triangles

(this is just axiom TR3 of triangulated 
ategories). Hen
e for l < m the

left (resp. right) hand side of (9) 
hara
terizes a (resp. b) uniquely.

2. Assertions 10 and 12 yield mighty tools for proving that a 
onstru
tion

des
ribed in terms of weight de
ompositions is fun
torial (in a 
ertain

sense). In parti
ular, the proofs of fun
toriality of weight �ltration and

virtual t-trun
ations for 
ohomology (we will 
onsider these notions be-

low) in [6℄ were based on assertion 10.

Now we explain what kind of fun
toriality 
ould be obtained using asser-

tion lo
.
it. A
tually, su
h an argument was already used in the proof of

assertion 12.

In the notation of assertion 10 we will say that a and b are 
ompatible

with g (with respe
t to the 
orresponding weight de
ompositions). Now

suppose that for some X ′′ ∈ ObjC, some n ≤ l, g′ ∈ C(X ′, X ′′), and
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a distinguished triangle w≥n+1X
′′ → X ′ → w≤nX

′
we have morphisms

a′ : w≥l+1X
′ → w≥n+1X

′′
and b′ : w≤lX

′ → w≤nX
′′

ompatible with

g′. Then a′ ◦ a and b′ ◦ b are 
ompatible with g′ ◦ g (with respe
t to

the 
orresponding weight de
ompositions)! Moreover, if n < m then

(a′ ◦ a, b′ ◦ b) is exa
tly the (unique!) pair of morphisms 
ompatible with

g′ ◦ g.

3. In the notation of assertion 12 we will (also) say that h : w[l+1,m]X →
w[l′+1,m′]X

′
is 
ompatible with g. Note that h is uniquely 
hara
terized

by (i) (or (ii)) of lo
.
it.; hen
e in order to 
hara
terize it uniquely it

su�
es to �x g and all the rows in (10) and (11) (or in (12) and (13)).

Besides, we obtain that h is fun
torial in a 
ertain sense (
f. the reasoning

above).

4. Assertion 11 immediately implies: for any l < m the 
lass of all possible

w≤lX 
oin
ides with the 
lass of possible w≤l(w≤mX), whereas the 
lass
of possible w≥mX 
oin
ides with those of w≥m(w≥lX).

Besides, assertion 11 also allows to 
onstru
t weight Postnikov towers (
f.

�1.5 of [6℄). Hen
e w[i,i]X is justXi[−i] (for any i ∈ Z, X ∈ ObjC), and a

weight 
omplex for any w[l+1,m]X 
an be assumed to be the 
orresponding

stupid trun
ation of the weight 
omplex of X.

5. Assertions 10 and 15 will be generalized in �2.7 below to the situation

when there are two distin
t weight stru
tures; this will also 
larify the

proofs of these statements. Besides, note that our remarks on fun
torial-

ity are also a
tual for this setting.

Some of the proofs in �2.7 may also help to understand the 
on
ept of

virtual t-trun
ations (that we will start to study just now) better.

2.3 Virtual t-truncations of (cohomological) functors

Till the end of the se
tion C will be endowed with a �xed weight stru
ture

w; H : C → A (A is an abelian 
ategory) will be a 
ontravariant (usually,


ohomologi
al) fun
tor. We will not 
onsider 
ovariant (homologi
al) fun
tors

here; yet 
ertainly, dualization is absolutely no problem.

Now we re
all the results of �2.5 of [6℄ and develop the theory further.

Theorem 2.3.1. Let H : C → A be a 
ontravariant fun
tor, k ∈ Z, j > 0.
I The assignments H1 = Hkj

1 : X → Im(H(w≤kX) → H(w≤k+jX)) and

H2 = Hkj
2 : X → Im(H(w≥kX)→ H(w≥k+jX)) de�ne 
ontravariant fun
tors

C → A that do not depend (up to a 
anoni
al isomorphism) from the 
hoi
e of

weight de
ompositions. We have natural transformations H1 → H → H2.

II Let k′ ∈ Z, j′ > 0. Then there exist the following natural isomorphisms.

1. (Hkj
1 )k

′j′

1
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
1 .

2. (Hkj
2 )k

′j′

2
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
2 .
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3. (Hkj
1 )k

′j′

2
∼= (Hk′j′

2 )kj1
∼= Im(H(w[k,k′]X)→ H(w[k+j,k′+j′]X)). Here the last

term is de�ned using the 
onne
tion morphism w[k+j,k′+j′]X → w[k,k′]X that

is 
ompatible with idX in the sense of Remark 2.2.2(3); the last isomorphism

is fun
torial in the sense des
ribed in lo
.
it.

III Let H be 
ohomologi
al, j = 1; let k be �xed.

1. Hl (l = 1, 2) are also 
ohomologi
al; the transformations H1 → H → H2

extend 
anoni
ally to a long exa
t sequen
e of fun
tors

· · · → H2 ◦ [1]→ H1 → H → H2 → H1 ◦ [−1]→ . . . (15)

(i.e. the sequen
e is exa
t when applied to any X ∈ ObjC).

2. H1
∼= H whenever H vanishes on Cw≥k+1

.

3. H ∼= H2 whenever H vanishes on Cw≤k
.

4. Let H ′ f
→ H

g
→ H ′′

be a (three-term) 
omplex of fun
tors exa
t in the middle

su
h that:

(i) H ′, H ′′
are 
ohomologi
al.

(ii) for any X ∈ ObjC we have Coker g(X) ∼= Ker f(X[−1]) (we do not �x

these isomorphisms).

(iii) H ′
vanishes on Cw≥k+1

; H ′′
vanishes on Cw≤k

.

Then H ′ f
→ H is 
anoni
ally isomorphi
 to H1 → H; H

g
→ H ′′

is 
anoni
ally

isomorphi
 to H → H2.

Proof. I This is Proposition 2.5.1(III1) of [6℄.

II Easily follows from Theorem 2.2.1, parts 11 and 12; see Remark 2.2.2.

III1. This is Proposition 2.5.1(III2) of [6℄.

2. If H vanishes on Cw≥k+1
then for any X we have w≥k+1X = 0; hen
e H2

vanishes. Therefore in the long exa
t sequen
e · · · → H2(X[1])→ H1 → H →
H2(X)→ . . . given by assertion II1 we have H2(X[1]) ∼= 0 ∼= H2(X); we obtain
H1
∼= H.

Conversely, suppose that H1
∼= H. Let X ∈ ObjCw≥k+1

; we 
an assume that

w≤kX = 0. Then we have H(X) ∼= H1(X) = ImH(w≤kX)→ H(w≤k+1X)) =
0.
3. It su�
es to apply assertion II1 to the dual fun
tor Cop → Aop

; note that the

axiomati
s of abelian 
ategories, triangulated 
ategories, and weight stru
tures

are self-dual (see Remark 1.1.3(1) and Theorem 2.2.1(1)).

4. We should 
he
k that in the diagram

H ′
1

g
−−−−→ H1





y

h





y

H ′ −−−−→ H

g and h are isomorphisms. Then g◦h−1
will yield the �rst isomorphism desired,

whereas dualization will yield the remaining half of the statement.

Now, assertion III2 yields that g in isomorphism.
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Next, for an X ∈ ObjC we 
hoose some weight de
ompositions for X[k] and
X[k + 1] and 
onsider the diagram

H
′′((w≤kX)[1]) −−−−−→ H

′(w≤kX)
l

−−−−−→ H(w≤kX) −−−−−→ H
′′(w≤kX)





y

a





y

b

H
′′((w≤k+1X)[1]) −−−−−→ H

′(w≤k+1X)
m

−−−−−→ H(w≤k+1X) −−−−−→ H
′′(w≤k+1X).

By our assumptions, H ′′((w≤kX)[1]) ∼= H ′′(w≤kX) ∼= H ′′((w≤k+1X)[1]) ∼= 0;
hen
e l is an isomorphism and m is a monomorphism. Hen
e the indu
ed map

Im a → Im b is an isomorphism; so h is an isomorphism (sin
e its appli
ation

to any X ∈ ObjC is an isomorphism).

Definition 2.3.2. [virtual t-trun
ations of H℄

Let k,m ∈ Z. For a (
o)homologi
al H we will 
all Hk1
l , l = 1, 2, k ∈ Z, virtual

t-trun
ations of H. We will often denote them simply by Hl; in this 
ase we

will assume k = 0 unless k is spe
i�ed expli
itly.

We denote the following fun
tors C → A: Hk1
1 , Hk−1,1

2 , (Hm1
2 )k11 , and X 7→

(H01
1 )−11

2 (X[k]) by τ≤kH, τ≥kH, τ[m+1,k]H, and Hτ=k
, respe
tively. Note that

all of these fun
tors are 
ohomologi
al if H is.

Remark 2.3.3. 1. Note that H often lies in a 
ertain triangulated '
ategory of

fun
tors' D (whose obje
ts are 
ertain 
ohomologi
al fun
tors C → A). We will

axiomatize this below by introdu
ing the notion of a duality Φ : Cop×D → A: if
Φ is a duality then for any Y ∈ ObjD we have a 
ohomologi
al fun
tor Φ(−, Y ) :
C → A. It is also often the 
ase when the virtual t-trun
ations de�ned are


ompatible with a
tual t-trun
ations with respe
t to some t-stru
ture t on D
(see below). Still, it is very amusing that these t-trun
ated fun
tors as well as

their transformations 
orresponding to t-de
ompositions (see De�nition 1.1.1)


an be des
ribed without spe
ifying any D and Φ!

2. Below we will need an expli
it des
ription of the 
onne
ting morphisms in

(15). We give it here (following the proof of Proposition 2.5.1 of [6℄).

The transformation H1 → H (resp. H → H2) for any k, j 
an be 
al
ulated by

applying H to any possible 
hoi
e either of X → w≤kX or of X → w≤k+jX
(resp. of w≥kX → X or of w≥k+jX → X) that 
omes from any possible 
hoi
e

the 
orresponding weight de
omposition. The transformation H2 → H1 ◦ [−1]
for j = 1 is given by applying H to any possible 
hoi
e either of the morphism

w≤k+1X → w≥k+2X[1] or of the morphism w≤kX → w≥k+1X[1] that 
omes

from any possible 
hoi
e of a weight de
omposition of X[k].

Here we use the following trivial observation: for A-morphisms X1
f1
→ Y1 and

X2
f2
→ Y2 any g : X1 → X2 (resp. h : Y1 → Y2) is 
ompatible with at most one

morphism i : Im f1 → Im f2; if su
h an i exists, we will say that it is indu
ed

by g (resp. by h). Certainly, here f1 
ould be equal to idX1
or f2 
ould be

equal to idX2
.
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3. For any k, j, and any C-morphism g : X → Y the morphism H1(X) →
H1(Y ) (resp. H2(X) → H2(Y )) is indu
ed by any 
hoi
e of either of the

morphism w≤kX → w≤kY or of w≤k+jX → w≤k+jY (resp. of the morphism

w≥kX → w≥kY or of w≥k+jX → w≥k+jY ) that is 
ompatible with g with

respe
t to the 
orresponding weight de
omposition (in the sense of Remark

2.2.2(2)); see the proof of Proposition 2.5.1 of [6℄.

We would like to extend assertion III4 of Theorem 2.3.1 to a statement on a

(
anoni
al) isomorphism of long exa
t sequen
es of fun
tors. To this end we

need the following de�nition.

Definition 2.3.4. 1. We will 
all a sequen
e of fun
tors C = · · · → H ′′ ◦

[1]
[1](h)
→ H ′ f

→ H
g
→ H ′′ h

→ H ′ ◦ [−1]→ . . . of 
ontravariant fun
tors C → Ab a
strongly exa
t 
omplex if H ′, H,H ′′

are 
ohomologi
al and C(X) is a long exa
t
sequen
e for any X ∈ ObjC; here [1](h) is the transformation indu
ed by h.
2. We will also say that a strongly exa
t 
omplex C is ni
e in H if the following


ondition is ful�lled:

For any distinguished triangle T = A
l
→ B

m
→ C

n
→ A[1] in C the natural

morphism p:

Ker((H ′(A)
⊕

H(B)
⊕

H ′′(C))









f(A) −H(l) 0
0 g(B) −H ′′(m)

−H ′([−1](n)) 0 h(C)









−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(H(A)
⊕

H ′′(B)
⊕

H ′(C[−1])))
p
→ Ker((H ′(A)

⊕

H(B))

f(A)⊕−H(l)
−−−−−−−−→ H(A)) is epimorphi
.

(16)

Now we des
ribe the 
onne
tion of (16) with trun
ated realizations; our argu-

ments will also somewhat 
larify the meaning of this 
ondition.

Theorem 2.3.5. 1. Let C be a strongly exa
t 
omplex of fun
tors that is ni
e

in H; let H ′ f
→ H

g
→ H ′′

(a 'pie
e' of C) satisfy the 
onditions of assertion

III4 of Theorem 2.3.1. Then C is 
anoni
ally isomorphi
 to (15).

2. Let X → Y → Z be a distinguished triangle in C. Then C = · · · →
C(−, X)→ C(−, Y )→ C(−, Z)→ . . . is a strongly exa
t 
omplex of fun
tors

C → Ab; it is ni
e in C(−, Y ).
3. Let there exist a (skeletally) small full triangulated C ′ ⊂ C su
h that the re-

stri
tion of a strongly exa
t 
omplex C to C ′
is ni
e in H. For D ∈ ObjC

we 
onsider the proje
tive system L(D) whose elements are (E, i) : E ∈
ObjC ′, i ∈ C(D,E); we set (E, i) ≥ (E′, i′) if (E, i) = (E′

⊕

E′′, i′ ⊕ i′′)
for some (E′′, i′′) ∈ L(D).
Suppose that for any D ∈ C and for G = H ′

and G = H we have

lim
−→L(D)

(ImG(i) : G(E)→ G(D)) = G(D); (17)
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here we also assume that these limits exist. Then C is ni
e on C also.

4. Let C ′ ⊂ C be a (skeletally) small triangulated sub
ategory, let A satisfy

AB5. Let C ′ = · · · → H ′ → H → H ′′ → . . . be a strongly exa
t 
omplex

of fun
tors C ′ → A. We extend all its terms from C ′
to C by the method

of Proposition 1.2.1 and denote the 
omplex obtained by C; we 
arry on the

notation for the terms and arrows from C ′
to C. Then C is a strongly exa
t


omplex also (and its terms are 
ohomologi
al fun
tors).

It is ni
e in H whenever C ′
is.

Proof. 1. It su�
es to 
he
k that the isomorphism provided by Theorem

2.3.1(III4) is 
ompatible with the 
oboundaries if (16) is ful�lled. We 
an

assume A = Ab; see Remark 1.1.8. Then (16) transfers into: for any

(x, y) : x ∈ H ′(A), y ∈ H(B), f(A)(x) = H(l)(y) there exists a

z ∈ H ′′(C) su
h that g(B)(y) = H ′′(z) and H([−1](n))(x) = h(C)(z). (18)

We should prove: if the images of x ∈ H2(X) and of y ∈ H ′′(X) in H ′′
2 (X) 
o-

in
ide, w ∈ H1(X[−1]) and t = H(X)(y) ∈ H ′(X[−1]) are their 
oboundaries,
then w and t 
ome from some (single) u ∈ H ′

1(X[−1]).
We lift x to some x′ ∈ H(w≥k+1X). Then (16) (if we substitute w≥k+1 for A
and X for B in it) implies the existen
e of some v ∈ H ′((w≤kX)[−1]) whose
image in H ′(X[−1]) (resp. in H(w≤kX[−1])) 
oin
ides with t (resp. with the


oboundary of x′
). Hen
e we 
an take u being the image of v (in H ′

1(X[−1])).
2. Sin
e the bi-fun
tor C(−,−) is (
o)homologi
al with respe
t to both argu-

ments, C is a strongly exa
t 
omplex indeed. It remains to note: (16) in this


ase just means that any 
ommutative square 
an be 
ompleted to a morphism

of distinguished triangles; so it follows from the 
orresponding axiom (TR3) of

triangulated 
ategories.

3. First suppose that A = Ab (or any other abelian 
ategory equipped with

an exa
t faithful fun
tor A → Ab that respe
ts small dire
t limits; note that

below we will only need A = Ab). Then we should 
he
k (18).

Now note: it su�
es to prove that there exist A′, B′ ∈ ObjC ′, l′ ∈ C(A′, B′),
α ∈ C(A,A′), β ∈ C(B,B′), x′ ∈ H ′(A′), g′ ∈ H(B′) su
h that:

x = H ′(α)(x′), y = H(β)(y′), l′ ◦ α = β ◦ l, f(A′)(x′) = H(l′)(y′). (19)

Indeed, denote C ′ = Cone(l′); denote by γ some element of C(C,C ′) that


ompletes

A −−−−→ B




y





y

A′ −−−−→ B′

to a morphism of triangles. Let z′ ∈ H ′′(C ′) be some element satisfying the

obvious analogue of (18). Then h = H ′′(γ)(h′) is easily seen to satisfy (18).

Now we 
onstru
t A′, B′, . . . as desired. Note that in this 
ase the assumption

(17) is equivalent to: for any t ∈ G(D) there exist E ∈ ObjC ′
, s ∈ G(D), and
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r ∈ C(D,E), su
h that t = G(r)(s) (sin
e C ′
is additive). So, we 
an 
hoose

A′ ∈ ObjC ′
, α ∈ C(A,A′), x′ ∈ H ′(A′) su
h that x = H ′(α)(x′). We 
omplete

q = α ⊕ l ∈ C(A,A′
⊕

B) to a distinguished triangle A → A′
⊕

B
p=p1⊕p2
→

D. Sin
e H(q)((−H ′(f(A′)(x′), y)) = 0, there exists an s ∈ H(D) su
h that

H(p)(s) = (−H ′(f(A′)(x′), y) (re
all that H is 
ohomologi
al on C). So, we

have H(p2)(s) = y, −H(p1)(s) = f(A′)(X ′), p2 ◦ l = −p1 ◦ α.
D �ts for B′

if it lies in ObjC ′
. In the general 
ase using (17) again, we 
hoose

B′ ∈ ObjC ′
, δ ∈ C(D,B′), g′ ∈ H(Y ), su
h that s = H(δ)(g′). Then it is

easily seen that taking l′ = −δ ◦ p1, β = δ ◦ p2, we 
omplete the 
hoi
e of a set

of data satisfying (19).

This argument 
an be modi�ed to work for a general A. To this end we separate

those parts of the reasoning where we used the fa
t that H is 
ohomologi
al

from those where we deal with limits; this allows us to 'work as if A = Ab'.
We denote Ker(H ′(A)

⊕

H(B))→H(A)) (with respe
t to the morphism in (16)

by S(A,B), and Ker(H ′(A)
⊕

H(B)
⊕

H
′′(C))→H(A)

⊕
H

′′(B)
⊕

H
′(C[−1]) by

T (A,B,C).
Then we have a 
ommutative diagram

lim
−→

(Im(T (A′, B′, C ′)→ T (A,B,C)))
t′

−−−−→ lim
−→

(Im(S(A′, B′)→ S(A,B)))




y





y

i

T (A,B,C)
t

−−−−→ S(A,B)

here the �rst dire
t limit above is taken with respe
t to morphisms of triangles

(A → B → C) → (A′ → B′ → C ′) for A′, B′, C ′ ∈ ObjC ′
(the ordering is

similar to those of (17)); the se
ond limit is taken similarly with respe
t to

morphisms (A→ B)→ (A′ → B′) for A′, B′ ∈ ObjC ′
. Sin
e the restri
tion of

C to C ′
is ni
e in H, for all A′, B′, C ′

the morphism T (A′, B′, C ′)→ S(A′, B′)
is epimorphi
; hen
e t′ is epimorphi
. Therefore, it su�
es to prove that i is
epimorphi
.

Now let us �x A′ = A0 and α = α0. We use the notation introdu
ed above;

denote the preimage of Im(H ′(α) : H ′(A′) → H ′(A)) with respe
t to the

natural morphism S(A,B)→ H ′(A) by J . Then J equals Im(H ′(A′)×H(D)→
S(A,B)). Indeed, here we 
an apply Proposition 1.1.7 (see Remark 1.1.8) and

then apply the reasoning 'with elements' used above.

In any A we obtain: sin
e Φ(D,Y ) = lim
−→

(Im(Φ(B′, Y )→ Φ(D,Y ))), we obtain
that G = lim

−→
(Im(S(A0, B

′, X, Y )→ S(A,B,X, Y ))). Here we use the following
fa
t (valid in any abelian A): if Ji ⊂ J ′ ∈ ObjA, lim

−→
Ji = J (for some proje
tive

system), u : J ′ → J is an A-epimorphism, then lim
−→

u(Ji) = J .
Now, passing to the limit with respe
t to (A0, α0) (using (17)) �nishes the

proof.

4. C is a 
omplex indeed sin
e the extension pro
edure is fun
torial.

By Proposition 1.2.1(I1), all the terms of C are 
ohomologi
al on C. Also, part

II2 of lo
.
it. immediately implies that C is exa
t (i.e. C(X) is exa
t for any
X ∈ ObjC). Hen
e C is a strongly exa
t 
omplex.
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Obviously, if C is ni
e in H then C ′
also is.

Conversely, let C ′
be ni
e in H. Then Proposition 1.2.1(II1) implies that H ′

and H satisfy (17) (for all D). Hen
e C is ni
e in H by assertion 3.

2.4 Weight spectral sequences and filtrations; relation with vir-
tual t-truncations

Definition 2.4.1. For an arbitrary (C,w) let H : C → A be a 
ohomologi
al

fun
tor (A is any abelian 
ategory).

We de�ne W i(H) : C → A as X → Im(H(w≤iX)→ H(X)).

By Proposition 2.1.2(2) of [6℄, W i(H)(X) does not depend on the the 
hoi
e

of the weight de
omposition of X[i]; it also de�nes a (
anoni
al) subfun
tor of

H(X).

Now re
all that Postnikov towers yield spe
tral sequen
es for 
ohomology. We

will denote H(X[−i]) by Hi(X) (for X ∈ ObjC). We will also use the notation

of De�nition 2.3.2.

