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ABSTRACT. The goal of this paper is to prove that coniveau spectral
sequences are motivically functorial for all cohomology theories that
could be factorized through motives. To this end the motif of a smooth
variety over a countable field &k is decomposed (in the sense of Post-
nikov towers) into twisted (co)motives of its points; this is generalized
to arbitrary Voevodsky’s motives. In order to study the functorial-
ity of this construction, we use the formalism of weight structures
(introduced in the previous paper). We also develop this formalism
(for general triangulated categories) further, and relate it with a new
notion of a nice duality (pairing) of (two distinct) triangulated cate-
gories; this piece of homological algebra could be interesting for itself.

We construct a certain Gersten weight structure for a triangulated
category of comotives that contains DM;g;f as well as (co)motives of
function fields over k. It turns out that the corresponding weight spec-
tral sequences generalize the classical coniveau ones (to cohomology of
arbitrary motives). When a cohomological functor is represented by a
Y € Obj DM , the corresponding coniveau spectral sequences can
be expressed in terms of the (homotopy) ¢-truncations of Y; this ex-
tends to motives the seminal coniveau spectral sequence computations
of Bloch and Ogus.

We also obtain that the comotif of a smooth connected semi-local
scheme is a direct summand of the comotif of its generic point; co-
motives of function fields contain twisted comotives of their residue
fields (for all geometric valuations). Hence similar results hold for any
cohomology of (semi-local) schemes mentioned.

2010 Mathematics Subject Classification: 14F42;, 14C35, 18G40,
19E15, 14F20, 14C25, 14C35.

Keywords and Phrases: Motives, coniveau, weight structure, t-
structure, triangulated category, semi-local scheme, cohomology.

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



34 M. V. BONDARKO

CONTENTS

[l SOME PRELIMINARIES ON TRIANGULATED CATEGORIES AND MOTIVES 43

1.1 _t¢-structures, Postnikov towers, idempotent completions, and an

embedding theorem of Mitchell . . . . . .. .. ... ... ... 43
1.2 Extending cohomological functors from a triangulated subcate-

BOTY v v v v e e e e e 46
(.3 _Some definitions of Voevodsky: reminded . . . . . . .. ... .. 47

2 WEIGHT STRUCTURES: REMINDER. TRUNCATIONS, WEIGHT SPECTRAL
SEQUENCES, AND DUALITY WITH {-STRUCTURES 53

[2.1 _Weight structures: basic definitiond . . . . . . . . . ... .... 54

2.4  Weight spectral sequences and filtrations; relation with virtual

t-truncations . . . ... L Lo 68

2.5 Dualities of triangulated categories; orthogonal weight and t-
structures . . ... Lo oL 71

2.6 Comparison of weight spectral sequences with those coming from
(orthogonal) t-truncations . . . . . . . . ... ... 74
[2.7_’Change of weight. structures’; comparing weight. spectral sequenced 76
[3__CATEGORIES OF COMOTIVES (MAIN PROPERTIES) 79

3.6 The Gysin distinguished triangle for pro-schemes; ’'Gersten’
Postnikov towers for comotives of pro-schemes . . . . . . . . .. 86

{4 MAIN MOTIVIC RESULTS 38

4.6 Base field change for coniveau spectral sequences; functoriality
for an uncountable k . . . . .. ... ... L. 96

4.7 The Chow weight_smmu:;w ................. 98

4.9 Birational motives: constructing the Gersten weight structure by
gluing; other possible weight structures. . . . . . . ... .. .. 101

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



CONIVEAU SPECTRAL SEQUENCES FOR MOTIVES 35

|5 THE CONSTRUCTION OF © AND ®': BASE CHANGE AND TATE TWISTY104

[5.1 _DG-categories and modules over them . . . . . .. ....... 104

5.3 The construction of ®’ and D; the proof of Propositionm . 106
[5.4 Base change and Tate twists for comotived . . . . . . . .. ... 108
5.4.1 Induction and restriction for differential graded modules:

reminder . . ... 0L 108
b5.4.2  Extension and restriction of scalars for comotives . .. 108
5.4.3 Tensor products and ’co-internal Hom’ for comotives;

Tate twists . . . . . ... L oo 109

(6 SupPLEMENTS 110
L T = = T . . 1

[6.2  The relation of the heart of w with HI ('Brown representability’)112

6.3 Mot ] - o onal ] - fici 113

6.4 Another possibility for ®; motives with compact support of pro-
schemes . . . . . . . . 114

INTRODUCTION

Let k be our perfect base field.

We recall two very important statements concerning coniveau spectral se-
quences. The first one is the calculation of Fy of the coniveau spectral se-
quence for cohomological theories that satisfy certain conditions; see [5] and
[8]. It was proved by Voevodsky that these conditions are fulfilled by any the-
ory H represented by a motivic complex C (i.e. an object of DMfff; see [25]);
then the Fs-terms of the spectral sequence could be calculated in terms of the
(homotopy t-structure) cohomology of C. This result implies the second one:
H-cohomology of a smooth connected semi-local scheme (in the sense of §4.4
of [26]) injects into the cohomology of its generic point; the latter statement
was extended to all (smooth connected) primitive schemes by M. Walker.

The main goal of the present paper is to construct (motivically) functorial
coniveau spectral sequences converging to cohomology of arbitrary motives;
there should exist a description of these spectral sequences (starting from F5)
that is similar to the description for the case of cohomology of smooth varieties
(mentioned above).

A related objective is to clarify the nature of the injectivity result mentioned;
it turned our that (in the case of a countable k) the cohomology of a smooth
connected semi-local (more generally, primitive) scheme is actually a direct
summand of the cohomology of its generic point. Moreover, the (twisted) co-
homology of a residue field of a function field K/k (for any geometric valuation
of K) is a direct summand of the cohomology of K. We actually prove more

in §4.3
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Our main homological algebra tool is the theory of weight structures (in trian-
gulated categories; we usually denote a weight structure by w) introduced in
the previous paper [6]. In this article we develop it further; this part of the
paper could be interesting also to readers not acquainted with motives (and
could be read independently from the rest of the paper). In particular, we
study nice dualities (certain pairings) of (two distinct) triangulated categories;
it seems that this subject was not previously considered in the literature at all.
This allows us to generalize the concept of adjacent weight and t-structures (t)
in a triangulated category (developed in §4.4 of [6]): we introduce the notion
of orthogonal structures in (two possibly distinct) triangulated categories. If ®
is a nice duality of triangulated C, D, X € ObjC, Y € ObjD, t is orthogonal
to w, then the spectral sequence S converging to ®(X,Y) that comes from
the t-truncations of Y is naturally isomorphic (starting from Es) to the weight
spectral sequence T for the functor ®(—,Y). T comes from weight truncations of
X (note that those generalize stupid truncations for complexes). Our approach
yields an abstract alternative to the method of comparing similar spectral se-
quences using filtered complexes (developed by Deligne and Paranjape, and
used in [22], [11], and [6]). Note also that we relate ¢-truncations in D with
virtual t-truncations of cohomological functors on C. Virtual ¢-truncations for
cohomological functors are defined for any (C,w) (we do not need any trian-
gulated ’categories of functors’ or t-structures for them here); this notion was
introduced in §2.5 of [6] and is studied further in the current paper.

Now, we explain why we really need a certain new category of comotives (con-
taining Voevodsky’s DM, j{;f ), and so the theory of adjacent structures (i.e.
orthogonal structures in the case C = D, ® = C(—, —)) is not sufficient for our
purposes. It was already proved in [6] that weight structures provide a power-
ful tool for constructing spectral sequences; they also relate the cohomology of
objects of triangulated categories with ¢-structures adjacent to them. Unfortu-
nately, a weight structure corresponding to coniveau spectral sequences cannot
exist on DM/ 5 DM, ;};f since these categories do not contain (any) motives
for function fields over k (as well as motives of other schemes not of finite type
over k; still cf. Remark 5.4(5)). Yet these motives should generate the heart
of this weight structure (since the objects of this heart should corepresent co-
variant exact functors from the category of homotopy invariant sheaves with
transfers to Ab).

So, we need a category that would contain certain homotopy limits of objects of
DM ;,J;f . We succeed in constructing a triangulated category © (of comotives)
that allows us to reach the objectives listed. Unfortunately, in order to control
morphisms between homotopy limits mentioned we have to assume k to be
countable. In this case there exists a large enough triangulated category ®,
(DMgefnf C ®; C ©) endowed with a certain Gersten weight structure w; its
heart is 'generated’ by comotives of function fields. w is (left) orthogonal to the
homotopy ¢-structure on DM and (so) is closely connected with coniveau
spectral sequences and Gersten resolutions for sheaves. Note still: we need k
to be countable only in order to construct the Gersten weight structure. So
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those readers who would just want to have a category that contains reasonable
homotopy limits of geometric motives (including comotives of function fields
and of smooth semi-local schemes), and consider cohomology theories for this
category, may freely ignore this restriction. Moreover, for an arbitrary k one
can still pass to a countable homotopy limit in the Gysin distinguished triangle
(as in Proposition B.6.1]). Yet for an uncountable k countable homotopy limits
don’t seem to be interesting; in particular, they definitely do not allow to
construct a Gersten weight structure (in this case).

So, we consider a certain triangulated category ® D DME// that (roughly!)
"consists of” (covariant) homological functors DM;,J;f — Ab. In particular,
objects of ® define covariant functors SmVar — Ab (whereas another ’big’
motivic category DM defined by Voevodsky is constructed from certain
sheaves i.e. contravariant functors SmVar — Ab; this is also true for all
motivic homotopy categories of Voevodsky and Morel). Besides, DM, ;ﬁ yields
a family of (weak) cocompact cogenerators for ©. This is why we call objects of
D comotives. Yet note that the embedding DM, ;J;f — @ is covariant (actually,
we invert the arrows in the corresponding ’category of functors’ in order to
make the Yoneda embedding functor covariant), as well as the functor that
sends a smooth scheme U (not necessarily of finite type over k) to its comotif
(which coincides with its motif if U is a smooth variety).

We also recall the Chow weight structure wi,,,, introduced in [6]; the corre-
sponding Chow-weight spectral sequences are isomorphic to the classical (i.e.
Deligne’s) weight spectral sequences when the latter are defined. wy,,,,,, could
be naturally extended to a weight structure wepe, for ©. We always have
a natural comparison morphism from the Chow-weight spectral sequence for
(H,X) to the corresponding coniveau one; it is an isomorphism for any bira-
tional cohomology theory. We consider the category of birational comotives
Dpir 1.€. the localization of © by D(1) (that contains the category of birational
geometric motives introduced in [I5]; though some of the results of this unpub-
lished preprint are erroneous, this makes no difference for the current paper).
It turns our that w and wepew induce the same weight structure wl’n-r on Dpi.
Conversely, starting from wy,,. one can ’glue’ (from slices) the weight structures
induced by w and wehew on ®/D(n) for all n > 0. Moreover, these structures
belong to an interesting family of weight structures indexed by a single integral
parameter! It could be interesting to consider other members of this family. We
relate briefly these observations with those of A. Beilinson (in [3] he proposed
a 'geometric’ characterization of the conjectural motivic t-structure).

Now we describe the connection of our results with related results of F. Deglise
(see [9], [10], and [II]; note that the two latter papers are not published at the
moment yet). He considers a certain category of pro-motives whose objects
are naive inverse limits of objects of DM ;};f (this category is not triangulated,
though it is pro-triangulated in a certain sense). This approach allows to ob-
tain (in a universal way) classical coniveau spectral sequences for cohomology
of motives of smooth varieties; Deglise also proves their relation with the homo-
topy t-truncations for cohomology represented by an object of DM Yet for
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cohomology theories not coming from motivic complexes, this method does not
seem to extend to (spectral sequences for cohomology of) arbitrary motives;
motivic functoriality is not obvious also. Moreover, Deglise didn’t prove that
the pro-motif of a (smooth connected) semi-local scheme is a direct summand
of the pro-motif of its generic point (though this is true, at least in the case of
a countable k). We will tell much more about our strategy and on the relation
of our results with those of Deglise in §.5] below. Note also that our methods
are much more convenient for studying functoriality (of coniveau spectral se-
quences) than the methods applied by M. Rost in the related context of cycle
modules (see [24] and §4 of [10]).

The author would like to indicate the interdependencies of the parts of this
text (in order to simplify reading for those who are not interested in all of
it). Those readers who are not (very much) interested in (coniveau) spectral
sequences, may avoid most of section [2] and read only §§2.11-2.2] (Remark
could also be ignored). Moreover, in order to prove our direct summands results
(i.e. Theorem 2] Corollary BEZ2] and Proposition Z3]) one needs only a
small portion of the theory of weight structures; so a reader very reluctant
to study this theory may try to derive them from the results of §3] by hand’
without reading §2 at all. Still, for motivic functoriality of coniveau spectral
sequences and filtrations (see Proposition L.4.1] and Remark F.4.2]) one needs
more of weight structures. On the other hand, those readers who are more
interested in the (general) theory of triangulated categories may restrict their
attention to §§L.II T2 and §2 yet note that the rest of the paper describes in
detail an important (and quite non-trivial) example of a weight structure which
is orthogonal to a t-structure with respect to a nice duality (of triangulated
categories). Moreover, much of section §4l could also be extended to a general
setting of a triangulated category satisfying properties similar to those listed
in Proposition B.T.T} yet the author chose not to do this in order to make the
paper somewhat less abstract.

Now we list the contents of the paper. More details could be found at the
beginnings of sections.

We start §1 with the recollection of t-structures, idempotent completions, and
Postnikov towers for triangulated categories. We describe a method for extend-
ing cohomological functors from a full triangulated subcategory to the whole
C (after H. Krause). Next we recall some results and definitions for Voevod-
sky’s motives (this includes certain properties of Tate twists for motives and
cohomological functors). Lastly, we define pro-motives (following Deglise) and
compare them with our triangulated category ® of comotives. This allows to
explain our strategy step by step.

§2 is dedicated to weight structures. First we remind the basics of this theory
(developed in §[6]). Next we recall that a cohomological functor H from an
(arbitrary triangulated category) C endowed with a weight structure w could
be “truncated’ as if it belonged to some triangulated category of functors (from
C) that is endowed with a t-structure; we call the corresponding pieces of H its
virtual t-truncations. We recall the notion of a weight spectral sequence (intro-
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duces in ibid.). We prove that the derived exact couple for a weight spectral
sequence could be described in terms of virtual t-truncations. Next we intro-
duce the definition a (nice) duality ® : C°? x D — A (here D is triangulated, A
is abelian), and of orthogonal weight and t-structures (with respect to ®). If w
is orthogonal to ¢, then the virtual ¢-truncations (corresponding to w) of func-
tors of the type ®(—,Y), Y € ObjD, are exactly the functors 'represented via
®’ by the actual t-truncations of Y (corresponding to t). Hence if w and ¢ are
orthogonal with respect to a nice duality, the weight spectral sequence converg-
ing to ®(X,Y) (for X € ObjC, Y € ObjD) is naturally isomorphic (starting
from E3) to the one coming from ¢-truncations of Y. We also mention some
alternatives and predecessors of our results. Lastly we compare weight decom-
positions, virtual ¢t-truncations, and weight spectral sequences corresponding
to distinct weight structures (in possibly distinct triangulated categories).

In §8l we describe the main properties of © D DM, geTJ;f . The exact choice of © is
not important for most of this paper; so we just list the main properties of ©
(and its certain enhancement ®’) in §3I1 We construct ® using the formalism
of differential graded modules in §5llater. Next we define comotives for (certain)
schemes and ind-schemes of infinite type over k (we call them pro-schemes). We
recall the notion of a primitive scheme. All (smooth) semi-local pro-schemes
are primitive; primitive schemes have all nice 'motivic’ properties of semi-local
pro-schemes. We prove that there are no ®-morphisms of positive degrees
between comotives of primitive schemes (and also between certain Tate twists
of those). In §3.6 we prove that the Gysin distinguished triangle for motives
of smooth varieties (in DM;};f ) could be naturally extended to comotives of
pro-schemes. This allows to construct certain Postnikov towers for comotives
of pro-schemes; these towers are closely related with classical coniveau spectral
sequences for cohomology.

§4 is central in this paper. We introduce a certain Gersten weight structure
for a certain triangulated category ®, (DM;{;Lf C D, C D). We prove that
Postnikov towers constructed in §3.6] are actually weight Postnikov towers with
respect to w. We deduce our (interesting) results on direct summands of como-
tives of function fields. We translate these results to cohomology in the obvious
way.

Next we prove that weight spectral sequences for the cohomology of X (corre-
sponding to the Gersten weight structure) are naturally isomorphic (starting
from E5) to the classical coniveau spectral sequences if X is the motif of a
smooth variety; so we call these spectral sequence coniveau ones in the general
case also. We also prove that the Gersten weight structure w (on ®) is or-
thogonal to the homotopy t-structure ¢ on DM (with respect to a certain
®). It follows that for an arbitrary X € ObjDM?, for a cohomology theory
represented by Y € ObjDMff f (any choice of) the coniveau spectral sequence
that converges to ®(X,Y) could be described in terms of the t-truncations of
Y (starting from FEs).

We also define coniveau spectral sequences for cohomology of motives over
uncountable base fields as the limits of the corresponding coniveau spectral
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sequences over countable perfect subfields of definition. This definition is com-
patible with the classical one; so we establish motivic functoriality of coniveau
spectral sequences in this case also.

We also prove that the Chow weight structure for DM, g,l;f (introduced in §6 of
[6]) could be extended to a weight structure weopew on ®. The corresponding
Chow-weight spectral sequences are isomorphic to the classical (i.e. Deligne’s)
ones when the latter are defined (this was proved in [6] and [7]). We compare
coniveau spectral sequences with Chow-weight ones: we always have a compar-
ison morphism; it is an isomorphism for a birational cohomology theory. We
consider the category of birational comotives Dy;, i.e. the localization of © by
D(1). w and wepew induce the same weight structure wz’)iT on y;,-; one almost
can glue w and wWepew from copies of wy,. (one may say that these weight
structures could almost be glued from the same slices with distinct shifts).

g8l is dedicated to the construction of ® and the proof of its properties. We
apply the formalism of differential graded categories, modules over them, and of
the corresponding derived categories. A reader not interested in these details
may skip (most of) this section. In fact, the author is not sure that there
exists only one ® suitable for our purposes; yet the choice of ® does not affect
cohomology of (comotives of) pro-schemes and of Voevodsky’s motives.

We also explain how the differential graded modules formalism can be used to
define base change (extension and restriction of scalars) for comotives. This
allows to extend our results on direct summands of comotives (and cohomology)
of function fields to pro-schemes obtained from them via base change. We also
define tensoring of comotives by motives (in particular, this yields Tate twist
for @), as well as a certain cointernal Hom (i.e. the corresponding left adjoint
functor).

§6l is dedicated to properties of comotives that are not (directly) related with
the main results of the paper; we also make several comments. We recall the
definition of the additive category ©9¢" of generic motives (studied in [9]). We
prove that the exact conservative weight compler functor corresponding to w
(that exists by the general theory of weight structures) could be modified to
an exact conservative WC : ®, — K®(®9"). Next we prove that a cofunc-
tor Hw — Ab is representable by a homotopy invariant sheaf with transfers
whenever is converts all products into direct sums.

We also note that our theory could be easily extended to (co)motives with co-
efficients in an arbitrary ring. Next we note (after B. Kahn) that reasonable
motives of pro-schemes with compact support do exist in DM ; this obser-
vation could be used for the construction of an alternative model for ©. Lastly
we describe which parts of our argument do not work (and which do work) in
the case of an uncountable k.

A caution: the notion of a weight structure is quite a general formalism for
triangulated categories. In particular, one triangulated category can support
several distinct weight structures (note that there is a similar situation with
t-structures). In fact, we construct an example for such a situation in this
paper (certainly, much simpler examples exist): we define the Gersten weight
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structure w for ®, and a Chow weight structure wepew for . Moreover, we
show in §4.9 that these weight structures are compatible with certain weight
structures defined on the localizations ©/®(n) (for all n > 0). These two series
of weight structures are definitely distinct: note that w yields coniveau spectral
sequences, whereas wepo yields Chow-weight spectral sequences, that general-
ize Deligne’s weight spectral sequences for étale and mixed Hodge cohomology
(see [6] and [7]). Also, the weight complex functor constructed in [7] and [6]
is quite distinct from the one considered in §6.1] below (even the targets of the
functors mentioned are completely distinct).

The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.
Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for their
interesting remarks. The author gratefully acknowledges the support from
Deligne 2004 Balzan prize in mathematics. The work is also supported by
RFBR (grants no. 08-01-00777a and 10-01-00287a).

NotaTION. For a category C, A, B € ObjC, we denote by C(A, B) the set of
A-morphisms from A into B.
For categories C, D we write C' C D if C' is a full subcategory of D.
For additive C, D we denote by AddFun(C, D) the category of additive functors
from C' to D (we will ignore set-theoretic difficulties here since they do not affect
our arguments seriously).
Ab is the category of abelian groups. For an additive B we will denote by B*
the category AddFun(B, Ab) and by B, the category AddFun(B°?, Ab). Note
that both of these are abelian. Besides, Yoneda’s lemma gives full embeddings
of B into B, and of B°" into B* (these send X € ObjB to X, = B(—, X) and
to X* = B(X, —), respectively).
For a category C, X,Y € ObjC, we say that X is a retract of Y if idx could
be factorized through Y. Note that when C is triangulated or abelian then
X is a retract of Y if and only if X is its direct summand. For any D C C
the subcategory D is called Karoubi-closed in C if it contains all retracts of
its objects in C. We will call the smallest Karoubi-closed subcategory of C'
containing D the Karoubization of D in C'; sometimes we will use the same
term for the class of objects of the Karoubization of a full subcategory of C'
(corresponding to some subclass of ObjC).
For a category C' we denote by C'°P its opposite category.
For an additive C an object X € ObjC is called cocompact if C(][;c; Y, X) =
@D, C(Yi, X) for any set I and any Y; € ObjC such that the product exists
(here we don’t need to demand all products to exist, though they actually will
exist below).
For X,Y € ObjC we will write X L Y if C(X,Y) = {0}. For D, E C ObjC we
will write D L. Fif X L Y forall X € D, Y € E. For D C C we will denote
by D+ the class

{YeObjC: X LY VX € D}.