Theorem 2.4.2. Let k,m ∈ Z.

I1. For any weight Postnikov tower for X (see De�nition 2.1.2(9)) there exists

a spe
tral sequen
e T = T (H,X) with Epq
1 (T ) = Hq(X−p) su
h that the map

Epq
1 → Ep+1q

1 is indu
ed by the morphism X−p−1 → X−p
(
oming from the

tower). We have T (H,X) =⇒ Hp+q(X) for any X ∈ Cb
.

One 
an 
onstru
t it using the following exa
t 
ouple: Epq
1 = Hq(X−p), Dpq

1 =
Hq(Xw≥1−p).

2. T is (
ovariantly) fun
torial in H; it is 
ontravariantly C-fun
torial in X
starting from E2.

3. Denote the step of �ltration given by (El,m−l
1 : l ≥ −k) on Hm(X) by

F−kHm(X). Then F−kHm(X) = (W kHm)(X).

II The derived exa
t 
ouple for T (H,X) 
an be naturally 
al
ulated in terms of

virtual t-trun
ations of H in the following way: Epq
2
∼= E′pq

2 = (Hq)τ=−p(X),
Dpq

2 = D′pq
2 = (τ≥qH)(X[1 − p]); the 
onne
ting morphisms of the 
ouple

((E′
2, D

′
2)) 
ome from (15).

III1. F−kHm(X) = Im((τ≤kH
m)(X)→ Hm(X)) (with respe
t to the 
onne
t-

ing morphism mentioned in Theorem 2.3.1(I)).

2. For any r ≥ 2, p, q ∈ Z there exists a fun
torial isomorphism Epq
r
∼=

(F p(τ[−p+2−r,−p+r−2]H)q)p/F p+1(τ[−p+2−r,−p+r−2]H)q)p.

Proof. I This is Theorem 2.4.2 of [6℄; see also Remark 2.4.1 of ibid. for the

dis
ussion of exa
t 
ouples.

In fa
t, assertion 1 follows easily from well known properties of Postnikov towers

and of related spe
tral sequen
es.

II Sin
e virtual t-trun
ations are fun
torial, the exa
t 
ouple (D′
2, E

′
2) is fun
-

torial also.
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The de�nitions of the derived exa
t 
ouple and of the virtual t-trun
ations
imply immediately that Dpq

2 and their 
onne
ting maps are exa
tly D′pq
2 (and

their 
onne
ting morphisms) spe
i�ed in the assertion.

It remains to 
ompare E2 with E′
2, and also the 
onne
ting maps of exa
t


ouples starting and ending in E2 with those for E′
2. It su�
es to 
onsider

p = q = 0. Our strategy is the following one. First we 
onstru
t an isomorphism

E00
2 → E′00

2 ; our 
onstru
tion depends on some 
hoi
es. Then we prove that the

isomorphism 
onstru
ted is a
tually natural (in parti
ular, it does not depend

on the 
hoi
es made). Lastly we verify that the isomorphisms of the terms of

the exa
t 
ouples 
onstru
ted is 
ompatible with the 
onne
ting morphisms of

these 
ouples. Note that in this (last) part of the argument we 
an make those


hoi
es (of 
ertain weight de
ompositions) that we like.

By the de�nition of the derived exa
t 
ouple we have: E00
2 is the 0-th 
ohomol-

ogy of the 
omplex (H(X−j)) (for any 
hoi
e of the weight 
omplex (Xi)). E′00
2

is the image of H(k) where k ∈ C(w[0,1]X,w[−1,0]X) is any morphism that is


ompatible with idX with respe
t to the 
orresponding weight de
ompositions

(see see Theorem 2.3.1(II3) and Remark 2.2.2(3)). So, we should 
ompare a

subfa
tor of H(X0) with a subobje
t of H(w[0,1]X).

Now suppose that we are given an o
tahedral diagram 
ontaining a 
ommu-

tative triangle w[1,1]X → w[0,1]X → w[−1,1]X (see Theorem 2.2.1(11)). We


ould obtain it as follows: �x some w[−1,1]X; then 
hoose 
ertain w[0,1]X =
w≥0(w[−1,1]X) and w[1,1]X = w≥1(w[−1,1]X) (see Remark 2.2.2(4)). For any

possible 
ompletion of the 
ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]X
to an o
tahedral diagram, the remaining verti
es of the o
tahedron are 
ertain

w[−1,0]X, w[0,0]X = X0
, and w[−1,−1]X = X−1[1] (by Theorem 2.2.1(11)). We

obtain morphisms w[0,1]X
i
→ X0 j

→ w[−1,0]X su
h that k = j ◦ i. Moreover,

Im(H(X1) → H(X0)) = KerH(i). Hen
e H(i) indu
es some monomorphism

α : H(X0)/ Im(H(X1) → H(X0)) to H(w[0,1]X). Besides, Ker(H(X0) →
H(X−1)) = ImH(j); therefore the restri
tion of α to α−1(ImH(k)) yields an
isomorphism β : E00

2 → E′00
2 .

Now we verify that the isomorphism 
onstru
ted is natural.

Note that it a
tually depends only on w[0,1]X
i
→ X0

and ImH(k) (we used

the remaining data only in order to verify that we a
tually obtain an iso-

morphism). So, suppose that we have X ′ ∈ ObjC, g ∈ C(X,X ′), and some


hoi
e of w≥0X
′
, w≥1X

′
, and w≥2X

′
. We have 
anoni
al 
onne
ting mor-

phisms w≥0X
′ → w≥1X

′ → w≥2X
′
that are 
ompatible with idX′

with respe
t

to the morphisms w≥lX
′ → X ′

(l = 0, 1, 2). Applying Theorem 2.2.1(11), we

obtain a 
hoi
e of w[0,1]X
′ i′

→ X ′0
. We also �x some 
hoi
e of H(k′) (in order

to do this we �x some 
hoi
e of w≤−1X and of w[−1,0]X). Note that all of

these 
hoi
es are ne
essarily 
ompatible with some 
hoi
e of the isomorphism

β′ : E00
2 (X ′)→ E′00

2 (X ′) 
onstru
ted as above (see 2.2.2(2)).

Now we 
hoose some morphisms gl : w≥lX → w≥lX
′
, for −1 ≤ l ≤ 2, 
ompat-

ible with g (see Remark 2.2.2(2)). These 
hoi
es 
ould be extended to some

morphisms a : w[0,1]X → w[0,1]X
′
and b : X0→X ′0

(by extending morphisms
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of arrows to morphism of distinguished triangles).

Now we verify the 
ommutativity of the diagram

w[0,1]X
i

−−−−→ X0





y

a





y

b

w[0,1]X
′ i′

−−−−→ X ′0

It follows from Theorem 2.2.1(10) applied to the morphism g0 : w≥0X →
w≥0X

′
, l = 1, m = 2 (sin
e both b ◦ i and i′ ◦ a are 
ompatible with g0).

Moreover, Remark 2.2.2(3) yields that H(a) sends H(k) to H(k′). We obtain

a 
ommutative diagram

E00
2

β
−−−−→ E′00

2




y





y

E00
2 (H,X ′)

β′

−−−−→ E′00
2 (H,X ′)

Sin
e E00
2 (H,−) and E′00

2 (H,−) are Cop
-fun
torial (and the verti
al arrows in

the diagram are exa
tly those that yield this fun
toriality; see Remark 2.3.3(3)),

we obtain the naturality in question.

Now it remains to prove that the isomorphisms of terms of exa
t 
ouples 
on-

stru
ted above is 
ompatible with the (two remaining) 
onne
ting morphisms

of these 
ouples.

First 
onsider the morphisms E00
2 → D10

2 . Re
all (by the de�nition of the

derived exa
t 
ouple) that it is indu
ed by any morphism w≥0X → X0

that extends to a weight de
omposition of w≥0X (here we 
onsider E00
2 as

a subfa
tor of H(X0)). On the other hand, the morphism E′00
2 → D′10

2 =
Im(H(w≥−1X)→ H(w≥0X)) is indu
ed by any possible 
hoi
e of a morphism

w≥0X → w[0,1]X that yields a weight de
omposition of w≥0X[1] (by Remark

2.3.3(2); see also Remark 2.2.2(3)). Hen
e it su�
es to note that the triangle

w≥0X → w[0,1]X
i
→ X0

is ne
essarily 
ommutative by Remark 2.2.2.

It remains 
onsider the morphism D1,−1
2 → E00

2 . It is indu
ed by the morphism

X0 → w≥1X (that yields a weight de
omposition of w≥0X). The morphism

D′1,−1
2 (= Im(H(w≥1X)[1]) → H(w≥2X)[1])) → E′00

2 is indu
ed by the mor-

phism w[0,1]X → w≥2X[1]. Hen
e it su�
es to 
onstru
t a 
ommutative square

w[0,1]X
i

−−−−→ X0





y





y

w≥2X[1] −−−−→ w≥1X[1]

By applying Theorem 2.2.1(11) to the 
ommutative triangle w≥2X → w≥1X →
w≥0X we obtain that there exists su
h a 
ommutative square with a 
ertain i0
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instead of i. Note that (by lo
.
it.) i0 yields a weight de
omposition of w[0,1]X.

It su�
es to verify that we may take i0 for i i.e. that i0 
ould be 
ompleted to

an o
tahedral diagram one of whose fa
es yields some 
hoi
e of the 
ommutative

triangle w[1,1]X → w[0,1]X → w[−1,1]X. We take w[1,1]X = Cone i0[−1], 
hoose
some w[−1,1]X (
oming from the same w≤1X as w[0,1]X). By Remark 2.2.2(2)

we obtain a unique 
ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]X that

is 
ompatible with idw≤1X respe
t to the 
orresponding weight de
ompositions.

It remains to apply Theorem 2.2.1(11).

III We 
an assume k = m = 0.

1. In the notation of Theorem 2.3.1 we 
onsider the morphism of spe
tral

sequen
es M : T (H1, X)→ T (H,X) (indu
ed by H1 → H). Part II of lo
.
it.

implies: M is an isomorphism on Epq
2 for p ≥ −k and Epq

2 (T (H1, X)) = 0
otherwise. The assertion follows immediately.

2. Similarly to the the previous reasoning, we have natural isomorphisms:

Epq
2 (T (τ[2−r,r−2]H,X) ∼= Epq

2 (T (H,X)) for 2−r ≤ p ≤ r−2 and = 0 otherwise.
It easily follows that Epq

∞(T (τ[2−r,r−2]H,X) ∼= Epq
r (T (τ[−p+2−r,−p+r−2]H,X).

The result follows immediately.

Remark 2.4.3. 1. The dual of assertion II is: if we 
onsider the alternative

exa
t 
ouple for our weight spe
tral sequen
e (see Remark 2.1.3) then the

derived exa
t 
ouple 
an also be des
ribed in terms of virtual t-trun
ations (in
a way that is dual in an appropriate sense to that of Theorem 2.4.2).

2. Possibly, at least a part of (assertion II of) the theorem 
ould be proved by

studying the fun
toriality of the derived exa
t 
ouple (and applying Theorem

2.3.5(1)).

2.5 Dualities of triangulated categories; orthogonal weight and
t-structures

Let C,D be triangulated 
ategories. We study 
ertain pairings of triangulated


ategories Cop ×D → A. In the following de�nition we 
onsider a general A,
yet below we will mainly need A = Ab.

Definition 2.5.1. 1. We will 
all a (
ovariant) bi-fun
tor Φ : Cop ×D → A a

duality if it is bi-additive, homologi
al with respe
t to both arguments; and is

equipped with a (bi)natural transformation Φ(X,Y ) ∼= Φ(X[1], Y [1]).

2. We will say that Φ is ni
e if for any distinguished triangle X → Y → Z the


orresponding (strongly exa
t) 
omplex of fun
tors

· · · → Φ(−, X)→ Φ(−, Y )→ Φ(−, Z)
f
→ Φ([−1](−), X)→ . . . (20)

is ni
e in Φ(−, Y ) (see De�nition 2.3.4); here f is obtained from the natu-

ral morphism Φ(−, Z)→Φ(−, X[1]) by applying the (bi)natural transformation

mentioned above.
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3. Suppose that C is endowed with a weight stru
ture w, D is endowed with a

t-stru
ture t. Then we will say that w is (left) orthogonal to t with respe
t to

Φ if the following orthogonality 
ondition is ful�lled:

Φ(X,Y ) = 0 if: X ∈ Cw≤0
and Y ∈ Dt≥1, or X ∈ Cw≥0

and Y ∈ Dt≤−1.
(21)

4. If w is de�ned on Cop
, t is de�ned on Dop

, w is left orthogonal to t (with
respe
t to some duality); then we will say that the 
orresponding opposite

weight stru
ture on C is right orthogonal to the opposite t-stru
ture for D.

Remark 2.5.2. 1. The axioms of Φ immediately imply that (20) is a strongly

exa
t 
omplex of fun
tors indeed (whether Φ is ni
e or not).

2. Certainly, if Φ is ni
e then (20) is ni
e at any term (sin
e we 
an 'rotate'

distinguished triangles in D).

First we prove a statement that will simplify 
he
king the orthogonality of

weight and t-stru
tures.

Proposition 2.5.3. Let Φ : Cop × D → A be some duality; let (C,w) be

bounded. Then w is (left) orthogonal to t whenever there exists a D ⊂ Cw=0

su
h that any obje
t of Cw=0
is a retra
t of a �nite dire
t sum of elements of

D and

Φ(X,Y ) = 0 ∀ X ∈ D, Y ∈ Dt≥1 ∪Dt≤−1. (22)

Proof. If w is is left orthogonal to t, then (22) for D = Cw=0
follows immedi-

ately from the orthogonality 
ondition.

Conversely, let D satisfy the assumptions of our assertion. Hen
e we have:

Φ(X,Y ) = 0 if X ∈ D[i], i ≥ 0, Y ∈ Dt≥1
, or if X ∈ D[i], i ≤ 0, Y ∈ Dt≤−1

.

Now suppose that for some E,F ⊂ ObjC we have: any obje
t of Cw≤0
is a

retra
t of an obje
t of E, any obje
t of Cw≥0
is a retra
t of an obje
t of F .

Then it obviously su�
es to 
he
k that Φ(X,Y ) = 0 if either X ∈ E and

Y ∈ Dt≥1
or X ∈ F and Y ∈ Dt≤−1

.

Now by Theorem 2.2.1(19), we 
an take E being the smallest extension-stable

sub
ategory of C 
ontaining D[i], i ≥ 0; and F being the smallest extension-

stable sub
ategory of C 
ontainingD[i], i ≤ 0. To 
on
lude the proof it remains

to note that for a distinguished triangle X → Y → Z in C, O ∈ ObjD we have:

Φ(X,O) = 0 = Φ(Z,O) =⇒ Φ(Y,O) = 0.

When (weight and t-) stru
tures are orthogonal, virtual t-trun
ations of

Φ(−, Y ) are given by t-trun
ations in D. We use the notation of De�nition

2.3.2.

Proposition 2.5.4. 1. Let t be orthogonal to w with respe
t to Φ, k ∈ Z.

For Y ∈ ObjD denote the fun
tor Φ(−, Y ) : C → A by H. Then we have

an isomorphism of 
omplexes (τ≤kH → H → τ≥kH) ∼= (Φ(−, t≤kY ) → H →
Φ(−, t≥k+1Y )) (where the 
onne
ting maps of the se
ond 
omplex are indu
ed

by t-trun
ations); this isomorphism is natural in Y .
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2. Suppose also that Φ is ni
e. Then the (strongly exa
t) 
omplex of fun
tors

that sends X to

· · · → Φ(X, t≤kY )→ Φ(X,Y )→ Φ(X, t≥k+1Y )→ Φ(X[−1], t≤kY )→ . . .
(23)

(
onstru
ted as in the de�nition of a ni
e duality) is naturally isomorphi
 to

(15).

Proof. 1. Sin
e t and w orthogonal, Φ(−, t≤kY ) vanishes on Cw≥k+1
, whereas

Φ(−, t≥k+1Y ) vanishes on Cw≤k
. Moreover, (23) yields that H ′ = Φ(−, t≤kY )

and H ′′ = Φ(−, t≥k+1Y ) also satisfy the 
ondition (iii) of Theorem 2.3.1(III4).

Hen
e the theorem yields the 
laim.

2. Immediate from the previous assertion and Theorem 2.3.5(1).

Remark 2.5.5. Note that we a
tually need quite a partial 
ase of the 'ni
eness


ondition' for Φ in order to prove assertion 2. Hen
e here (and so, in all the

appli
ations below) we will not need the ni
eness 
ondition in its full generality.

Possibly, the 
orresponding partial 
ase of the 
ondition is weaker than the

whole assertion; yet 
he
king it does not seem to be mu
h easier.

Also, it seems quite possible that for an arbitrary (not ne
essarily ni
e) duality

there exists some isomorphism of (15) with (23) if we modify the boundary

maps of the se
ond 
omplex. Yet there seems to be no way to 
hoose su
h a

modi�
ation 
anoni
ally.

'Natural' dualities are ni
e; we will justify this thesis now.

Proposition 2.5.6. 1. If A = Ab, D = C, then Φ : (X,Y ) 7→ C(X,Y ) is a

ni
e duality.

2. For some duality Φ : Cop × D → A let there exist a (skeletally) small full

triangulated C ′ ⊂ C su
h that: the restri
tion of Φ to C ′op×D is a ni
e duality

(of C ′
with D); for any X ∈ ObjD the fun
tor G = Φ(−, X), Cop → A,

satis�es (17). Then Φ is ni
e also.

3. For D, C ′ ⊂ C as above, A satisfying AB5, let Φ′ : C ′op × D → A be a

duality. For any Y ∈ ObjD we extend the fun
tor Φ′(−, Y ) from C ′
to C by

the method of Proposition 1.2.1; we denote the fun
tor obtained by Φ(−, Y ).
Then the 
orresponding bi-fun
tor Φ is a duality (Cop × D → A). It is ni
e

whenever Φ′
is.

Proof. Immediate from parts 2�4 of Theorem 2.3.5.

Remark 2.5.7. 1. Proposition 2.5.6(1) yields an important family of ni
e dual-

ities; this 
ase was thoroughly studied in [6℄ (in se
tions 4 and 7). We will say

that w is left (resp. right) adja
ent to t if it is left (resp. right) orthogonal to it

with respe
t to Φ(X,Y ) = C(X,Y ). Note that for w left (resp. right) adja
ent

to t with respe
t to this de�nition we ne
essarily have Cw≤0 = Ct≤0
(resp.
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Cw≥0 = Ct≥0
) by Theorem 2.2.1(2) and Remark 1.1.3(2); so this de�nition is

a
tually 
ompatible with De�nition 4.4.1 of [6℄.

One 
an generalize this family as in �8.3 of ibid.: for A = Ab and an exa
t

F : D → C we de�ne Φ(X,Y ) = C(X,F (Y )). Certainly, one 
ould also

dualize this 
onstru
tion (in a 
ertain sense) and 
onsider F : C → D and

Φ(X,Y ) = C(F (X), Y ).

2. Another (general) family of dualities is mentioned in Remark 6.4.1(2) of

ibid. All the families of dualities mentioned 
an be expanded using part 3 of

the proposition.

3. It is also easy to 
onstru
t a duality that is not ni
e. To this end one 
an

start with C = D, Φ = C(−,−) and then modify the 
hoi
e of distinguished

triangles in D (without 
hanging the shift in D, and 
hanging nothing in C)

in a way that would not a�e
t the properties of fun
tors to be 
ohomologi
al.

The simplest way to do this is to pro
laim a triangle X
f
→ Y

g
→ Z

h
→ X[1] to

be distinguished in D if X
−f
→ Y

−g
→ Z

−h
→ X[1] is distinguished in C. Certainly,

su
h a modi�
ation is not very 'serious'; in parti
ular, one 
an '�x the problem'

by multiplying the isomorphism Φ(X,Y ) ∼= Φ(X[1], Y [1]) by −1.

The author does not know whether any duality 
an be made ni
e by modifying

the 
hoi
e of the 
lass of distinguished triangles (in D), or by modifying the iso-

morphism mentioned. Note also that the question whether there exists a D for

whi
h su
h a modi�
ation 
an 
hange the 'equivalen
e 
lass' of triangulations

is well-known to be open.

2.6 Comparison of weight spectral sequences with those coming
from (orthogonal) t-truncations

Now we des
ribe the relation of weight spe
tral sequen
es with orthogonal

stru
tures.

Theorem 2.6.1. Let w for C and t for D be orthogonal with respe
t to a duality

Φ; let i, j ∈ Z, X ∈ ObjC, Y ∈ ObjD.

1. Consider the spe
tral sequen
e S 
oming from the following exa
t 
ouple:

Dpq
2 (S) = Φ(X,Y t≥q[p − 1]), Epq

2 (S) = Φ(X,Y t=q[p]) (we start S from

E2). It naturally 
onverges to Φ(X,Y [p+ q]) if X ∈ Cb
.

2. Let T be the weight spe
tral sequen
e given by Theorem 2.4.2 for the

fun
tor H : Z 7→ Φ(Z, Y ). Then for all r ≥ 2 we have natu-

ral isomorphisms Epq
r (T (H,X)) ∼= Epq

r (S). There is also an equality

F−kHm(X) = Im(Φ(X, t≤kY [m]) → Hm(X)) (here we use the notation

of part I4 of lo
.
it.) 
ompatible with this isomorphism.

3. Suppose that Φ is also ni
e. Then the isomorphism mentioned in the

previous assertion extends naturally to the isomorphism of of T with S
(starting from E2).
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4. Let · · · → X−j−1 → X−j → X1−j → . . . denote an arbitrary 
hoi
e of

the weight 
omplex for X. Then we have a fun
torial isomorphism

Φ(X,Y t=i[j]) ∼=

(Ker(Φ(X−j , Y [i]) → Φ(X−1−j , Y [i]))/ Im(Φ(X1−j , Y [i]) → Φ(X−j , Y [i])).
(24)

Proof. 1. The theory of t-stru
tures easily yields: Y t≥q
and Y t=q


an be

fun
torially organized into a 
ertain Postnikov tower for Y . Hen
e the

usual results on spe
tral sequen
es 
oming from Postnikov towers (see

�IV2, Exer
ise 2, of [13℄) yield the assertion easily.

2. Immediate from Proposition 2.5.4(1) and Theorem 2.4.2(III). Note that

the latter assertion does not use the 'dimension shift' in (15).

3. Proposition 2.5.4(2) and Theorem 2.4.2(II) imply: there is a natural iso-

morphism of the derived exa
t 
ouple for T with the exa
t 
ouple of S
('at level 2'). The result follows immediately.

4. This is just assertion 2 for E2-terms.

Remark 2.6.2. 1. So, we justi�ed parts 4 and 5 of Remark 4.4.3 of [6℄.

2. Note that the spe
tral sequen
e denoted by S in (Remark 4.4.3(4) and

�6.4 of) ibid. started from E1; so it di�ered from our S and T by a 
ertain

shift of indi
es.

3. So, we developed an 'abstra
t triangulated alternative' to the method of


omparing similar spe
tral sequen
es that was developed by Deligne and

Paranjape. The latter method used �ltered 
omplexes; it was applied in

[22℄, [11℄, and in �6.4 of [6℄. The disadvantage of this approa
h is that one

needs extra information in order to 
onstru
t the 
orresponding �ltered


omplexes; this makes di�
ult to study the naturality of the isomorphism


onstru
ted. Moreover, in some 
ases the 
omplexes required 
annot

exist at all; this is the 
ase for the spheri
al weight stru
ture and its

adja
ent Postnikov t-stru
ture for C = D = SH (the topologi
al stable

homotopy 
ategory; see �4.6 of [6℄; yet in this 
ase one 
an 
ompare the


orresponding spe
tral sequen
es using topology).

4. One 
ould modify our reasoning to prove a version of the theorem that

does not mention weight and t-stru
tures. To this end instead of 
onsid-

ering a weight Postnikov tower for X and the Postnikov tower 
oming

from t-trun
ations of Y one should just 
ompare spe
tral sequen
es 
om-

ing from some Postnikov towers for X and Y in the 
ase when these

Postnikov towers satisfy those 'orthogonality' 
onditions (with respe
t to

a (ni
e) duality Φ) that are implied by the orthogonality of stru
tures
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ondition in our situation. Yet it seems di�
ult to obtain the naturality

of the isomorphisms in Theorem 2.6.1(3) using this approa
h.

5. Even more generally, it su�
es to have an indu
tive system of Postnikov

towers inD and a proje
tive system of Postnikov towers in C su
h that the

orthogonality 
onditions required are satis�ed in the (double) limit. Then

the 
omparison statements for the double limits of the 
orresponding

spe
tral sequen
es are valid also. A very partial (yet rather important)

example of a reasoning of this sort is des
ribed in �7.4 of [6℄. Besides, this

approa
h 
ould possibly yield the 
omparison result of �6 of [11℄ (even

without assuming k to be 
ountable as we do here).

6. A simple (yet important) 
ase of (24) is: for any i ∈ Z

X ∈ Cw=i =⇒ ∀Y ∈ ObjD we have Φ(X,Y ) ∼= Φ(X,Y t=i). (25)

2.7 ’Change of weight structures’; comparing weight spectral
sequences

Now we 
ompare weight de
ompositions, virtual t-trun
ations, and weight spe
-
tral sequen
es 
orresponding to distin
t weight stru
tures. In order make our

results more general (and to apply them below) we will assume that these stru
-

tures are de�ned on distin
t triangulated 
ategories; yet the 
ase when both

are de�ned on C is also interesting.

So, till the end of the se
tion we will assume: C,D are triangulated 
ategories

endowed with weight stru
tures w and v, respe
tively; F : C → D is an exa
t

fun
tor.

Definition 2.7.1. 1. We will say that F is right weight-exa
t if F (Cw≥0) ⊂
Dv≥0

.

2. If F is fully faithful and right weight-exa
t, we will say that v dominates w.
3. We will say that F is left weight-exa
t if F (Cw≤0) ⊂ Dv≤0

.

4. F will be 
alled weight-exa
t if it is both right and left weight-exa
t.

We will say that w indu
es v (via F ) if F is a weight-exa
t lo
alization fun
tor.

Proposition 2.7.2. Let F be a right weight-exa
t fun
tor; let l ≥ m ∈ Z,

X ∈ ObjD, X ′ ∈ ObjC, g ∈ D(F (X ′), X).
1. Let weight de
ompositions of X[m] with respe
t to v and X ′[l] with respe
t

to w be �xed. Then g 
an be 
ompleted to a morphism of distinguished triangles

F (w≥l+1X
′) −−−−→ F (X ′) −−−−→ F (w≤lX

′)




y

a





y

g





y

b

v≥m+1X −−−−→ X −−−−→ v≤mX

(26)

This 
ompletion is unique if l > m.
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2. For arbitrary weight Postnikov towers Pov(X) for X (with respe
t to v)
and PowX

′
for X ′

(with respe
t to w), g 
an be extended to a morphism

F∗(PowX
′)→ Pov(X).

3. Let H : D → A be any fun
tor, k ∈ Z, j > 0. Denote H ◦ F by G. Then

(26) allows to extend H(g) naturally to a diagram

Hv
1 (X) −−−−→ H(X) −−−−→ Hv

2 (X)




y





y

H(g)





y

Gw
1 (X

′) −−−−→ G(X ′) −−−−→ Gw
2 (X

′)

here we add the weight stru
ture 
hosen as an index to the notation of Theorem

2.3.1(I).

Proof. 1. Sin
e F is right weight-exa
t, D(F (w≥n+1X
′), v≤mX) = {0} for any

n ≥ m. Hen
e the 
omposition morphism F (w≥l+1X
′) → v≤mX is zero; if

l > m then D(F (w≥l+1X
′), (v≤mX)[−1]) = {0}. The result follows easily; see

Proposition 1.1.9 of [2℄.

2. Assertion 1 (in the 
ase l = m) yields that there exists a system of morphisms

fi ∈ D(F (w≥iX
′), v≥iX) 
ompatible with g; we �x su
h a system. Applying

the same assertion for any pair of l,m : l > m, we obtain that fl is 
ompatible

with fm (here we use arguments similar to those des
ribed in Remark 2.2.2).

Finally, sin
e any 
ommutative square 
an be extended to a morphism of the


orresponding distinguished triangles (an axiom of triangulated 
ategories), we

obtain that we 
an 
omplete (uniquely up to a non-
anoni
al isomorphism)

the data 
hosen to a morphism of Postnikov towers (i.e. 
hoose a 
ompatible

system of morphisms F (X ′i)→ Xi
).

3. Easy from assertion 1; note that for any 
ommutative square in A

X
f

−−−−→ Y




y

h





y

Z
g

−−−−→ T

if we �x the rows then the morphism g ◦ h : X → T 
ompletely determines the

morphism Im f → Im g indu
ed by h.

We easily obtain a 
omparison morphism of weight spe
tral sequen
es.

Proposition 2.7.3. I Let F,X ′, G be as in the previous proposition; suppose

also that H is 
ohomologi
al. Set X = F (X ′), g = idX .

1. There exists some 
omparison morphism of the 
orresponding weight spe
tral

sequen
es M : Tv(H,X)→ Tw(G,X ′). Moreover, this morphism is unique and

additively fun
torial (in g) starting from E2.

2. Let there exist D ⊂ Cw=0
su
h that any Y ∈ Cw=0

is a retra
t of some

Z ∈ D, and that for any Z ∈ D there exists a 
hoi
e of Zw≥1
su
h that
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Epq
2 Tv(H,F (Zw≥1)) = {0} for all p, q ∈ Z. Then (any 
hoi
e of) M yields an

isomorphism of the spe
tral sequen
e fun
tors starting from E2.

3. Let E be a triangulated 
ategory endowed with a weight stru
ture u, F ′ : D →
E a right weight-exa
t fun
tor; suppose that H = E◦F ′

for some 
ohomologi
al

fun
tor E : E → A. Then we have the following asso
iativity property for


omparison of weight spe
tral sequen
es: the 
omposition of M with (any 
hoi
e

of) a 
omparison morphisms M ′ : Tu(E,F ′(X))→ Tv(H,X) 
onstru
ted as in

assertion 1, starting from E2 is 
anoni
ally isomorphi
 to (any 
hoi
e of a

similarly 
onstru
ted) 
omparison morphism Tu(E,F ′(X))→ Tw(G,X ′).

II Let H,X ′, X,G be as above, but suppose that F : C → D is left weight-exa
t.

Then a method dual to the one for assertion I1 yields a transformation N :
Tw(G,X ′) → Tv(H,X); this 
onstru
tion satis�es the duals for all properties

of M des
ribed in assertion I.

Proof. I 1. In order to 
onstru
t some 
omparison morphism, it su�
es to


onstru
t a morphism of the 
orresponding exa
t 
ouples that is 
ompatible

with idX . Hen
e it su�
es to use Proposition 2.7.2(2) to obtain a morphism

of the 
orresponding Postnikov towers, and then apply H to it.

Theorem 2.4.2(II) yields that weight spe
tral sequen
es 
ould be des
ribed in

terms of the 
orresponding virtual t-trun
ations. Hen
e Proposition 2.7.2(3)

implies all the fun
toriality properties of M listed.

2. It su�
es to prove that M is an isomorphism on E∗∗
2 Tw(G,Y ) for all Y ∈

ObjC.

Sin
e D ⊂ Cw≥0
, this assertion is true for any Y ∈ D. Sin
e Z 7→ E2(T (G,Z))

is a 
ohomologi
al fun
tor for any weight stru
ture (see Theorem 2.4.2 and the

remark at De�nition 2.3.2), the assertion is also true for any Y ∈ ObjCb
. To


on
lude it su�
es to note that for any H, any Y ∈ ObjC, any �nite 'pie
e'

of E∗∗
2 Tw(G,Y ) 
oin
ides with the 
orresponding pie
e of E∗∗

2 Tw(G,w[i,j]Y )
(for any 
hoi
e of w[i,j]Y ) if i is small enough and j is large enough, and this

isomorphism is 
ompatible with M .

3. We re
all that 
omparison morphisms for weight spe
tral sequen
es were


onstru
ted using Proposition 2.7.2(1). It easily follows that M ′ ◦M is one of

the possible 
hoi
es for a 
omparison morphism Tu(E,F ′◦F (X))→ Tw(G,X ′).
It su�
es to apply assertion I1 to 
on
lude that this �xed 
hoi
e of a 
omparison

morphism 
oin
ides with any other possible 
hoi
e starting from E2.

II We obtain the assertion from assertion I immediately by dualization (see

Theorem 2.2.1(1)); here one should 
onsider the duals of C, D, and A (and

also 'dualize' the 
onne
ting fun
tors).

Remark 2.7.4. M is an isomorphism (starting from E2) also if: there exists a

lo
alization of D su
h that H fa
torizes through it, v indu
es a weight stru
-

ture v′ on it, w indu
es a weight stru
ture on the 
ategori
al image of C that


oin
ides with the restri
tion of v′ to it (sin
e both weight spe
tral sequen
es

are isomorphi
 to the spe
tral sequen
e 
orresponding to this new weight stru
-

ture).
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Yet this 
onditions are somewhat restri
tive sin
e weight stru
tures do not

'des
end' to lo
alizations in general (sin
e for an exa
t F ′ : C → E the 
lasses

F ′
∗(C

w≥1) and F ′
∗(C

w≤0) are not ne
essarily orthogonal in E).

In order to simplify 
he
king right and left weight-exa
tness of fun
tors, we will

need the following easy statement.

Lemma 2.7.5. Let w be bounded.

1. An exa
t J : C → D is a right weight-exa
t whenever there exists a D ⊂
Cw=0

su
h that any Y ∈ Cw=0
is a retra
t of some X ∈ D, and that for any

X ∈ D we have J(Y ) ∈ Dv≥0
.

2. An exa
t J : C → D is a left weight-exa
t whenever there exists a D ⊂ Cw=0

su
h that any Y ∈ Cw=0
is a retra
t of some X ∈ D, and that for any X ∈ D

we have J(Y ) ∈ Dv≤0
.

Proof. It su�
es to prove assertion 1, sin
e assertion 2 is exa
tly its dual.

If J is right weight-exa
t fun
tor, then we 
an take D = Cw=0

Now we prove the 
onverse statement. Sin
e Dv≥0
is Karoubi-
losed and

extension-stable in D, Theorem 2.2.1(19) yields that J(Cw≥0) indeed belongs

to Dv≥0
.

3 Categories of comotives (main properties)

We embed DMeff
gm into a 
ertain big triangulated motivi
 
ategory D; we will


all it obje
ts 
omotives. We will need several properties of D; yet we will

never use its des
ription dire
tly. For this reason in �3.1 we only list the main

properties of D.

In �3.2 we asso
iate 
ertain 
omotives to (disjoint unions of) 'in�nite interse
-

tions' of smooth varieties over k (we 
all those pro-s
hemes). We also introdu
e


ertain Tate twists for these 
omotives.

In �3.3 we re
all the de�nition of a primitive s
heme (note that in the 
ase of

a �nite k we 
all a s
heme primitive whenever it is smooth semi-lo
al). The

main motivi
 property of primitive s
hemes (proved by M. Walker) is: F (S)
inje
ts into F (S0) if S is primitive 
onne
ted, S0 is its generi
 point, and F is

a homotopy invariant presheaf with transfers.

In �3.4 we study the relation of (
omotives of) primitive s
hemes with the

homotopy t-stru
ture for DMeff
− .

In �3.5 we prove that there are no D-morphisms of positive degrees between


omotives of primitive s
hemes (and also 
ertain Tate twists of those); this is

also true for produ
ts of 
omotives mentioned.

In �3.6 we prove that one 
an pass to 
ountable homotopy limits in Gysin

distinguished triangles; this yields Gysin distinguished triangles for 
omotives

of pro-s
hemes. This allows to 
onstru
t 
ertain Postnikov towers for 
omotives

of pro-s
hemes (and their Tate twists), whose fa
tors are twisted produ
ts of


omotives of fun
tion �elds (over k). The 
onstru
tion of the tower is parallel

to the 
lassi
al 
onstru
tion of 
oniveau spe
tral sequen
es (see �1 of [8℄).
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3.1 Comotives: an ’axiomatic description’

We will de�ne D below as the derived 
ategory of di�erential graded fun
tors

J → B(Ab); here J yields a di�erential graded enhan
ement of DMeff
gm (
f. [4℄,

[19℄, or [7℄), B(Ab) is the di�erential graded 
ategory of 
omplexes over Ab.
We will also need some 
ategory D

′
that proje
ts to D (a 
ertain model of D).

Derived 
ategories of di�erential graded fun
tors were studied in detail in [12℄

and [16℄. We will de�ne and study them in �5 below; now we will only list their

properties that are needed for the proofs of main statements.

Below we will also need 
ertain (�ltered) inverse limits several times. D is a

triangulated 
ategory; so it is no wonder that there are no ni
e limits in it. So

we 
onsider a 
ertain additive D
′
endowed with an additive fun
tor p : D′ → D.

We will 
all (the images of) inverse limits from D
′
homotopy limits in D.

The relation of D
′
with D is similar to the relation of C(A) with D(A). In

parti
ular, D
′
is 
losed with respe
t to all (small �ltered) inverse limits; we have

fun
torial 
ones of morphisms in D
′
that are 
ompatible with inverse limits.

We will need some 
onventions and de�nitions introdu
ed in Notation; in par-

ti
ular, I, L will be proje
tive systems; I is 
ountable.

Proposition 3.1.1. 1. There exists a triangulated 
ategory D ⊃ DMeff
gm ;

all obje
ts of DMeff
gm are 
o
ompa
t in D.

2. There exists an additive 
ategory D
′

losed with respe
t to arbitrary (small

�ltered) inverse limits, and an additive fun
tor p : D′ → D that preserves

(small) produ
ts. Moreover, p is surje
tive on obje
ts.

3. D
′
is endowed with a 
ertain invertible shift fun
tor [1] that is 
ompatible

with the shift on D and respe
ts inverse limits.

4. There is a fun
torial 
one of morphisms in D
′
de�ned; it is 
ompatible

with [1] and respe
ts inverse limits.

5. Any triangle of the form X
f
→ Y → Cone(f) → X[1] in D

′
be
omes

distinguished in D.

6. The 
omposition fun
tor Mgm : Cb(SmCor) → DMeff
gm → D 
an be


anoni
ally fa
torized through an additive fun
tor j : Cb(SmCor)→ D
′
.

Shifts and 
ones of morphisms in Cb(SmCor) are 
ompatible with those

in D
′
via j.

7. For any X ∈ Mgm(Cb(SmCor)) ⊂ ObjD, any Y : L → D
′
we have

D(p(lim
←−l∈L

Yl), X) = lim
−→l∈L

D(p(Yl), X).

8. DMeff
gm weakly 
ogenerates D (i.e. we have

⊥DMeff
gm = {0}, see Nota-

tion).
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9. Let a sequen
e in ∈ I, n > 0, be in
reasing (i.e. in+1 > in for any n > 0)
unbounded (see Notation). Then for all fun
tors X : I → D

′
, we have

fun
torial distinguished triangles in D:

p(lim
←−i∈I

Xi)→ p(
∏

Xin)
e
→ p(

∏
Xin); (27)

e is the produ
t of idXin
⊕−φn : Xin+1

→ Xin ; here φn are the morphisms


oming from I via X.

10. There exists a di�erential graded enhan
ement for D; see �5.1 below.

Remark 3.1.2. 1. Sin
e below we will prove some statements for D only using

its 'axiomati
s' (i.e. the properties listed in Proposition 3.1.1), these results

would also be valid in any other 
ategory that ful�lls these properties. This


ould be useful, sin
e the author is not sure at all that all possible D are

isomorphi
.

2. Moreover, one 
ould modify the axiomati
s of D and 
onsider instead a


ategory that would only 
ontain the triangulated sub
ategory of DMeff
gm gen-

erated by motives of smooth varieties of dimension ≤ n (for a �xed n > 0).
Our results and arguments below 
an be easily 
arried over to this setting (with

minor modi�
ations; it is also useful here to weaken 
ondition 8 in the Propo-

sition). This makes sense sin
e these 'geometri
 pie
es' of DMeff
gm are self-dual

with respe
t to Poin
are duality (at least, if char k = 0); see �6.4 below. See

also Remark 4.5.2(2).

Alternatively, we 
an weaken the 
ondition for the fun
tor DMeff
gm → D to be

a full embedding. For example, it 
ould be interesting to 
onsider the version

of D for whi
h this fun
tor kills DMeff
gm (n) (for some �xed n > 0).

Lastly note that we do not really need 
ondition 2 in its full generality (below).

Now we derive some 
onsequen
es from the axiomati
s listed.

Corollary 3.1.3. 1. For any Z ∈ ObjDMeff
gm ⊂ ObjD, any X : L → D

′

we have D(p(lim
←−l∈L

Xl), Z) = lim
−→l∈L

D(p(Xl), Z).

2. For any T ∈ ObjD, all fun
tors Y : I → D
′
we have fun
torial short

exa
t sequen
es

{0} → lim
←−

1
D(T, p(Yi)[−1])→ D(T, p(lim

←−
Yi))→ lim

←−
D(T, p(Yi))→ {0};

here lim
←−

1
is the (�rst) derived fun
tor of lim

←−
= lim
←−I

.

3. For all fun
tors X : L → Cb(SmCor), Y : I → Cb(SmCor), we have

fun
torial short exa
t sequen
es

{0} → lim
←−

1

i∈I
(lim
−→l∈L

D(Mgm(Xl),Mgm(Yi)[−1]))→

D(p(lim
←−l∈L

j(Xl)), p(lim←−i∈I
j(Yi)))→

lim
←−i∈I

(lim
−→l∈L

D(Mgm(Xl),Mgm(Yi)))→ {0}.

(28)
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4. D is idempotent 
omplete.

Proof. 1. If Z ∈ Mgm(Cb(SmCor)), then the assertion is exa
tly Proposi-

tion 3.1.1(7).

It remains to note that any Z ∈ ObjDMeff
gm is a retra
t of some obje
t


oming from Cb(SmCor).

2. Sin
e inverse limits and their derived fun
tors do not 
hange when we

repla
e a proje
tive system by any unbounded subsystem, we 
an assume

that L 
onsists of some in as in (27).

Now, (27) yields a long exa
t sequen
e

· · · →
∏

i∈I

D(T, p(Yi)[−1])
f
→

∏

i∈I

D(T, p(Yi)[−1])→ D(T, p(lim
←−i∈I

Yi))

→
∏

i∈I

D(T, p(Yi))
g
→

∏

i∈I

D(T, p(Yi))→ . . . ,

here f and g are indu
ed by e in (27).

It is easily seen that Ker g ∼= lim
←−

D(T,Mgm(Ym)).

Lastly, Remark A.3.6 of [21℄ allows to identify Coker f with

lim
←−

1
D(T,Mgm(Ym)[−1]).

3. Immediate from the previous assertions.

4. Sin
eD
′
is 
losed with respe
t to all inverse limits, it is 
losed with respe
t

to all (small) produ
ts. Then Proposition 3.1.1(2) yields that D is also


losed with respe
t to all produ
ts. Now, Remark 1.6.9 of [21℄ yields the

result (in fa
t, the proof uses only 
ountable produ
ts).

We will often 
all the obje
ts of D 
omotives.

3.2 Pro-schemes and their comotives

Now we have 
ertain inverse limits for obje
ts (
oming from) Cb(SmCor);
this allows to de�ne (reasonable) 
omotives for 
ertain s
hemes that are not

(ne
essarily) of �nite type over k (and for their disjoint unions). We also de�ne


ertain Tate twists of those.

We will 
all 
ertain ind-s
hemes over k pro-s
hemes. An ind-s
heme V/k is

a pro-s
heme if it is a 
ountable disjoint union of s
hemes, su
h that ea
h of

them is a proje
tive limit of smooth varieties of dimension ≤ cV for some �xed

cV ≥ 0 (in the 
ategory of s
hemes) with 
onne
ting morphisms being open

dense embeddings. One may say that a pro-s
heme is a 
ountable disjoint union

of 
ountable interse
tions of smooth varieties. Note that (the spe
trum of) any

fun
tion �eld over k is a pro-s
heme; any smooth k-variety is a pro-s
heme also.
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We have the operation of 
ountable disjoint union for pro-s
hemes of bounded

dimension.