Sometimes we will denote by D+ the corresponding full subcategory of C.
Dually, 1 D is the class {Y € ObjC : Y L X VX € D}. This convention is
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opposite to the one of §9.1 of [21].

In this paper all complexes will be cohomological i.e. the degree of all differen-
tials is +1; respectively, we will use cohomological notation for their terms.
For an additive category B we denote by C(B) the category of (unbounded)
complexes over it. K(B) will denote the homotopy category of complexes. If
B is also abelian, we will denote by D(B) the derived category of B. We will
also need certain bounded analogues of these categories (i.e. C*(B), K*(B),
D™(B)).

C and D will usually denote some triangulated categories. We will use the
term ’exact functor’ for a functor of triangulated categories (i.e. for a for a
functor that preserves the structures of triangulated categories).

A will usually denote some abelian category. We will call a covariant additive
functor C — A for an abelian A homological if it converts distinguished tri-
angles into long exact sequences; homological functors C°? — A will be called
cohomological when considered as contravariant functors C — A.

H : C°° — A will always be additive; it will usually be cohomological.

For f € C(X,Y), X,Y € ObjC, we will call the third vertex of (any) distin-

guished triangle X 1Y 5 Z a cone of f- Note that different choices of cones
are connected by non-unique isomorphisms, cf. TV.1.7 of [13]. Besides, in C(B)
we have canonical cones of morphisms (see section §II1.3 of ibid.).

We will often specify a distinguished triangle by two of its morphisms.

When dealing with triangulated categories we (mostly) use conventions and
auxiliary statements of [I3]. For a set of objects C; € ObjC, i € I, we will
denote by (C;) the smallest strictly full triangulated subcategory containing all
C;; for D C C we will write (D) instead of (ObjD).

We will say that C; generate C if C equals (C;). We will say that C; weakly
cogenerate C if for X € ObjC we have C(X,C;[j]) = {0} Vie I, j € Z =
X =0 (i.e. if 1{C;[j]} contains only zero objects).

We will call a partially ordered set L a (filtered) projective system if for any
x,y € L there exists some maximum i.e. a z € L such that z > x and z > y. By
abuse of notation, we will identify L with the following category D: ObjD = L;
D(U',1) is empty whenever I’ < I, and consists of a single morphism otherwise;
the composition of morphisms is the only one possible. If L is a projective
system, C' is some category, X : L — C' is a covariant functor, we will denote
X() for I € L by X;. We will write ¥ = lm, X for the limit of this
functor; we will call it the inverse limit of X;. We will denote the colimit of
a contravariant functor Y : L — C by ligl6 LYl and call it the direct limit.
Besides, we will sometimes call the categorical image of L with respect to such
an Y an inductive system.

Below I, L will often be projective systems; we will usually require I to be
countable.

A subsystem L’ of L is a partially ordered subset in which maximums exist
(we will also consider the corresponding full subcategory of L). We will call L/
unbounded in L if for any [ € L there exists an I’ € L’ such that I’ > [.
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k will be our perfect base field. Below we will usually demand % to be countable.
Note: this yields that for any variety the set of its closed (or open) subschemes
is countable.

We also list central definitions and main notation of this paper.

First we list the main (general) homological algebra definitions. ¢-structures, ¢-
truncations, and Postnikov towers in triangulated categories are defined in §T.T¢
weight structures, weight decompositions, weight truncations, weight Postnikov
towers, and weight complexes are considered in §2.I} virtual ¢-truncations and
nice exact complexes of functors are defined in §2.3F weight spectral sequences
are studied in §24F (nice) dualities and orthogonal weight and ¢-structures are
defined in Definition .51} right and left weight-exact functors are defined in
Definition 2.7.11

Now we list notation (and some definitions) for motives. DM, ge,z,‘%f c DM,
H I and the homotopy t-structure for DM, ;,f;f are defined in §I.3} Tate twists are
considered in .2t D¢ is defined in §L5L comotives (D and D’) are defined
in §3.1F in §32 we discuss pro-schemes and their comotives; in §3.3we recall the
definition of a primitive scheme; in §4.1] we define the Gersten weight structure
w on a certain triangulated ©,; we consider weonow in YT Dpir and wy,, are
defined in §40t several differential graded constructions (including extension
and restriction of scalars for comotives) are considered in §8f we define ©9¢"

and WC : D, — Kb(D9°") in §6.11

1 SOME PRELIMINARIES ON TRIANGULATED CATEGORIES AND MOTIVES

§L.T] we recall the notion of a ¢-structure (and introduce some notation for it),
recall the notion of an idempotent completion of an additive category; we also
recall that any small abelian category could be faithfully embedded into Ab (a
well-known result by Mitchell).

In §T.2] we describe (following H. Krause) a natural method for extending co-
homological functors from a full triangulated ¢’ C C to C.

In §1.3] we recall some definitions and results of Voevodsky.

In §1.4] we recall the notion of a Tate twist; we study the properties of Tate
twists for motives and homotopy invariant sheaves.

In T8 we define pro-motives (following [9] and [I0]). These are not necessary
for our main result; yet they allow to explain our methods step by step. We
also describe in detail the relation of our constructions and results with those
of Deglise.

1.1 t-STRUCTURES, POSTNIKOV TOWERS, IDEMPOTENT COMPLETIONS, AND
AN EMBEDDING THEOREM OF MITCHELL

To fix the notation we recall the definition of a ¢-structure.

DEFINITION 1.1.1. A pair of subclasses C'=°, C*<% ¢ ObjC for a triangulated
category C' will be said to define a t-structure ¢ if (QtZO,QtSO) satisfy the
following conditions:

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 33-117



44 M. V. BONDARKO

(i) 20 =Y are strict i.e. contain all objects of C isomorphic to their ele-
ments.

(11) QtZO c QtZO[l], QtSO[” c QtSO.

(iii) Orthogonality. C*<°[1] L C*=°.

(iv) t-decomposition. For any X € ObjC there exists a distinguished triangle

A— X — B[-1]—=A[1] (1)
such that A € C'<° B e C*=°.
We will need some more notation for ¢-structures.

DEFINITION 1.1.2. 1. A category Ht whose objects are C'=0 = 2% n C*=0,
Ht(X,Y) = C(X,Y) for X,Y € C*=°, will be called the heart of t. Recall (cf.
Theorem 1.3.6 of [2]) that H¢ is abelian (short exact sequences in Ht come
from distinguished triangles in C).

2. C2! (resp. C'S!) will denote C*=2°[—1] (resp. C'=°[-1)).

Remark 1.1.3. 1. The axiomatics of t-structures is self-dual: if D = C? (so
ObjC = ObjD) then one can define the (opposite) weight structure ¢’ on D by
taking DV=0 = 20 apd DV20 = C'=%: see part (iii) of Examples 1.3.2 in [2].
2. Recall (cf. Lemma IV.4.5 in [13]) that (1)) defines additive functors C' —
O X 5 Aand C — C2Y . X — B. We will denote 4, B by X'<0 and
Xt21, respectively.

3. (@) will be called the t-decomposition of X. If X = Y'[i] for some Y € ObjC,
i € Z, then we will denote A by Y*< (it belongs to C*=°) and B by Y*=it1
(it belongs to C*=°), respectively. Sometimes we will denote Ytgi[—i] by t<;Y;
t>i41Y = Y7+ [—i —1]. Objects of the type Y**i[j] and Y*"i[j] (for i, € Z)
will be called t-truncations of Y.

4. We denote by X'=? the i-th cohomology of X with respect to t i.e. (Y<%)¢=0
(cf. part 10 of §IV.4 of [13]).

5. The following statements are obvious (and well-known): =0
CtZO _ Ctg—lj_.

>
_ LQt,I;

Now we recall the notion of idempotent completion.

DEFINITION 1.1.4. An additive category B is said to be idempotent complete
if for any X € ObjB and any idempotent p € B(X, X) there exists a decom-
position X =Y @ Z such that p =i o j, where 7 is the inclusion Y - Y P Z,
Jj is the projection Y@ Z — Y.

Recall that any additive B can be canonically idempotent completed. Its idem-
potent completion is (by definition) the category B’ whose objects are (X, p)
for X € ObjB and p € B(X, X) : p? = p; we define

A((X,p), (X',p") ={f € BX,X): p'f=fp=f}
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It can be easily checked that this category is additive and idempotent complete,
and for any idempotent complete C' O B we have a natural full embedding
B — C.

The main result of [I] (Theorem 1.5) states that an idempotent completion
of a triangulated category C has a natural triangulation (with distinguished
triangles being all retracts of distinguished triangles of C).

Below we will need the notion of a Postnikov tower in a triangulated category
several times (cf. §IV2 of [13])).

DEFINITION 1.1.5. Let C be a triangulated category.
1. Let I <m e Z.
We will call a bounded Postnikov tower for X € ObjC the following data:
a sequence of C-morphisms (0 =)Y; — Y41 — -+ — Y, = X along with
distinguished triangles

Yi—= Y — X; (2)
for some X; € ObjC; here | < i < m.
2. An unbounded Postnikov tower for X is a collection of Y; for ¢ € Z that
is equipped (for all i € Z) with: connecting arrows Y; — Y;11 (for i € Z),
morphisms Y; — X such that all the corresponding triangles commute, and
distinguished triangles (2)).
In both cases, we will denote X_,[p] by X?; we will call X? the factors of out
Postnikov tower.

Remark 1.1.6. 1. Composing (and shifting) arrows from triangles @) for two
subsequent ¢ one can construct a complex whose terms are XP? (it is easily seen
that this is a complex indeed, cf. Proposition 2.2.2 of [6]). This observation
will be important for us below when we will consider certain weight complex
functors.

2. Certainly, a bounded Postnikov tower could be easily completed to an un-
bounded one. For example, one could take Y; =0 for i < [, Y; = X for i > m;
then X! =01ifi <lori>m.

Lastly, we recall the following (well-known) result.

PRrROPOSITION 1.1.7. For any small abelian category A there exists an exact
faithful functor A — Ab.

Proof. By the Freyd-Mitchell’s embedding theorem, any small A could be fully
faithfully embedded into R — mod for some (associative unital) ring R. It
remains to apply the forgetful functor R — mod — Ab. O

Remark 1.1.8. 1. We will need this statement below in order to assume that
objects of A ’have elements’; this will considerably simplify diagram chase.
Note that we can assume the existence of elements for a not necessarily small
A in the case when a reasoning deals only with a finite number of objects of A
at a time.

2. In the proof it suffices to have a faithful embedding A — R — mod; this
weaker assertion was also proved by Mitchell.
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1.2 EXTENDING COHOMOLOGICAL FUNCTORS FROM A TRIANGULATED SUB-
CATEGORY

We describe a method for extending cohomological functors from a full trian-
gulated C' C C to C (after H. Krause). Note that below we will apply some of
the results of [I7] in the dual form. The construction requires C’ to be skele-
tally small i.e. there should exist a (proper) subset D C ObjC’ such that any
object of C’ is isomorphic to some element of D. For simplicity, we will some-
times (when writing sums over ObjC’) assume that ObjC’ is a set itself. Since
the distinction between small and skeletally small categories will not affect our
arguments and results, we will ignore it in the rest of the paper.

If A is an abelian category, then AddFun(C’°?, A) is abelian also; complexes in
it are exact whenever they are exact componentwisely.

Suppose that A satisfies AB5 i.e. it is closed with respect to all small coprod-
ucts, and filtered direct limits of exact sequences in A are exact.

Let H' € AddFun(C’°?, A) be an additive functor (it will usually be cohomo-
logical).

PROPOSITION 1.2.1. I Let A, H' be fized.

1. There exists an extension of H' to an additive functor H : C — A. It is
cohomological whenever H is. The correspondence H' — H defines an additive
functor AddFun(C’°?; A) — AddFun(C?, A).

2. Moreover, suppose that in C' we have a projective system X;, | € L, equipped
with a compatible system of morphisms X — X;, such that the latter system
for any Y € ObjC" induces an isomorphism C(X,Y) = lng(Xl,Y). Then
we have H(X) = liﬂH(Xl).

II Let X € ObjC be fized.

1. One can choose a family of X; € ObjC and f, € C(X, X)) such that (f;)
induce a surjection ®H'(X;) — H(X) for any H', A, and H as in assertion
I1.

2. Let ' 55 G' % H' be a (three-term) complex in AddFun(C’°?, A) that
is exact in the middle; suppose that H' is cohomological. Then the complex

F G5 H (here F,G,H, f,g are the corresponding extensions) is exact in
the middle also.

Proof. 11. Following §1.2 of [I7] (and dualizing it), we consider the abelian cat-
egory C' = C'* = AddFun(C’, Ab) (this is Mod C’°? in the notation of Krause).
The definition easily implies that direct limits in C' are exactly componentwise
direct limits of functors. We have the Yoneda’s functor ¢’ : C°? — C that sends
X € 0bjC to the functor X* = (Y — C(X,Y), Y € ObjC"); it is obviously
cohomological. We denote by i the restriction of i’ to C’ (i is opposite to a full
embedding).

By Lemma 2.2 of [I7] (applied to the category C'°?) we obtain that there exists
an exact functor G : C' — A that preserves all small coproducts and satisfies
Goi = H'. It is constructed in the following way: if for X € ObjC we have an
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exact sequence (in C)
Bjes X = @rer X - X" =0 (3)
for X;, X; € C’, then we set
G(X) = Coker ®,e s H'(X;) = ®1e H'(X)). (4)

We define H = G o4/; it was proved in loc.cit. that we obtain a well-defined
functor this way. As was also proved in loc.cit., the correspondence H' — H
yields a functor; H is cohomological if H' is.

2. The proof of loc.cit. shows (and mentions) that G respects (small) filtered
inverse limits. Now note that our assertions imply: X* = ligX ;in C.

IT 1. This is immediate from ().

2. Note that the assertion is obviously valid if X € ObjC’. We reduce the
general statement to this case.

Applying Yoneda’s lemma to (@) is we obtain (canonically) some morphisms
fi: X =X, foralll e Land g : X; = X, foralll € L, j € J, such that: for
any | € L almost all g;; are 0; for any j € J almost all g;; is 0; for any j € J
we have >, ., gij o fi =0.

Now, by Proposition [[LT.7] we may assume that A = Ab (see Remark [[LT.g]).
We should check: if for a € G(X) we have g.(a) = 0, then a = f.(b) for some
be F(X).

Using additivity of C" and C, we can gather finite sets of X; and X into single
objects. Hence we can assume that a = G(f;,)(c) for some ¢ € G(X;) (=
G'(X1)), lo € L and that ¢.(c) € H(gi,,)(H(X,,)) for some jo € J, whereas
Gigjo © fi, = 0. We complete X;, — Xj, to a distinguished triangle Y 5

X1, 9logo Xj,; we can assume that B € ObjC’. We obtain that f;, could be
presented as avo 8 for some 5 € C(X,Y). Since H' is cohomological, we obtain
that H(a)(g«(c)) = 0. Since Y € ObjC, the complex F(Y) - G(Y) — H(Y)
is exact in the middle; hence G(a)(c) = f«(d) for some d € F(Y). Then we
can take b = F(5)(d).

O

1.3 SOME DEFINITIONS OF VOEVODSKY: REMINDER

We use much notation from [25]. We recall (some of) it here for the convenience
of the reader, and introduce some notation of our own.

Var D SmVar O SmPrVar will denote the class of all varieties over k, resp.
of smooth varieties, resp. of smooth projective varieties.

We recall that for categories of geometric origin (in particular, for SmCor de-
fined below) the addition of objects is defined via the disjoint union of varieties
operation.

We define the category SmCor of smooth correspondences. ObjSmCor =
SmVar, SmCor(X,Y) = @ Z for all integral closed U C X x Y that are
finite over X and dominant over a connected component of X; the composition
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of correspondences is defined in the usual way via intersections (yet, we do not
need to consider correspondences up to an equivalence relation).

We will write --- — X! — X' — Xt — .. for X! € SmVar, for the
corresponding complex over SmCor.

PreShv(SmCor) will denote the (abelian) category of additive cofunctors
SmCor — Ab; its objects are usually called presheaves with transfers.
Shv(SmCor) = Shv(SmCor)y,, C PreShv(SmCor) is the abelian category
of additive cofunctors SmCor — Ab that are sheaves in the Nisnevich topology
(when restricted to the category of smooth varieties); these sheaves are usually
called sheaves with transfers.

D= (Shv(SmCor)) will be the bounded above derived category of
Shv(SmCor).

For Y € SmVar (more generally, for Y € Var, see §4.1 of [25]) we consider
L(Y) = SmCor(—,Y) € Shv(SmCor). For a bounded complex X = (X?)
(as above) we will denote by L(X) the complex --- — L(X!) — L(X?) —
LX) — ... € C*(Shv(SmCor)).

S € Shv(SmCor) is called homotopy invariant if for any X € SmVar the
projection Al x X — X gives an isomorphism S(X) — S(A' x X). We will
denote the category of homotopy invariant sheaves (with transfers) by HI; it
is an exact abelian subcategory of SmCor by Proposition 3.1.13 of [25].
DM ¢ D= (Shv(SmCor)) is the full subcategory of complexes whose coho-
mology sheaves are homotopy invariant; it is triangulated by loc.cit. We will
need the homotopy t-structure on DM®: it is the restriction of the canon-

ical t-structure on D~ (Shv(SmCor)) to DM/, Below (when dealing with
DM we will denote it by just by . We have Ht = H]I.
We recall the following results of [25].

ProposiTion 1.3.1. 1. There exists an ezxact functor RC
D~ (Shv(SmCor)) — DM right adjoint to the embedding DM/ —
D~ (Shv(SmCor)).

2. DMfff(Mgm(Y)[fﬂ,F) =HY(F)(Y) (the i-th Nisnevich hypercohomology
of F' computed in'Y ) for any Y € SmVar.

3. Denote RC o L by Mg,,. Then the corresponding functor K*(SmCor) —
DM could be described as a certain localization of K*(SmCor).

Proof. See §3 of [25]. O

Remark 1.3.2. 1. In [25] (Definition 2.1.1) the triangulated category DM;,J,?
(of effective geometric motives) was defined as the idempotent completion of a
certain localization of K®(SmCor). This definition is compatible with a differ-
ential graded enhancement for DMSST: cf. §5.3below. Yet in Theorem 3.2.6 of

am

[25] it was shown that DM, ;ﬂ;f is isomorphic to the idempotent completion of

(the categorical image) Mgy, (C*(SmCor)); this description of DM/ will be
sufficient for us till §5
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2. In fact, RC could be described in terms of so-called Suslin complexes (see
loc.cit.). We will not need this below. Instead, we will just note that RC' sends

D~ (Shv(SmCor))*<? to DM Tt<0,

1.4 SOME PROPERTIES OF TATE TWISTS

Tate twisting in DM > DM;;’;f is given by tensoring by the object Z(1)
(it is often denoted just by —(1)). Tate twist has several descriptions and nice
properties. We will only need a few of them; our main source is §3.2 of [25]; a
more detailed exposition could be found in [20] (see §§8 9).

In order to calculate the tensor product of X,Y € ObjDMfff one should take
any preimages X', Y’ of X,Y in Obj D~ (Shv(SmCor)) with respect to RC' (for
example, one could take X' = X, Y’ = Y); next one should resolve X,Y by
direct sums of L(Z;) for Z; € SmV ar; lastly one should tensor these resolutions
using the identity L(Z)Q L(T) = L(Z xT) for Z,T € SmVar, and apply RC to
the result. This tensor product is compatible with the natural tensor product
for K®(SmCor).

We note that any object D*(Shv(SmC’or))tSO has a resolution concentrated
in negative degrees (the canonical resolution of the beginning of §3.2 of [25]).
It follows that DM /t<0 @ DAfefft<0 c ppfefft<o (see Remark [L3.(2); in
fact, there is an equality since Z € ObjHI).

Next, we denote A! \ {0} by G,,. The morphisms pt — G,, — pt (the point is
mapped to 1 in G,,) induce a splitting My, (Gy,) = Z ® Z(1)[1] for a certain
(Tate) motif Z(1); see Definition 3.1 of [20]. For X € ObjDM® we denote
X ®7Z(1) by X(1).

One could also present Z(1) as Cone(pt — Gy,)[—1]; hence the Tate twist
functor X — X (1) is compatible with the functor — ® (Cone(pt — G,,)[—1])
on C?(SmCor) via M,,,. We also obtain that DM*//t<0(1) ¢ DMmeITt=1,
Now we define certain twists for functors.

DEFINITION 1.4.1. For an G € AddFun(DMj}%f,Ab), n > 0, we define
G_n(X) = G(X(n)[n]).

Note that this definition is compatible with those of §3.1 of [26]. Indeed, for
X € SmVar we have G_1(Mym (X)) = G(Mgnm(X X Gr,))/G(Mgm (X)) =
Ker(G(Mgm (X x Gp,)) = G(Mgn(X))) (with respect to natural morphisms
X xpt = X x Gy, = X x pt); G_,, for larger n could be defined by iterating
_—

Below we will extend this definition to (co)motives of pro-schemes.