Now, we would like to present a (not ne
essarily 
onne
ted) pro-s
heme V
as proje
tive limits of smooth varieties Vi. This is easy if V is 
onne
ted

(
f. Lemma 3.2.9 of [9℄). In the general 
ase one should allow (formally)

zero morphisms between 
onne
ted 
omponents of Vi (for distin
t i). So we


onsider a new 
ategory SmV ar′ 
ontaining the 
ategory of all smooth va-

rieties as a (non-full!) sub
ategory. We take ObjSmV ar′ = SmV ar; for

any smooth 
onne
ted varieties X,Y ∈ SmV ar we have SmV ar′(X,Y ) =
MorV ar(X,Y ) ∪ {0}; the 
omposition of a zero morphism with any other one

is zero; SmV ar′(⊔iXi,⊔jYj) = ⊔i,jSmV ar′(Xi, Yj). SmV ar′ 
an be embed-

ded into SmCor (
ertainly, this embedding is not full).

We will write V = lim
←−

Vi (this is not possible in the 
ategory of ind-s
hemes,

but works in Pro−SmV ar′). Note that the set of 
onne
ted 
omponents of V
is the indu
tive limit of the 
orresponding sets for Vi.

Now, for any pro-s
heme V = lim
←−

Vi, any s ≥ 0, we introdu
e the following

notation: Mgm(V )(s) = p(lim
←−

(j(Vi)(s))) ∈ ObjD (see Proposition 3.1.1); we

will denote Mgm(V )(0) by Mgm(V ) and 
all Mgm(V ) the 
omotif of V . This

notation should be 
onsidered as formal i.e. we do not de�ne Tate twists on D

(till �5.4.3).

Obviously, if V ∈ SmV ar, its 
omotif (and its twists) 
oin
ides with its motif

(and its twists), so we 
an use the same notation for them.

If A is a 
ategory 
losed with respe
t to �ltered dire
t limits, H ′ : DMeff
gm → A

is a fun
tor, we 
an (formally) extend it to 
o-motives in question; we set:

H(Mgm(V )(s)[n]) = lim
−→

H ′(Mgm(Vi)(s)[n]). (29)

Remark 3.2.1. 1. For a general H ′
this notation should be 
onsidered as for-

mal. Yet in the 
ase H ′ = (−, Y ) : D → Ab, Y ∈ ObjDMeff
gm ⊂ ObjD, we

have H(Mgm(V )(i)[n]) = D(Mgm(V )(i)[n], X); see Corollary 3.1.3(1), i.e. (29)

yields the value of a well-de�ned fun
tor D → Ab at Mgm(V )(s)[n]. We will

only need H ′
of this sort till �4.3.

More generally, there exists su
h an H if A satis�es AB5 and H ′
is 
ohomo-

logi
al; we will 
all the 
orresponding H an extended 
ohomology theory, see

Remark 4.3.2 below.

2. Let V j
be a 
ountable set of pro-s
hemes (of bounded dimensions). Then

Mgm(⊔V j) =
∏

Mgm(V j) by Proposition 3.1.1(2).

Besides, for any H ′
as in (29) we have H(Mgm(⊔V j)(s)[n]) =⊕

H(Mgm(V j)(s)[n]).

Below we will need some 
onventions for pro-s
hemes.

For pro-s
hemes U = lim
←−

Ui and V = lim
←−

Vj we will 
all an element of

lim
←−i∈I

(lim
−→j∈J

SmCor(Ui, Vj)) an open embedding if it 
an be obtained as a

double limit of open embeddings Ui → Vj (as varieties). If U = V \ W for

some pro-s
heme W , we will say that W is a 
losed sub-pro-s
heme of V . Note

that in this 
ase any 
onne
ted 
omponent of W is a 
losed subs
heme of some

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



84 M. V. Bondarko


onne
ted 
omponent of V ; yet some 
omponents of V 
ould 
ontain an in�nite

set of 
onne
ted 
omponents of W .

For V = ⊔V j
, V j

are 
onne
ted pro-s
hemes, we will 
all the maximum of the

trans
enden
e degrees of fun
tion �elds of V j
the dimension of V (note that

this is �nite). We will say that a sub-pro-s
heme U = ⊔Um
, Um

are 
onne
ted,

is everywhere of 
odimension r (resp. ≥ r, for some �xed r ≥ 0) in V = ⊔V j

if for every indu
ed embedding Um → V j
the di�eren
e of their dimensions

(de�ned as above) is r (resp. ≥ r).

We will 
all the inverse limit of the sets of points of Vi of a �xed 
odimension

s ≥ 0 the set of points of V of 
odimension s (note that any element of this set

indeed de�nes a point of some 
onne
ted 
omponent of V ).

3.3 Primitive schemes: reminder

In [29℄ M. Walker proved that primitive s
hemes in the 
ase of an in�nite k
have 'motivi
' properties similar to those of smooth semi-lo
al s
hemes (in the

sense of �4.4 of [26℄). Sin
e we don't want to dis
riminate the 
ase of a �nite

k, we will modify slightly the standard de�nition of primitive s
hemes.

Definition 3.3.1. If k is in�nite then a (pro-)s
heme is 
alled primitive if all of

its 
onne
ted 
omponents are a�ne and their 
oordinate rings Rj satisfy the fol-

lowing primitivity 
riterion: for any n > 0 every polynomial in Rj [X1, . . . , Xn]
whose 
oe�
ients generate Rj as an ideal over itself, represents an Rj-unit.

If k is �nite, then we will 
all a pro-s
heme primitive whenever all of its 
on-

ne
ted 
omponents are semi-lo
al (in the sense of �4.4 of [26℄).

Remark 3.3.2. Re
all that in the 
ase of in�nite k all semi-lo
al k-algebras
satisfy the primitivity 
riterion (see Example 2.1 of [29℄).

Below we will mostly use the following basi
 property of primitive s
hemes.

Proposition 3.3.3. Let S be a primitive pro-s
heme, let S0 be the 
olle
tion

of all of its generi
 points; F is a homotopy invariant presheaf with transfers.

Then F (S) ⊂ F (S0); here we de�ne F on pro-s
hemes as in (29).

Proof. We 
an assume that S is 
onne
ted (so it is a smooth primitive s
heme).

Hen
e in the 
ase of in�nite k our assertion follows from Theorem 4.19 of [29℄.

Now, if k is �nite, then S0 is semi-lo
al (by our 
onvention); so we may apply

Corollary 4.18 of [26℄ instead.

3.4 Basic motivic properties of primitive schemes

We will 
all a primitive pro-s
heme just a primitive s
heme. We prove 
ertain

motivi
 properties of primitive s
hemes (in the form in whi
h we will need them

below).
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Proposition 3.4.1. For F ∈ ObjDMeff
− we de�ne H ′(−) = DMeff

− (−, F )
on DMeff

gm ; we also de�ne H(Mgm(V )(i)[n]) as in (29). Let S be a primitive

s
heme, m ≥ 0, i ∈ Z.

1. Let F ∈ DMeff
−

t≤−1
(t is the homotopy t-stru
ture, that we 
onsidered in

�1.3). Then H(Mgm(S)(m)[m]) = {0}.

2. More generally, for any F ∈ ObjDMeff
− we have H([Mgm(S)(m)[m]) ∼=

F 0
−m(S) where F 0 = F t=0

, F 0
−m is the m-th Tate twist of F 0

(see De�nition

1.4.1).

Proof. 1. We 
onsider the homotopy invariant presheaf with transfers F−m :
X 7→ DMeff

− (Mgm(X)(m)[m], F ). We should prove that F−m(S) = 0 (here

we extend F−m to pro-s
hemes in the usual way i.e. as in (29)).

(29) also yields that F−m(⊔Si) =
⊕

F−m(Si). Hen
e by Proposition 3.3.3,

it su�
es to 
onsider the 
ase of S being (the spe
trum of) a fun
tion �eld

over k. Sin
e F−m is represented by an obje
t of DMeff
−

t≤−1
(see Proposition

1.4.2(2)), it su�
es to note that any �eld is a Henselian s
heme i.e. a point in

the Nisnevi
h topology.

2. By Proposition 1.4.2, for any X ∈ SmV ar we have Mgm(X)(m)[m] ⊥

DMeff
−

t≥1
. Hen
e we 
an assume F ∈ DMeff

−
t≤0

.

Next, using assertion 1, we 
an easily redu
e the situation to the 
ase F =
F t=0 ∈ ObjHI (by 
onsidering the t-de
omposition of F [−1]). In this 
ase the

statement is immediate from Proposition 1.4.2(1).

Lemma 3.4.2. Let U → U ′
be an open dense embedding of smooth varieties.

1. We have Cone(Mgm(U)→Mgm(U ′)) ∈ DMeff
−

t≤−1
.

2. Let S be primitive. Then for any n,m, i ≥ 0 the map

D(Mgm(S)(m)[m],Mgm(U)(n)[n+i])→ D(Mgm(S)(m)[m],Mgm(U ′)(n)[n+i])

is surje
tive.

Proof. 1. We denote Cone(Mgm(U) → Mgm(U ′)) ∈ DMeff
−

t≤−1
by C. Ob-

viously, C ∈ DMeff
−

t≤0
. Let H denote Ct=0

(H ∈ ObjHI). By Corol-

lary 4.19 of [26℄, we have H(U) ⊂ H(U ′). Next, from the long exa
t se-

quen
e {0}(= DMeff
− (Mgm(U)[1], H)) → DMeff

− (C,H) → DMeff
− (U ′, H) →

DMeff
− (U,H) → . . . we obtain C ⊥ H. Then the long exa
t sequen
e

· · · → DMeff
− (Ct≤−1[2], H) → DMeff

− (H,H) → DMeff
− (C,H) → . . . yields

H = 0.

2. It su�
es to 
he
k that Mgm(S)(m)[m] ⊥ C(n)[n+ i]. Sin
e Mgm(U)(n)[n]
is 
anoni
ally a retra
t of Mgm(U ×Gn

m), we 
an assume that n = 0.

Now the 
laim follows immediately from assertion 1 and Proposition 3.4.1(1).
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3.5 On morphisms between comotives of primitive schemes

We will need the fa
t that 
ertain 'positive' morphism groups are zero.

Let n,m,≥ 0, i > 0, Y = lim
←−

Yl (l ∈ L), be any pro-s
heme, X be a primitive

s
heme.

Proposition 3.5.1. 1. The natural homomorphism

D(Mgm(X)(m)[m],Mgm(Y )[n](n))→

→ lim
←−l

(lim
−→X⊂Z,Z∈SmV ar

DMeff
gm (Z(m)[m],Mgm(Yl)(n)[n]))

is surje
tive.

2. Mgm(X)(m)[m] ⊥Mgm(Y )[n+ i](n).

Proof. Note �rst that by the de�nition of the Tate twist (1), it 
an be lifted to

Cb(SmCor).

1. This is immediate from the short exa
t sequen
e (28).

2. By Remark 3.2.1(2), we may suppose that Y is 
onne
ted. Then

we apply (28) again. The 
orresponding lim
←−

-term is zero by Propo-

sition 3.4.1(1). Lastly, the surje
tivity proved in Lemma 3.4.2(2)

yields that the 
orresponding lim
←−

1
-term is zero. Indeed, the groups

D(Mgm(X)(m)[m],Mgm(Yl)[n + i − 1](n)) obviously satisfy the Mittag-

Le�er 
ondition; see �A.3 of [21℄.

In fa
t, one 
ould easily dedu
e the assertion from the results of the

previous subse
tion and (27) dire
tly (we do not need mu
h of the theory

of higher limits in this paper).

Remark 3.5.2. In fa
t, this statement, as well as all other properties of (prim-

itive) pro-s
hemes that we need, are also true for not ne
essary 
ountable dis-

joint unions of (primitive) pro-s
hemes. This observation 
ould be used to

extend the main results of the paper to a somewhat larger 
ategory; yet su
h

an extension does not seem to be important.

3.6 The Gysin distinguished triangle for pro-schemes; ’Gersten’

Postnikov towers for comotives of pro-schemes

We prove that we 
an pass to 
ountable homotopy limits in Gysin distinguished

triangles.

Proposition 3.6.1. Let Z,X be pro-s
hemes, Z a 
losed subs
heme of X
(everywhere) of 
odimension r. Then for any s ≥ 0 the natural morphism

Mgm(X \ Z)(s) → Mgm(X)(s) extends to a distinguished triangle (in D):

Mgm(X \ Z)(s)→Mgm(X)(s)→Mgm(Z)(r + s)[2r].
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Proof. First assume s = 0.
We 
an assume X = lim

←−
Xi, Z = lim

←−
Zi for i ∈ I, where Xi, Zi ∈ SmV ar, Zi

is 
losed everywhere of 
odimension r in Xi for all i ∈ I.
We take Yi = j(Xi \ Zi → Xi), Y = p(lim

←−i∈I
Yi). By parts 4 and 5 of Proposi-

tion 3.1.1 we have a distinguished triangle Mgm(X \ Z)→Mgm(X)→ Y .

It remains to prove that Y ∼= Mgm(Z)(r)[2r]. Proposition 2.4.5 of [9℄ (a

fun
torial form of the Gysin distinguished triangle for Voevodsky's motives)

yields that p(Yi) ∼= Mgm(Zi)(r)[2r]; moreover, the 
onne
ting morphisms

p(Yi) → p(Yi+1) are obtained from the 
orresponding morphisms Mgm(Zi) →
Mgm(Zi+1) by tensoring by Z(r)[2r]. It remains to re
all: by Proposition

3.1.1(9), the isomorphism 
lass of a homotopy limit in D 
an be 
ompletely

des
ribed in terms of (obje
ts and morphisms) of D (i.e. we don't have to


onsider the lifts of obje
ts and morphisms to D
′
). This yields the result.

Now, sin
e Mgm(X × Gm) = Mgm(X)
⊕

Mgm(X)(1)[1] for any X ∈ SmV ar
(hen
e this is also true for pro-s
hemes), the assertion for the 
ase s = 0 yields

the general 
ase easily.

Now we will 
onstru
t a 
ertain Postnikov tower Po(X) for X being the

(twisted) 
omotif of a pro-s
heme Z that will be related to the 
oniveau spe
-

tral sequen
es (for 
ohomology) of Z; our method was des
ribed in �1.5 above.

Note that we 
onsider the general 
ase of an arbitrary pro-s
heme Z (sin
e

in this paper pro-s
hemes play an important role); yet this 
ase is not mu
h

distin
t from the (partial) 
ase of Z ∈ SmV ar.

Corollary 3.6.2. We denote the dimension of Z by d (re
all the 
onventions

of �3.2).

For all i ≥ 0 we denote by Zi
the set of points of Z of 
odimension i.

For any s ≥ 0 there exists a Postnikov tower for X = Mgm(Z)(s)[s] su
h that

l = 0, m = d+ 1, Xi
∼=

∏
z∈Zi Mgm(z)(i+ s)[2i+ s].

Proof. As above, it su�
es to prove the statement for s = 0. Sin
e any produ
t
of distinguished triangles is distinguished, we 
an assume Z to be 
onne
ted.

We 
onsider a proje
tive system L whose elements are sequen
es of 
losed

subs
hemes ∅ = Zd+1 ⊂ Zd ⊂ Zd−1 ⊂ · · · ⊂ Z0. Here Z0 ∈ SmV ar, Zl ∈
V ar for l > 0, Z is open in Z0 (see �3.2; Z0 is 
onne
ted; in the 
ase when

Z ∈ SmV ar we only take Z0 = Z); for all j > 0 we have: Zj is everywhere of


odimension ≥ j in Z0; all irredu
ible 
omponents of all Zj are everywhere of


odimension ≥ j in Z0; and Zj+1 
ontains the singular lo
us of Zj (for j ≤ d).
The ordering in L is given by open embeddings of varieties Uj = Z0 \ Zj for

j > 0. For l ∈ L we will denote the 
orresponding sequen
e by ∅ = Zl
d+1 ⊂

Zl
d ⊂ Zl

d−1 ⊂ · · · ⊂ Zl
0. Note that L is 
ountable!

By the previous proposition, for any j we have a distinguished triangle

Mgm(lim
←−

(Zl
0 \ Z

l
j))→Mgm(lim

←−
(Zl

0 \ Z
l
j+1))→Mgm(lim

←−
(Zl

j \ Z
l
j+1)(j)[2j]).

It remains to 
ompute the last term; we �x some j.
We have lim

←−l∈L′
(Zl

j \Z
l
j+1))

∼=
∏

z∈Zi Mgm(z). Indeed, for all l ∈ L the variety

Zl
j \ Z

l
j+1 is the disjoint union of some lo
ally 
losed smooth subs
hemes of
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Zl
0 of 
odimension j; for any z0 ∈ Zj

for l ∈ L large enough z0 is 
ontained

in Zl
j \ Z

l
j+1 as an open sub-pro-s
heme, and the inverse limit of 
onne
ted


omponents of Zl
j \ Z

l
j+1 
ontaining z0 is exa
tly z0. Now, we 
an apply the

fun
tor X 7→ Mgm(X)(j)[2j] to this isomorphism. We obtain Mgm(lim
←−

(Zl
j \

Zl
j+1)(j)[2j])

∼=
∏

z∈Zi Mgm(z)(i). This yields the result.

Remark 3.6.3. 1. Alternatively, one 
ould 
onstru
t Po(X) for the (twisted)


omotif of a pro-s
heme T = lim
←−

T l
as the inverse limit of the Postnikov towers

for T l
(
onstru
ted as above yet with �xed Zl

0 = T l
); 
ertainly, to this end one

should pass to the limit in D
′
. It is easily seen that one would get the same

tower this way.

2. Certainly, if we shift a Postnikov tower for Mgm(Z)(s)[s] by [j] for some

j ∈ Z, we obtain a Postnikov tower for Mgm(Z)(s)[s+ j]. We didn't formulate

assertion 2 for these shifts only be
ause we wanted Xp
to belong to D

w=0
s (see

Proposition 4.1.1 below).

3. Sin
e the 
al
ulation of Xi
used Proposition 3.1.1(9), our method 
annot

des
ribe 
onne
ting morphisms between them (in D). Yet one 
an 
al
ulate

the 'images' of the 
onne
ting morphisms in D
naive

; see �1.5 and �6.1.

4 Main motivic results

The results of the previous se
tion 
ombined with those of �2.2 allow us to


onstru
t (in �4.1) a 
ertain Gersten weight stru
ture w on a 
ertain triangu-

lated Ds: DMeff
gm ⊂ Ds ⊂ D. Its main property is that 
omotives of fun
tion

�elds over k (and their produ
ts) belong to Hw. It follows immediately that

the Postnikov tower Po(X) provided by Corollary 3.6.2 is a weight Postnikov

tower with respe
t to w. Using this, in �4.2 we prove: if S is a primitive s
heme,

S0 is its dense sub-pro-s
heme, then Mgm(S) is a dire
t summand of Mgm(S0);
Mgm(K) (for a fun
tion �eld K/k) 
ontains (as retra
ts) 
omotives of primitive

s
hemes whose generi
 point is K, as well as twisted 
omotives of residue �elds

of K (for all geometri
 valuations).

In �4.3 we (easily) translate these results to 
ohomology; in parti
ular, the


ohomology of (the spe
trum of) K 
ontains dire
t summands 
orresponding

to the 
ohomology of primitive s
hemes whose generi
 point is K, as well as

twisted 
ohomology of residue �elds of K. Here one 
an 
onsider any 
oho-

mology theory H : Ds → A; one 
an obtain su
h an H by extending to Ds

any 
ohomologi
al H ′ : DMeff
gm → A if A satis�es AB5 (by means of Propo-

sition 1.2.1). Note: in this 
ase the 
ohomology of pro-s
hemes mentioned is


al
ulated in the 'usual' way.

In �4.4 we 
onsider weight spe
tral sequen
es 
orresponding to (the Gersten

weight stru
ture) w. We observe that these spe
tral sequen
es generalize natu-

rally the 
lassi
al 
oniveau spe
tral sequen
es. Besides, for a �xed H : Ds → A
our (generalized) 
oniveau spe
tral sequen
e 
onverging to H∗(X) (where X
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ould be a motif or just an obje
t of Ds) is Ds-fun
torial in X (i.e. it is mo-

tivi
ally fun
torial for obje
ts of DMeff
gm ); this fa
t is non-trivial even when

restri
ted to motives of smooth varieties.

In �4.5 we prove that there exists a ni
e duality D
op×DMeff

− → Ab (extending

the bi-fun
tor DMeff
− (−,−) : DMeff

gm
op ×DMeff

− → Ab); the Gersten weight

stru
ture w (on Ds) is left orthogonal to the homotopy t-stru
ture t on DMeff
−

with respe
t to it. This allows to apply Theorem 2.6.1: in the 
ase when H

omes from Y ∈ ObjDMeff

− we prove the isomorphism (starting from E2)

of (the 
oniveau) T (H,X) with the spe
tral sequen
e 
orresponding to the t-

trun
ations of Y . We des
ribe ObjDMeff
gm ∩D

w≤i
s in terms of t (for DMeff

− ).

We also note that our results allow to des
ribe torsion motivi
 
ohomology in

terms of (torsion) étale 
ohomology (see Remark 4.5.4(4)).

In �4.6 we de�ne the 
oniveau spe
tral sequen
e (starting from E2) for 
oho-

mology of a motif X over a not (ne
essarily) 
ountable perfe
t base �eld l as the
limit of the 
orresponding 
oniveau spe
tral sequen
es over 
ountable perfe
t

sub�elds of de�nition for X. This de�nition is 
ompatible with the 
lassi
al one

(for X being the motif of a smooth variety); so we obtain motivi
 fun
toriality

of 
lassi
al 
oniveau spe
tral sequen
es over a general base �eld.

In �4.7 we prove that the Chow weight stru
ture for DMeff
gm (introdu
ed in �6

of [6℄) 
ould be extended to D (
ertainly, the 
orresponding weight stru
ture

wChow di�ers from w). We will 
all the 
orresponding weight spe
tral sequen
es

Chow-weight ones; note that they are isomorphi
 to 
lassi
al (i.e. Deligne's)

weight spe
tral sequen
es when the latter are de�ned.

In �4.8 we use the results �2.7 to 
ompare 
oniveau spe
tral sequen
es with

Chow-weight ones. We always have a 
omparison morphism; it is an isomor-

phism if H is a birational 
ohomology theory.

In �4.9 we 
onsider the 
ategory of birational 
omotives Dbir (a 
ertain '
om-

pletion' of birational motives of [15℄) i.e. the lo
alization of D by D(1). It

turns our that w and wChow indu
e the same weight stru
ture w′
bir on Dbir.

Conversely, starting from w′
bir one 
an glue 'from sli
es' the weight stru
tures

indu
ed by w and wChow on D/D(n) for all n > 0. Furthermore, these stru
-

tures belong to an interesting family of weight stru
tures indexed by a single

integral parameter; other terms of this family 
ould be also interesting!

4.1 The Gersten weight structure for Ds ⊃ DMeff
gm

Now we des
ribe the main weight stru
ture of this paper. Unfortunately, the

author does not know whether it is possible to de�ne the Gersten weight stru
-

ture (see below) on the whole D. Yet for our purposes it is quite su�
ient to

de�ne the 
orresponding weight stru
ture on a 
ertain triangulated sub
ategory

Ds ⊂ D 
ontaining DMeff
gm (and 
omotives of all pro-s
hemes).

In order to make the 
hoi
e of Ds ⊂ D 
ompatible with extensions of s
alars,

we bound 
ertain dimensions of obje
ts of Hw.
We will denote by H the full sub
ategory of D whose obje
ts are all 
ountable

produ
ts

∏
l∈L Mgm(Kl)(nl)[nl]; here Kl are (the spe
tra of) fun
tion �elds
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over k, nl ≥ 0; we assume that the trans
enden
e degrees of Kl/k and nl are

bounded.

Proposition 4.1.1. 1. Let Ds be the Karoubi-
losure of 〈H〉 in D. Then

C = Ds 
an be endowed with a unique weight stru
ture w su
h that Hw 
ontains

H.

2. Hw is the idempotent 
ompletion of H.

3. Ds 
ontains DMeff
gm as well as all Mgm(Z)(l) for Z being a pro-s
heme,

l ≥ 0.
4. For any primitive S, i ≥ 0, we have Mgm(S)(i)[i] ∈ D

w=0
s .

5. Let Z be a pro-s
heme, s ≥ 0. Then Mgm(Z)(s)[s] ∈ D
w≤0
s ; the Postnikov

tower for Mgm(Z)(s)[s] given by Corollary 3.6.2 is a weight Postnikov tower

for it.

Proof. 1. By Proposition 3.5.1(2), H is negative (sin
e any obje
t of H is

a �nite sum of Mgm(Xi)(mi) for some primitive pro-s
hemes Xi, mi ∈ Z).

Besides, D is idempotent 
omplete (see Corollary 3.1.3(4)); hen
eDs andD
w=0
s

also are. Hen
e we 
an apply Theorem 2.2.1(18) (for D = H).

2. Also immediate from Theorem 2.2.1(18).

3. Mgm(Z)(l) ∈ ObjDs by Corollary 3.6.2; in parti
ular, this is true for Z ∈
SmV ar. It remains to note that DMeff

gm is the Karoubization of 〈Mgm(U) :
U ∈ SmV ar〉 in D.

4. It su�
es to note that Mgm(S)(i)[i] belongs both to D
w≤0
s and to D

w≥0
s by

Theorem 2.2.1(20). Here we use Proposition 3.5.1(2) again.

5. We have Xi ∈ D
w=0
s . Hen
e Theorem 2.2.1(14) yields the result. Note here

that we have Y0 = 0 in the notation of De�nition 2.1.2(9).

We will 
all w the Gersten weight stru
ture, sin
e it is 
losely 
onne
ted with

Gersten resolutions of 
ohomology (
f. �4.5 below). By default, below w will

denote the Gersten weight stru
ture.

Remark 4.1.2. 1. Hw is idempotent 
omplete sin
e Ds is.

2. In fa
t, one 
ould easily prove similar statements for C being just 〈H〉
(instead of its Karoubization in D). Certainly, for this version of C we will

only have C ⊃ Mgm(Kb(SmCor)).
Besides, note that for any fun
tion �eldK ′/k, any r ≥ 0, there exists a fun
tion
�eld K/k su
h that Mgm(K ′)(r)[r] is a retra
t of Mgm(K) (see Corollary 4.2.2

below). Hen
e it su�
es take H being the full sub
ategory of D whose obje
ts

are

∏
l∈L Mgm(Kl) (for bounded trans
enden
e degrees of Kl/k).

3. The proposition implies that Ds is exa
tly the Karoubization in D of the

triangulated 
ategory generated by 
omotives of all pro-s
hemes.

4. The author does not know whether one 
an des
ribe weight de
ompositions

for arbitrary obje
ts of DMeff
gm expli
itly. Still, one 
an say something about

these weight de
ompositions and weight 
omplexes using their fun
toriality

properties. In parti
ular, knowing weight 
omplexes for X,Y ∈ ObjDMeff
gm

(or just ∈ ObjDMs
) one 
an des
ribe the weight 
omplex of X → Y up to a
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homotopy equivalen
e as the 
orresponding 
one (see Lemma 6.1.1 below). Be-

sides, let X → Y → Z be a distinguished triangle (in D). Then for any 
hoi
e

of (Xw≤0, Xw≥1) and (Zw≤0, Zw≥1) there exists a 
hoi
e of (Y w≤0, Y w≥1)
su
h that there exist distinguished triangles Xw≤0 → Y w≤0 → Zw≤0

and

Xw≥1 → Y w≥1 → Zw≥1
; see Lemma 1.5.4 of [6℄. In parti
ular, we obtain that

j maps 
omplexes (over SmCor) 
on
entrated in degrees ≤ j into D
w≤j
s (we

will prove a stronger statement in Remark 4.5.4(4) below). If X ∈ ObjDMeff
gm


omes from a 
omplex over SmCor whose 
onne
ting morphisms satisfy 
ertain


odimension restri
tions, these observations 
ould be extended to an expli
it

des
ription of a weight de
omposition for it; 
f. �7.4 of [6℄.

4.2 Direct summand results for comotives

Proposition 4.1.1 easily implies the following interesting result.

Theorem 4.2.1. 1. Let S be a primitive s
heme; let S0 be its dense sub-pro-

s
heme. Then Mgm(S) is a dire
t summand of Mgm(S0).
2. Suppose moreover that S0 = S \ T where T is a 
losed subs
heme

of S everywhere of 
odimension r > 0. Then we have Mgm(S0) ∼=
Mgm(S)

⊕
Mgm(T )(r)[2r − 1].

Proof. We 
an assume that S and S0 are 
onne
ted.

1. By Proposition 4.1.1(5), we have: Mgm(S0),Mgm(S) ∈ D
w≤0
s ;

Mgm(Spec(k(S))) 
ould be assumed to be the zeroth term of their weight


omplexes for a 
hoi
e of weight 
omplexes 
ompatible with some negative

Postnikov weight towers for them; the embedding S0 → S is 
ompatible with

idMgm(Spec(k(S))) (sin
e we have a 
ommutative triangle Spec k(S) → S0 → S
of pro-s
hemes). Hen
e Theorem 2.2.1(16) yields the result.

2. By Proposition 3.6.1 we have a distinguished triangle Mgm(S0) →
Mgm(S) → Mgm(T )(r)[2r]. By parts 4 and 5 of Proposition 4.1.1 we have

Mgm(S0) ∈ D
w≤0
s , Mgm(S) ∈ D

w=0
s , Mgm(T )(r)[2r] ∈ D

w≤−r
s ⊂ D

w≤−1
s .

Hen
e Theorem 2.2.1(8) yields the result.

Corollary 4.2.2. 1. Let S be a 
onne
ted primitive s
heme, let S0 be its

generi
 point. Then Mgm(S) is a retra
t of Mgm(S0).
2. Let K be a fun
tion �eld over k. Let K ′

be the residue �elds for a geometri


valuation v of K of rank r. Then Mgm(K ′)(r)[r] is a retra
t of Mgm(K).

Proof. 1. This is just a partial 
ase of part 1 of the the theorem.

2. Obviously, it su�
es to prove the statement in the 
ase r = 1. Next, K is

the fun
tion �eld of some normal proje
tive variety over k. Hen
e there exists
a U ∈ SmV ar su
h that: k(U) = K, v yields a non-empty 
losed subs
heme

of U (sin
e the singular lo
us has 
odimension ≥ 2 in a normal variety). It

easily follows that there exists a pro-s
heme S (i.e. an inverse limit of smooth

varieties) whose only points are the spe
tra of K and K0. So, S is lo
al, hen
e

it is primitive.
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By part 2 of the theorem, we have

Mgm(SpecK) = Mgm(S)
⊕

Mgm(SpecK0)(1)[1];

this 
on
ludes the proof.

Remark 4.2.3. 1. Note that we do not 
onstru
t any expli
it splitting mor-

phisms in the de
ompositions above. Probably, one 
annot 
hoose any 
anoni-


al splittings here (in the general 
ase); so there is no (automati
) 
ompatibility

for any pair of related de
ompositions. Respe
tively, though 
omotives of (spe
-

tra of) fun
tion �elds 
ontain tons of dire
t summands, there seems to be no

general way to de
ompose them into inde
omposable summands.

2. Yet Proposition 3.6.1 easily yields that Mgm(Spec k(t)) ∼=
Z
⊕∏

E Mgm(E)(1)[1]; here E runs through all 
losed points of A
1
(
on-

sidered as a s
heme over k).

4.3 On cohomology of pro-schemes, and its direct summands

The results proved above immediately imply similar assertions for 
ohomology.

We also 
onstru
t a 
lass of 
ohomology theories that respe
t homotopy limits.

Proposition 4.3.1. Let H : Ds → A be 
ohomologi
al, S be a primitive

s
heme.

1. Let S0 be a dense sub-pro-s
heme of S. Then H(Mgm(S)) is a dire
t sum-

mand of H(Mgm(S0)).
2. Suppose moreover that S0 = S \ T where T is a 
losed sub-

s
heme of S of 
odimension r > 0. Then we have H(Mgm(S0)) ∼=
H(Mgm(S))

⊕
H(Mgm(T )(r)[2r − 1]).

3. Let S be 
onne
ted, S0 be the generi
 point of S. Then H(Mgm(S)) is a

retra
t of H(Mgm(S0)) in A.
4. Let K be a fun
tion �eld over k. Let K ′

be the residue �eld for a geometri


valuation v of K of rank r. Then H(Mgm(K ′)(r)[r]) is a retra
t of H(Mgm(K))
in A.
5. Let H ′ : DMeff

gm → A be a 
ohomologi
al fun
tor, let A satisfy AB5. Then

Proposition 1.2.1 allows to extend H ′
to a 
ohomologi
al fun
tor H : D → A

that 
onverts inverse limits in D
′
to the 
orresponding dire
t limits in A.

Proof. 1. Immediate from Theorem 4.2.1(1).

2. Immediate from Theorem 4.2.1(2).

3. Immediate from Corollary 4.2.2(1).

4. Immediate from Corollary 4.2.2(2).

5. Immediate from Proposition 1.2.1; note that DMeff
gm is skeletally small.

Here in order to prove that H 
onverts homotopy limits into dire
t limits we

use part I2 of lo
.
it. and Proposition 3.1.1(7).
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Remark 4.3.2. 1. In the setting of assertion 5 we will 
all H an extended


ohomology theory.

Note that for H ′ = DMeff
gm (−, Y ), Y ∈ ObjDMeff

gm , we have H = D(−, Y );
see (4).

2. Now re
all that for any pro-s
heme Z, any i ≥ 0, Mgm(Z)(i) (by de�nition)


ould be presented as a 
ountable homotopy limit of geometri
 motives. More-

over, the same is true for all small 
ountable produ
ts of Mgm(Zl)(i). Hen
e

if H is extended, then the 
ohomology of

∏
Mgm(Zl)(i) is the 
orresponding

dire
t limit; this 
oin
ides with the de�nition given by (29) (
f. Remark 3.2.1).

In parti
ular, one 
an apply the results of Proposition 4.3.1 to the usual étale


ohomology of pro-s
hemes mentioned (with values in Ab or in some 
ategory

of Galois modules).

3. If H ′
is also a tensor fun
tor (i.e. it 
onverts tensor produ
t in DMeff

gm into

tensor produ
ts in D(A)), then 
ertainly the 
ohomology of Mgm(K ′)(r)[r] is
the 
orresponding tensor produ
t ofH∗(Mgm(K ′)) withH∗(Z(r)[r]). Note that
the latter one is a retra
t of H∗(Gr

m); we obtain the Tate twist for 
ohomology

this way.

4.4 Coniveau spectral sequences for cohomology of (co)motives

Let H : Dop
s → A be a 
ohomologi
al fun
tor, X ∈ ObjDs.

Proposition 4.4.1. 1. Any 
hoi
e of a weight spe
tral sequen
e T (H,X) (see
Theorem 2.4.2) 
orresponding to the Gersten weight stru
ture w is 
anoni
al

and Ds-fun
torial in X starting from E2.

2. T (H,X) 
onverges to H(X).
3. Let H be an extended theory (see Remark 4.3.2), X = Mgm(Z) for

Z ∈ SmV ar. Then any 
hoi
e of T (H,X) starting from E2 is 
anoni
ally

isomorphi
 to the 
lassi
al 
oniveau spe
tral sequen
e (
onverging to the H-


ohomology of Z; see �1 of [8℄).

Proof. 1. This is just a partial 
ase of Theorem 2.4.2(I).

2. Immediate sin
e w is bounded; see part I2 of lo
.
it.

3. Re
all that in the proof of Corollary 3.6.2 a 
ertain Postnikov tower

Po(X) for X was obtained from 
ertain 'geometri
' Postnikov towers (in

j(Cb(SmCor))) by passing to the homotopy limit. Now, the 
oniveau spe
-

tral sequen
e (for the H-
ohomology of Z) in �1.2 of [8℄ was 
onstru
ted by

applyingH to the same geometri
 towers and then passing to the indu
tive limit

(in A). Furthermore, Remark 4.3.2(2) yields that the latter limit is (naturally)

isomorphi
 to the spe
tral sequen
e obtained via H from Po(X). Next, sin
e

Po(X) is a weight Postnikov tower for X (see Proposition 4.1.1(5)), we obtain

that the latter spe
tral sequen
e is one of the possible 
hoi
es for T (H,X).
Lastly, assertion 1 yields that all other possible T (H,X) (they depend on the


hoi
e of a weight Postnikov tower for X) starting from E2 are also 
anoni
ally

isomorphi
 to the 
lassi
al 
oniveau spe
tral sequen
e mentioned.
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Remark 4.4.2. 1. Hen
e we proved (in parti
ular) that 
lassi
al 
oniveau

spe
tral sequen
es (for 
ohomology theories that 
ould be fa
torized through

motives; this in
ludes étale and singular 
ohomology of smooth varieties) are

DMeff
gm -fun
torial (starting from E2); we also obtain su
h a fun
toriality for

the 
oniveau �ltration for 
ohomology! These fa
ts are far from being obvious

from the usual de�nition of the 
oniveau �ltration and spe
tral sequen
es, and

seem to be new (in the general 
ase). So, we justi�ed the title of the paper.

We also obtain 
ertain 
oniveau spe
tral sequen
es for 
ohomology of singular

varieties (for 
ohomology theories that 
ould be fa
torized through DMeff
gm ; in

the 
ase char k > 0 one also needs rational 
oe�
ients here).

2. Assertion 3 of the proposition yields a ni
e reason to 
all (any 
hoi
e of)

T (H,X) a 
oniveau spe
tral sequen
e (for a general H,A, and X ∈ ObjDs);

this will also distinguish (this version of) T from weight spe
tral sequen
es


orresponding to other weight stru
tures. We will give more justi�
ation for

this term in Remark 4.5.4 below. So, the 
orresponding �ltration 
ould be


alled the (generalized) 
oniveau �ltration.

4.5 An extension of results of Bloch and Ogus

Now we want to relate 
oniveau spe
tral sequen
es with the homotopy t-
stru
ture (in DMeff

− ). This would be a vast extension of the seminal results of

�6 of [5℄ (i.e. of the 
al
ulation by Blo
h and Ogus of the E2-terms of 
oniveau

spe
tral sequen
es) and of �6 of [11℄.

We should relate t (for DMeff
− ) and w; it turns out that they are orthogonal

with respe
t to a 
ertain quite natural ni
e duality.

Proposition 4.5.1. For any Y ∈ ObjDMeff
− we extend H ′ = DMeff

− (−, Y )
from DMeff

gm to D ⊃ Ds by the method of Proposition 1.2.1; we de�ne

Φ(X,Y ) = H(X). Then the following statements are valid.

1. Φ is a ni
e duality (see De�nition 2.5.1).

2 w is left orthogonal to the homotopy t-stru
ture t (on DMeff
− ) with respe
t

to Φ.
3. Φ(−, Y ) 
onverts homotopy limits (in D

′
) into dire
t limits in Ab.

Proof. 1. By Proposition 2.5.6(1), the restri
tion of Φ to DMeff
gm

op ×DMeff
−

is a ni
e duality. It remains to apply part 3 of lo
.
it.

2. In the notation of Proposition 2.5.3, we take for D the set of all small

produ
ts

∏
l∈L Mgm(Kl)(nl)[nl] ∈ ObjDs; here Mgm(Kl) denote 
omotives of

(spe
tra of) some fun
tion �elds over k, nl ≥ 0 and the trans
enden
e degrees

of Kl/k are bounded (
f. �4.1). Then D,Φ satisfy the assumptions of the

proposition by Proposition 3.4.1(2) (see also Remark 4.3.2(2)).

3. Immediate from Proposition 4.3.1(3).

Remark 4.5.2. 1. Suppose that we have an indu
tive family Yi ∈ ObjDMeff
−


onne
ted by a 
ompatible family of morphisms with some Y ∈ DMeff
− su
h
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that: for any Z ∈ ObjDMeff
gm we have DMeff

− (Z, Y ) ∼= lim
−→

DMeff
− (Z, Yi) (via

these morphisms Yi → Y ). In su
h a situation it is reasonable to 
all Y a

homotopy 
olimit of Yi.

The de�nition of Φ in the proposition easily implies: for anyX ∈ ObjD we have

Φ(X,Y ) = lim
−→

Φ(X,Yi). So, one may say that all obje
ts of D are '
ompa
t

with respe
t to Φ', whereas part 3 of the proposition yields that all obje
ts of

DMeff
− are '
o
ompa
t with respe
t to Φ'. Note that no analogues of these ni
e

properties 
an hold in the 
ase of an adja
ent weight and t-stru
ture (de�ned

on a single triangulated 
ategory).

2. Now, we 
ould have repla
ed DMeff
gm by DMgm everywhere in the 'axiomat-

i
s' of D (in Proposition 3.1.1). Then the 
orresponding 
ategory Dgm 
ould

be used for our purposes (instead of D), sin
e our arguments work for it also.

Note that we 
an extend Φ to a ni
e duality D
op
gm ×DMeff

− → Ab; to this end

it su�
es for Y ∈ ObjDMeff
− to extend H ′

to DMgm in the following way:

H ′(X(−n)) = DMeff
− (X,Y (n)) for X ∈ ObjDMeff

gm ⊂ ObjDMgm, n ≥ 0.
Moreover, the methods of �5.4.3 allow to de�ne an invertible Tate twist fun
tor

on Dgm.

Corollary 4.5.3. 1. If H is represented by a Y ∈ ObjDMeff
− (via our Φ)

then for a (
o)motif X our 
oniveau spe
tral sequen
e T (H,X) starting from E2


ould be naturally expressed in terms of the 
ohomology of X with 
oe�
ients

in t-trun
ations of Y (as in Theorem 2.6.1).

In parti
ular, the 
oniveau �ltration for H∗(X) 
ould be des
ribed as in part 2

of lo
.
it.

2. For U ∈ ObjDMeff
gm , i ∈ Z, we have U ∈ D

w≤i
s ⇐⇒ U ∈ DMeff

−
t≤i

.

Proof. 1. Immediate from Proposition 4.5.1.

2. By Theorem 2.2.1(20), we should 
he
k whether Z ⊥ U for any Z =∏
l∈L Mgm(Kl)(nl)[nl + r], where Kl are fun
tion �elds over k, nl ≥ 0

and the trans
enden
e degrees of Kl/k are bounded, r > 0 (see Proposi-

tion 4.1.1(2)). Moreover, sin
e U is 
o
ompa
t in D, it su�
es to 
onsider

Z = Mgm(K ′)(n)[n + r] (K ′/k is a fun
tion �eld, n ≥ 0). Lastly, Corollary

4.2.2(2) redu
es the situation to the 
ase Z = Mgm(K) (K/k is a fun
tion

�eld).

Hen
e (25) implies: U ∈ D
w≤i
s whenever for any j > i, any fun
tion �eld K/k,

the stalk of U t=j
at K is zero. Now, if U ∈ DMeff

−
t≤i

then U t=j = 0 for all

j > i; hen
e all stalks of U t=j
are zero. Conversely, if all stalks of U t=j

at

fun
tion �elds are zero, then Corollary 4.19 of [26℄ yields U t=j = 0 (see also

Corollary 4.20 of lo
.
it.); if U t=j = 0 for all j > i then U ∈ DMeff
−

t≤i
.

Remark 4.5.4. 1. Our 
omparison statement is true for Y -
ohomology of an

arbitraryX ∈ ObjDMeff
gm ; this extends to motives Theorem 6.4 of [11℄ (whereas

the latter essentially extends the results of �6 of [5℄). We obtain one more

reason to 
all T (in this 
ase) the 
oniveau spe
tral sequen
e for (
ohomology

of) motives.
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2. If Y ∈ ObjHI, then E2(T ) yields the Gersten resolution for Y (when X
varies); this is why we 
alled w the Gersten weight stru
ture.