For F € ObjDM®'/ we will denote by F, the functor X — DM (X F) :
DMST — Ab.

PRrROPOSITION 1.4.2. Let X € SmVar,n >0, i € Z.
1. For any F € ObjDM® we have: Fo (Mg (X)[—1]) is a retract of
HY(F)(X x GX™) (which can be described explicitly).
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2. There exists a t-exact functor T, : DM’ — DM such that for any
F € ObjDM®’ we have F,_, = (T, (F))..

Proof. 1. Proposition [[3T] along with our description of Z(1) yields the result.
2. For F represented by a complex of F* € ObjShv(SmCor) (i € Z) we
define T, (F) as the complex of T, (F"), where T, : PreShv(SmCor) —
PreShv(SmCor) is defined similarly to —_,, in Definition [LZIl 7T, (F*) are
sheaves since T, (F;)(X), X € SmVar, is a functorial retract of F;(X x GI,).
In order to check that we actually obtain a well-defined a t-exact functor this
way, it suffices to note that the restriction of T;, to Shv(SmCor) is an exact
functor by Proposition 3.4.3 of [9].
Now, it suffices to check that T,, defined satisfies the assertion for n = 1. In this
case the statement follows easily from Proposition 4.34 of [26] (note that it is
not important whether we consider Zariski or Nisnevich topology by Theorem
5.7 of ibid.).

O

1.5 PRO-MOTIVES VS. COMOTIVES; THE DESCRIPTION OF OUR STRATEGY

Below we will embed DM;-fnf into a certain triangulated category © of como-
tives. Tts construction (and computations in it) is rather complicated; in fact,
the author is not sure whether the main properties of © (described below)
specify it up to an isomorphism. So, before working with co-motives we will
(following F. Deglise) describe a simpler category of pro-motives. The latter
is not needed for our main results (so the reader may skip this subsection);
yet the comparison of the categories mentioned would clarify the nature of our
methods.

Following §3.1 of [9], we define the category ®"%¢ as the additive category
of naive i.e. formal (filtered) pro-objects of DM, gc,{lf . This means that for any
X:L— DM Y :J— DM we define

gm
@nawe(@lEL X, @jeJ }/J) = mje](hgléll DMgE};f(le Y])) (5)

The main disadvantage of D¢ is that it is not triangulated. Still, one has the
obvious shift for it; following Deglise, one can define pro-distinguished triangles
as (filtered) inverse limits of distinguished triangles in DM, ;,J;f . This allows to
construct a certain motivic coniveau exact couple for a motif of a smooth variety
in §4.2 of [10] (see also §5.3 of [9]). This construction is parallel to the classical
construction of coniveau spectral sequences (see §1 of [8]). One starts with
certain 'geometric’ Postnikov towers in DM, ;fnf (Deglise calls them triangulated
exact couples). For Z € SmVar we consider filtrations @ = Z;41 C Zy C
Zg1 C -+ C Zyg = Z; Z; is everywhere of codimension > ¢ in Z for all 7.
Then we have a system of distinguished triangles relating M,,(Z \ Z;) and
Mym(Z \ Z; — Z \ Zit1); this yields a Postnikov tower. Then one passes
to the inverse limit of these towers in ©"%v¢ (here the connecting morphisms
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are induced by the corresponding open embeddings). Lastly, the functorial
form of the Gysin distinguished triangle for motives allows Deglise to identify
X; = @(Mgm (Z\ Z; = Z\ Z;41)) with the product of shifted Tate twists of
pro-motives of all points of Z of codimension ¢. Using the results of see §5.2
of [9] (the relation of pro-motives with cycle modules of M. Rost, see [24]) one
can also compute the morphisms that connect X* with X*t1,

Next, for any cohomological H : DM, 5}:{‘ — A, where A is an abelian category
satisfying AB5, one can extend H to ®"%¢ via the corresponding direct limits.
Applying H to the motivic coniveau exact couple one gets the classical coniveau
spectral sequence (that converges to the H-cohomology of Z). This allows
to extend the seminal results of §6 of [5] to a comprehensive description of
the coniveau spectral sequence in the case when H is represented by Y €
ObjDMfff (in terms of the homotopy t-truncations of Y; see Theorem 6.4 of
[111).

Now suppose that one wants to apply a similar procedure for an arbitrary

X € ObjDMeLS; say, X = My (2 L 22) for 21,22 € SmVar, f €

m
SmCor(Z?, ZQQ). One would expect that the desired exact couple for X could
be constructed from those for Z7, j = 1,2. This is indeed the case when f satis-
fies certain codimension restrictions; cf. §7.4 of [6]. Yet for a general f it seems
to be quite difficult to relate the filtrations of distinct Z7 (by the corresponding
Z!). On the other hand, the formalism of weight structures and weight spec-
tral sequences (developed in [6]) allows to glue’ certain weight Postnikov towers

for objects of a triangulated categories equipped with a weight structure; see
Remark [LT.2((3) below.

So, we construct a certain triangulated category ® that is somewhat similar
to D¢ Certainly, we want distinguished triangles in ® to be compatible
with inverse limits that come from 'geometry’. A well-known recipe for this is:
one should consider some category ©’ where (certain) cones of morphisms are
functorial and pass to (inverse) limits in ®’; © should be a localization of D’.
In fact, ' constructed in §5.3 below could be endowed with a certain (Quillen)
model structure such that ® is its homotopy category. We will never use this
fact below; yet we will sometimes call inverse limits coming from D’ homotopy
limits (in D).

Now, in Proposition .3.1] below we will prove that cohomological functors
H: DM;%f — A could be extended to © in a way that is compatible with
homotopy limits (those coming from ©’). So one may say that objects of D
have the same cohomology as those of ®"%¥¢, On the other hand, we have
to pay the price for © being triangulated: (Bl does not compute morphisms
between homotopy limits in ©. The ’difference’ could be described in terms
of certain higher projective limits (of the corresponding morphism groups in
DME).

Unfortunately, the author does not know how to control the corresponding
@12 (and higher ones) in the general case; this does not allow to construct
a weight structure on a sufficiently large triangulated subcategory of © if k
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is uncountable (yet see §6.5 especially the last paragraph of it). In the case
of a countable k only lim' is non-zero. In this case the morphisms between
homotopy limits in © are expressed by the formula (28] below. This allows
to prove that there are no morphisms of positive degrees between certain Tate
twists of comotives of function fields (over k). This immediately yields that one
can construct a certain weight structure on the triangulated subcategory ®g of
D generated by products of Tate twists of comotives of function fields (in fact,
we also idempotent complete ;). Now, in order to prove that ®, contains
DM;{;[ it suffices to prove that the motif of any smooth variety X belongs
to ®;. To this end it clearly suffices to decompose Mg, (X) into a Postnikov
tower whose factors are products of Tate twists of comotives of function fields.
So, we lift the motivic coniveau exact couple (constructed in [10]) from Dnaéve
to ®. Since cones in ®’ are compatible with inverse limits, we can construct a
tower whose terms are the homotopy limits of the corresponding terms of the
geometric towers mentioned. In fact, this could be done for an uncountable &
also; the difficulty is to identify the analogues of X; in ®. If k is countable,
the homotopy limits corresponding to our tower are countable also. Hence (by
an easy well-known result) the isomorphism classes of these homotopy limits
could be computed in terms of the corresponding objects and morphisms in
DM¢gfJ. This means: it suffices to compute X’ in D"**¢ (as was done in [10]);
this yields the result needed. Note that we cannot (completely) compute the
D-morphisms X — X**!; yet we know how they act on cohomology.

The most interesting application of the results described is the following one.
We prove that there are no positive D-morphisms between (certain) Tate twists
of comotives of smooth semi-local schemes (or primitive schemes, see below);
this generalizes the corresponding result for function fields. It follows that
these twists belong to the heart of the weight structure on ®,; mentioned.
Therefore comotives of (connected) primitive schemes are retracts of comotives
of their generic points. Hence the same is true for the cohomology of the
comotives mentioned and also for the corresponding pro-motives. Also, the
comotif of a function field contains as retracts twisted comotives of its residue
fields (for all geometric valuations); this also implies the corresponding results
for cohomology and pro-motives.

Remark 1.5.1. In fact, Deglise mostly considers pro-objects for Voevodsky’s
DMy, and of DM e/t ; yet the distinctions are not important since the full

embeddings DM/ — DMy, and DM} — DM obviously extend to full
embedding of the corresponding categories of pro-objects. Still, the embeddings
mentioned allow Deglise to extend several nice results for Voevodsky’s motives
to pro-motives.

2. One of the advantages of the results of Deglise is that he never requires k to
be countable. Besides, our construction of weight Postnikov towers mentioned
heavily relies on the functoriality of the Gysin distinguished triangle for motives
(proved in [10]; see also Proposition 2.4.5 of [9]).
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2  WEIGHT STRUCTURES: REMINDER, TRUNCATIONS, WEIGHT SPECTRAL SE-
QUENCES, AND DUALITY WITH {-STRUCTURES

In §277] we recall basic definitions of the theory of weight structures (it was
developed in [6]; the concept was also independently introduced in [23]). Note
here that weight structures (usually denoted by w) are natural counterparts of ¢-
structures. Weight structures yield weight truncations; those (vastly) generalize
stupid truncations in K (B): in particular, they are not canonical, yet any
morphism of objects could be extended (non-canonically) to a morphism of
their weight truncations. We recall several properties of weight structures in
§2.2

We recall virtual t-truncations for a (cohomological) functor H : C' — A (for C
endowed with a weight structure) in §2.3] (these truncations are defined in terms
of weight truncations). Virtual ¢-truncations were introduced in §2.5 of [6];
they yield a way to present H (canonically) as an extension of a cohomological
functor that is positive in a certain sense by a 'negative’ one (as if H belonged
to some triangulated category of functors C — A endowed with a t-structure).
We study this notion further here, and prove that virtual ¢-truncations for a
cohomological H could be characterized up to a unique isomorphism by their
properties (see Theorem [Z3TI114)). In order to give some characterization
also for the 'dimension shift’ (connecting the positive and the negative virtual
t-truncations of H), we introduce the notion of a nice (strongly exact) complex
of functors. We prove that complexes of representable functors coming from
distinguished triangles in C' are nice, as well as those complexes that could be
obtained from nice strongly exact complexes of functors C' — A for some small
triangulated C’' C C (via the extension procedure given by Proposition [L2.]).
In §241 we consider weight spectral sequences (introduced in §§2.3-2.4 of [6]).
We prove that the derived exact couple for the weight spectral sequence T'(H)
(for H : C — A) could be naturally described in terms of virtual ¢-truncations
of H. So, one can express T'(H) starting from Fs (as well as the corresponding
filtration of H*) in these terms also. This is an important result, since the basic
definition of T'(H) is given in terms of weight Postnikov towers for objects of C,
whereas the latter are not canonical. In particular, this result yields canonical
functorial spectral sequences in classical situations (considered by Deligne; cf.
Remark 2.4.3 of [6]; note that we do not need rational coefficients here).

In §25 we introduce the definition a (nice) duality ® : CP x D — A, and
of (left) orthogonal weight and t-structures (with respect to ®). The latter
definition generalizes the notion of adjacent structures introduced in §4.4 of
[6] (this is the case C = D, A = Ab, ® = C(—,)). If w is orthogonal to
t then the virtual t-truncations (corresponding to w) of functors of the type
®(—,Y), Y € ObjD, are exactly the functors 'represented via ®’ by the actual
t-truncations of Y (corresponding to t). We also prove that (nice) dualities
could be extended from C’ to C (using Proposition [LZ1). Note here that
(to the knowledge of the author) this paper is the first one which considers
‘pairings’ of triangulated categories.
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In §2.6] we prove: if w and ¢ are orthogonal with respect to a nice duality, the
weight spectral sequence converging to ®(X,Y) (for X € ObjC, Y € ObjD) is
naturally isomorphic (starting from F5) to the one coming from ¢-truncations
of Y. Moreover even when the duality is not nice, all E?9 for r > 2 and the
filtrations corresponding to these spectral sequences are still canonically iso-
morphic. Here niceness of a duality (defined in §2.5]) is a somewhat technical
condition (defined in terms of nice complexes of functors). Niceness gener-
alizes to pairings (C x D — A) the axiom TR3 (of triangulated categories:
any commutative square in C could be completed to a morphism of distin-
guished triangles; note that this axiom could be described in terms of the func-
tor C(—,—) : CxC — Ab). We also discuss some alternatives and predecessors
of our methods and results.

In §2.7 we compare weight decompositions, virtual ¢-truncations, and weight
spectral sequences corresponding to distinct weight structures (in possibly dis-
tinct triangulated categories, connected by an exact functor).

2.1 WEIGHT STRUCTURES: BASIC DEFINITIONS

We recall the definition of a weight structure (see [6]; in [23] D. Pauksztello
introduced weight structures independently and called them co-t-structures).

DEFINITION 2.1.1 (Definition of a weight structure). A pair of subclasses
Ccv=0 w20 = ObjC for a triangulated category C will be said to define a
weight structure w for C' if they satisfy the following conditions:

(i) ¢*=% Cc"=<" are additive and Karoubi-closed (i.e. contain all retracts of
their objects that belong to ObjC).

(ii) "Semi-invariance" with respect to translations.

szo C szom; QwSO[l] C ngo.

(iii) Orthogonality.

QwZO J_ngo[l].

(iv) Weight decomposition.

For any X € ObjC there exists a distinguished triangle

Bl-1]-X—-ALB (6)
such that A € C¥=Y B e ¢¥=0.

A simple example of a category with a weight structure is K (B) for any addi-
tive B: positive objects are complexes that are homotopy equivalent to those
concentrated in positive degrees; negative objects are complexes that are homo-
topy equivalent to those concentrated in negative degrees. Here one could also
consider the subcategories of complexes that are bounded from above, below,
or from both sides.

The triangle (@) will be called a weight decomposition of X. A weight de-
composition is (almost) never unique; still we will sometimes denote any pair
(A, B) as in (@) by X¥<% and X“Z!. Besides, we will call objects of the type
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(X[i])*=°[4] and (X[i])“=[j] (for i, € Z) weight truncations of X. A shift of
the distinguished triangle (B) by [¢] for any ¢ € Z, X € ObjC (as well as any
its rotation) will sometimes be called a shifted weight decomposition.

In K(B) (shifted) weight decompositions come from stupid truncations of com-
plexes.

We will also need the following definitions and notation.

DEFINITION 2.1.2. Let X € ObjC.

1.

A

10.

11

The category Hw C C whose objects are cv=0 = w20 n ngo,

Hw(Z,T) = C(Z,T) for Z,T € C*=°, will be called the heart of the
weight structure w.

2! (resp. C"S!) resp. CV=') will denote CV=ZO[—1] (resp. C“<°[1],
resp. C"=Y[—1]).

We denote C¥=! N CY<? by ol

XSt (resp. X*2!) will denote (X [1])<? (resp. (X[l —1])¥Z1h).
w<; X (resp. w>;X) will denote XW<{[—i] (resp. X¥=[—i]).

w will be called non-degenerate if

nCv=t = me™st = {0}.

We consider C° = (UieZngi) N (UieZszi) and call it the class of
bounded objects of C.

For X € C? we will usually take w<; X = 0 for ¢ small enough, w>; X =0
for 7 large enough.

We will also denote by C” the corresponding full subcategory of C.
We will say that (C,w) is bounded if C* = C

We will call a Postnikov tower for X (see Definition [LT.H) a weight Post-
nikov tower if all Y; are some choices for w>;_;X. In this case we will call
the complex whose terms are X? (see Remark [[T.06) a weight complex for
X.

We will call a weight Postnikov tower for X negative if X € C*<° and
we choose w>; X to be 0 for all j > 0 here.

D C ObjC will be called extension-stable if for any distinguished triangle
A— B —Cin(C we have: A, CeD = BeD.

We will also say that the corresponding full subcategory is extension-
stable.

D C ObjC will be called negative if for any i > 0 we have D L DJi].
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Remark 2.1.3. 1. One could also dualize our definition of a weight Postnikov
tower i.e. build a tower from w<;X instead of w>;X. Our definition of a
weight Postnikov tower is more convenient for our purposes since in §3.6] below
we will consider Y; = j(Zy \ Z;) instead of = j(Zy \ Z; — Zp)[—1]. Yet this
does not make much difference; see §1.5 of [6] and Theorem ZZTI[I2)) below. In
particular, our definition of the weight complex for X coincides with Definition
2.2.1 of ibid. Note also, that Definition 1.5.8 of ibid (of a weight Postnikov
tower) contained both ’our’ part of the data and the dual part.

2. Weight Postnikov towers for objects of C' are far from being unique; their
morphisms (provided by Theorem ZZT|[IH) below) are not unique also (cf.
Remark 1.5.9 of [6]). Yet the corresponding weight spectral sequences for co-
homology are unique and functorial starting from FEs; see Theorem 2.4.2 of ibid.
and Theorem below for more detail. In particular, all possible choices of
a weight complex for X are homotopy equivalent (see Theorem 3.2.2(IT) and
Remark 3.1.7(3) in [6]).

2.2 BASIC PROPERTIES OF WEIGHT STRUCTURES

Now we list some basic properties of notions defined. In the theorem below
we will assume that C is endowed with a fixed weight structure w everywhere
except in assertions [I§ —

THEOREM 2.2.1. 1. The axiomatics of weight structures is self-dual: if
D = C (so ObjC = ObjD) then one can define the (opposite) weight
structure w' on D by taking D* <0 — ow20 gpd DV 20 = CW=0,

2. We have
QwSO _ QU}ZIJ_ (7)

and
QwZO _ J_ng—l. (8)

3. For any i € Z, X € ObjC we have a distinguished triangle w>; 1 X —
X — w<; X (given by a shifted weight decomposition,).

4. C*=0 %20 and CV=° are extension-stable.

5. All C¥<' are closed with respect to arbitrary (small) direct products
(those, which ezist in C); all C"Z" and C"=" are additive.

6. For any weight decomposition of X € C=° (see (@) we have A € C*=°.

7. If A— B — C — A[1] is a distinguished triangle and A,C € CV=°, then
B2 AaC.

8. If we have a distinguished triangle A — B — C for B € C*7°, C e
CV<7! then A= B@ C[-1].
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IfX e Cc¥™, X[-1] — A L Bisa weight decomposition (of X[—1]),
then Be C"="; B2 A& X.

Letl <m € Z, X,X' € ObjC; let weight decompositions of X[m] and
X'[l] be fized. Then any morphism g : X — X' can be completed to a
morphism of distinguished triangles

’LUZm+1X X < wng
la lg lb (9)
wZH-lX/ X' d wng’

This completion is unique if | < m.

Consider some completion of a commutative triangle w>pmi1 X —
w141 X — X (that is uniquely determined by the morphisms w41 X —
X and w>;41 X — X coming from the corresponding shifted weight de-
compositions; see the previous assertion) to an octahedral diagram:

\/

W41 X

/\

Wig1,m) X W>mi1X
w<m

W[i41,m] W>m41X

w<lX

w<lX

Then wii1,mX € Q[Hl’m]; all the distinguished triangles of this octahe-
dron are shifted weight decompositions.

For X, X' € ObsC, ,I!',m,m’ € Z, L <m, ' <m/, I >, m >m/, con-
sider two octahedral diagrams: ({I1l) and a similar one corresponding to
the commutative triangle ws>mi1 X — w>11 X — X and wsp1 X —
wspp1 X — X (i.e. we fir some choices of these diagrams). Then any
g € C(X,X') could be uniquely extended to a morphism of these dia-
grams. The corresponding morphism h : wyi1 X — wprg1m X' is
characterized uniquely by any of the following conditions:
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(i) there exists a C-morphism i that makes the squares

wy1 X —— X

li lg (10)

w2l’+1X/ .Y

and
W1 X —— wiprmX
[ [ (1)
W1 X ——— Wy m X’
commutative.

(ii) there exists a C-morphism j that makes the squares

X —— wemX

lg lj (12)

X — 5 wep X'

and
w[l-i—l,m]X e wSmX
lh lj (13)
w[l/+17m/]X/ E— wgm/Xl
commutative.

For any choice of w>; X there exists a weight Postnikov tower for X (see
Definition[Z1.2(9)). For any weight Postnikov tower we have Cone(Y; —
X)eQovsT xte cv0,

Conversely, any bounded Postnikov tower (for X ) with X' € Ccv=0 is q
weight Postnikov tower for it.

For X, X' € ObjC and arbitrary weight Postnikov towers for them, any
g € C(X,X’) can be extended to a morphism of Postnikov towers (i.e.
there exist morphisms Y; — Y/, X' — X' such that the corresponding
squares commute).

For X, X' € C"=°, suppose that f € C(X,X') can be extended to a
morphism of (some of) their negative Postnikov towers that establishes
an isomorphism X° — X'°. Suppose also that X' € CV=°. Then f yields
a projection of X onto X' (i.e. X' is a retract of X wvia f).

C is a Karoubi-closed triangulated subcategory of C. w induces a non-
degenerate weight structure for it, whose heart equals Hw.
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For a triangulated idempotent complete C let D C ObjC be negative.
Then there exists a unique weight structure w on the Karoubization T
of (D) in C such that D C T%=°. Its heart is the Karoubization of the
closure of D in C with respect to (finite) direct sums.

For the weight structure mentioned in the previous assertion, TS0 is the
Karoubization of the smallest extension-stable subclass of ObjC contain-
ing U;>oD[i]; T¥ZC is the Karoubization of the smallest extension-stable
subclass of ObjC containing U;<oDI[i].

For the weight structure mentioned in two previous assertions we also

have
T=" = (Uj<oD[i])™; T¥=° = (Ui DIi)).

1. Obvious; cf. Remark of [6] (and Remark 1.1.2 of ibid. for
more detail).

These are parts 1 and 2 of Proposition 1.3.3 of ibid.

Obvious (since [7] is exact up to change of signs of morphisms); cf. Remark
1.2.2 of ibid.

This is part 3 of Proposition 1.3.3 of ibid.

Obvious from the definition and parts 4 of loc.cit.

This is part 6 of Proposition 1.3.3 of ibid.

This is part 7 of loc.cit.

It suffices to note that C(B,C) = 0, hence the triangle splits.
This is part 8 of loc.cit.

This is Lemma 1.5.1 of ibid.

The only non-trivial statement here is that wpiq,,X € Q[Hl’m] (it

easily implies: the left hand side of the lower cap in (Il also yields
a shifted weight decomposition). (1)) yields distinguished triangles:
T1 = (w21+1X — 1U[1+17m]X — me_HX[lD and T2 = (wng —
Wii41,m] X [1] = w<m X[1]). Hence assertion @ yields the result.

By assertion [0 g extends uniquely to a morphism of the following dis-
tinguished triangles: from T3 = (wsm41X — X — w<pX) to Ty =
(Wsm 41X = X' = w<py X), and from Ty = (w11 X = X — wgX)
to Tj = (wsp41 X' = X' — w<p X); next we also obtain a unique mor-
phism from 7 (as defined in the proof of the previous assertion) to its
analogue T7. Putting all of this together: we obtain unique morphisms
of all of the vertices of our octahedra, which are compatible with all
the edges of the octahedra expect (possibly) those that belong to Ts (as
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defined above). We also obtain that there exists unique ¢ and h that
complete ([I0) and (I to commutative squares.

Now, the morphism w<; X — w41, X could be decomposed into the
composition of morphisms belonging to 77 and T5. Hence in order to ver-
ify that we have actually constructed a morphism of octahedral diagrams,
it remains to verify the commutativity of the squares

wng e wng

s |4 (14)
’LUSmIX/ Em— ’LUSl/X/

and (I3) i.e. we should check that the two possible compositions of ar-
rows for each of the squares are equal. Now, assertion [I0] implies: the
compositions in question for (I4)) both equal the only morphism ¢ that

makes the square
X — w<mX

ls I
X — wglzX’
commutative. Similarly, the compositions for (I3) both equal the only

morphism 7 that makes the square

w2l+1X Em— w[l+1,m]X

l I

X' E— wgm/X/

commutative. Here we use the part of the octahedral axiom that says

that the square
W41 X —— Wwigr1m X

l I

X E— wng
is commutative (as well as the corresponding square for (X',1’,m’)).

Lastly, as we have already noted, the condition (i) characterizes h
uniquely; for similar (actually, exactly dual) reasons the same is true
for (ii). Since the morphism wy41 X — wpr41,m1 X’ coming from the
morphism of the octahedra constructed satisfies both of these conditions,
it is characterized by any of them uniquely.

Immediate from part 2 of (Proposition 1.5.6) of loc.cit (and also from
assertion [IT]).

Immediate from Remark 1.5.9(2) of ibid.
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Immediate from part 1 (of Remark 1.5.9) of loc.cit.

It suffices to prove that Cone f € C="'. Indeed, then the distinguished
triangle X 4y X' = Cone f necessarily splits.
X/O)

We complete the commutative triangle Xw<—1 — X/ws—1 5 X0 (=
<-1

to an octahedral diagram. Then we obtain Cone f = Cone(X"
X"=<=1)[1]; hence Cone f € C*<"" indeed.

This is Proposition 1.3.6 of ibid.

By Theorem 4.3.2(I11) of ibid., there exists a unique weight structure on
(D) such that D C (D)*=Y. Next, Proposition 5.2.2 of ibid. yields that
w can be extended to the whole T'; along with part Theorem 4.3.2(I12)
of loc.cit. it also allows to calculate T%=? in this case.

Immediate from Proposition 5.2.2 of ibid. and the description of (H)®*<°
and (H)*Z° in the proof of Theorem 4.3.2(I11) of ibid.

If X € T%< then the orthogonality condition for w immediately yields:
Y L X for any Y € UjoDJi].

Conversely, suppose that for some X € ObjT we have Y 1 X for all
Y € Uij«oDJi]. Then Y L X also for all Y belonging to the smallest
extension-stable subclass of ObjC containing U;oD[i]. Hence this is also
true for all Y € T%=1 (see the previous assertion). Hence (7)) yields:
X € T*<Y, We obtain the first part of the assertion.

The second part of the assertion is dual to the first one (and easy from

@)
O

Remark 2.2.2. 1. In the notation of assertion [0 for any a (resp. b) such

that the left (resp. right) hand square in (@) commutes there exists some
b (resp. some a) that makes (@) a morphism of distinguished triangles
(this is just axiom TR3 of triangulated categories). Hence for [ < m the
left (resp. right) hand side of ([d)) characterizes a (resp. b) uniquely.

. Assertions [I0] and [[2] yield mighty tools for proving that a construction

described in terms of weight decompositions is functorial (in a certain
sense). In particular, the proofs of functoriality of weight filtration and
virtual ¢-truncations for cohomology (we will consider these notions be-
low) in [6] were based on assertion

Now we explain what kind of functoriality could be obtained using asser-
tion loc.cit. Actually, such an argument was already used in the proof of
assertion

In the notation of assertion [I0] we will say that a and b are compatible
with g (with respect to the corresponding weight decompositions). Now
suppose that for some X" € ObjC, some n < I, ¢ € C(X', X"), and
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a distinguished triangle w>,+1 X" — X' = w<, X’ we have morphisms
a w1 X = wsp1 X7 and B w X' — w<, X" compatible with
g’. Then a’ o a and b’ o b are compatible with ¢’ o g (with respect to
the corresponding weight decompositions)! Moreover, if n < m then
(a’ 0 a,b’ ob) is exactly the (unique!) pair of morphisms compatible with

g og.

3. In the notation of assertion [[2 we will (also) say that h : wyyqmX —
W4 1,m) X " is compatible with g. Note that h is uniquely characterized
by (i) (or (ii)) of loc.cit.; hence in order to characterize it uniquely it
suffices to fix g and all the rows in (I0) and () (or in (IZ) and (I3)).
Besides, we obtain that & is functorial in a certain sense (cf. the reasoning
above).

4. Assertion [Tl immediately implies: for any [ < m the class of all possible
w<; X coincides with the class of possible w<;(w<,,, X), whereas the class
of possible w>,, X coincides with those of wx, (w>;X).

Besides, assertion [[T]also allows to construct weight Postnikov towers (cf.
§1.5 of [6]). Hence wy; ;X is just X*[—i] (for any i € Z, X € ObjC), and a
weight complex for any w41, X can be assumed to be the corresponding
stupid truncation of the weight complex of X.

5. Assertions [I0] and [I5] will be generalized in §27 below to the situation
when there are two distinct weight structures; this will also clarify the
proofs of these statements. Besides, note that our remarks on functorial-
ity are also actual for this setting.

Some of the proofs in §.7] may also help to understand the concept of
virtual ¢-truncations (that we will start to study just now) better.

2.3 VIRTUAL ¢-TRUNCATIONS OF (COHOMOLOGICAL) FUNCTORS

Till the end of the section C' will be endowed with a fixed weight structure
w; H: C — A (A is an abelian category) will be a contravariant (usually,
cohomological) functor. We will not consider covariant (homological) functors
here; yet certainly, dualization is absolutely no problem.

Now we recall the results of §2.5 of [6] and develop the theory further.

THEOREM 2.3.1. Let H : C'— A be a contravariant functor, k € Z, j > 0.

I The assignments Hy = Hfj X — Im(H(w<xX) = H(w<pt;X)) and
Hy = HY : X — Im(H(wsp X) — H(wsp4;X)) define contravariant functors
C — A that do not depend (up to a canonical isomorphism) from the choice of
weight decompositions. We have natural transformations Hy — H — Hs.

II Let k' € Z, j' > 0. Then there exist the following natural isomorphisms.

1. (Hfj)]f,jl o Hinin(k:,k:'),max(k+j,k’+j/)7min(k,k:').

9. (H;gj)l;j’ ~ H;nin(k:,k:/)7maX(k+j,k>/+j/)—min(k,k:').
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3. (Hfj)l;jl = (Hglj/)]fj = Im(H (wig,xnX) = H(Wiktj,1745,X)). Here the last
term is defined using the connection morphism Wik j 11X — Wi kX that
is compatible with idx in the sense of Remark[2.2.2(3); the last isomorphism
1s functorial in the sense described in loc.cit.

III Let H be cohomological, j = 1; let k be fixed.

1. H; (1 = 1,2) are also cohomological; the transformations Hy — H — Hy
extend canonically to a long exact sequence of functors

v+ = Hyo[l] > HH - H— Hy = Hyo[-1] > ... (15)

(i.e. the sequence is exact when applied to any X € ObjC).
2. Hi = H whenever H vanishes on QkaJrl.
3. H = Hy whenever H vanishes on ngk.

4. Let H' L H S H bea (three-term) complex of functors exact in the middle
such that:

(i) H',H" are cohomological.

(ii) for any X € ObjC we have Coker g(X) = Ker f(X[—1]) (we do not fix
these isomorphisms).

(iii) H' vanishes on C=*T1: H" vanishes on CV<*.

Then H' L5 H is canonically isomorphic to Hy — H; H % H" is canonically
isomorphic to H — Hs.

Proof. 1 This is Proposition 2.5.1(III1) of [6].

IT Easily follows from Theorem Z.2.1] parts [[T] and [[2} see Remark

III1. This is Proposition 2.5.1(II12) of [6].

2. If H vanishes on C*Z**1 then for any X we have w>;41X = 0; hence Hy
vanishes. Therefore in the long exact sequence --- — Ho(X[1]) - Hy — H —
Hy(X) — ... given by assertion II1 we have Hy(X[1]) 2 0 = H3(X); we obtain
Hl =~ H.

Conversely, suppose that H; = H. Let X € ObjC"Z*!: we can assume that
w<kX = 0. Then we have H(X) = H1(X) = Im H(w<,X) = Hw<pg+1X)) =
0.

3. It suffices to apply assertion II1 to the dual functor C°? — A°P; note that the
axiomatics of abelian categories, triangulated categories, and weight structures
are self-dual (see Remark [[LT.3[(1) and Theorem 22.TI[)).

4. We should check that in the diagram

H, —— H,
v
H —— H

¢ and h are isomorphisms. Then goh ™! will yield the first isomorphism desired,
whereas dualization will yield the remaining half of the statement.
Now, assertion I112 yields that g in isomorphism.
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Next, for an X € ObjC we choose some weight decompositions for X [k] and
X[k + 1] and consider the diagram

H'(wep X)[1)) ——— H'(wepX) ——— H(wepX) ——— H'(wepX)

- L

H"(we<pp1 X)[1]) —— H'(w<pp1X) —— H(w<pq1X) — H'(w<ps1X).

By our assumptions, H" ((w<;xX)[1]) =& H" (w<xX) = H" ((w<xg+1X)[1]) = 0;
hence [ is an isomorphism and m is a monomorphism. Hence the induced map
Ima — Imb is an isomorphism; so h is an isomorphism (since its application
to any X € ObjC is an isomorphism).

O

DEFINITION 2.3.2. [virtual ¢-truncations of H]|

Let k,m € Z. For a (co)homological H we will call Hf*', | = 1,2, k € Z, virtual
t-truncations of H. We will often denote them simply by H;; in this case we
will assume k = 0 unless k is specified explicitly.

We denote the following functors C — A: HF', Hy "' (HyY)H, and X —
(HPY); ' (X [K]) by 7<) H, 75, H, Tim41,5H, and H™=*, respectively. Note that
all of these functors are cohomological if H is.

Remark 2.3.3. 1. Note that H often lies in a certain triangulated ’category of
functors’ D (whose objects are certain cohomological functors C' — A). We will
axiomatize this below by introducing the notion of a duality ® : CP?x D — A: if
® is a duality then for any Y € ObjD we have a cohomological functor ®(—,Y) :
C — A. It is also often the case when the virtual ¢-truncations defined are
compatible with actual t-truncations with respect to some t-structure ¢ on D
(see below). Still, it is very amusing that these t-truncated functors as well as
their transformations corresponding to t-decompositions (see Definition [[.T.T])
can be described without specifying any D and ®!

2. Below we will need an explicit description of the connecting morphisms in
([@3). We give it here (following the proof of Proposition 2.5.1 of [6]).

The transformation H; — H (resp. H — H») for any k, j can be calculated by
applying H to any possible choice either of X — w<, X or of X — w<p; X
(resp. of w>1X — X or of wsp4;X — X) that comes from any possible choice
the corresponding weight decomposition. The transformation Hy — Hj o [—1]
for j = 1 is given by applying H to any possible choice either of the morphism
W<p1X — wsp42X[1] or of the morphism w<rX — w>k4+1X[1] that comes
from any possible choice of a weight decomposition of X[k].

Here we use the following trivial observation: for A-morphisms X3 f# Y7 and

X, L Y5 any g : X1 — Xs (resp. h:Y; — Ys) is compatible with at most one
morphism ¢ : Im f; — Im f5; if such an i exists, we will say that it is induced
by g (resp. by h). Certainly, here f; could be equal to idx, or fa could be
equal to idx,.
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3. For any k,j, and any C-morphism ¢ : X — Y the morphism H;(X) —
Hy(Y) (resp. H3(X) — Hy(Y)) is induced by any choice of either of the
morphism w<rX — w<iY or of w<p4; X — w<p4;Y (resp. of the morphism
w>EX — wx>iY or of wspy; X — wsp4,;Y) that is compatible with g with
respect to the corresponding weight decomposition (in the sense of Remark
[22.212))); see the proof of Proposition 2.5.1 of [6].

We would like to extend assertion IT14 of Theorem 2:31] to a statement on a
(canonical) isomorphism of long exact sequences of functors. To this end we
need the following definition.

DEFINITION 2.3.4. 1. We will call a sequence of functors C' = --- — H" o

1] W g dog 9 g oo [-1] — ... of contravariant functors C' — Ab a
strongly exact complex if H', H, H" are cohomological and C(X) is a long exact
sequence for any X € ObjC; here [1](h) is the transformation induced by h.
2. We will also say that a strongly exact complex C'is nice in H if the following
condition is fulfilled:

For any distinguished triangle T' = A Lo A[1] in C the natural

morphism p:
f(A) —H(l) 0
( 0 9(B) -—1?"(Tn))
Ker((H'(A)@ H(B) H"(C)) ~

(H(A) P H"(B)ED H'(C[-1]))) % Ker((H'(A) €D H(B))

f(A)e-H()

H(A)) is epimorphic.
(16)

Now we describe the connection of ([l with truncated realizations; our argu-
ments will also somewhat clarify the meaning of this condition.

THEOREM 2.3.5. 1. Let C be a strongly exact complex of functors that is nice
m H; let H' ENY Ny (a ’piece’ of C) satisfy the conditions of assertion
111 of Theorem[Z3l Then C is canonically isomorphic to (I3).

2. Let X — Y — Z be a distinguished triangle in C. Then C = .-+ —
C(—,X)=C(-Y) > C(—,Z) = ... is a strongly exact complex of functors
C — Ab; it is nice in C(—,Y).

3. Let there exist a (skeletally) small full triangulated C' C C such that the re-
striction of a strongly exact complex C to C' is nice in H. For D € ObjC
we consider the projective system L(D) whose elements are (E,i) : E €
ObjC', i € C(D,E); we set (E,i) > (E',i') if (E,i) = (E'@E",i ®i")
for some (E",i") € L(D).

Suppose that for any D € C and for G = H' and G = H we have

lin, , (ImG(i) : G(E) > G(D)) = G(D); (17)
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here we also assume that these limits exist. Then C is nice on C also.

4. Let C' C C be a (skeletally) small triangulated subcategory, let A satisfy
AB5. Let C' = --- - H — H — H” — ... be a strongly exact complex
of functors C' — A. We extend all its terms from C' to C by the method
of Proposition [LZ1] and denote the complex obtained by C; we carry on the
notation for the terms and arrows from C' to C. Then C is a strongly eract
complex also (and its terms are cohomological functors).

It is nice in H whenever C' is.

Proof. 1. Tt suffices to check that the isomorphism provided by Theorem
23T[I114) is compatible with the coboundaries if (6] is fulfilled. We can
assume A = Ab; see Remark [[LT.8 Then (I8) transfers into: for any
(x,y): z € H(A), y€ H(B), f(A)(z) = H()(y) there exists a

z € H"(C) such that g(B)(y) = H"(z) and H([-1](n))(z) = h(C)(2). (18)

We should prove: if the images of € Ho(X) and of y € H”(X) in HY(X) co-
incide, w € H1(X[-1]) and t = H(X)(y) € H'(X[-1]) are their coboundaries,
then w and ¢ come from some (single) u € H{(X[—-1]).

We lift z to some 2’ € H(w>k41X). Then (6] (if we substitute w>gyq for A
and X for B in it) implies the existence of some v € H'((w<X)[—1]) whose
image in H'(X[—1]) (resp. in H(w<,X[—1])) coincides with ¢ (resp. with the
coboundary of ). Hence we can take u being the image of v (in Hf(X[-1])).
2. Since the bi-functor C(—, —) is (co)homological with respect to both argu-
ments, C is a strongly exact complex indeed. It remains to note: (8] in this
case just means that any commutative square can be completed to a morphism
of distinguished triangles; so it follows from the corresponding axiom (TR3) of
triangulated categories.

3. First suppose that A = Ab (or any other abelian category equipped with
an exact faithful functor A — Ab that respects small direct limits; note that
below we will only need A = Ab). Then we should check (Ig]).

Now note: it suffices to prove that there exist A’, B’ € ObjC’, I' € C(A', B'),
aeC(AA), BelC(B,B), o' € H(A"), ¢ € H(B') such that:

z=H(a)('), y=H(B)Y), 'ca=pol, f(A)a")=HI)(). (19)

Indeed, denote €’ = Cone(l’); denote by ~ some element of C(C,C’) that

completes
A—— B

Lo

Al — B
to a morphism of triangles. Let 2z’ € H”(C’) be some element satisfying the
obvious analogue of (I8). Then h = H”(y)(h') is easily seen to satisfy (IJ]).
Now we construct A’, B’, ... as desired. Note that in this case the assumption
([I@) is equivalent to: for any t € G(D) there exist E € ObjC’, s € G(D), and
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r € C(D, E), such that t = G(r)(s) (since C’ is additive). So, we can choose
A" e ObjC’, a € C(A, A'), 2’ € H'(A") such that z = H'(a)(2). We complete
g=adl e C(A, A’@B) to a distinguished triangle A — A’ B PRLEP
D. Since H(q)((—H'(f(A")(z'),y)) = 0, there exists an s € H(D) such that
H(p)(s) = (=H'(f(A")(2"),y) (recall that H is cohomological on C). So, we
have H(pa)(s) = 9, —H(p1)(s) = f(A)(X'), paol = —py o

D fits for B’ if it lies in ObjC’. In the general case using (7)) again, we choose
B' € 0bjC’', § € C(D,B’), ¢ € H(Y), such that s = H(5§)(¢'). Then it is
easily seen that taking I’ = —d o p1, 8 = d o pa, we complete the choice of a set
of data satisfying (I9]).

This argument can be modified to work for a general A. To this end we separate
those parts of the reasoning where we used the fact that H is cohomological
from those where we deal with limits; this allows us to 'work as if A = Ab’.
We denote Ker(H'(A) @ H(B))—H(A)) (with respect to the morphism in (6l
by S(A, B), and Ker(H'(A) @ H(B) @ H"(C))~H(A) @ H" (B) @ H'(C[-1]) by
T(A, B,C).

Then we have a commutative diagram

lig(Im(T(A’,B’,C”) —T(A, B,())) BN liﬂ(lm(S(A’,B’) — S(A, B)))

T(A, B,C) — S(A, B)
here the first direct limit above is taken with respect to morphisms of triangles
(A= B —C)— (A - B — (') for A,B",C" € ObjC’ (the ordering is
similar to those of (I7)); the second limit is taken similarly with respect to
morphisms (A — B) — (A’ — B’) for A’, B’ € ObjC’. Since the restriction of
C to C" is nice in H, for all A’, B’,C’ the morphism T'(A’, B',C") — S(A’, B)
is epimorphic; hence ¢’ is epimorphic. Therefore, it suffices to prove that ¢ is
epimorphic.
Now let us fix A’ = Ay and a@ = ag. We use the notation introduced above;
denote the preimage of Im(H'(«) : H'(A’) — H’'(A)) with respect to the
natural morphism S(A, B) — H'(A) by J. Then J equals Im(H'(A")x H(D) —
S(A, B)). Indeed, here we can apply Proposition [[T.7] (see Remark [[T.8) and
then apply the reasoning 'with elements’ used above.
In any A we obtain: since ®(D,Y) = lim(Im(®(B',Y) — ®(D,Y))), we obtain
that G = ligl(lm(S(Ao, B, X)Y)— S(A,B,X,Y))). Here we use the following
fact (valid in any abelian A): if J; C J' € ObjA, lim J; = J (for some projective
system), u : J' — J is an A-epimorphism, then limu(J;) = J.
Now, passing to the limit with respect to (Ag,ag) (using (7)) finishes the
proof.
4. C is a complex indeed since the extension procedure is functorial.
By Proposition [LZI[T1), all the terms of C are cohomological on C. Also, part
I12 of loc.cit. immediately implies that C is exact (i.e. C(X) is exact for any
X € ObjC). Hence C is a strongly exact complex.
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Obviously, if C is nice in H then C’ also is.
Conversely, let C’ be nice in H. Then Proposition [LZTI[I11) implies that H’
and H satisfy (IT) (for all D). Hence C' is nice in H by assertion 3.