3. Now, let Y represent étale 
ohomology with 
oe�
ients in Z/lZ, l is prime to

char k (Y is a
tually unbounded from above, yet this is not important). Then

the t-trun
ations of Y represent Z/lZ-motivi
 
ohomology by the (re
ently

proved) Beilinson-Li
htenbaum 
onje
ture (see [28℄; this paper is not published

at the moment). Hen
e Proposition 2.5.4(1) yields some new formulae for Z/lZ-
motivi
 
ohomology of X and for the 'di�eren
e' between étale and motivi



ohomology. Note also that the virtual t-trun
ations (mentioned in lo
.
it.)

are exa
tly the D2-terms of the alternative exa
t 
ouple for T (H,X) and for

the version of the exa
t 
ouple used in the 
urrent paper respe
tively (i.e.

we 
onsider exa
t 
ouples 
oming from the two possible versions for a weight

Postnikov tower for X, as des
ribed in Remark 2.1.3). See also �7.5 of [6℄ for

more expli
it results of this sort. It 
ould also be interesting to study 
oniveau

spe
tral sequen
es for singular 
ohomology; this 
ould yield a 
ertain theory of

'motives up to algebrai
 equivalen
e'; see Remark 7.5.3(3) of lo
.
it. for more

details.

5. Assertion 2 of the 
orollary yields that D
w≤0
s ∩ ObjDMeff

gm is large enough

to re
over w (in a 
ertain sense); in parti
ular, this assertion is similar to

the de�nition of adja
ent stru
tures (see Remark 2.5.7). In 
ontrast, D
w≥0
s ∩

ObjDMeff
gm seems to be too small.

4.6 Base field change for coniveau spectral sequences; functo-
riality for an uncountable k

It 
an be easily seen (and well-known) that for any perfe
t �eld extension l/k
there exist an extension of s
alars fun
tor DMeff

gm k → DMeff
gm l 
ompatible

with the extension of s
alars for smooth varieties (and for Kb(SmCor)). In

5.4.2 below we will prove that this fun
tor 
ould be expanded to a fun
tor

Extl/k : Dk → Dl that sends Mgm,k(X) to Mgm,l(Xl) for a pro-s
heme X/k;
this extension pro
edure is fun
torial with respe
t to embeddings of base �elds.

Moreover, Extl/k maps Dsk into Dsl. Note the existen
e of base 
hange for


omotives does not follow from the properties of D listed in Proposition 3.1.1;

yet one 
an de�ne base 
hange for our model of 
omotives (des
ribed in �5

below) and (probably) for any other possible reasonable version of D.

Now we prove that base 
hange for 
omotives yields base 
hange for 
oniveau

spe
tral sequen
es; it also allows to prove that these spe
tral sequen
es are

motivi
ally fun
torial for not ne
essary 
ountable base �elds.

In order to make the limit in Proposition 4.6.1(2) below well-de�ned, we assume

that for any X ∈ ObjDMeff
gm there is a �xed representative Y,Z, p 
hosen,

where: Z, Y ∈ Cb(SmCor), Mgm(Y ) ∼= Mgm(Z), p ∈ Cb(SmCor)(Y,Z) yields
a dire
t summand of Mgm(Y ) in DMeff

gm that is isomorphi
 to X. We also

assume that all the 
omponents of (X,Y, p) have �xed expressions in terms of

algebrai
 equations over k; so one may speak about �elds of de�nition for X.
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Proposition 4.6.1. Let l be a perfe
t �eld, H : Dl → A be any 
ohomologi
al

fun
tor (for an abelian A). For any perfe
t k ⊂ l we denote H◦Extl/k : Dk → A
by Hk.

1. Let l be 
ountable. Then for any X ∈ ObjDk the method of Proposition

2.7.3(II) yields some morphism Nl/k : Twk
(Hk, X) → Twl

(H,Extl/k(X)); this
morphism is unique and Dk-fun
torial in X starting from E2.

The 
orresponden
e (l, k) 7→ Nl/k is asso
iative with respe
t to extensions of


ountable �elds (starting from E2); 
f. part I3 of lo
.
it.

2. Let l be a not (ne
essarily) 
ountable perfe
t �eld, let A satisfy AB5.

For X ∈ ObjDMeff
gm l we de�ne Tw(H,X) = lim

−→k
Twk

(Hk, Xk). Here we take

the limit with respe
t to all perfe
t k ⊂ l su
h that k is 
ountable, X is de�ned

over k; the 
onne
ting morphisms are given by the maps N−/− mentioned in

assertion 1; we start our spe
tral sequen
es from E2. Then Tw(H,X) is a

well-de�ned spe
tral sequen
e that is DMeff
gm l-fun
torial in X.

3. If X = Mgm,l(Z), Z ∈ SmV ar, H is as an extended theory, and A sat-

is�es AB5, the spe
tral sequen
e given by the previous assertion is 
anoni
ally

isomorphi
 to the 
lassi
al 
oniveau spe
tral sequen
e (for (H,Z); 
onsidered

starting from E2).

Proof. 1. By Proposition 2.7.3(II) it su�
es to 
he
k that Extl/k is left weight-

exa
t (with respe
t to weight stru
tures in question). We take D being the


lass of all small produ
ts

∏
l∈L Mgm(Kl), where Mgm(Kl) denote 
omotives

of (spe
tra of) fun
tion �elds over k of bounded trans
enden
e degree. Propo-

sition 4.1.1 and Corollary 4.2.2(2) yield that any X ∈ Ds
w=0
k is a retra
t of

some element of D. It su�
es to 
he
k that for any X =
∏

l∈L Mgm,k(Kl) we

have Extl/k X ∈ Ds
wl≤0
l ; here we re
all that wk is bounded and apply Lemma

2.7.5.

Now, X is the 
omotif of a 
ertain pro-s
heme, hen
e the same is true for

Extl/k X. It remains to apply Proposition 4.1.1(5).

2. By the asso
iativity statement in the previous assertion, the limit is well-

de�ned. Sin
e A satis�es AB5, we obtain a spe
tral sequen
e indeed. Sin
e

we have k-motivi
 fun
toriality of 
oniveau spe
tral sequen
es over ea
h k, we
obtain l-motivi
 fun
toriality in the limit.

3. Again (as in the proof of Proposition 4.4.1(3)) we re
all that the 
lassi
al


oniveau spe
tral sequen
e for this 
ase is de�ned by applying H to 'geometri
'

Postnikov towers (
oming from elements of L as in the proof of Corollary 3.6.2)

and then passing to the limit (in A) with respe
t to L. Our assertion follows

easily, sin
e ea
h l ∈ L is de�ned over some perfe
t 
ountable k ⊂ l; the limit

of the spe
tral sequen
es with respe
t to the subset of L de�ned over a �xed k
is exa
tly Twk

(Hk, Xk) sin
e H sends homotopy limits to indu
tive limits in A
(being an extended theory).

Here we 
ertainly use the fun
toriality of T starting from E2.
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Remark 4.6.2. 1. For a general X ∈ ObjDMeff
gm we only have a 
anoni
al


hoi
e of base 
hange maps (for T (Hkl
, X)) starting from E2; this is why we

start our spe
tral sequen
e from the E2-level.

2. Assertion 2 of the proposition is also valid for any 
omotif de�ned over a

(perfe
t) 
ountable sub�eld of l. Unfortunately, this does not seem to in
lude


omotives of fun
tion �elds over l (of positive trans
enden
e degrees, if l is not

ountable).

4.7 The Chow weight structure for D

Till the end of the se
tion, we will either assume that char k = 0, or that we
deal with motives, 
omotives, and 
ohomology with rational 
oe�
ients (we

will use the same notation for motives with integral and rational 
oe�
ients;


f. �6.3 below).

We prove that D supports a weight stru
ture that extends the Chow weight

stru
ture of DMeff
gm (see �6.5 and Remark 6.6.1 of [6℄, and also [7℄).

In this subse
tion we do not require k to be 
ountable.

Proposition 4.7.1. 1. There exists a Chow weight stru
ture on DMeff
gm that

is uniquely 
hara
terized by the 
ondition that all Mgm(P ) for P ∈ SmPrV ar
belong to its heart; it 
ould be extended to a weight stru
ture wChow on D.

2. The heart of wChow is the 
ategory HChow of arbitrary small produ
ts of

(e�e
tive) Chow motives.

3. We have X ∈ D
wChow≥0

if and only if D(X,Y [i]) = {0} for any Y ∈
ObjChoweff

, i > 0.
4. There exists a t-stru
ture tChow on D that is right adja
ent to wChow (see

Remark 2.5.7). Its heart is the opposite 
ategory to Choweff ∗
(i.e. it is equiv-

alent to (AddFun(Choweff , Ab))op).
5. wChow respe
ts produ
ts i.e. Xi ∈ D

wChow≤0 =⇒
∏

Xi ∈ D
wChow≤0

and

Xi ∈ D
wChow≥0 =⇒

∏
Xi ∈ D

wChow≥0
.

6. For

∏
Xi there exists a weight de
omposition:

∏
Xi →

∏
Xw≤0

i →∏
Xw≥1

i .

7. If H : D → A is an extended theory, then the fun
tor that sends X to the

derived exa
t 
ouple for TwChow
(H,X) (see Theorem 2.4.2) 
onverts all small

produ
ts into dire
t sums.

Proof. 1. It was proved in (Proposition 6.5.3 and Remark 6.6.1 of) [6℄ that

there exists a unique weight stru
ture w′
Chow on DMeff

gm su
h that Mgm(P ) ∈

D
w′

Chow
=0

for all P ∈ SmPrV ar. Moreover, the heart of this stru
ture is

exa
tly Choweff ⊂ DMeff
gm .

Now, DMeff
gm is generated by Choweff

. It easily follows that {Mgm(P ), P ∈
SmPrV ar} weakly 
ogenerates D. Then the dual (see Theorem 2.2.1(1)) of

Theorem 4.5.2(I2) of [6℄ yields that w′
Chow 
ould be extended to a weight stru
-

ture wChow for D. Moreover, the dual to part II1 of lo
.
it. yields that for this

extension we have: HwChow is the idempotent 
ompletion of HChow.
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2. It remains to prove that HChow is idempotent 
omplete. This is obvious

sin
e Choweff
is.

3. This is just the dual of (27) in lo
.
it.

4. The dual statement to part I2 of lo
.
it. (
f. Remark 1.1.3(1)) yields the

existen
e of tChow. Applying the dual of Theorem 4.5.2(II1) of [6℄ we obtain

for the heart of t: HtChow
∼= (Choweff

∗ )op.

5. Theorem 2.2.1(2) easily yields that D
wChow≤0

is stable with respe
t to

produ
ts. The stability of D
wChow≥0

with respe
t to produ
ts follows from

assertion 3; here we re
all that all obje
ts of Choweff
are 
o
ompa
t in D.

6. Immediate from the previous assertion; note that any small produ
t of

distinguished triangles is distinguished (see Remark 1.2.2 of [21℄).

7. Sin
e H is extended, it 
onverts produ
ts in D into dire
t sums in A. Hen
e
for any Xi ∈ ObjD there exist a 
hoi
e of exa
t 
ouples for the 
orresponding

weight spe
tral sequen
es for Xi and
∏

Xi that respe
ts produ
ts i.e su
h that

Dpq
1 TwChow

(H,
∏

Xi) ∼=
⊕

i D
pq
1 TwChow

(H,Xi) and Epq
1 TwChow

(H,
∏

Xi) ∼=⊕
i E

pq
1 TwChow

(H,Xi) (for all p.q ∈ Z; this isomorphism is also 
ompatible

with the 
onne
ting morphisms of 
ouples). Sin
e A satis�es AB5, we obtain

the isomorphism desired for D2 and E2-terms (note that those are uniquely

determined by H and X).

Remark 4.7.2. 1. In Remark 2.4.3 of [6℄ it was shown that weight spe
tral

sequen
es 
orresponding to the Chow weight stru
ture are isomorphi
 to the


lassi
al (i.e. Deligne's) weight spe
tral sequen
es when the latter are de�ned

(i.e. for singular or étale 
ohomology of varieties). Yet in order to spe
ify the


hoi
e of a weight stru
ture here we will 
all these spe
tral sequen
es Chow-

weight ones.

2. All the assertions of the Proposition 
ould be extended to arbitrary tri-

angulated 
ategories with negative families of 
o
ompa
t weak 
ogenerators

(sometimes one should also demand all produ
ts to exist; in assertion 7 we

only need H to 
onvert all produ
ts into dire
t sums).

3. Sin
e (e�e
tive) Chow motives are 
o
ompa
t in D, HwChow is the


ategory of 'formal produ
ts' of Choweff
i.e. D(

∏
l∈L Xl,

∏
i∈I Yi) =∏

i∈I(⊕l∈LChoweff (Xl, Yi)) for Xl, Yl ∈ ObjChoweff ⊂ ObjD (
f. Remark

4.5.3(2) of [6℄).

4. Re
all (see �7.1 of ibid.) that DMeff
− supports (adja
ent) Chow weight

and t-stru
tures (we will denote them by w′
Chow and t′Chow, respe
tively). One


ould also 
he
k that these stru
tures are right orthogonal to the 
orresponding

Chow stru
tures for D. Hen
e, applying Proposition 2.5.4(1) repeatedly one


ould relate the 
ompositions of trun
ations (on Ds ⊂ D) via w and via tChow

(resp. via w and via wChow) with trun
ations via t and via w′
Chow (resp. via

t and via t′Chow) on DMeff
− ; 
f. �8.3 of [6℄. One 
ould also apply wChow-

trun
ations and then w-trun
ations (i.e. 
ompose trun
ations in the opposite

order) when starting from an obje
t of DMeff
gm . Re
all also that trun
ations via
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tChow (and their 
ompositions with t-trun
ations) are related with unrami�ed


ohomology; see Remark 7.6.2 of ibid.

4.8 Comparing Chow-weight and coniveau spectral sequences

Now we prove that Chow-weight and 
oniveau spe
tral sequen
es are naturally

isomorphi
 for birational 
ohomology theories.

Proposition 4.8.1. 1. wChow for D dominates w (for Ds) in the sense of

�2.7.

2. Let H : DMeff
gm → A be an extended 
ohomology theory in the sense of

Remark 4.3.2; suppose that H is birational i.e. that H(Mgm(P )(1)[i]) = 0 for

all P ∈ SmPrV ar, i ∈ Z. Then for any X ∈ ObjDs the Chow-weight spe
tral

sequen
e TwChow
(H,X) (
orresponding to wChow) is naturally isomorphi
 start-

ing from E2 to (our) 
oniveau spe
tral sequen
e Tw(H,X) via the 
omparison

morphism M given by Proposition 2.7.3(I1).

Proof. 1. Let D be the 
lass of all 
ountable produ
ts

∏
l∈L Mgm(Kl), where

Mgm(Kl) denote 
omotives of (spe
tra of) fun
tion �elds over k of bounded

trans
enden
e degree. Proposition 4.1.1 and Corollary 4.2.2(2) yield that any

X ∈ D
w=0
s is a retra
t of some element of D. It su�
es to 
he
k that any

X =
∏

l∈L Mgm(Kl) belongs to D
wChow≥0

; here we re
all that w is bounded

and apply Lemma 2.7.5.

By Proposition 4.7.1(5), we 
an assume that L 
onsists of a single element.

In this 
ase we have D(Mgm(Kl),Mgm(P )[i]) = 0 (this is a trivial 
ase of

Proposition 3.5.1); hen
e lo
.
it. yields the result.

2. We take the same D and X as above.

Let char k = 0. We 
hoose Pl ∈ SmPrV ar su
h that Kl are their fun
-

tion �elds. Sin
e all Mgm(Pl) are 
o
ompa
t in D, we have a natural

morphism X →
∏

Mgm(Pl). By Proposition 2.7.3(I2), it su�
es to 
he
k

that Cone(X →
∏

Mgm(Pl)) ∈ D
wChow≥0

, H(X) ∼= H(
∏

Mgm(Pl)), and

E∗∗
2 TwChow

(H,Cone(X →
∏

Mgm(Pl))) = 0.
By Proposition 4.7.1(7) we obtain: it su�
es again to verify these statements

in the 
ase when L 
onsists of a single element. Now, we have Spec(Kl) =
lim
←−

Mgm(U) for U ∈ SmV ar, k(U) = Kl. Therefore (27) yields: it su�
es to

verify assertions required for Z = Mgm(U → P ) instead, where U ∈ SmV ar,
U is open in P ∈ SmPrV ar.
The Gysin distinguished triangle for Voevodsky's motives (see Proposition 2.4.5

of [9℄) easily yields by indu
tion that Z ∈ ObjDMeff
gm (1).

Sin
e Choweff
is − ⊗ Z(1)[2]-stable, we obtain that there exists a wChow-

Postnikov tower for Z su
h that all of its terms are divisible by Z(1); this yields
the vanishing of E∗∗

2 TwChow
(H,Z). Lastly, the fa
t that Z ∈ DMeff

gm
w′

Chow
≥0

was (essentially) proved by easy indu
tion (using the Gysin triangle) in the

proof of Theorem 6.2.1 of [7℄.

In the 
ase char k > 0, de Jong's alterations allow to repla
e Mgm(Pl) in

the reasoning above by some Chow motives (with rational 
oe�
ients); see
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Appendix B of [14℄; we will not write down the details here.

Remark 4.8.2. Assertion 2 is not very a
tual for 
ohomology of smooth varieties

sin
e any Z ∈ SmPrV ar is birationally isomorphi
 to P ∈ SmPrV ar (at least
for char k = 0). Yet the statement be
omes more interesting when applied for

X = M c
gm(Z).

4.9 Birational motives; constructing the Gersten weight struc-
ture by gluing; other possible weight structures

An alternative way to prove Proposition 4.8.1(2) is to 
onsider (following [15℄)

the 
ategory of birational 
omotives. It satis�es the following properties:

(i) All birational 
ohomology theories fa
torize through it.

(ii) Chow and Gersten weight stru
tures indu
e the same weight stru
ture on

it (see De�nition 2.7.1(4)).

(iii) More generally, for any n ≥ 0 Chow and Gersten weight stru
tures indu
e

weight stru
tures on the lo
alizations D(n)/D(n + 1) ∼= Dbir (we 
all these

lo
alizations sli
es) that di�er only by a shift.

Moreover, one 
ould 'almost re
over' original Chow and Gersten weight stru
-

tures starting from this single weight stru
ture.

Now we des
ribe the 
onstru
tions and fa
ts mentioned in more detail. We

will be rather sket
hy here, sin
e we will not use the results of this subse
tion

elsewhere in the paper. Possibly, the details will be written down in another

paper.

As we will show in �5.4.3 below, the Tate twist fun
tor 
ould be extended (as

an exa
t fun
tor) from DMeff
gm to D; this fun
tor is 
ompatible with (small)

produ
ts.

Proposition 4.9.1. I The fun
tor − ⊗ Z(1)[1] is weight-exa
t with respe
t to

w on Ds; −⊗ Z(1)[2] is weight-exa
t with respe
t to wChow on D (we will say

that w is −⊗ Z(1)[1]-stable, and wChow is −⊗ Z(1)[2]-stable).
II Let Dbir denote the lo
alization of D by D(1); B is the lo
alization fun
tor.

We denote B(Ds) by Ds,bir.

1. wChow indu
es a weight stru
ture w′
bir on Dbir. Besides, w indu
es a weight

stru
ture wbir on Ds,bir.

2. We have D
wbir≤0
s,bir ⊂ D

w′

bir
≤0

bir , D
wbir≥0
s,bir ⊂ D

w′

bir
≥0

bir (i.e. the embedding

(Ds,bir, wbir)→ (Dbir, w
′
bir) is weight-exa
t).

3. For any pro-s
heme U we have B(Mgm(U)) ∈ D
wbir=0
s,bir .

Proof. I This is easy, sin
e the fun
tors mentioned obviously map the 
orre-

sponding hearts (of weight stru
tures) into themselves.

II 1. By assertion I, wChow indu
es a weight stru
ture on D(1) (i.e. D(1) is a
triangulated 
ategory, ObjD(1) ∩D

wChow≤0
and ObjD(1) ∩D

wChow≥0
yield a

weight stru
ture on it). Hen
e by Proposition 8.1.1(1) of [6℄ we obtain existen
e
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(and uniqueness) of w′
bir. The same argument also implies the existen
e of some

wbir on Ds,bir.

2. Now we 
ompare wbir with w′
bir. Sin
e w is bounded, wbir also is (see

lo
.
it.). Hen
e it su�
es to 
he
k that Hwbir ⊂ Hw′
bir (see Theorem

2.2.1(19)).

Moreover, it su�
es to 
he
k that for X =
∏

l∈L Mgm(Kl) we have B(X) ∈

D
w′

bir
=0

bir (sin
e D
w′

bir
=0

bir is Karoubi-
losed in Dbir, here we also apply Propo-

sition 4.7.1(2)). As in the proof of Proposition 4.8.1(2), we will 
onsider the


ase char k = 0; the 
ase char k = p is treated similarly. Then we 
hoose Pl ∈
SmPrV ar su
h that Kl are their fun
tion �elds; we have a natural morphism

X →
∏

Mgm(Pl). It remains to 
he
k that Cone(X →
∏

Mgm(Pl)) ∈ Ds(1).
Now, sin
eDs(1) and the 
lass of distinguished triangles are 
losed with respe
t
to small produ
ts, it su�
es to 
onsider the 
ase when L 
onsists of a single

element. In this 
ase the statement is immediate from Corollary 3.6.2.

3. Immediate from Corollary 3.6.2.

Remark 4.9.2. 1. Assertion II easily implies Proposition 4.8.1(2).