O

2.4  WEIGHT SPECTRAL SEQUENCES AND FILTRATIONS; RELATION WITH VIR-
TUAL {-TRUNCATIONS

DEFINITION 2.4.1. For an arbitrary (C,w) let H : C — A be a cohomological
functor (A is any abelian category).
We define Wi (H) : C — A as X — Im(H (w<;X) — H(X)).

By Proposition 2.1.2(2) of [6], W*(H)(X) does not depend on the the choice
of the weight decomposition of X[i]; it also defines a (canonical) subfunctor of
H(X).

Now recall that Postnikov towers yield spectral sequences for cohomology. We
will denote H(X[—i]) by H*(X) (for X € ObjC). We will also use the notation
of Definition

THEOREM 2.4.2. Let k,m € 7Z.
I1. For any weight Postnikov tower for X (see Definition[Z.1.2(9)) there exists
a spectral sequence T = T(H, X) with EYY(T) = HY(X ~P) such that the map
EP? — EPTY s induced by the morphism X P~' — X P (coming from the
tower). We have T(H,X) = HP*4(X) for any X € C°.

One can construct it using the following exact couple: EY? = H1(X~P), DV =
Hq(szl—p),

2. T is (covariantly) functorial in H; it is contravariantly C-functorial in X
starting from Es.

3. Denote the step of filtration given by (Ei’m_l 2l > —k) on H™"(X) by
F~RH™(X). Then F"*H™(X) = (W*H™)(X).

IT The derived exact couple for T(H, X) can be naturally calculated in terms of
virtual t-truncations of H in the following way: EY! = EF? = (H9)™="P(X),
DY = DP? = (15,H)(X[1l — p|); the connecting morphisms of the couple
((ES, DY) come from ({13).

ari. F~*H™(X) = Im((r<x H™)(X) — H™(X)) (with respect to the connect-
ing morphism mentioned in Theorem [2Z.31(1)).

2. For any r > 2, p,q € Z there exists a functorial isomorphism EP? =

(FP(T[*p+2fr,fp+rf2]H)q)p/Fp+1(T[*P+2fr,fp+r72]H)q)p'

Proof. 1 This is Theorem 2.4.2 of [6]; see also Remark 2.4.1 of ibid. for the
discussion of exact couples.

In fact, assertion 1 follows easily from well known properties of Postnikov towers
and of related spectral sequences.

IT Since virtual t-truncations are functorial, the exact couple (D}, ES) is func-
torial also.
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The definitions of the derived exact couple and of the virtual ¢-truncations
imply immediately that D5? and their connecting maps are exactly DF? (and
their connecting morphisms) specified in the assertion.

It remains to compare Es with E), and also the connecting maps of exact
couples starting and ending in Es with those for Ej. Tt suffices to consider
p = q = 0. Our strategy is the following one. First we construct an isomorphism
EJ® — E0; our construction depends on some choices. Then we prove that the
isomorphism constructed is actually natural (in particular, it does not depend
on the choices made). Lastly we verify that the isomorphisms of the terms of
the exact couples constructed is compatible with the connecting morphisms of
these couples. Note that in this (last) part of the argument we can make those
choices (of certain weight decompositions) that we like.

By the definition of the derived exact couple we have: ES° is the 0-th cohomol-
ogy of the complex (H (X ~7)) (for any choice of the weight complex (X?)). E{°
is the image of H (k) where k € C(wjo,1) X, w[—1,0)X) is any morphism that is
compatible with idx with respect to the corresponding weight decompositions
(see see Theorem Z3TYII3) and Remark ZZZ2@B)). So, we should compare a
subfactor of H(X") with a subobject of H (wyp 1 X).

Now suppose that we are given an octahedral diagram containing a commu-
tative triangle wy; )X — w1 X — w11} X (see Theorem ZZTIT)). We
could obtain it as follows: fix some wy_; 1)X; then choose certain w1 X =
w>o(wi—1,11X) and wp 11X = wx1(wj_1 1) X) (see Remark Z22H)). For any
possible completion of the commutative triangle w 1) X — wyo, 1) X — w1 1) X
to an octahedral diagram, the remaining vertices of the octahedron are certain
wi_1,0X, wio,0 X = X%, and w_; _1jX = X '[1] (by Theorem ZZTI|([T)). We

obtain morphisms wyg 1) X 4 X0 wi—1,00X such that k = j oi. Moreover,
Im(H(X') — H(X")) = Ker H(i). Hence H(i) induces some monomorphism
o H(XY)/Im(H(X') - H(X")) to H(wp,jX). Besides, Ker(H(X°) —
H(X™1)) = Im H(j); therefore the restriction of o to o~ (Im H(k)) yields an
isomorphism 3 : EQ® — E0.

Now we verify that the isomorphism constructed is natural.

Note that it actually depends only on wjy ;X = X° and Im H(k) (we used
the remaining data only in order to verify that we actually obtain an iso-
morphism). So, suppose that we have X’ € 0bjC, g € C(X,X'), and some
choice of w>oX’, w>1X’, and w>2X’. We have canonical connecting mor-
phisms w>¢ X’ — w>1 X’ — w>2 X' that are compatible with idx- with respect
to the morphisms w>; X’ — X’ (I =0,1,2). Applying Theorem Z2ZII[IT]), we

obtain a choice of w11 X’ %, X', We also fix some choice of H(K') (in order
to do this we fix some choice of w<_ ;X and of wi_; g X). Note that all of
these choices are necessarily compatible with some choice of the isomorphism
B EQ(X') — ER(X’) constructed as above (see ZZ2(2])).

Now we choose some morphisms g; : w>; X — w>; X', for —1 <[ < 2, compat-
ible with g (see Remark [ZZ2)[2))). These choices could be extended to some
morphisms a : w11 X — w11 X’ and b : X%— X' (by extending morphisms
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of arrows to morphism of distinguished triangles).
Now we verify the commutativity of the diagram

w[O,l]X % XO

[ s
w[(),l]Xl Z—,> X/O

It follows from Theorem ZZTIIIT) applied to the morphism gp : w>eX —
w>oX', I = 1, m = 2 (since both bo i and ¢’ o a are compatible with go).
Moreover, Remark Z22/B)) yields that H(a) sends H (k) to H(k'). We obtain

a commutative diagram

EQO B E100

B (H,X") —2— EQO(H, X")

Since ES°(H, —) and EY°(H, —) are C°P-functorial (and the vertical arrows in
the diagram are exactly those that yield this functoriality; see Remark[2:3.3(3)),
we obtain the naturality in question.

Now it remains to prove that the isomorphisms of terms of exact couples con-
structed above is compatible with the (two remaining) connecting morphisms
of these couples.

First consider the morphisms EJ° — Di% Recall (by the definition of the
derived exact couple) that it is induced by any morphism w>¢X — X°
that extends to a weight decomposition of w>oX (here we consider ES° as
a subfactor of H(X?)). On the other hand, the morphism E{° — D0 =
Im(H(w>-1X) = H(w>0X)) is induced by any possible choice of a morphism
w>oX — wyp,1)X that yields a weight decomposition of w>X[1] (by Remark
233(2); see also Remark Z22@B])). Hence it suffices to note that the triangle

w>o X — wio, 1 X % X0 is necessarily commutative by Remark

It remains consider the morphism D;’_l — ES9. Tt is induced by the morphism
X% — w>1 X (that yields a weight decomposition of w>(X). The morphism
DN = Im(H (ws1X)[1]) = H(ws2X)[1])) — EX° is induced by the mor-
phism wpg 11X — w>2X[1]. Hence it suffices to construct a commutative square

w[O,l]X % X0

| !

’LUZQX[l] e leX[l]

By applying Theorem [Z2ZTJ(IT)) to the commutative triangle w>2X — w>1 X —
w>0X we obtain that there exists such a commutative square with a certain g
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instead of . Note that (by loc.cit.) ig yields a weight decomposition of wyg 1) X.
It suffices to verify that we may take i for i i.e. that iy could be completed to
an octahedral diagram one of whose faces yields some choice of the commutative
triangle wy; 1) X — wpo, 11X — wi_1 1) X. We take wy; )X = Coneig[—1], choose
some wi_1,1]X (coming from the same w<; X as wy, 1) X). By Remark ZZ.2(2)
we obtain a unique commutative triangle w1 X — wp, 1) X — wy—1 )X that
is compatible with id,,_, x respect to the corresponding weight decompositions.
It remains to apply Theorem ZZTI(IT]).

IIT We can assume k = m = 0.

1. In the notation of Theorem [2.3.I] we consider the morphism of spectral
sequences M : T(Hy,X) — T(H,X) (induced by H; — H). Part II of loc.cit.
implies: M is an isomorphism on E5? for p > —k and EYY(T(Hy,X)) = 0
otherwise. The assertion follows immediately.

2. Similarly to the the previous reasoning, we have natural isomorphisms:
ESN T (Tjo—r,r—2)H, X) = ESY(T(H, X)) for 2—r < p < r—2 and = 0 otherwise.
It easily follows that ERI(T(To—y,r—g/H, X) = EPU(T(T|—pt2—r,—ptr—21H, X).
The result follows immediately.

O

Remark 2.4.3. 1. The dual of assertion II is: if we consider the alternative
exact couple for our weight spectral sequence (see Remark ZT3)) then the
derived exact couple can also be described in terms of virtual ¢-truncations (in
a way that is dual in an appropriate sense to that of Theorem [ZZ.2]).

2. Possibly, at least a part of (assertion II of) the theorem could be proved by
studying the functoriality of the derived exact couple (and applying Theorem
EE(1)).

2.5 DUALITIES OF TRIANGULATED CATEGORIES; ORTHOGONAL WEIGHT AND
t-STRUCTURES

Let C, D be triangulated categories. We study certain pairings of triangulated
categories C°? x D — A. In the following definition we consider a general A,
yet below we will mainly need A = Ab.

DEFINITION 2.5.1. 1. We will call a (covariant) bi-functor ® : C? x D — A a
duality if it is bi-additive, homological with respect to both arguments; and is
equipped with a (bi)natural transformation ®(X,Y) = &(X|[1],Y[1]).

2. We will say that ® is nice if for any distinguished triangle X — Y — Z the
corresponding (strongly exact) complex of functors

= (=, X) 5 (-, Y) - P(—, 2) EN O([-1)(—),X) — ... (20)
is nice in ®(—,Y") (see Definition 2:34)); here f is obtained from the natu-

ral morphism ®(—, Z)—®(—, X[1]) by applying the (bi)natural transformation
mentioned above.
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3. Suppose that C is endowed with a weight structure w, D is endowed with a
t-structure ¢. Then we will say that w is (left) orthogonal to t with respect to
® if the following orthogonality condition is fulfilled:

P(X,Y)=0if: X cC"?and Y € D! or X € C¥=" and Y € D'S"%.
(21)
4. If w is defined on C?, t is defined on D°?, w is left orthogonal to ¢ (with
respect to some duality); then we will say that the corresponding opposite
weight structure on C is right orthogonal to the opposite t-structure for D.

Remark 2.5.2. 1. The axioms of ® immediately imply that 20) is a strongly
exact complex of functors indeed (whether ® is nice or not).

2. Certainly, if ® is nice then (20)) is nice at any term (since we can ’rotate’
distinguished triangles in D).

First we prove a statement that will simplify checking the orthogonality of
weight and ¢-structures.

PROPOSITION 2.5.3. Let ® : CP x D — A be some duality; let (C,w) be
bounded. Then w is (left) orthogonal to t whenever there exists a D C C*=°
such that any object of C*=° is a retract of a finite direct sum of elements of
D and

®(X,Y)=0V X eD, YeD=up=-1 (22)

Proof. If w is is left orthogonal to ¢, then ([22)) for D = C"=° follows immedi-
ately from the orthogonality condition.

Conversely, let D satisfy the assumptions of our assertion. Hence we have:
O(X,Y)=0if X € D[], i >0,Y € D*2!, orif X € D[i], i <0,Y € D'>™L.
Now suppose that for some E, F C ObjC we have: any object of C*¥<" is a
retract of an object of E, any object of C¥Z is a retract of an object of F.
Then it obviously suffices to check that ®(X,Y) = 0 if either X € E and
YeDZ or X € FandY € D'

Now by Theorem 2.2.1Y[I9), we can take E being the smallest extension-stable
subcategory of C containing DJi], ¢ > 0; and F being the smallest extension-
stable subcategory of C' containing D[i], ¢ < 0. To conclude the proof it remains
to note that for a distinguished triangle X — Y — Z in C', O € ObjD we have:
P(X,0)=0=9(Z,0) = 9(Y,0) =0. O

When (weight and t-) structures are orthogonal, virtual ¢-truncations of
®(—,Y) are given by t-truncations in D. We use the notation of Definition
2.0.2

ProproOSITION 2.5.4. 1. Let t be orthogonal to w with respect to ®, k € Z.
For'Y € ObjD denote the functor ®(—,Y) : C — A by H. Then we have
an isomorphism of complezes (< H — H — >, H) = (®(—,t<Y) - H —
O(—,t>,41Y)) (where the connecting maps of the second complex are induced
by t-truncations); this isomorphism is natural in'Y.
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2. Suppose also that ® is nice. Then the (strongly exact) complex of functors
that sends X to

= B(Xt<kY) = O(X)Y) = (X, t>p1Y) = D(X[-1],t<Y) — ...
(23)
(constructed as in the definition of a mice duality) is naturally isomorphic to

Z3).

Proof. 1. Since t and w orthogonal, ®(—,t<;Y") vanishes on C , whereas
®(—,t>x41Y) vanishes on C"<F. Moreover, [@3) yields that H' = ®(—,t<;Y)
and H” = ®(—,t>,+1Y) also satisfy the condition (iii) of Theorem [Z3T(I114).
Hence the theorem yields the claim.

2. Immediate from the previous assertion and Theorem 23.5(1).

w>k+1

O

Remark 2.5.5. Note that we actually need quite a partial case of the 'niceness
condition’ for ® in order to prove assertion 2. Hence here (and so, in all the
applications below) we will not need the niceness condition in its full generality.
Possibly, the corresponding partial case of the condition is weaker than the
whole assertion; yet checking it does not seem to be much easier.

Also, it seems quite possible that for an arbitrary (not necessarily nice) duality
there exists some isomorphism of (I5]) with (23] if we modify the boundary
maps of the second complex. Yet there seems to be no way to choose such a
modification canonically.

"Natural’ dualities are nice; we will justify this thesis now.

PROPOSITION 2.5.6. 1. If A= Ab, D =C, then ® : (X,Y) — C(X,Y) is a
nice duality.

2. For some duality ® : C°? x D — A let there exist a (skeletally) small full
triangulated C' C C such that: the restriction of ® to C'°P x D is a nice duality
(of C" with D); for any X € ObjD the functor G = ®(—,X), C? — A,
satisfies (I71). Then ® is nice also.

3. For D, C' C C as above, A satisfying AB5, let ® : C'? x D — A be a
duality. For any Y € ObjD we extend the functor ® (—,Y) from C' to C by
the method of Proposition [L.2 1 we denote the functor obtained by ®(—,Y).
Then the corresponding bi-functor ® is a duality (CP x D — A). It is nice
whenever @' is.

Proof. Immediate from parts 2-4 of Theorem
O

Remark 2.5.7. 1. Proposition Z5.6(1) yields an important family of nice dual-
ities; this case was thoroughly studied in [6] (in sections 4 and 7). We will say
that w is left (resp. right) adjacent to t if it is left (resp. right) orthogonal to it
with respect to ®(X,Y) = C(X,Y). Note that for w left (resp. right) adjacent
to ¢ with respect to this definition we necessarily have C*<? = <0 (resp.
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29 = 029 by Theorem EZZI[@) and Remark [CT3(2); so this definition is
actually compatible with Definition 4.4.1 of [6].

One can generalize this family as in §8.3 of ibid.: for A = Ab and an exact
F : D — C we define ®(X,Y) = C(X,F(Y)). Certainly, one could also
dualize this construction (in a certain sense) and consider F' : C — D and
2. Another (general) family of dualities is mentioned in Remark 6.4.1(2) of
ibid. All the families of dualities mentioned can be expanded using part 3 of
the proposition.

3. It is also easy to construct a duality that is not nice. To this end one can
start with C = D, & = C(—, —) and then modify the choice of distinguished
triangles in D (without changing the shift in D, and changing nothing in C)
in a way that would not affect the properties of functors to be cohomological.
The simplest way to do this is to proclaim a triangle X Ly %70 X[1] to

be distinguished in D if X dy gz X[1] is distinguished in C. Certainly,
such a modification is not very ’serious’; in particular, one can 'fix the problem’
by multiplying the isomorphism ®(X,Y) = ®(X[1],Y[1]) by —1.

The author does not know whether any duality can be made nice by modifying
the choice of the class of distinguished triangles (in D), or by modifying the iso-
morphism mentioned. Note also that the question whether there exists a D for
which such a modification can change the ’equivalence class’ of triangulations
is well-known to be open.

2.6 COMPARISON OF WEIGHT SPECTRAL SEQUENCES WITH THOSE COMING
FROM (ORTHOGONAL) t-TRUNCATIONS

Now we describe the relation of weight spectral sequences with orthogonal
structures.

THEOREM 2.6.1. Let w for C andt for D be orthogonal with respect to a duality
b; leti,jeZ, X € ObjC, Y € ObjD.

1. Consider the spectral sequence S coming from the following exact couple:
DYI(S) = ®(X,Y24[p — 1]), EYY(S) = ®(X,Y™4[p]) (we start S from
Es). It naturally converges to ®(X,Y [p + q]) if X € C°.

2. Let T be the weight spectral sequence given by Theorem [2.7.3 for the
functor H : Z — ®(Z,Y). Then for all r > 2 we have natu-
ral isomorphisms EP1(T(H, X)) = EPY(S). There is also an equality
F~PH™(X) = Im(®(X,t<xY[m]) = H™(X)) (here we use the notation
of part 1} of loc.cit.) compatible with this isomorphism.

3. Suppose that ® is also nice. Then the isomorphism mentioned in the
previous assertion extends naturally to the isomorphism of of T with S
(starting from Es).
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4. Let -+ — X771 5 X7 = X'=7 = ... denote an arbitrary choice of
the weight complex for X. Then we have a functorial isomorphism

(X, Y[j]) =

(Ker(®(X 7, Y[i]) = ®(X "7, Y[i]))/Im(®(X "7, Y][i]) — @(X—j,ymz). |
24

Proof. 1. The theory of t-structures easily yields: Y*2? and Y*=? can be
functorially organized into a certain Postnikov tower for Y. Hence the
usual results on spectral sequences coming from Postnikov towers (see
§1V2, Exercise 2, of [I3]) yield the assertion easily.

2. Immediate from Proposition 25.4(1) and Theorem [ZZ2(III). Note that
the latter assertion does not use the ’dimension shift’ in ([IH).

3. Proposition Z5.4[(2) and Theorem [ZZ2(TT) imply: there is a natural iso-
morphism of the derived exact couple for T" with the exact couple of S
(’at level 2°). The result follows immediately.

4. This is just assertion Pl for Es-terms.

Remark 2.6.2. 1. So, we justified parts 4 and 5 of Remark 4.4.3 of [6].

2. Note that the spectral sequence denoted by S in (Remark 4.4.3(4) and
§6.4 of) ibid. started from FEj; so it differed from our S and T by a certain
shift of indices.

3. So, we developed an ’abstract triangulated alternative’ to the method of
comparing similar spectral sequences that was developed by Deligne and
Paranjape. The latter method used filtered complexes; it was applied in
[22], [11], and in §6.4 of [6]. The disadvantage of this approach is that one
needs extra information in order to construct the corresponding filtered
complexes; this makes difficult to study the naturality of the isomorphism
constructed. Moreover, in some cases the complexes required cannot
exist at all; this is the case for the spherical weight structure and its
adjacent Postnikov t-structure for C = D = SH (the topological stable
homotopy category; see §4.6 of [0]; yet in this case one can compare the
corresponding spectral sequences using topology).

4. One could modify our reasoning to prove a version of the theorem that
does not mention weight and ¢-structures. To this end instead of consid-
ering a weight Postnikov tower for X and the Postnikov tower coming
from t-truncations of Y one should just compare spectral sequences com-
ing from some Postnikov towers for X and Y in the case when these
Postnikov towers satisfy those ’orthogonality’ conditions (with respect to
a (nice) duality ®) that are implied by the orthogonality of structures
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condition in our situation. Yet it seems difficult to obtain the naturality
of the isomorphisms in Theorem 26.TIB]) using this approach.

Even more generally, it suffices to have an inductive system of Postnikov
towers in D and a projective system of Postnikov towers in C' such that the
orthogonality conditions required are satisfied in the (double) limit. Then
the comparison statements for the double limits of the corresponding
spectral sequences are valid also. A very partial (yet rather important)
example of a reasoning of this sort is described in §7.4 of [6]. Besides, this
approach could possibly yield the comparison result of §6 of [II] (even
without assuming k to be countable as we do here).