Indeed, any extended birational H (as in lo
.
it.) 
ould be fa
torized as G ◦B
for a 
ohomologi
al G : Dbir → A. Sin
e B is weight-exa
t with respe
t to

wChow (and its restri
tion to Ds is weight-exa
t with respe
t to w), (the trivial

ase of) Proposition 2.7.3(I2) implies that for any X ∈ ObjD (any 
hoi
e)

of Tw′

bir
(G,B(X)) is naturally isomorphi
 starting from E2 to any 
hoi
e of

TwChow
(H,X); for any X ∈ ObjDs (any 
hoi
e) of Twbir

(G,B(X)) is naturally
isomorphi
 starting from E2 to any 
hoi
e of Tw(H,X).
It is also easily seen that the isomorphism TwChow

(H,X)→ Tw(H,X) is 
om-

patible with the 
omparison morphism M (see lo
.
it.).

2. The proof of existen
e of wbir and of assertion 3 works with integral 
o-

e�
ients even if char k > 0. Hen
e we obtain that that the 
ategory image

B(Mgm(U)), U ∈ SmV ar, is negative. We 
an apply this statement in C be-

ing the idempotent 
ompletion of B(DMeff
gm ) i.e. in the 
ategory of birational


omotives. Hen
e Theorem 2.2.1(18) yields: there exists a weight stru
ture for

C whose heart is the 
ategory of birational Chow motives (de�ned as in �5 of

[15℄). Note also that one 
an pass to the indu
tive limit with respe
t to base


hange in this statement (
f. �4.6); hen
e one does not need to require k to be


ountable.

Now we explain that w and wChow 
ould be 'almost re
overed' from

(Dbir, w
′
bir). Exa
tly the same reasoning as above shows that for any n > 0 the

lo
alization of D by D(n) 
ould be endowed with a weight stru
ture w′
n 
om-

patible with wChow, whereas the lo
alization of Ds by Ds(n) 
ould be endowed

with a weight stru
ture wn 
ompatible with w.

Next, we have a short exa
t sequen
e of triangulated 
ategories D/D(n)
i∗→

D/D(n+ 1)
j∗

→ Dbir. Here the notation for fun
tors 
omes from the '
lassi
al'

gluing data setting (
f. �8.2 of [6℄); i∗ 
ould be given by − ⊗ Z(1)[s] for any
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s ∈ Z, j∗ is just the lo
alization. Now, if we 
hoose s = 2 then i∗ is weight-

exa
t with respe
t to w′
n and w′

n+1; if we 
hoose s = 1 then the restri
tion of

i∗ to Ds/Ds(n) is weight-exa
t with respe
t to wn and wn+1.

Next, an argument similar to the one used in �8.2 of [6℄ shows: for any short

exa
t sequen
e D
i∗→ C

j∗

→ E of triangulated 
ategories, if D and E are endowed

with weight stru
tures, then there exist at most one weight stru
ture on C su
h

that both i∗ and j∗ are weight-exa
t (see also Lemma 4.6 of [3℄ for the proof

of a similar statement for t-stru
tures). Hen
e one 
an re
over wn and w′
n

from (
opies of) w′
bir; the main di�eren
e between them is that the �rst one

is −⊗ Z(1)[1]-stable, whereas the se
ond one is −⊗ Z(1)[2]-stable. It is quite
amazing that weight stru
tures 
orresponding to spe
tral sequen
es of quite

distin
t geometri
 origin di�er just by [1] here! If one 
alls the �ltration of D

by D(n) the sli
e �ltration (this term was already used by A. Huber, B. Kahn,

M. Levine, V. Voevodsky, and other authors for other 'motivi
' 
ategories),

then one may say that wn and w′
n 
ould be re
overed from sli
es; the di�eren
e

between them is 'how we shift the sli
es'.

Moreover, Theorem 8.2.3 of [6℄ shows: if both adjoints to i∗ and j∗ exist, then

one 
an use this gluing data in order to glue (any pair) of weight stru
tures

for D and E into a weight stru
ture for C. So, suppose that we have a weight

stru
ture wn,s for D/D(n) that is − ⊗ (1)[s]-stable and 
ompatible with w′
bir

on all sli
es (in the sense des
ribed above; so w′
n = wn,2, wn is the restri
tion

of wn,1 to Ds/Ds(n), and all w1,s 
oin
ide with w′
bir). General homologi
al

algebra (see Proposition 3.3 of [18℄) yields that all the adjoints required do

exist in our 
ase. Hen
e one 
an 
onstru
t wn+1,s for D/D(n+1) that satis�es
similar properties. So, wn,s exist for all n > 0 and all s ∈ Z. Hen
e Gersten

and Chow weight stru
tures (forDs/Ds(n) ⊂ D/D(n)) are members of a rather

natural family of weight stru
tures indexed by a single integral parameter. It


ould be interesting to study other members of it (for example, the one that is

−⊗ Z(1)-stable), though possibly w′
n is the only member of this family whose

heart is 
o
ompa
tly generated.

This approa
h 
ould allow to 
onstru
t w in the 
ase of a not ne
essarily


ountable k. Note here that the system of Ds/Ds(n) yields a �ne approx-

imation of Ds. Indeed, if X ∈ SmPrV ar, n ≥ dimX, then Poin
are du-

ality yields: for any Y ∈ ObjDMeff
gm we have DMeff

gm (Y (n),Mgm(X)) ∼=

DMeff
gm (Y ⊗ X(n − dimX)[−2 dimX],Z); this is zero if n > dimX sin
e Z

is a birational motif. Hen
e (by Yoneda's lemma) for any n > 0 the full sub-


ategory of DMeff
gm generated by motives of varieties of dimension less than n

fully embeds into DMeff
gm /DMeff

gm (n) ⊂ D/D(n).

It follows that the restri
tions of wn,s to a 
ertain series of (su�
iently small)

sub
ategories of D/D(n) are indu
ed by a single −⊗ (1)[s]-stable weight stru
-
ture ws for the 
orresponding sub
ategory of D. Here for the 
orresponding

sub
ategory of D/D(n) (or D) one 
an take the union of the sub
ategories

of D/D(n) (resp. D) generated (in an appropriate sense) by 
omotives of

(smooth) varieties of dimension ≤ r (with r running through all natural num-
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bers). Note that this sub
ategory of D 
ontains DMeff
gm .

We also relate brie�y our results with the (
onje
tural) pi
ture for t-stru
tures
des
ribed in [3℄. There another (geometri
) �ltration for motives was 
onsid-

ered; this �ltration (roughly) di�ers from the �ltration 
onsidered above by (a


ertain version of) Poin
are duality. Now, 
onje
turally the grn of the 
ategory

of birational motives with rational 
oe�
ients (
f. �4.2 of ibid.) should be (the

homotopy 
ategory of 
omplexes over) an abelian semisimple 
ategory. Hen
e it

supports a t-stru
ture whi
h is simultaneously a weight stru
ture. This stru
-

ture should be the building blo
k of all relevant weight and t-stru
tures for


omotives. Certainly, this pi
ture is quite 
onje
tural at the present moment.

Remark 4.9.3. The author also hopes to 
arry over (some of) the results of the


urrent paper to relative motives (i.e. motives over a base s
heme that is not a

�eld), relative 
omotives, and their 
ohomology. One of the possible methods

for this is the usage of gluing of weight stru
tures (see �8.2 of [6℄, espe
ially

Remark 8.2.4(3) of lo
.
it.). Possibly for this situation the 'version of D' that

uses motives with 
ompa
t support (see �6.4 below) 
ould be more appropriate.

5 The construction of D and D
′; base change and Tate twists

Now we 
onstru
t our 
ategories D
′
and D using the di�erential graded 
ate-

gories formalism.

In �5.1 we re
all the de�nitions of di�erential graded 
ategories, modules over

them, shifts and 
ones (of morphisms).

In �5.2 we re
all main properties of the derived 
ategory of (modules over) a

di�erential graded 
ategory.

In �5.3 we de�ne D
′
and D as the 
ategories opposite to the 
orresponding


ategories of modules; then we prove that they satisfy the properties required.

In �5.4 we use the di�erential graded modules formalism to de�ne base 
hange

for motives (extension and restri
tion of s
alars). This yields: our results on di-

re
t summands of 
omotives (and 
ohomology) of fun
tion �elds (proved above)


ould be 
arried over to pro-s
hemes obtained from them via base 
hange.

We also de�ne tensoring of 
omotives by motives, as well as a 
ertain '
o-

internal Hom' (i.e. the 
orresponding left adjoint fun
tor to X ⊗ − for X ∈
ObjDMeff

gm ). These results do not require k to be 
ountable.

5.1 DG-categories and modules over them

We re
all some basi
 de�nitions; 
f. [16℄ and [12℄.

An additive 
ategory A is 
alled graded if for any P,Q ∈ ObjA there is a


anoni
al de
omposition A(P,Q) ∼= ⊕iA
i(P,Q) de�ned; this de
omposition

satis�es Ai(∗, ∗) ◦ Aj(∗, ∗) ⊂ Ai+j(∗, ∗). A di�erential graded 
ategory (
f.

[12℄) is a graded 
ategory endowed with an additive operator δ : Ai(P,Q) →
Ai+1(P,Q) for all i ∈ Z, P,Q ∈ ObjA. δ should satisfy the equalities δ2 = 0
(so A(P,Q) is a 
omplex of abelian groups); δ(f ◦ g) = δf ◦ g+ (−1)if ◦ δg for

any P,Q,R ∈ ObjA, f ∈ Ai(P,Q), g ∈ A(Q,R). In parti
ular, δ(idP ) = 0.
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We denote δ restri
ted to morphisms of degree i by δi.

Now we give a simple example of a di�erential graded 
ategory.

For an additive 
ategory B we 
onsider the 
ategory B(B) whose obje
ts are
the same as for C(B) whereas for P = (P i), Q = (Qi) we de�ne B(B)i(P,Q) =∏

j∈Z
B(P j , Qi+j). Obviously B(B) is a graded 
ategory. We will also 
onsider

a full sub
ategory Bb(B) ⊂ B(B) whose obje
ts are bounded 
omplexes.

We set δf = dQ◦f−(−1)
if ◦dP , where f ∈ Bi(P,Q), dP and dQ are the di�er-

entials in P and Q. Note that the kernel of δ0(P,Q) 
oin
ides with C(A)(P,Q)
(the morphisms of 
omplexes); the image of δ−1

are the morphisms homotopi


to 0.

Note also that the opposite 
ategory to a di�erential graded 
ategory be
omes

di�erential graded also (with the same gradings and di�erentials) if we de�ne

fop ◦ gop = (−1)pq(g ◦ f)op for g, f being 
omposable homogeneous morphisms

of degrees p and q, respe
tively.

For any di�erential graded A we de�ne an additive 
ategory H(A) (some au-

thors denote it by H0(A)); its obje
ts are the same as for A; its morphisms are

de�ned as

H(A)(P,Q) = Ker δ0A(P,Q)/ Im δ−1
A (P,Q).

In the 
ase when H(A) is triangulated (as a full sub
ategory of the 
ategory

K(A) des
ribed below) we will say that A is a (di�erential graded) enhan
ement

for H(A).

We will also need Z(A): ObjZ(A) = ObjA; Z(A)(P,Q) = Ker δ0A(P,Q).
We have an obvious fun
tor Z(A) → H(A). Note that Z(B(B)) = C(B);
H(B(B)) = K(B).

Now we de�ne (left di�erential graded) modules over a small di�erential graded


ategory A (
f. �3.1 of [16℄ or �14 of [12℄): the obje
ts DG-Mod(A) are those
additive fun
tors of the underlying additive 
ategories A → B(Ab) that pre-
serve gradings and di�erentials for morphisms. We de�ne DG-Mod(A)i(F,G)
as the set of transformations of additive fun
tors of degree i; for h ∈
DG-Mod(A)i(F,G) we de�ne δi(h) = dG ◦ f − (−1)if ◦ dF . We have a natural

Yoneda embedding Y : Aop → DG-Mod(A) (one should apply Yoneda's lemma

for the underlying additive 
ategories); it is easily seen to be a full embedding

of di�erential graded 
ategories.

Now we de�ne shifts and 
ones in DG-Mod(A) 
omponentwisely. For F ∈
ObjDG-Mod(A) we set F [1](X) = F (X)[1]. For h ∈ Ker δ0DG-Mod(A)(F,G)

we de�ne the obje
t Cone(h): Cone(h)(X) = Cone(F (X) → G(X)) for all

X ∈ ObjA.

Note that for A = B(B) both of these de�nitions are 
ompatible with the


orresponding notions for 
omplexes (with respe
t to the Yoneda embedding).

We have a natural triangle of morphisms in δ0DG-Mod(A):

P
f
→ P ′ → Cone(f)→ P [1]. (30)
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5.2 The derived category of a differential graded category

We de�ne K(A) = H(DG-Mod(A)). It was shown in �2.2 of [16℄ that K(A) is a
triangulated 
ategory with respe
t to shifts and 
ones of morphisms that were

de�ned above (i.e. a triangle is distinguished if it is isomorphi
 to those of the

form (30)).

We will say that f ∈ Ker δ0DG-Mod(A)(F,G) is a quasi-isomorphism if for any

X ∈ ObjA it yields an isomorphism F (X) → F (Y ). We de�ne D(A) as the
lo
alization of K(A) with respe
t to quasi-isomorphisms; so it is a triangulated


ategory. Note that quasi-isomorphisms yield a lo
alizing 
lass of morphisms

in K(A). Moreover, the fun
tor X → H0(F (X)) : K(A)→ Ab is 
orepresented
by DG-Mod(A)(X,−) ∈ ObjK(A); hen
e for any X ∈ ObjA, F ∈ ObjK(A) we
have

D(A)(Y (X), F ) ∼= K(A)(Y (X), F ). (31)

Hen
e we have an embedding H(A)op → D(A).
We de�ne C(A) as Z(DG-Mod(A)). It is easily seen that C(A) is 
losed with

respe
t to (small �ltered) dire
t limits, and lim
−→

Fl is given by X → lim
−→

Fl(X).
Now we re
all (brie�y) that di�erential graded modules admit 
ertain 'resolu-

tions' (i.e. any obje
t is quasi-isomorphi
 to a semi-free one in the terms of �14

of [12℄).

Proposition 5.2.1. There exists a full triangulated K ′ ⊂ K(A) su
h that the

proje
tion K(A)→ D(A) indu
es an equivalen
e K ′ ≈ D(A). K ′
is 
losed with

respe
t to all (small) 
oprodu
ts.

Proof. See �14.8 of [12℄

Remark 5.2.2. In fa
t, there exists a (Quillen) model stru
ture for C(A) su
h
that D(A) its homotopy 
ategory; see Theorem 3.2 of [16℄. Moreover (for the

�rst model stru
tures mentioned in lo
.
it) all obje
ts of C(A) are �brant, all
obje
ts 
oming from A are 
o�brant. For this model stru
ture two morphisms

are homotopi
 whenever they be
ome equal in K(A). So, one 
ould take K ′

whose obje
ts are the 
o�brant obje
ts of C(A).
Using these fa
ts, one 
ould verify most of Proposition 3.1.1 (for D

′
and D

des
ribed below).

5.3 The construction of D
′ and D; the proof of Proposition 3.1.1

It was proved in �2.3 of [4] (
f. also [19℄ or �8.3.1 of [7℄) that DMeff
gm 
ould be

des
ribed as H(A), where A is a 
ertain (small) di�erential graded 
ategory.

Moreover, the fun
tor Kb(SmCor) → DMeff
gm 
ould be presented as H(f),

where f : Bb(SmCor) → A is a di�erential graded fun
tor. We will not

des
ribe the details for (any of) these 
onstru
tions sin
e we will not need

them.

We de�neD
′ = C(A)op, D = D(A)op, p is the natural proje
tion. We verify that

these 
ategories satisfy Proposition 3.1.1. Assertion 10 follows from the fa
t
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that any lo
alization of a triangulated 
ategory that possesses an enhan
ement

is enhan
eable also (see ��3.4�3.5 of [12℄).

The embedding H(A)op → D(A) yields DMeff
gm ⊂ D

′
. Sin
e all obje
ts 
oming

from A are 
o
ompa
t in K(A)op, Proposition 5.2.1 yields that the same is true

in D. We obtain assertion 1.

D
′
is 
losed with respe
t to inverse limits sin
e C(A) is 
losed with respe
t to

dire
t ones. Sin
e the proje
tion C(A)→ K(A) respe
ts 
oprodu
ts (as well as
all other (�ltered) 
olimits), Proposition 5.2.1 yields that p respe
ts produ
ts

also. We obtain assertion 2.

The des
riptions of C(A) and D(A) yields all the properties of shifts and 
ones

required. This yields assertions 3, 4, and 6. Sin
e D(A) is a lo
alization of

K(A), we also obtain assertion 5.

Next, sin
e D(A) is a lo
alization of K(A) with respe
t to quasi-isomorphisms,

we obtain assertion 8.

Re
all that �ltered dire
t limits of exa
t sequen
es of abelian groups are exa
t.

Hen
e for any X ∈ ObjA ⊂ ObjD′
, Y : L→ DG-Mod(A) we have

K(A)(DG-Mod(A)(X,−), lim
−→l

Yl) = H0((lim
−→

Yl)(A))

= H0(lim
−→

(Yl(A))) = lim
−→

H0(Yl(A)) = lim
−→l
K(A)(DG-Mod(A)(X,−), Yl).

Applying (31) we obtain assertion 7.

It remains to verify assertion 9 of lo
.
it. Sin
e the inverse limit with respe
t

to a proje
tive system is isomorphi
 to the inverse limit with respe
t to any its

unbounded subsystem, and the same is true for lim
←−1

in the 
ountable 
ase, we


an assume that I is the 
ategory of natural numbers, i.e. we have a sequen
e

of Fi 
onne
ted by morphisms.

In this 
ase we have fun
torial morphisms lim
←−

Fi
f
→

∏
Fl

g
→

∏
Fi as in (27).

Hen
e it su�
es to 
he
k that these morphisms yield a distinguished trian-

gle in D. Note that g ◦ f = 0; hen
e g 
ould be fa
torized through a mor-

phism h : Cone f →
∏

Fi in D
′
. Sin
e for any X ∈ ObjA the morphism

h∗ :
∏

D′ Fi(X) → ConeF (X) is a quasi-isomorphism, h be
omes an isomor-

phism in D. This �nishes the proof.

Remark 5.3.1. 1. Note that the only part of our argument when we needed k
to be 
ountable in the proof of assertion 9 of lo
.
it.

2. The 
onstru
tions of A (i.e. of the 'enhan
ement' for DMeff
gm mentioned

above) that were des
ribed in [4℄, [19℄, and in [7℄, are easily seen to be fun
torial

with respe
t to base �eld 
hange (see below). Still, the 
onstru
tions mentioned

are distin
t and far from being the only ones possible; the author does not

know whether all possible D are isomorphi
. Still, this makes no di�eren
e for


ohomology (of pro-s
hemes); see Remark 4.3.2.

Moreover, note that assertion 10 of Proposition 3.1.1 was not very important

for us (without if we would only have to 
onsider a 
ertain weakly exa
t weight


omplex fun
tor in �6.1 below; see �3 of [6℄). The author doubts that this


ondition follows from the other parts of Proposition 3.1.1.
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5.4 Base change and Tate twists for comotives

Our di�erential graded formalism yields 
ertain fun
toriality of 
omotives with

respe
t to embeddings of base �elds. We 
onstru
t both extension and re-

stri
tion of s
alars (the latter one for the 
ase of a �nite extension of �elds

only). The 
onstru
tion of base 
hange fun
tors uses indu
tion for di�erential

graded modules. This method also allows to de�ne 
ertain tensor produ
ts and

Co−Hom for 
omotives. In parti
ular, we obtain a Tate twist fun
tor whi
h

is 
ompatible with (29) (and a left adjoint to it).

We note that the results of this subse
tion (probably) 
ould not be dedu
ed

from the 'axioms' of D listed in Proposition 3.1.1; yet they are quite natural.

5.4.1 Induction and restriction for differential graded modules:
reminder

We re
all 
ertain results of �14 of [12℄ on fun
toriality of di�erential graded

modules. These extend the 
orresponding (more or less standard) statements

for modules over di�erential graded algebras (
f. �14.2 of ibid.).

If f : A→ B is a fun
tor of di�erential graded 
ategories, we have an obvious

restri
tion fun
tor f∗ : C(B) → C(A). It is easily seen that f∗
also indu
es

fun
tors K(B) → K(A) and D(B) → D(A). Certainly, the latter fun
tor

respe
ts homotopy 
olimits (i.e. the dire
t limits from C(B)).

Now, it is not di�
ult to 
onstru
t an indu
tion fun
tor f∗ : DG-Mod(A) →
DG-Mod(B) whi
h is left adjoint to f∗

; see �14.9 of ibid. By Example 14.10 of

ibid, for any X ∈ ObjA this fun
tor sends X∗ = A(X,−) to f(X)∗.

f∗ also indu
es fun
tors C(A) → C(B) and K(A) → K(B). Restri
ting the

latter one to the 
ategory of semi-free modules K ′
(see Proposition 5.2.1) one

obtains a fun
tor Lf∗ : D(A) → D(B) whi
h is also left adjoint to the 
orre-

sponding f∗
; see �14.12 of [12℄. Sin
e all fun
tors of the type X∗

are semi-free

by de�nition, we have Lf∗(X
∗) = A(X,−) = Lf(X)∗. It 
an also be shown

that Lf∗ respe
ts dire
t limits of obje
ts of Aop
(
onsidered as A-modules via

the Yoneda embedding). In the 
ase of 
ountable limits this follows easily from

the de�nition of semi-free modules and the expression of the homotopy 
olimit

in D(A) as lim
−→

Xi = Cone(
⊕

Xi →
⊕

Xi) (this is just the dual to (27)). For

un
ountable limits, one 
ould prove the fa
t using a 'resolution' of the dire
t

limit similar to those des
ribed in �A3 of [21℄.

5.4.2 Extension and restriction of scalars for comotives

Now let l/k be an extension of perfe
t �elds.

Re
all thatD
′
andD were des
ribed (in �5.3) in terms of modules over a 
ertain

di�erential graded 
ategory A. It was shown in [19℄ that the 
orresponding

version of A is a tensor (di�erential graded) 
ategory; we also have an extension

of s
alars fun
tor Ak → Al. It is most probable that both of these properties

hold for the version of A des
ribed in [4℄ (note that they obviously hold for
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Bb(SmCor)). Moreover, if l/k is �nite, then we have the fun
tor of restri
tion

of s
alars in inverse dire
tion.

So, the indu
tion for the 
orresponding di�erential graded modules yields

an exa
t fun
tor of extension of s
alars Extl/k : Dk → Dl. The reasoning

above shows that Extl/k is 
ompatible with the 'usual' extension of s
alars

for smooth varieties (and 
omplexes of smooth 
orresponden
es). Moreover,

sin
e Extl/k respe
ts homotopy limits, this 
ompatibility extends to 
omotives

of pro-s
hemes and their produ
ts. It 
an also be easily shown that Extl/k
respe
ts Tate twists.

We immediately obtain the following result.

Proposition 5.4.1. Let k be 
ountable (and perfe
t), let l ⊃ k be a perfe
t

�eld.

1. Let S be a 
onne
ted primitive s
heme over k, let S0 be its generi
 point.

Then Mgm(Sl) is a retra
t of Mgm(S0l) in Dl.

2. Let K be a fun
tion �eld over k. Let K ′
be the residue �eld for a geometri


valuation v of K of rank r. Then Mgm(K ′
l(r)[r]) is a retra
t of Mgm(Kl) in

Dl.

As in 4.3, this result immediately implies similar statements for any 
ohomology

of pro-s
hemes mentioned (
onstru
ted from a 
ohomologi
al H : DMeff
gm l → A

via Proposition 1.2.1).

Next, if l/k is �nite, indu
tion for di�erential graded modules applied to

the restri
tion of s
alars for A's also yields a restri
tion of s
alars fun
tor

Resl/k : Dl → Dk. Similarly to Extl/k, this fun
tor is 
ompatible with re-

stri
tion of s
alars for smooth varieties, pro-s
hemes, and 
omplexes of smooth


orresponden
es; it also respe
ts Tate twists.

It follows: l/k is �nite, then Extl/k maps Dsk to Dsl; Resl/k maps Dsl to Dsk.

Besides, if we also assume l to be 
ountable, then both of these fun
tors respe
t

weight stru
tures (i.e. they map Ds
w≤0
k to Ds

w≤0
l , Ds

w≥0
k to Ds

w≥0
l , and vi
e

versa).

Remark 5.4.2. It seems that one 
an also de�ne restri
tion of s
alars via re-

stri
tion of di�erential graded modules (applied to the extension of s
alars for

A's). To this end one needs to 
he
k the 
orresponding adjun
tion for DMeff
gm ;

the 
orresponding (and related) statement for the motivi
 homotopy 
ategories

was proved by J. Ayoub. This would allow to de�ne Resl/k also in the 
ase

when l/k is in�nite; this seems to be rather interesting if l is a fun
tion �eld

over k. Note that Resl/k (in this 
ase) would (probably) also map Ds
w≤0
l to

Ds
w≤0
k and Ds

w≥0
l to Ds

w≥0
k (if l is 
ountable).

5.4.3 Tensor products and ’co-internal Hom’ for comotives; Tate
twists

Now, for X ∈ ObjA we apply restri
tion and indu
tion of di�erential graded

modules for the fun
tor X ⊗ − : A → A. Indu
tion yields a 
ertain fun
tor
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X ⊗− : D→ D, whereas restri
tion yields its left adjoint whi
h we will denote

by Co −Hom(X,−) : D → D. Both of them respe
t homotopy limits. Also,

X⊗− is 
ompatible with tensoring byX onDMeff
gm . Besides, the isomorphisms


lasses of these fun
tors only depend on the quasi-isomorphism 
lass of X in

DG-Mod(A). Indeed, it is easily seen that both X ⊗ Y and Co−Hom(X,Y )
are exa
t with respe
t to X if we �x Y ; sin
e they are obviously zero for X = 0,
it remains to note that quasi-isomorphi
 obje
ts 
ould be 
onne
ted by a 
hain

of quasi-isomorphisms.

Now suppose that X is a Tate motif i.e. X = Z(m)[n], m > 0, n ∈ Z. Then we

obtain that the formal Tate twists de�ned by (29) are the true Tate twists i.e.

they are given by tensoring by X on D. Then re
all the Can
ellation Theorem

for motives: (see Theorem 4.3.1 of [25℄, and [27℄)): X ⊗− is a full embedding

of DMeff
gm into itself. Then one 
an dedu
e that X ⊗ − is fully faithful on D

also (sin
e all obje
ts of D 
ome from semi-free modules over A). Moreover,

Co −Hom(X,−) ◦ (X ⊗ −) is easily seen to be isomorphi
 to the identity on

D (for su
h an X).

6 Supplements

We des
ribe some more properties of 
omotives, as well as 
ertain possible

variations of our methods and results. We will be somewhat sket
hy sometimes.

In �6.1 we de�ne an additive 
ategory D
gen

of generi
 motives (a variation

of those studied in [9℄). We also prove that the exa
t 
onservative weight


omplex fun
tor (that exists by the general theory of weight stru
tures) 
ould

be modi�ed to an exa
t 
onservative WC : Ds → Kb(Dgen). Besides, we prove
assertions on retra
ts of the pro-motif of a fun
tion �eld K/k, that are similar

to (and follow from) those for its 
omotif.

In �6.2 we prove that HI has a ni
e des
ription in terms of Hw. This is a sort of
Brown representability: a 
ofun
tor Hw → Ab is representable by a (homotopy

invariant) sheaf with transfers whenever it 
onverts all small produ
ts into

dire
t sums. This result is similar to the 
orresponding results of �4 of [6℄ (on

the 
onne
tion between the hearts of adja
ent stru
tures).

In �6.3 we note that our methods 
ould be used for motives (and 
omotives)

with 
oe�
ients in an arbitrary 
ommutative unital ring R; the most important


ases are rational (
o)motives and 'torsion' (
o)motives.

In �6.4 we note that there exist natural motives of pro-s
hemes with 
ompa
t

support in DMeff
− . It seems that one 
ould 
onstru
t alternative D and D

′

using this observation (yet this probably would not a�e
t our main results

signi�
antly).

We 
on
lude the se
tion by studying whi
h of our arguments 
ould be extended

to the 
ase of an un
ountable k.
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6.1 The weight complex functor; relation with generic motives

We re
all that the general formalism of weight stru
tures yields a 
onservative

exa
t weight 
omplex fun
tor t : Ds → Kb(Hw); it is 
ompatible with De�ni-

tion 2.1.2(9). Next we prove that one 
an 
ompose it with a 
ertain 'proje
tion'

fun
tor without losing the 
onservativity.

Lemma 6.1.1. There exists an exa
t 
onservative fun
tor t : Ds → Kb(Hw)
that sends X ∈ ObjDs to a 
hoi
e of its weight 
omplex (
oming from any


hoi
e of a weight Postnikov tower for it).

Proof. Immediate from Remark 6.2.2(2) and Theorem 3.3.1(V) of [6℄ (note that

Ds has a di�erential graded enhan
ement by Proposition 3.1.1(10)).

Now, sin
e all obje
ts of Hw are retra
ts of those that 
ome via p from inverse

limits of obje
ts of j(Cb(SmCor)), we have a natural additive fun
tor Hw →
D

naive
(see �1.5). Its 
ategori
al image will be denoted by D

gen
; this is a

slight modi�
ation of Deglise's 
ategory of generi
 motives. We will denote the

'proje
tion' Hw → D
gen

and Kb(Hw)→ Kb(Dgen) by pr.

Theorem 6.1.2. 1. The fun
tor WC = pr ◦ t : Ds → Kb(Dgen) is exa
t and


onservative.

2. Let S be a 
onne
ted primitive s
heme, let S0 be its generi
 point. Then

pr(Mgm(S)) is a retra
t of pr(Mgm(S0)) in D
gen

.

3. Let K be a fun
tion �eld over k. Let K ′
be the residue �eld for some

geometri
 valuation v of K of rank r. Then pr(Mgm(K ′)(r)[r]) is a retra
t of

pr(Mgm(K)) in D
gen

.

Proof. 1. The exa
tness of WC is obvious (from Lemma 6.1.1). Now we 
he
k

that WC is 
onservative.

By Proposition 3.1.1(8), it su�
es to 
he
k: if WC(X) is a
y
li
 for some

X ∈ ObjDs, then D(X,Y ) = 0 for all Y ∈ ObjDMeff
gm . We denote the terms

of t(X) by Xi
.

We 
onsider the 
oniveau spe
tral sequen
e T (H,X) for the fun
tor H =
D(−, Y ) (see Remark 4.4.2). Sin
e WC(X) is a
y
li
, we obtain that the


omplexes D(X−i, Y [j]) are a
y
li
 for all j ∈ Z. Indeed, note that the restri
-

tion of a fun
tor D(X−i,−) to DMeff
gm 
ould be expressed in terms of pr(X−i);

see Remark 3.2.1. Hen
e E2(T ) vanishes. Sin
e T 
onverges (see Proposition

4.4.1(2)) we obtain the 
laim.

2. Immediate from Corollary 4.2.2(1).

3. Immediate from Corollary 4.2.2(2).

Remark 6.1.3. For X = Mgm(Z), Z ∈ SmV ar, it easily seen that WC(X)

ould be des
ribed as a 'naive' limit of 
omplexes of motives; 
f. �1.5.

Now, the terms of t(X) are just the fa
tors of (some possible) weight Postnikov

tower for X; so one 
an 
al
ulate them (at least, up to an isomorphism) for
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X = Mgm(Z). Unfortunately, it seems di�
ult to des
ribe the boundary for

t(X) 
ompletely sin
e Hw is �ner than D
gen

.

6.2 The relation of the heart of w with HI (’Brown repre-
sentability’)

In Theorem 4.4.2(4) of [6℄, for a pair of adja
ent stru
tures (w, t) for C
(see Remark 2.5.7) it was proved that Ht is a full sub
ategory of Hw∗(=
AddFun(Hwop, Ab)). This result 
annot be extended to arbitrary orthog-

onal stru
tures sin
e our de�nition of a duality did not in
lude any non-

degenerateness 
onditions (in parti
ular, Φ 
ould be 0). Yet for our main

example of orthogonal stru
tures the statement is true; moreover, HI has a

natural des
ription in terms of Hw. This statement is very similar to a 
ertain

Brown representability-type result (for adja
ent stru
tures) proved in Theorem

4.5.2(II.2) of ibid.

Note thatHw is 
losed with respe
t to arbitrary small produ
ts; see Proposition

4.1.1(2).

Proposition 6.2.1. HI is naturally isomorphi
 to a full abelian sub
ategory

Hw′
∗ of Hw∗ that 
onsists of fun
tors that 
onvert all produ
ts in Hw into

dire
t sums (of the 
orresponding abelian groups).

Proof. First, note that for any G ∈ ObjDMeff
− the fun
tor D→ Ab that sends

X ∈ ObjD to Φ(X,G) (Φ is the duality 
onstru
ted in Proposition 4.5.1) is


ohomologi
al. Moreover, it 
onverts homotopy limits into inje
tive limits (of

the 
orresponding abelian groups); hen
e its restri
tion to Hw belongs to Hw′
∗.

We obtain an additive fun
tor DMeff
gm → Hw′

∗. In fa
t, it fa
torizes through

HI (by (25)). For G ∈ ObjHI we denote the fun
tor Hw → Ab obtained by

G′
.

Next, for any (additive) F : Hwop → Ab we de�ne F ′ : Ds → Ab by:

F ′(X) = (Ker(F (X0)→ F (X−1))/ Im(F (X1)→ F (X0)); (32)

here Xi
is a weight 
omplex for X. It easily seen from Lemma 6.1.1 that F ′

is

a well-de�ned 
ohomologi
al fun
tor. Moreover, Theorem 2.2.1(19) yields that

F ′
vanishes on D

w≤−1
s and on D

w≥1
s (sin
e it vanishes on D

w=i
s for all i 6= 0).

Hen
e F ′
de�nes an additive fun
tor F ′′ = F ′ ◦Mgm : SmCorop → Ab i.e. a

presheaf with transfers. Sin
e Mgm(Z) ∼= Mgm(Z × A1) for any Z ∈ SmV ar,
F ′′

is homotopy invariant. We should 
he
k that F ′′
is a
tually a (Nisnevi
h)

sheaf. By Proposition 5.5 of [26℄, it su�
es to 
he
k that F ′′
is a Zariski sheaf.

Now, the the Mayer-Vietoris triangle for motives (�2 of [25℄) yields: to any

Zariski 
overing U
∐

V → U ∪ V there 
orresponds a long exa
t sequen
e

· · · → F
′(Mgm(U ∩ V )[1]) → F

′′(U ∪ V ) → F
′′(U)

⊕
F

′′(V ) → F
′′(U ∩ V ) → . . .

Sin
eMgm(U∩V ) ∈ D
w≤0
s by part 5 of Proposition 4.1.1, we have F ′(Mgm(U∩

V )[1]) = {0}; hen
e F ′′
is a sheaf indeed.
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So, F 7→ F ′′
yields an additive fun
tor Hw∗ → HI.

Now we 
he
k that the fun
tor G 7→ G′
(des
ribed above) and the restri
tions

of F 7→ F ′′
to Hw′

∗ ⊂ Hw∗ yield mutually inverse equivalen
es of the 
ategories

in question.

(24) immediately yields that the fun
tor HI → HI that sends G ∈ ObjHI to

(G′)′′ is isomorphi
 to idHI .

Now for F ∈ ObjHw′
∗ we should 
he
k: for any P ∈ D

w=0
s we have a natu-

ral isomorphism (F ′′)′(P ) ∼= F (P ). Sin
e Hw is the idempotent 
ompletion

of H, it su�
es to 
onsider P being of the form

∏
l∈L Mgm(Kl)(nl)[nl] (here

Kl are fun
tion �elds over k, nl ≥ 0; nl and the trans
enden
e degrees of

Kl/k are bounded); see part 2 of Proposition 4.1.1. Moreover, sin
e F 
on-

verts produ
ts into dire
t sums, it su�
es to 
onsider P = Mgm(K ′)(n)[n]
(K ′/k is a fun
tion �eld, n ≥ 0). Lastly, part 2 of Corollary 4.2.2 redu
es the

situation to the 
ase P = Mgm(K) (K/k is a fun
tion �eld). Now, by the de�-

nition of the fun
tor G 7→ G′
, we have (F ′′)′(Mgm(K)) = lim

−→l∈L
F ′′(Mgm(Ul)),

where K = lim
←−l∈L

Ul, Ul ∈ SmV ar. We have F ′′(Ul) = KerF (Mgm(K)) →

F (
∏

z∈U1
l
Mgm(z)(1)[1]); here U1

l is the set of points of Ul of 
odimen-

sion 1. Sin
e F (
∏

z∈U1
l
Mgm(z)(1)[1]) = ⊕z∈U1

l
F (Mgm(z)(1)[1]); we have

lim
−→l∈L

F (
∏

z∈U1
l
Mgm(z)(1)[1]) = {0}; this yields the result.

6.3 Motives and comotives with rational and torsion coeffi-
cients

Above we 
onsidered (
o)motives with integral 
oe�
ients. Yet, as was shown

in [20℄, one 
ould do the theory of motives with 
oe�
ients in an arbitrary


ommutative asso
iative ring with a unitR. One should start with the naturally
de�ned 
ategory of R-
orresponden
es: Obj(SmCorR) = SmV ar; for X,Y in

SmV ar we set SmCorR(X,Y ) =
⊕

U R for all integral 
losed U ⊂ X×Y that

are �nite over X and dominant over a 
onne
ted 
omponent of X. Then one

obtains a theory of motives that would satisfy all properties that are required in

order to dedu
e the main results of this paper. So, we 
an de�ne R-
omotives

and extend our results to them.

A well-known 
ase of motives with 
oe�
ients are the motives with rational


oe�
ients (note that Q is a �at Z-algebra). Yet, one 
ould also take R = Z/nZ
for any n prime to char k.

So, the results of this paper are also valid for rational (
o)motives and 'torsion'

(
o)motives.

Still, note that there 
ould be idempotents for R-motives that do not 
ome

from integral ones. In parti
ular, for the naturally de�ned rational motivi



ategories we have DMeff
gm Q 6= DMeff

gm ⊗ Q; also ChoweffQ 6= Choweff ⊗ Q

(here ChoweffQ ⊂ DMeff
gm Q denote the 
orresponding R-hulls). Certainly,

this does not matter at all in the 
urrent paper.
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6.4 Another possibility for D; motives with compact support of
pro-schemes

In the 
ase char k = 0, Voevodsky developed a ni
e theory of motives with


ompa
t support that is 
ompatible with Poin
are duality; see Theorem 4.3.7

of [25℄. Moreover, the expli
it 
onstru
tions of [25℄ yield that the fun
tor of

motif with 
ompa
t support M c
gm : SmV arop → DMeff

gm is 
ompatible with

a 
ertain jc : SmV aropfl → C−(Shv(SmCor)) (whi
h sends X to the Suslin


omplex of Lc(X), see �4.2 lo
.
it.); this observation was kindly 
ommuni
ated

to the author by Bruno Kahn). This allows to de�ne jc(V ) for a pro-s
heme

V as the 
orresponding dire
t limit (in C(Shv(SmCor))).

Starting from this observation, one 
ould try to develop an analogue of our

theory using the fun
tor M c
gm. One 
ould 
onsider D = DMeff

−
op
; then it

would 
ontain DMeff
gm

op
as the full 
ategory of 
o
ompa
t obje
ts. It seems

that our arguments 
ould be 
arried over to this 
ontext. One 
an 
onstru
t

some D
′
for this D using 
ertain di�erential graded 
ategories.

Though motives with 
ompa
t support are Poin
are dual to ordinary motives

of smooth varieties (up to a 
ertain Tate twist), we do not have a 
ovariant

embedding DMeff
gm → D (for this 'alternative' D), sin
e (the whole) DMeff

gm is

not self-dual. Still, DMeff
gm has a ni
e embedding into (Voevodsky's) self-dual


ategory DMgm; it 
ontains an exhausting system of self-dual sub
ategories.

Hen
e this alternative D would yield a theory that is 
ompatible with (though

not 'isomorphi
' to) the theory developed above.

Sin
e the alternative version of D is 
losely related with DMeff
−

op
, it seems

reasonable to 
all its obje
ts 
omotives (as we did for the obje
ts of 'our' D).

These observations show that one 
an dualize all the dire
t summands results

of �4 to obtain their natural analogues for motives of pro-s
hemes with 
ompa
t

support. Indeed, to prove them we may apply the duals of our arguments in

�4 without any problem; see part 2 of Remark 3.1.2. Note that we obtain


ertain dire
t summand statements for obje
ts of DMeff
− this way. This is an

advantage of our 'axiomati
' approa
h in �3.1.

One 
ould also take D
op = ∪n∈ZDMeff

gm (−n) (more pre
isely, this is the dire
t

limit of 
opies of DMeff
gm with 
onne
ting morphisms being − ⊗ Z(1)). Then

we have a 
ovariant embedding DMeff
gm → DMgm → D.

Note that both of these alternative versions of D are not 
losed with respe
t to

all (
ountable) produ
ts, and so not 
losed with respe
t to all (�ltered 
ount-

able) homotopy limits; yet they 
ontain all produ
ts and homotopy limits that

are required for our main arguments.

6.5 What happens if k is uncountable

We des
ribe whi
h of the arguments above 
ould be applied in the 
ase of an

un
ountable k (and for whi
h of them the author has no idea how to a
hieve

this). The author warns that he didn't 
he
k the details thoroughly here.
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As we have already noted above, it is no problem to de�ne D, D
′
, or even Ds

for any k. The main problem here that (if k is un
ountable) the 
omotives of

generi
 points of varieties (and of other pro-s
hemes) 
an usually be presented

only as un
ountable homotopy limits of motives of varieties. The general for-

malism of inverse limits (applied to the 
ategories of modules over a di�erential

graded 
ategory) allows to extend to this 
ase all parts of Proposition 3.1.1 ex-

pe
t part 9. This a
tually means that instead of the short exa
t sequen
e (28)

one obtains a spe
tral sequen
e whose E1-terms are 
ertain lim
←−

j
; here lim

←−
j
is

the j's derived fun
tor of lim
←−I

; 
f. Appendix A of [21℄. This does not seem to

be 
atastrophi
; yet the author has absolutely no idea how to 
ontrol higher

proje
tive limits in the proof of Proposition 3.5.1; note that part 2 of lo
.
it.

is espe
ially important for the 
onstru
tion of the Gersten weight stru
ture.

Besides, the author does not know how to pass to an un
ountable homotopy

limit in the Gysin distinguished triangle. It seems that to this end one either

needs to lift the fun
toriality of the (usual) motivi
 Gysin triangle to D
′
, or

to �nd a way to des
ribe the isomorphism 
lass of an un
ountable homotopy

limit in D in terms of D-only (i.e. without �xing any lifts to D
′
; this seems to

be impossible in general). So, one 
ould de�ne the 'Gersten' weight tower for a


omotif of a pro-s
heme as as the homotopy limit of 'geometri
 towers' (as in the

proof of Corollary 3.6.2); yet it seems to be rather di�
ult to 
al
ulate fa
tors

of su
h a tower. It seems that the problems mentioned do not be
ome simpler

for the alternative versions ofD des
ribed in �6.4. So, 
urrently the author does

not know how to prove the dire
t summand results of �4.2 if k is un
ountable

(they even 
ould be wrong). The problem here that the splittings of �4.2 are

not 
anoni
al (see Remark 4.2.3), so one 
annot apply a limit argument (as in

�4.6) here.

It seems that 
onstru
ting the Gersten weight stru
ture is easier for Ds/Ds(n)
(for some n > 0); see �4.9.

Lastly, one 
an avoid the problems with homotopy limits 
ompletely by re-

stri
ting attention to the sub
ategory of Artin-Tate motives in DMeff
gm (i.e.

the triangulated 
ategory generated by Tate twists of motives of �nite exten-

sions of k, as 
onsidered in [30℄). Note that 
oniveau spe
tral sequen
es for


ohomology of su
h motives (
ould be 
hosen to be) very 'e
onomi
'.
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