A simple (yet important) case of ([24)) is: for any i € Z

X € C"=' — VY € ObjD we have ®(X,Y) = &(X,Y'™"). (25)

"CHANGE OF WEIGHT STRUCTURES’; COMPARING WEIGHT SPECTRAL
SEQUENCES

Now we compare weight decompositions, virtual ¢-truncations, and weight spec-
tral sequences corresponding to distinct weight structures. In order make our
results more general (and to apply them below) we will assume that these struc-
tures are defined on distinct triangulated categories; yet the case when both
are defined on C' is also interesting.

So, till the end of the section we will assume: C, D are triangulated categories
endowed with weight structures w and v, respectively; F': C — D is an exact
functor.

DEFINITION 2.7.1. 1. We will say that F is right weight-ezact if F(CV=%) c
QUZO.

2. If F is fully faithful and right weight-exact, we will say that v dominates w.
3. We will say that F is left weight-ezact if F(C"<") ¢ D=0,

4. F will be called weight-exact if it is both right and left weight-exact.

We will say that w induces v (via F) if F is a weight-exact localization functor.

PROPOSITION 2.7.2. Let F be a right weight-exact functor; let | > m € Z,
X € 0bjD, X' € ObjC, g€ D(F(X'), X).

1. Let weight decompositions of X[m] with respect to v and X'[l] with respect
to w be fized. Then g can be completed to a morphism of distinguished triangles

Flws;41X') — F(X') —— F(waX')

! [

vemp X —— X —— v X

This completion is unique if [ > m.
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2. For arbitrary weight Postnikov towers Po,(X) for X (with respect to v)
and Poy, X' for X' (with respect to w), g can be extended to a morphism
F.(Poy,X') = Poy(X).

3. Let H: D — A be any functor, k € Z, j > 0. Denote H o F' by G. Then
(Z4) allows to extend H(g) naturally to a diagram

HY(X) —— H(X) —— HY(X)

| o]

GY(X') —— GX') —— G¥(X')

here we add the weight structure chosen as an index to the notation of Theorem

[Z.37(1).

Proof. 1. Since F is right weight-exact, D(F(w>n+1X'), v<mX) = {0} for any
n > m. Hence the composition morphism F(w>;4+1X') = v<,p, X is zero; if
1> m then D(F(w>i41X"), (v<mX)[—1]) = {0}. The result follows easily; see
Proposition 1.1.9 of [2].

2. Assertion 1 (in the case [ = m) yields that there exists a system of morphisms
fi € D(F(w>;X"),v>;X) compatible with g; we fix such a system. Applying
the same assertion for any pair of [, m : | > m, we obtain that f; is compatible
with f,, (here we use arguments similar to those described in Remark 2:2.2)).
Finally, since any commutative square can be extended to a morphism of the
corresponding distinguished triangles (an axiom of triangulated categories), we
obtain that we can complete (uniquely up to a non-canonical isomorphism)
the data chosen to a morphism of Postnikov towers (i.e. choose a compatible
system of morphisms F(X'") — X?).

3. Easy from assertion 1; note that for any commutative square in A

x I,y

o
z =5 7T
if we fix the rows then the morphism go h : X — T completely determines the

morphism Im f — Im g induced by h.
O

We easily obtain a comparison morphism of weight spectral sequences.

ProPoOSITION 2.7.3. I Let F, X', G be as in the previous proposition; suppose
also that H is cohomological. Set X = F(X'), g =idx.

1. There exists some comparison morphism of the corresponding weight spectral
sequences M : T,(H, X) — T, (G, X'). Moreover, this morphism is unique and
additively functorial (in g) starting from Es.

2. Let there exist D C C“=° such that any Y € CV=° is a retract of some
Z € D, and that for any Z € D there exists a choice of Z¥2' such that
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EYT,(H,F(Z*=')) = {0} for all p,q € Z. Then (any choice of) M yields an
isomorphism of the spectral sequence functors starting from FEs.

3. Let E be a triangulated category endowed with a weight structure u, F' : D —
E a right weight-ezact functor; suppose that H = EoF’ for some cohomological
functor E : E — A. Then we have the following associativity property for
comparison of weight spectral sequences: the composition of M with (any choice
of ) a comparison morphisms M' : T,,(E, F'(X)) — T,(H, X) constructed as in
assertion 1, starting from Es is canonically isomorphic to (any choice of a
similarly constructed) comparison morphism T,,(E, F'(X)) = Tw(G, X').

II Let H, X', X, G be as above, but suppose that F : C — D is left weight-exact.
Then a method dual to the one for assertion I1 yields a transformation N :
Tw(G, X') = T,(H, X); this construction satisfies the duals for all properties
of M described in assertion I.

Proof. 1 1. In order to construct some comparison morphism, it suffices to
construct a morphism of the corresponding exact couples that is compatible
with idx. Hence it suffices to use Proposition Z7.2(2) to obtain a morphism
of the corresponding Postnikov towers, and then apply H to it.

Theorem Z-Z2(1T) yields that weight spectral sequences could be described in
terms of the corresponding virtual ¢-truncations. Hence Proposition 2X7.2{(3)
implies all the functoriality properties of M listed.

2. Tt suffices to prove that M is an isomorphism on FE3*T,(G,Y) for all Y €
0bjC.

Since D € C"=°, this assertion is true for any Y € D. Since Z — Ey(T(G, Z))
is a cohomological functor for any weight structure (see Theorem and the
remark at Definition 223.2]), the assertion is also true for any Y € 0bjC®. To
conclude it suffices to note that for any H, any Y € ObjC, any finite 'piece’
of E5*T,(G,Y) coincides with the corresponding piece of E3* T, (G, wy; ;1Y)
(for any choice of wy; ;1Y) if i is small enough and j is large enough, and this
isomorphism is compatible with M.

3. We recall that comparison morphisms for weight spectral sequences were
constructed using Proposition ZZ7.2(1). Tt easily follows that M’ o M is one of
the possible choices for a comparison morphism 7, (E, F' o F(X)) — T, (G, X').
It suffices to apply assertion I1 to conclude that this fixed choice of a comparison
morphism coincides with any other possible choice starting from FEs.

IT We obtain the assertion from assertion I immediately by dualization (see
Theorem 2Z.2.1](d])); here one should consider the duals of C; D, and A (and
also 'dualize’ the connecting functors). O

Remark 2.7.4. M is an isomorphism (starting from Fs) also if: there exists a
localization of D such that H factorizes through it, v induces a weight struc-
ture v’ on it, w induces a weight structure on the categorical image of C that
coincides with the restriction of v’ to it (since both weight spectral sequences
are isomorphic to the spectral sequence corresponding to this new weight struc-
ture).
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Yet this conditions are somewhat restrictive since weight structures do not
"descend’ to localizations in general (since for an exact F’ : C — E the classes
F/(C™2') and F!(C"=") are not necessarily orthogonal in E).

In order to simplify checking right and left weight-exactness of functors, we will
need the following easy statement.

LEMMA 2.7.5. Let w be bounded.

1. An exact J : C — D is a right weight-exact whenever there exists a D C
C=0 such that any Y € CV=° is a retract of some X € D, and that for any
X € D we have J(Y) € D"=°.

2. An exact J : C' — D is a left weight-exact whenever there exists a D C cv=0
such that any Y € C*=° is a retract of some X € D, and that for any X € D
we have J(Y) € D*<C.

Proof. It suffices to prove assertion 1, since assertion 2 is exactly its dual.
If J is right weight-exact functor, then we can take D = C*=°
Now we prove the converse statement. Since Q”ZO is Karoubi-closed and
extension-stable in D, Theorem ZZI(IY) yields that J(C"=°) indeed belongs
to DV=0,

O

3 CATEGORIES OF COMOTIVES (MAIN PROPERTIES)

We embed DM, g%f into a certain big triangulated motivic category ©; we will
call it objects comotives. We will need several properties of ©; yet we will
never use its description directly. For this reason in §3.I] we only list the main
properties of ®.

In §3.2 we associate certain comotives to (disjoint unions of) ’infinite intersec-
tions’ of smooth varieties over k (we call those pro-schemes). We also introduce
certain Tate twists for these comotives.

In §33] we recall the definition of a primitive scheme (note that in the case of
a finite k we call a scheme primitive whenever it is smooth semi-local). The
main motivic property of primitive schemes (proved by M. Walker) is: F'(S)
injects into F'(Sy) if S is primitive connected, Sy is its generic point, and F' is
a homotopy invariant presheaf with transfers.

In §34 we study the relation of (comotives of) primitive schemes with the
homotopy t-structure for DM/,

In §3.3] we prove that there are no @D-morphisms of positive degrees between
comotives of primitive schemes (and also certain Tate twists of those); this is
also true for products of comotives mentioned.

In §3.6] we prove that one can pass to countable homotopy limits in Gysin
distinguished triangles; this yields Gysin distinguished triangles for comotives
of pro-schemes. This allows to construct certain Postnikov towers for comotives
of pro-schemes (and their Tate twists), whose factors are twisted products of
comotives of function fields (over k). The construction of the tower is parallel
to the classical construction of coniveau spectral sequences (see §1 of [§]).
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3.1 COMOTIVES: AN ’AXIOMATIC DESCRIPTION’

We will define © below as the derived category of differential graded functors
J — B(Ab); here J yields a differential graded enhancement of DM, gefnf (cf. [,
[19], or [7]), B(Ab) is the differential graded category of complexes over Ab.
We will also need some category ©’ that projects to D (a certain model of D).
Derived categories of differential graded functors were studied in detail in [12]
and [16]. We will define and study them in §5l below; now we will only list their
properties that are needed for the proofs of main statements.

Below we will also need certain (filtered) inverse limits several times. © is a
triangulated category; so it is no wonder that there are no nice limits in it. So
we consider a certain additive ®’ endowed with an additive functor p : ®" — D.
We will call (the images of) inverse limits from ©’ homotopy limits in D.

The relation of ®" with © is similar to the relation of C'(4) with D(A). In
particular, ®’ is closed with respect to all (small filtered) inverse limits; we have
functorial cones of morphisms in @’ that are compatible with inverse limits.
We will need some conventions and definitions introduced in Notation; in par-
ticular, I, L will be projective systems; I is countable.

ProrosiTiON 3.1.1. 1. There exists a triangulated category © D DM;fnf;

all objects of DM;,J;f are cocompact in D.

2. There exists an additive category D' closed with respect to arbitrary (small
filtered) inverse limits, and an additive functor p : ©' — © that preserves
(small) products. Moreover, p is surjective on objects.

3. ©' is endowed with a certain invertible shift functor [1] that is compatible
with the shift on ® and respects inverse limits.

4. There is a functorial cone of morphisms in D' defined; it is compatible
with [1] and respects inverse limits.

5. Any triangle of the form X Ly & Cone(f) — X[1] in @' becomes
distinguished in ®.

6. The composition functor Mgy, : C*(SmCor) — DMSf — D can be
canonically factorized through an additive functor j : C*(SmCor) — D',
Shifts and cones of morphisms in C*(SmCor) are compatible with those
in D' via j.

7. For any X € My, (C*(SmCor)) C Obj®, any Y : L — @' we have
D(p(lim, _, Y1), X) = lim,_, D(p(¥;), X).

8. DME}] weakly cogenerates ® (i.e. we have DM} = {0}, see Nota-
tion).
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9. Let a sequence i, € I, n >0, be increasing (i.e. ipy1 > iy for anyn > 0)
unbounded (see Notation). Then for all functors X : I — D', we have
functorial distinguished triangles in ©:

p(im,_, Xi) = p(J [ X:.) = p([ ] X (27)

e is the product of idx, &—¢n : X;
coming from I via X.

wi1r — Xi,; here ¢, are the morphisms

10. There exists a differential graded enhancement for ©; see 5.1 below.

Remark 3.1.2. 1. Since below we will prove some statements for © only using
its ’axiomatics’ (i.e. the properties listed in Proposition [BI.T]), these results
would also be valid in any other category that fulfills these properties. This
could be useful, since the author is not sure at all that all possible © are
isomorphic.

2. Moreover, one could modify the axiomatics of ® and consider instead a
category that would only contain the triangulated subcategory of DM, ;,J;f gen-
erated by motives of smooth varieties of dimension < n (for a fixed n > 0).
Our results and arguments below can be easily carried over to this setting (with
minor modifications; it is also useful here to weaken condition B in the Propo-
sition). This makes sense since these ’geometric pieces’ of DM, genflf are self-dual
with respect to Poincare duality (at least, if chark = 0); see §6.4 below. See
also Remark [5.2]2).

Alternatively, we can weaken the condition for the functor DM, ;j;f — D to be
a full embedding. For example, it could be interesting to consider the version
of ® for which this functor kills DM;TJ;f (n) (for some fixed n > 0).

Lastly note that we do not really need condition 2lin its full generality (below).

Now we derive some consequences from the axiomatics listed.
COROLLARY 3.1.3. 1. For any Z € ObjDMg}f C Obj®, any X : L — D’
we have D(p(lim,_, X1), Z) = lim,_, D(p(X1), 2).

2. For any T € Obj®, all functors Y : I — D' we have functorial short
ezact sequences

{0} = lim' (T, p(¥i)[-1]) = D(T, p(lim Y;)) — LIm D (T, p(Y;)) — {0};
here @1 is the (first) derived functor of @ = @1.

3. For all functors X : L — C*(SmCor), Y : I — C®(SmCor), we have
functorial short exact sequences

{0} — T (ling, ) D (Mo (X1), My (Y2)[-1])) —

D(pim,,, J(X)).pllim_ ) =  (28)
1.ﬁniel(hgleL D (Mgm (X1), Mgm(Y3))) — {0}
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4. O 1s idempotent complete.

Proof. 1. If Z € M,,,(C*(SmCor)), then the assertion is exactly Proposi-
tion BILINT).
It remains to note that any Z € ObjDMg,J;f is a retract of some object
coming from C®(SmCor).

2. Since inverse limits and their derived functors do not change when we
replace a projective system by any unbounded subsystem, we can assume
that L consists of some i,, as in (Z1).

Now, (7)) yields a long exact sequence

5 [T p0A) 1) & [[ DT p(V)-11) - DT, pllim,_, ¥7)
i€l el
= [[2Tp(vi) % [[2(T,p(Vi) = ...,

i€l i€l
here f and g are induced by e in (27).
It is easily seen that Ker g = @@(T, Mym (Yy)).

Lastly, Remark A.3.6 of [2I] allows to identify Coker f with
lim’ (T, M (Vo) [-1)).

3. Immediate from the previous assertions.

4. Since @’ is closed with respect to all inverse limits, it is closed with respect
to all (small) products. Then Proposition BTN yields that ® is also
closed with respect to all products. Now, Remark 1.6.9 of [21] yields the
result (in fact, the proof uses only countable products).

O

We will often call the objects of © comotives.

3.2 PRO-SCHEMES AND THEIR COMOTIVES

Now we have certain inverse limits for objects (coming from) C®(SmCor);
this allows to define (reasonable) comotives for certain schemes that are not
(necessarily) of finite type over k (and for their disjoint unions). We also define
certain Tate twists of those.

We will call certain ind-schemes over k pro-schemes. An ind-scheme V/k is
a pro-scheme if it is a countable disjoint union of schemes, such that each of
them is a projective limit of smooth varieties of dimension < ¢y for some fixed
cy > 0 (in the category of schemes) with connecting morphisms being open
dense embeddings. One may say that a pro-scheme is a countable disjoint union
of countable intersections of smooth varieties. Note that (the spectrum of) any
function field over k is a pro-scheme; any smooth k-variety is a pro-scheme also.
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We have the operation of countable disjoint union for pro-schemes of bounded
dimension.

Now, we would like to present a (not necessarily connected) pro-scheme V
as projective limits of smooth varieties V;. This is easy if V' is connected
(cf. Lemma 3.2.9 of [9]). In the general case one should allow (formally)
zero morphisms between connected components of V; (for distinct 7). So we
consider a new category SmVar’ containing the category of all smooth va-
rieties as a (non-fulll) subcategory. We take ObjSmVar’ = SmVar; for
any smooth connected varieties X,Y € SmVar we have SmVar'(X,Y) =
Moryq..(X,Y) U{0}; the composition of a zero morphism with any other one
is zero; SmVar'(U; X;,U;Y;) = U; jSmVar'(X;,Y;). SmVar’ can be embed-
ded into SmCor (certainly, this embedding is not full).

We will write V' = lim V; (this is not possible in the category of ind-schemes,
but works in Pro — é— Var . Note that the set of connected components of V'
is the inductive limit of the corresponding sets for V.

Now, for any pro-scheme V = limV;, any s > 0, we introduce the following
notation: Mg, (V)(s) = p(lﬁl(](%)(s))) € 0bj® (see Proposition B.I]); we
will denote Mg, (V)(0) by Mg, (V) and call My, (V) the comotif of V. This
notation should be considered as formal i.e. we do not define Tate twists on ©
(till §5.43)).

Obviously, if V' € SmVar, its comotif (and its twists) coincides with its motif
(and its twists), so we can use the same notation for them.

If A is a category closed with respect to filtered direct limits, H' : DM ﬁ;f — A
is a functor, we can (formally) extend it to co-motives in question; we set:

H(Mgm(V)(s)[n]) = liﬂH’(Mgm(V;)(s)[n]). (29)

Remark 3.2.1. 1. For a general H' this notation should be considered as for-
mal. Yet in the case H' = (=,Y) : ® — Ab, Y € ObjDMZ]] C ObjD, we
have H(Mgm (V) (@) [n]) = D(Mgm (V)(2)[n], X); see Corollary B.I3(1), i.e. [23)
yields the value of a well-defined functor ® — Ab at M, (V)(s)[n]. We will
only need H' of this sort till §L3

More generally, there exists such an H if A satisfies AB5 and H' is cohomo-
logical; we will call the corresponding H an extended cohomology theory, see
Remark below.

2. Let V7 be a countable set of pro-schemes (of bounded dimensions). Then
My (UVI) =T My, (V) by Proposition B LIN2).

Besides, for any H’' as in @3) we have H(My,(LUV7)(s)[n]) =
D H(Myn (V7 (5)[1])-

Below we will need some conventions for pro-schemes.

For pro-schemes U = limU; and V = limV; we will call an element of
I'&nid(ligﬂje] SmCor(U;,V;)) an open embedding if it can be obtained as a
double limit of open embeddings U; — V; (as varieties). If U = V \ W for
some pro-scheme W, we will say that W is a closed sub-pro-scheme of V. Note
that in this case any connected component of W' is a closed subscheme of some
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connected component of V'; yet some components of V' could contain an infinite
set of connected components of W.

For V = UV, VJ are connected pro-schemes, we will call the maximum of the
transcendence degrees of function fields of V7 the dimension of V (note that
this is finite). We will say that a sub-pro-scheme U = LUU™, U™ are connected,
is everywhere of codimension r (resp. > r, for some fixed r > 0) in V = uva
if for every induced embedding U™ — V7 the difference of their dimensions
(defined as above) is r (resp. > r).

We will call the inverse limit of the sets of points of V; of a fixed codimension
s > 0 the set of points of V' of codimension s (note that any element of this set
indeed defines a point of some connected component of V).

3.3 PRIMITIVE SCHEMES: REMINDER

In [29] M. Walker proved that primitive schemes in the case of an infinite k
have 'motivic’ properties similar to those of smooth semi-local schemes (in the
sense of §4.4 of [26]). Since we don’t want to discriminate the case of a finite
k, we will modify slightly the standard definition of primitive schemes.

DEFINITION 3.3.1. If k is infinite then a (pro-)scheme is called primitive if all of
its connected components are affine and their coordinate rings R; satisfy the fol-
lowing primitivity criterion: for any n > 0 every polynomial in R;[Xq,..., X,]
whose coefficients generate R; as an ideal over itself, represents an R;-unit.

If k£ is finite, then we will call a pro-scheme primitive whenever all of its con-
nected components are semi-local (in the sense of §4.4 of [26]).

Remark 3.3.2. Recall that in the case of infinite k£ all semi-local k-algebras
satisfy the primitivity criterion (see Example 2.1 of [29]).

Below we will mostly use the following basic property of primitive schemes.

PROPOSITION 3.3.3. Let S be a primitive pro-scheme, let Sy be the collection
of all of its generic points; F' is a homotopy invariant presheaf with transfers.

Then F(S) C F(Sy); here we define F' on pro-schemes as in (29).

Proof. We can assume that S is connected (so it is a smooth primitive scheme).
Hence in the case of infinite k our assertion follows from Theorem 4.19 of [29].
Now, if k is finite, then Sy is semi-local (by our convention); so we may apply
Corollary 4.18 of [26] instead.

O

3.4 BASIC MOTIVIC PROPERTIES OF PRIMITIVE SCHEMES

We will call a primitive pro-scheme just a primitive scheme. We prove certain
motivic properties of primitive schemes (in the form in which we will need them
below).
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PROPOSITION 3.4.1. For F' € ObjDM®/! we define H'(—=) = DM/ (— F)
on DM we also define H(Mygy,(V)(i)[n]) as in (Z9). Let S be a primitive
scheme, m >0, i € 7.

1. Let F € DM t<-1 (t is the homotopy t-structure, that we considered in
§1.3). Then H (Mg (S)(m)[m]) = {0}.

2. More generally, for any F € ObjDM®! we have H([Mg(S)(m)[m]) =
FO, (S) where FO = F'=9 FO s the m-th Tate twist of F° (see Definition

Proof. 1. We consider the homotopy invariant presheaf with transfers F_,, :
X = DMiff(Mgm(X)(m) [m], F'). We should prove that F_,,(S) = 0 (here
we extend F_,, to pro-schemes in the usual way i.e. as in ([29)).
9) also yields that F_,,(US;) = @ F_,,(S;). Hence by Proposition B33]
it suffices to consider the case of S being (the spectrum of) a function field
over k. Since F_,, is represented by an object of DM Ti=-1 (see Proposition
[T22(2)), it suffices to note that any field is a Henselian scheme i.e. a point in
the Nisnevich topology.
2. By Proposition [[42] for any X € SmVar we have Mg, (X)(m)[m] L
DM Tt21 Hence we can assume F € DM/ Ft<0,
Next, using assertion 1, we can easily reduce the situation to the case F' =
F'=Y% € ObjHI (by considering the t-decomposition of F[—1]). In this case the
statement is immediate from Proposition [4.2(1).

O

LEMMA 3.4.2. Let U — U’ be an open dense embedding of smooth varieties.
1. We have Cone(Mgy, (U) = My, (U')) € DM Tt=-1,
2. Let S be primitive. Then for any n,m,t > 0 the map

D (Mg (S)(m)[m], Mg (U) (n)[n+i]) = D (Mg () (m)[m], Mgm (U")(n)[n-+i])
18 surjective.

Proof. 1. We denote Cone(Mg,,(U) = Mg, (U')) € DM T1<=1 by €. Ob-
viously, C € DM/t<0_ Let H denote C*=° (H € ObjHI). By Corol-
lary 4.19 of [26], we have H(U) C H(U'’). Next, from the long exact se-
quence {0} (= DM (M,,,,(U)[1), H)) — DM (C, H) = DM (U, H) —
D]\Jfff(U7 H) — ... we obtain C 1 H. Then the long exact sequence
o = DM (C=12], H) - DM (H,H) - DM (C,H) — ... yields
H=0.
2. It suffices to check that M, (S)(m)[m] L C(n)[n+1i]. Since Mg, (U)(n)[n]
is canonically a retract of M, (U x G},,), we can assume that n = 0.
Now the claim follows immediately from assertion 1 and Proposition B4.T](1).
O
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3.5 ON MORPHISMS BETWEEN COMOTIVES OF PRIMITIVE SCHEMES

We will need the fact that certain ’positive’ morphism groups are zero.
Let n,m,>0,7>0,Y = ]£1Yl (I € L), be any pro-scheme, X be a primitive
scheme.

ProrosiTION 3.5.1. 1. The natural homomorphism

D (Mg (X)(m)[m], Mgm (Y)[n](n)) —
 dimy (l o DM (Z(m) ], Moy (Y)(m)n))
18 surjective.
2. My (X)(m)fm] L My, (Y[ + i) (n).

Proof. Note first that by the definition of the Tate twist (1), it can be lifted to
C*(SmCor).

1. This is immediate from the short exact sequence ([2).

2. By Remark B.2ZT[2), we may suppose that Y is connected. Then
we apply (28) again. The corresponding I'&n—term is zero by Propo-
sition BLT(1). Lastly, the surjectivity proved in Lemma [B4.2](2)
yields that the corresponding yLnl—term is zero. Indeed, the groups
D (Mg (X)(m)[m], Mgm (Y7)[n + i — 1](n)) obviously satisfy the Mittag-
Leffler condition; see §A.3 of [21].

In fact, one could easily deduce the assertion from the results of the
previous subsection and (7)) directly (we do not need much of the theory
of higher limits in this paper).

O

Remark 3.5.2. In fact, this statement, as well as all other properties of (prim-
itive) pro-schemes that we need, are also true for not necessary countable dis-
joint unions of (primitive) pro-schemes. This observation could be used to
extend the main results of the paper to a somewhat larger category; yet such
an extension does not seem to be important.

3.6 THE GYSIN DISTINGUISHED TRIANGLE FOR PRO-SCHEMES; 'GERSTEN’
POSTNIKOV TOWERS FOR COMOTIVES OF PRO-SCHEMES

We prove that we can pass to countable homotopy limits in Gysin distinguished
triangles.

ProrosiTiON 3.6.1. Let Z, X be pro-schemes, Z a closed subscheme of X
(everywhere) of codimension r. Then for any s > 0 the natural morphism
Mg (X \ Z)(s) = Mg (X)(s) extends to a distinguished triangle (in D ):

My (X \ Z)(8) = My (X)(s) = Mgm(Z)(r + s)[2r].
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Proof. First assume s = 0.

We can assume X = @Xi, Z =lim Z; for i € I, where X;,Z; € SmVar, Z;
is closed everywhere of codimension r in X; for all ¢ € I.

We take V; = j(X;\ Z; —» X;), Y = p(@ie] Y;). By parts @l and [l of Proposi-
tion BT we have a distinguished triangle My, (X \ Z) = My (X) = Y.

It remains to prove that Y = My, (Z)(r)[2r]. Proposition 2.4.5 of [9] (a
functorial form of the Gysin distinguished triangle for Voevodsky’s motives)
yields that p(Y;) = My, (Z;)(r)[2r]; moreover, the connecting morphisms
p(Y;) = p(Yit1) are obtained from the corresponding morphisms My, (Z;) —
Mg (Zi41) by tensoring by Z(r)[2r]. It remains to recall: by Proposition
BIT[), the isomorphism class of a homotopy limit in © can be completely
described in terms of (objects and morphisms) of ©® (i.e. we don’t have to
consider the lifts of objects and morphisms to ®’). This yields the result.
Now, since Mg (X X Gp,) = Mg (X) @ My (X)(1)[1] for any X € SmVar
(hence this is also true for pro-schemes), the assertion for the case s = 0 yields
the general case easily. O

Now we will construct a certain Postnikov tower Po(X) for X being the
(twisted) comotif of a pro-scheme Z that will be related to the coniveau spec-
tral sequences (for cohomology) of Z; our method was described in §I.5 above.
Note that we counsider the general case of an arbitrary pro-scheme Z (since
in this paper pro-schemes play an important role); yet this case is not much
distinct from the (partial) case of Z € SmVar.

COROLLARY 3.6.2. We denote the dimension of Z by d (recall the conventions
of §39). ‘

For all i > 0 we denote by Z* the set of points of Z of codimension i.

For any s > 0 there exists a Postnikov tower for X = Mg, (Z)(s)[s] such that
I=0,m=d+1, X; =[[,cpi Mgm(2)(i+ s)[2i + s].

Proof. As above, it suffices to prove the statement for s = 0. Since any product
of distinguished triangles is distinguished, we can assume Z to be connected.
We consider a projective system L whose elements are sequences of closed
subschemes @ = Zy,1 C Zg C Zy—1 C -+ C Zy. Here Zy € SmVar, Z; €
Var for I > 0, Z is open in Zy (see 82 Zj is connected; in the case when
Z € SmVar we only take Zy = Z); for all j > 0 we have: Z; is everywhere of
codimension > j in Zp; all irreducible components of all Z; are everywhere of
codimension > j in Zy; and Z;11 contains the singular locus of Z; (for j < d).
The ordering in L is given by open embeddings of varieties U; = Z; \ Z; for
j > 0. For [ € L we will denote the corresponding sequence by @ = Zfl+1 C
Zfi C Zé71 Cc.--C Zé. Note that L is countable!

By the previous proposition, for any j we have a distinguished triangle
My (In(Z§ \ 28)) = My (Bn(Z§ \ Z1,1)) = Moy (2 \ ZL1) () [24))

It remains to compute the last term; we fix some j.

We have l'glleL,(Zjl- \ZJI-H)) = [].czi Mgm(2). Indeed, for all | € L the variety

Z]l- \ Zjl- 41 is the disjoint union of some locally closed smooth subschemes of
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Z} of codimension j; for any zy € Z7 for | € L large enough 2, is contained
in Zé \ Zé 41 as an open sub-pro-scheme, and the inverse limit of connected
components of ZJZ- \ Zjl- 41 containing zp is exactly zg. Now, we can apply the
functor X +— My, (X)(5)[27] to this isomorphism. We obtain Mgm(l'gl(Zjl- \
Zt ) ()124)) 2 Tl.e s Mgm(2)(i). This yields the result.

J
O

Remark 3.6.3. 1. Alternatively, one could construct Po(X) for the (twisted)
comotif of a pro-scheme T' = an T as the inverse limit of the Postnikov towers
for T' (constructed as above yet with fixed Z} = T'); certainly, to this end one
should pass to the limit in ©’. It is easily seen that one would get the same
tower this way.

2. Certainly, if we shift a Postnikov tower for M, (Z)(s)[s] by [j] for some
J € Z, we obtain a Postnikov tower for Mg, (Z)(s)[s+ j]. We didn’t formulate
assertion 2 for these shifts only because we wanted X? to belong to D*=° (see
Proposition A1) below).

3. Since the calculation of X used Proposition B.LT([), our method cannot
describe connecting morphisms between them (in ©). Yet one can calculate
the ’images’ of the connecting morphisms in ®"%¥¢; see .5 and §6.11

4 MAIN MOTIVIC RESULTS

The results of the previous section combined with those of §2.2] allow us to
construct (in §L1) a certain Gersten weight structure w on a certain triangu-
lated ©5: DM, ;%f C D, C®. Its main property is that comotives of function
fields over k (and their products) belong to Hw. It follows immediately that
the Postnikov tower Po(X) provided by Corollary is a weight Postnikov
tower with respect to w. Using this, in .2/ we prove: if S is a primitive scheme,
So is its dense sub-pro-scheme, then My, (S) is a direct summand of My, (So);
M, (K) (for a function field K/k) contains (as retracts) comotives of primitive
schemes whose generic point is K, as well as twisted comotives of residue fields
of K (for all geometric valuations).

In 43 we (easily) translate these results to cohomology; in particular, the
cohomology of (the spectrum of) K contains direct summands corresponding
to the cohomology of primitive schemes whose generic point is K, as well as
twisted cohomology of residue fields of K. Here one can consider any coho-
mology theory H : ®;, — A; one can obtain such an H by extending to D
any cohomological H' : DM 5%? — A if A satisfies AB5 (by means of Propo-
sition [[2.1)). Note: in this case the cohomology of pro-schemes mentioned is
calculated in the 'usual’ way.

In §4.4] we consider weight spectral sequences corresponding to (the Gersten
weight structure) w. We observe that these spectral sequences generalize natu-
rally the classical coniveau spectral sequences. Besides, for a fixed H : ©, — A
our (generalized) coniveau spectral sequence converging to H*(X) (where X
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could be a motif or just an object of D) is D,-functorial in X (i.e. it is mo-
tivically functorial for objects of DM geT];f ); this fact is non-trivial even when
restricted to motives of smooth varieties.

In §4.5] we prove that there exists a nice duality D°P x DM If Ab (extending

the bi-functor DM (= ) DM;j;f"p x DM — Ab); the Gersten weight

structure w (on Dy) is left orthogonal to the homotopy ¢-structure ¢ on DM eff
with respect to it. This allows to apply Theorem 2.6.I} in the case when H
comes from Y € ObjDM’ we prove the isomorphism (starting from FE)
of (the coniveau) T'(H,X) with the spectral sequence corresponding to the ¢-
truncations of Y. We describe ObjDMff N DY=" in terms of ¢ (for DM,
We also note that our results allow to describe torsion motivic cohomology in
terms of (torsion) étale cohomology (see Remark L5.4](4)).

In §4.6] we define the coniveau spectral sequence (starting from FEs) for coho-
mology of a motif X over a not (necessarily) countable perfect base field [ as the
limit of the corresponding coniveau spectral sequences over countable perfect
subfields of definition for X. This definition is compatible with the classical one
(for X being the motif of a smooth variety); so we obtain motivic functoriality
of classical coniveau spectral sequences over a general base field.

In §4.7 we prove that the Chow weight structure for DM, 5,,qu (introduced in §6
of [6]) could be extended to ® (certainly, the corresponding weight structure
Wehow differs from w). We will call the corresponding weight spectral sequences
Chow-weight ones; note that they are isomorphic to classical (i.e. Deligne’s)
weight spectral sequences when the latter are defined.

In 4.8 we use the results §2.7 to compare coniveau spectral sequences with
Chow-weight ones. We always have a comparison morphism; it is an isomor-
phism if H is a birational cohomology theory.

In §49] we consider the category of birational comotives Dy;,- (a certain ’com-
pletion’ of birational motives of [I5]) i.e. the localization of ® by ©(1). It
turns our that w and wepew induce the same weight structure uz,’]iT on Dypir.
Conversely, starting from wj,,. one can glue ’from slices’ the weight structures
induced by w and wepew on ©/D(n) for all n > 0. Furthermore, these struc-
tures belong to an interesting family of weight structures indexed by a single
integral parameter; other terms of this family could be also interesting!

4.1 THE GERSTEN WEIGHT STRUCTURE FOR D, D DMZ]/

Now we describe the main weight structure of this paper. Unfortunately, the
author does not know whether it is possible to define the Gersten weight struc-
ture (see below) on the whole ©. Yet for our purposes it is quite sufficient to
define the corresponding weight structure on a certain triangulated subcategory
Dy C D containing DMg%f (and comotives of all pro-schemes).

In order to make the choice of ®4 C © compatible with extensions of scalars,
we bound certain dimensions of objects of Hw.

We will denote by H the full subcategory of ® whose objects are all countable
products [];c;, Mgm (Ki)(n)[m]; here K are (the spectra of) function fields
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over k, n; > 0; we assume that the transcendence degrees of K;/k and n; are
bounded.

PROPOSITION 4.1.1. 1. Let ®; be the Karoubi-closure of (H) in ©. Then
C =34 can be endowed with a unique weight structure w such that Hw contains
H.

2. Hw is the idempotent completion of H.

3. D, contains DMZI] as well as all My, (Z)(1) for Z being a pro-scheme,
1>0.

4. For any primitive S, i > 0, we have My, (S)(i)[i] € D¥=0.

5. Let Z be a pro-scheme, s > 0. Then My, (Z)(s)[s] € DYSC; the Postnikov
tower for Mg (Z)(s)[s] given by Corollary [3.6.2 is a weight Postnikov tower
for it.

Proof. 1. By Proposition B5(2), H is negative (since any object of H is
a finite sum of M, (X;)(m;) for some primitive pro-schemes X;, m; € Z).
Besides, D is idempotent complete (see Corollary B.1.3[(4)); hence ®¢ and D¥=°
also are. Hence we can apply Theorem ZZTI([8) (for D = H).
2. Also immediate from Theorem [ZZTI[IS).
3. Mym(Z)(l) € Obj®, by Corollary B.6.2} in particular, this is true for Z €
SmVar. It remains to note that DM/ is the Karoubization of (Mg, (U) :
U e SmVar) in .
4. It suffices to note that M,,,(S)(i)[i] belongs both to D¥< and to D¥=0 by
Theorem ZZTI20). Here we use Proposition B5.T)(2) again.
5. We have X € D*=0. Hence Theorem Z2Z.|[I4) yields the result. Note here
that we have Yy = 0 in the notation of Definition 2-T.2/(9).

O

We will call w the Gersten weight structure, since it is closely connected with
Gersten resolutions of cohomology (cf. §4H below). By default, below w will
denote the Gersten weight structure.

Remark 4.1.2. 1. Hw is idempotent complete since D is.

2. In fact, one could easily prove similar statements for C being just (H)
(instead of its Karoubization in ©). Certainly, for this version of C we will
only have C D M, (Kb(SmCor)).

Besides, note that for any function field K'/k, any r > 0, there exists a function
field K/k such that Mg, (K')(r)[r] is a retract of Mg, (K) (see Corollary
below). Hence it suffices take H being the full subcategory of © whose objects
are [[;c; Mgm(K)) (for bounded transcendence degrees of K;/k).

3. The proposition implies that ®, is exactly the Karoubization in ® of the
triangulated category generated by comotives of all pro-schemes.

4. The author does not know whether one can describe weight decompositions
for arbitrary objects of DM ;,J:Lf explicitly. Still, one can say something about
these weight decompositions and weight complexes using their functoriality
properties. In particular, knowing weight complexes for XY € ObjDM, ;{;f
(or just € ObjDM?) one can describe the weight complex of X — Y up to a
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homotopy equivalence as the corresponding cone (see Lemma below). Be-
sides, let X — Y — Z be a distinguished triangle (in D). Then for any choice
of (Xw=0 xw2l) and (Zw<Y Z¥21) there exists a choice of (Y*<0 yw=1)
such that there exist distinguished triangles X*<0 — yw<0 _ zw<0 apq
Xwzl oy yw2l 5 7w2l: see Lemma 1.5.4 of [6]. In particular, we obtain that
j maps complexes (over SmCor) concentrated in degrees < j into D¥<SJ (we
will prove a stronger statement in Remark E5.4[(4) below). If X € ObjDng;f
comes from a complex over SmCor whose connecting morphisms satisfy certain
codimension restrictions, these observations could be extended to an explicit
description of a weight decomposition for it; cf. §7.4 of [6].

4.2  DIRECT SUMMAND RESULTS FOR COMOTIVES
Proposition [£.T.1] easily implies the following interesting result.

THEOREM 4.2.1. 1. Let S be a primitive scheme; let Sy be its dense sub-pro-
scheme. Then Mgy, (S) is a direct summand of Mgm(So)-

2. Suppose moreover that So = S \ T where T is a closed subscheme
of S everywhere of codimension r > 0. Then we have Mg, (Sy) =

My (S) @ My (T)(r)[2r — 1.

Proof. We can assume that S and Sy are connected.
1. By Proposition EELI(5), we have: My,(So), Mgm(S) € D¥=0;
Mg (Spec(k(S))) could be assumed to be the zeroth term of their weight
complexes for a choice of weight complexes compatible with some negative
Postnikov weight towers for them; the embedding Sy — S is compatible with
idng,,, (Spec(k(s))) (since we have a commutative triangle Speck(S) — So — S
of pro-schemes). Hence Theorem R2.T)[I6]) yields the result.
2. By Proposition B.6.1] we have a distinguished triangle Mg, (Sy) —
My (S) = My (T)(r)[2r]. By parts 4 and 5 of Proposition [LII] we have
Mym(So) € DY My, (S) € DY=0 My, (T)(r)[2r] € DS C DWs-1L,
Hence Theorem ZZ.TI[\) yields the result.

O

COROLLARY 4.2.2. 1. Let S be a connected primitive scheme, let Sy be its
generic point. Then Mgy, (S) is a retract of Mg, (So).

2. Let K be a function field over k. Let K’ be the residue fields for a geometric
valuation v of K of rank r. Then Mgy, (K')(r)[r] is a retract of Mgy, (K).

Proof. 1. This is just a partial case of part 1 of the the theorem.

2. Obviously, it suffices to prove the statement in the case r = 1. Next, K is
the function field of some normal projective variety over k. Hence there exists
a U € SmVar such that: k(U) = K, v yields a non-empty closed subscheme
of U (since the singular locus has codimension > 2 in a normal variety). It
easily follows that there exists a pro-scheme S (i.e. an inverse limit of smooth
varieties) whose only points are the spectra of K and Kj. So, S is local, hence
it is primitive.
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By part 2 of the theorem, we have
Mg (Spec K) = Mg, (S) @ Mg (Spec Ko)(1)[1];

this concludes the proof.
O

Remark 4.2.3. 1. Note that we do not construct any explicit splitting mor-
phisms in the decompositions above. Probably, one cannot choose any canoni-
cal splittings here (in the general case); so there is no (automatic) compatibility
for any pair of related decompositions. Respectively, though comotives of (spec-
tra of) function fields contain tons of direct summands, there seems to be no
general way to decompose them into indecomposable summands.

2. Yet Proposition [B61] easily yields that Mg, (Speck(t)) =
Z@® 11z Mym(E)(1)[1]; here E runs through all closed points of A' (con-
sidered as a scheme over k).

4.3 ON COHOMOLOCY OF PRO-SCHEMES, AND ITS DIRECT SUMMANDS

The results proved above immediately imply similar assertions for cohomology.
We also construct a class of cohomology theories that respect homotopy limits.

PrOPOSITION 4.3.1. Let H : ©; — A be cohomological, S be a primitive
scheme.

1. Let Sy be a dense sub-pro-scheme of S. Then H (Mg, (S)) is a direct sum-
mand of H(Mgm(So)).

2. Suppose moreover that So = S \ T where T is a closed sub-
scheme of S of codimension v > 0. Then we have H(Mgy(Sy)) =
H(Myn(S)) @ H(My(T)(r) 2 — 1).

3. Let S be connected, Sy be the generic point of S. Then H(Mgyy(S)) is a
retract of H(Mgm(So)) in A.

4. Let K be a function field over k. Let K' be the residue field for a geometric
valuation v of K of rankr. Then H(Mgpm (K')(r)[r]) is a retract of H (Mg (K))
in A.

5. Let H' : DM;,J;f — A be a cohomological functor, let A satisfy AB5. Then
Proposition [L.21] allows to extend H' to a cohomological functor H : ® — A
that converts inverse limits in ' to the corresponding direct limits in A.

Proof. 1. Immediate from Theorem F2T](1).
2. Immediate from Theorem E2T|(2).
3. Immediate from Corollary E.2.2(1).
4. Tmmediate from Corollary FZ22](2).
5. Immediate from Proposition [L2ZI} note that DM, geTJ;f is skeletally small.
Here in order to prove that H converts homotopy limits into direct limits we
use part 12 of loc.cit. and Proposition BIIN[T).
O
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Remark 4.3.2. 1. In the setting of assertion 5 we will call H an extended
cohomology theory.

Note that for H' = DMZI/(=,Y), Y € ObjDMZIf, we have H = D(—,Y);
see (@).

2. Now recall that for any pro-scheme Z, any ¢ > 0, My,,,(Z)(i) (by definition)
could be presented as a countable homotopy limit of geometric motives. More-
over, the same is true for all small countable products of M, (Z;)(i). Hence
if H is extended, then the cohomology of [] My, (Z;)(i) is the corresponding
direct limit; this coincides with the definition given by ([29)) (cf. Remark B.2.T]).
In particular, one can apply the results of Proposition [£31] to the usual étale
cohomology of pro-schemes mentioned (with values in Ab or in some category
of Galois modules).

3. If H' is also a tensor functor (i.e. it converts tensor product in DM, ;,/;f into
tensor products in D(A)), then certainly the cohomology of Mg, (K')(r)[r] is
the corresponding tensor product of H*(Mg,,(K')) with H*(Z(r)[r]). Note that
the latter one is a retract of H*(G?,); we obtain the Tate twist for cohomology
this way.

4.4 CONIVEAU SPECTRAL SEQUENCES FOR COHOMOLOGY OF (CO)MOTIVES

Let H : ®% — A be a cohomological functor, X € Obj®D;.

PROPOSITION 4.4.1. 1. Any choice of a weight spectral sequence T(H,X) (see
Theorem [2-7.3) corresponding to the Gersten weight structure w is canonical
and Ds-functorial in X starting from Es.

2. T(H,X) converges to H(X).

3. Let H be an extended theory (see Remark [[.3.2), X = Mgyn(Z) for
Z € SmVar. Then any choice of T(H,X) starting from Es is canonically
isomorphic to the classical coniveau spectral sequence (converging to the H-

cohomology of Z; see §1 of [8]).

Proof. 1. This is just a partial case of Theorem 2. 42/(T).

2. Immediate since w is bounded; see part 12 of loc.cit.

3. Recall that in the proof of Corollary a certain Postnikov tower
Po(X) for X was obtained from certain ’geometric’ Postnikov towers (in
j(C*(SmCor))) by passing to the homotopy limit. Now, the coniveau spec-
tral sequence (for the H-cohomology of Z) in §1.2 of [8] was constructed by
applying H to the same geometric towers and then passing to the inductive limit
(in A). Furthermore, Remark [£.3.2)2) yields that the latter limit is (naturally)
isomorphic to the spectral sequence obtained via H from Po(X). Next, since
Po(X) is a weight Postnikov tower for X (see Proposition L.I.1(5)), we obtain
that the latter spectral sequence is one of the possible choices for T(H, X).
Lastly, assertion 1 yields that all other possible T'(H, X) (they depend on the
choice of a weight Postnikov tower for X) starting from E5 are also canonically

isomorphic to the classical coniveau spectral sequence mentioned.
O
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Remark 4.4.2. 1. Hence we proved (in particular) that classical coniveau
spectral sequences (for cohomology theories that could be factorized through
motives; this includes étale and singular cohomology of smooth varieties) are
DM gyfmf -functorial (starting from FEs); we also obtain such a functoriality for
the coniveau filtration for cohomology! These facts are far from being obvious
from the usual definition of the coniveau filtration and spectral sequences, and
seem to be new (in the general case). So, we justified the title of the paper.
We also obtain certain coniveau spectral sequences for cohomology of singular
varieties (for cohomology theories that could be factorized through DM ;J;f ; in
the case char k > 0 one also needs rational coefficients here).

2. Assertion 3 of the proposition yields a nice reason to call (any choice of)
T(H,X) a coniveau spectral sequence (for a general H, A, and X € ObjD);
this will also distinguish (this version of) T' from weight spectral sequences
corresponding to other weight structures. We will give more justification for
this term in Remark 5.4 below. So, the corresponding filtration could be
called the (generalized) coniveau filtration.

4.5 AN EXTENSION OF RESULTS OF BLOCH AND OGUS

Now we want to relate coniveau spectral sequences with the homotopy t-
structure (in DM®/¥). This would be a vast extension of the seminal results of
§6 of [5] (i.e. of the calculation by Bloch and Ogus of the Ea-terms of coniveau
spectral sequences) and of §6 of [11].

We should relate ¢ (for DM ) and wj; it turns out that they are orthogonal
with respect to a certain quite natural nice duality.

PROPOSITION 4.5.1. For any Y € ObjDM! we extend H' = DM/ (- Y)
from DMgefnf to ® D D, by the method of Proposition [L.2.1; we define
®(X,Y)=H(X). Then the following statements are valid.

1. ® is a nice duality (see Definition [2257).

2 w is left orthogonal to the homotopy t-structure t (on DMfff) with respect
to ®.

3. ®(—,Y) converts homotopy limits (in ©') into direct limits in Ab.

Proof. 1. By Proposition 25.6(1), the restriction of ® to DMgeT];fOp x DM
is a nice duality. It remains to apply part 3 of loc.cit.
2. In the notation of Proposition 53] we take for D the set of all small
products [];c; Mgm (K1)(ni)[u] € ObjD,; here My, (K;) denote comotives of
(spectra of) some function fields over k, n; > 0 and the transcendence degrees
of K;/k are bounded (cf. §41). Then D,® satisfy the assumptions of the
proposition by Proposition B 4.T(2) (see also Remark [£.3.2)2)).
3. Immediate from Proposition E31](3).

O

Remark 4.5.2. 1. Suppose that we have an inductive family Y; € ObjDMiff
connected by a compatible family of morphisms with some Y € DM such
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that: for any Z € ObjDMgl{ we have DM/ (Z,Y) = lim DM/ (2,Y;) (via
these morphisms ¥; — Y'). In such a situation it is reasonable to call Y a
homotopy colimit of Y;.

The definition of ® in the proposition easily implies: for any X € Obj® we have
o(X)Y) = liAﬂI)(X,Yi). So, one may say that all objects of ® are ’compact
with respect to ®’, whereas part 3 of the proposition yields that all objects of
DM are ‘cocompact with respect to ®’. Note that no analogues of these nice
properties can hold in the case of an adjacent weight and t-structure (defined
on a single triangulated category).

2. Now, we could have replaced DM geﬁlf by DMy, everywhere in the "axiomat-
ics’ of ® (in Proposition B.I.1)). Then the corresponding category ®,, could
be used for our purposes (instead of @), since our arguments work for it also.
Note that we can extend ® to a nice duality D¢h, X DM — Ab; to this end
it suffices for Y € ObjDM' to extend H' to DMy, in the following way:
H'(X(-n)) = DM (X,Y (n)) for X € ObjDMELS € ObjDMyy,, n > 0.
Moreover, the methods of §5. 4.3l allow to define an invertible Tate twist functor
on Dgp,.

COROLLARY 4.5.3. 1. If H is represented by a Y € ObjDMfff (via our ®)
then for a (co)motif X our coniveau spectral sequence T (H, X) starting from Fs
could be naturally expressed in terms of the cohomology of X with coefficients
in t-truncations of Y (as in Theorem [26.1).

In particular, the coniveau filtration for H*(X) could be described as in part[2
of loc.cit.

2. For U € ObjDMELS | i € Z, we have U € DSt «— U € DMT/t=i,

am )

Proof. 1. Immediate from Proposition E5.11
2. By Theorem [ZZT20), we should check whether Z 1 U for any Z =
[Lcr Mgm (K1) (ni)[ng + r], where K; are function fields over k, n; > 0
and the transcendence degrees of K;/k are bounded, r > 0 (see Proposi-
tion ATTI(2)). Moreover, since U is cocompact in @, it suffices to consider
Z = Mg (K')(n)[n+ ] (K'/k is a function field, n > 0). Lastly, Corollary
[4.2.2(2) reduces the situation to the case Z = M, (K) (K/k is a function
field).
Hence (25) implies: U € D= whenever for any j > i, any function field K/k,
the stalk of U= at K is zero. Now, if U € DM®//1<i then U'=J = 0 for all
j > i; hence all stalks of U'=/ are zero. Conversely, if all stalks of U'=7 at
function fields are zero, then Corollary 4.19 of [26] yields U'=7 = 0 (see also
Corollary 4.20 of loc.cit.); if U= =0 for all j > i then U € DMEITsi,

O

Remark 4.5.4. 1. Our comparison statement is true for Y-cohomology of an
arbitrary X € ObjDM, gefnf ; this extends to motives Theorem 6.4 of [11] (whereas
the latter essentially extends the results of §6 of [5]). We obtain one more
reason to call T' (in this case) the coniveau spectral sequence for (cohomology

of) motives.
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2. 'Y € ObjHI, then E5(T) yields the Gersten resolution for Y (when X
varies); this is why we called w the Gersten weight structure.

3. Now, let Y represent étale cohomology with coefficients in Z/IZ, [ is prime to
chark (Y is actually unbounded from above, yet this is not important). Then
the t-truncations of Y represent Z/IZ-motivic cohomology by the (recently
proved) Beilinson-Lichtenbaum conjecture (see [28]; this paper is not published
at the moment). Hence Proposition[2.5.4(1) yields some new formulae for Z /IZ-
motivic cohomology of X and for the ’difference’ between étale and motivic
cohomology. Note also that the virtual ¢-truncations (mentioned in loc.cit.)
are exactly the Do-terms of the alternative exact couple for T'(H, X) and for
the version of the exact couple used in the current paper respectively (i.e.
we consider exact couples coming from the two possible versions for a weight
Postnikov tower for X, as described in Remark ZT3]). See also §7.5 of [6] for
more explicit results of this sort. It could also be interesting to study coniveau
spectral sequences for singular cohomology; this could yield a certain theory of
‘motives up to algebraic equivalence’; see Remark 7.5.3(3) of loc.cit. for more
details.

5. Assertion 2 of the corollary yields that ®¥<% N ObjDM, ;{;f is large enough
to recover w (in a certain sense); in particular, this assertion is similar to
the definition of adjacent structures (see Remark ZL5.7). In contrast, D¥=% N
ObjDMgﬁff seems to be too small.

4.6 BASE FIELD CHANGE FOR CONIVEAU SPECTRAL SEQUENCES; FUNCTO-
RIALITY FOR AN UNCOUNTABLE k

It can be easily seen (and well-known) that for any perfect field extension I/k
there exist an extension of scalars functor DM;‘,{Lf E— DM;,{Lf ; compatible
with the extension of scalars for smooth varieties (and for K*(SmCor)). In
below we will prove that this functor could be expanded to a functor
Extyp : D — Dy that sends My, x(X) to My, 1(X;) for a pro-scheme X/k;
this extension procedure is functorial with respect to embeddings of base fields.
Moreover, Ext;/, maps Dy, into Dg;. Note the existence of base change for
comotives does not follow from the properties of D listed in Proposition B.I.T}
yet one can define base change for our model of comotives (described in §5
below) and (probably) for any other possible reasonable version of D.

Now we prove that base change for comotives yields base change for coniveau
spectral sequences; it also allows to prove that these spectral sequences are
motivically functorial for not necessary countable base fields.

In order to make the limit in Proposition [£6.1(2) below well-defined, we assume
that for any X € ObjDMge}:Lf there is a fixed representative Y, Z,p chosen,
where: Z,Y € C*(SmCor), Mym(Y) = My (Z), p € C*(SmCor)(Y, Z) yields
a direct summand of M, (Y) in DMgefnf that is isomorphic to X. We also
assume that all the components of (X, Y, p) have fixed expressions in terms of
algebraic equations over k; so one may speak about fields of definition for X.
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PROPOSITION 4.6.1. Let [ be a perfect field, H : ®; — A be any cohomological
functor (for an abelian A). For any perfect k C | we denote HoExty, : D — A
by Hk.

1. Let |l be countable. Then for any X € Obj®y the method of Proposition
[Z7.3(11) yields some morphism Nyj, : Ty, (Hy, X) — Ty, (H, Exty;,(X)); this
morphism is unique and Dy -functorial in X starting from Es.

The correspondence (I, k) — Ny is associative with respect to evtensions of
countable fields (starting from Es); cf. part I3 of loc.cit.

2. Letl be a not (necessarily) countable perfect field, let A satisfy ABS.

For X € ObjDMgefnfl we define T, (H, X) = limg, T, (H, Xi). Here we take
the limit with respect to all perfect k C | such that k is countable, X is defined
over k; the connecting morphisms are given by the maps N_,_ mentioned in
assertion 1; we start our spectral sequences from E,. Then T,(H,X) is a
well-defined spectral sequence that is DM;,{lfl—functorial mn X.

3. If X = My (Z), Z € SmVar, H is as an exstended theory, and A sat-
isfies ABS, the spectral sequence given by the previous assertion is canonically
isomorphic to the classical coniveau spectral sequence (for (H,Z); considered
starting from Es).

Proof. 1. By Proposition ZZ7.3(11) it suffices to check that Ext;;, is left weight-
exact (with respect to weight structures in question). We take D being the
class of all small products [],c; Mgm(K;), where Mg, (K;) denote comotives
of (spectra of) function fields over k of bounded transcendence degree. Propo-
sition L1l and Corollary FEZ2(2) yield that any X € ©,%=0 is a retract of
some element of D. It suffices to check that for any X = [],c; Mgm x(K;) we

have Ext;/, X € @S}’”go; here we recall that wy, is bounded and apply Lemma
Now, X is the comotif of a certain pro-scheme, hence the same is true for
Ext;/, X. It remains to apply Proposition [LI.(5).

2. By the associativity statement in the previous assertion, the limit is well-
defined. Since A satisfies AB5, we obtain a spectral sequence indeed. Since
we have k-motivic functoriality of coniveau spectral sequences over each k, we
obtain [-motivic functoriality in the limit.

3. Again (as in the proof of Proposition -4T[3)) we recall that the classical
coniveau spectral sequence for this case is defined by applying H to ’geometric’
Postnikov towers (coming from elements of L as in the proof of Corollary 3.6.2)
and then passing to the limit (in A) with respect to L. Our assertion follows
easily, since each [ € L is defined over some perfect countable k& C [; the limit
of the spectral sequences with respect to the subset of L defined over a fixed k
is exactly T, (Hy, X) since H sends homotopy limits to inductive limits in A
(being an extended theory).

Here we certainly use the functoriality of T" starting from Fs.
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Remark 4.6.2. 1. For a general X € ObjDM;,fnf we only have a canonical
choice of base change maps (for T'(Hy,, X)) starting from FEs; this is why we
start our spectral sequence from the Fs-level.

2. Assertion 2 of the proposition is also valid for any comotif defined over a
(perfect) countable subfield of I. Unfortunately, this does not seem to include
comotives of function fields over I (of positive transcendence degrees, if [ is not
countable).

4.7 THE CHOW WEIGHT STRUCTURE FOR ©

Till the end of the section, we will either assume that chark = 0, or that we
deal with motives, comotives, and cohomology with rational coefficients (we
will use the same notation for motives with integral and rational coefficients;
cf. §6.3 below).

We prove that © supports a weight structure that extends the Chow weight
structure of DME// (see §6.5 and Remark 6.6.1 of [6], and also [7]).

In this subsection we do not require k£ to be countable.

PROPOSITION 4.7.1. 1. There exists a Chow weight structure on DM;,J;f that
is uniquely characterized by the condition that all M, (P) for P € SmPrVar
belong to its heart; it could be extended to a weight structure Wepew on D.

2. The heart of wenew 15 the category Hopow of arbitrary small products of
(effective) Chow motives.

3. We have X € Dwcrow20 4f and only if D(X,Y[i]) = {0} for any Y €
ObjChow®’f i > 0.

4. There exists a t-structure tchow on D that is right adjacent to weopew (Se€
Remark[Z573). Its heart is the opposite category to Chow®/T* (i.e. it is equiv-
alent to (AddFun(Chow®!f, Ab))°P).

5. Wehow Tespects products i.e. X; € DWChow<0 — [1X: € Dwenow<0 gpnd
X; € DWChow20 — HXz € DWChow20

6. For [[X; there exists a weight decomposition: [[X; — [[X"=° —
[T

7. If H : ©® — A is an extended theory, then the functor that sends X to the
derived ezact couple for Ty, H,X) (see Theorem [24.2) converts all small
products into direct sums.

Chow(

Proof. 1. Tt was proved in (Proposition 6.5.3 and Remark 6.6.1 of) [6] that
there exists a unique weight structure wg,,,,, on DMEL] such that My, (P) €
Dwenow=0 for all P € SmPrVar. Moreover, the heart of this structure is
exactly Chow®// C DM;[nf.

Now, DM;,J;f is generated by Chow®!f. 1t easily follows that {M,(P), P €
SmPrVar} weakly cogenerates ©. Then the dual (see Theorem Z2.T[]) of
Theorem 4.5.2(12) of [6] yields that wg,,,, could be extended to a weight struc-
ture wepew for . Moreover, the dual to part 111 of loc.cit. yields that for this
extension we have: Hway,,,, i the idempotent completion of Heopow-
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2. It remains to prove that Hopow is idempotent complete. This is obvious
since Chow®f7 is.
3. This is just the dual of (27) in loc.cit.
4. The dual statement to part 12 of loc.cit. (cf. Remark [[T3)(1)) yields the
existence of topow. Applying the dual of Theorem 4.5.2(II1) of [6] we obtain
for the heart of ¢: Htcy,,,, = (ChowS! T)op.
5. Theorem Z2I2) easily yields that Dwcrew<0 ig stable with respect to
products. The stability of ®®¥crow=0 with respect to products follows from
assertion 3; here we recall that all objects of Chow®/f are cocompact in D.
6. Immediate from the previous assertion; note that any small product of
distinguished triangles is distinguished (see Remark 1.2.2 of [21]).
7. Since H is extended, it converts products in © into direct sums in A. Hence
for any X; € Obj® there exist a choice of exact couples for the corresponding
weight spectral sequences for X; and [] X; that respects products i.e such that
DIIJqucmw (Hv H Xi) = @z D:quwc;mw (H7 Xi) and EquwChaw (Hv H XZ) =
D, E ' Twep.., (H, X;) (for all p.g € Z; this isomorphism is also compatible
with the connecting morphisms of couples). Since A satisfies AB5, we obtain
the isomorphism desired for Dy and Es-terms (note that those are uniquely
determined by H and X).

O

Remark 4.7.2. 1. In Remark 2.4.3 of [6] it was shown that weight spectral
sequences corresponding to the Chow weight structure are isomorphic to the
classical (i.e. Deligne’s) weight spectral sequences when the latter are defined
(i.e. for singular or étale cohomology of varieties). Yet in order to specify the
choice of a weight structure here we will call these spectral sequences Chow-
weight ones.

2. All the assertions of the Proposition could be extended to arbitrary tri-
angulated categories with negative families of cocompact weak cogenerators
(sometimes one should also demand all products to exist; in assertion 7 we
only need H to convert all products into direct sums).

3. Since (effective) Chow motives are cocompact in ©, Hwep,,, 1S the
category of ’formal products’ of Chow®’f ie. D([T,e; Xi,[L;e; Vi) =
[Lic;(@ieChow® 1 (X, Y;)) for X;,Y; € ObjChow®’f C Obj® (cf. Remark
4.5.3(2) of [6]).

4. Recall (see §7.1 of ibid.) that DM/’ supports (adjacent) Chow weight
and t-structures (we will denote them by wg,,,, and tey,,.,» respectively). One
could also check that these structures are right orthogonal to the corresponding
Chow structures for ©. Hence, applying Proposition 25.4(1) repeatedly one
could relate the compositions of truncations (on ®5 C D) via w and via tchow
(resp. via w and via Wepew) With truncations via ¢ and via w,,,,, (resp. via
t and via tyy,,,,,) on DM of. §8.3 of [6]. One could also apply wehoew-
truncations and then w-truncations (i.e. compose truncations in the opposite
order) when starting from an object of DME//. Recall also that truncations via
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tchow (and their compositions with ¢-truncations) are related with unramified
cohomology; see Remark 7.6.2 of ibid.

4.8 COMPARING CHOW-WEIGHT AND CONIVEAU SPECTRAL SEQUENCES

Now we prove that Chow-weight and coniveau spectral sequences are naturally
isomorphic for birational cohomology theories.

PROPOSITION 4.8.1. 1. Wcohow for ® dominates w (for ©;) in the sense of
27

2. Let H : DM;,{Lf — A be an extended cohomology theory in the sense of
Remark[{.32; suppose that H is birational i.e. that H(Mg,,(P)(1)[i]) =0 for
all P € SmPrVar, i € Z. Then for any X € Obj®D, the Chow-weight spectral
sequence Ty, (H, X) (corresponding to wchow) is naturally isomorphic start-
ing from Es to (our) coniveau spectral sequence T,,(H,X) via the comparison
morphism M given by Proposition [277.3(11).

Proof. 1. Let D be the class of all countable products [[,.; Mgm(K;), where
Mgy (K;) denote comotives of (spectra of) function fields over k of bounded
transcendence degree. Proposition [L.I.1] and Corollary B.2.2)(2) yield that any
X € D¥=0 is a retract of some element of D. It suffices to check that any
X = [l Mgm(K;) belongs to D*crew=20; here we recall that w is bounded
and apply Lemma

By Proposition IL7I(5), we can assume that L consists of a single element.
In this case we have D (Mg, (K;), Mgm(P)[i]) = 0 (this is a trivial case of
Proposition B5.]); hence loc.cit. yields the result.

2. We take the same D and X as above.

Let chark = 0. We choose P, € SmPrVar such that K; are their func-
tion fields. Since all M, (P) are cocompact in ®, we have a natural
morphism X — [[ My (P). By Proposition Z7.3(I2), it suffices to check
that Cone(X — [[Mym(P)) € Dwerewz00 H(X) = H([] Mym(P)), and
B3 Togy o (H, Cone(X — [ Myn(P))) = 0.

By Proposition L7.7) we obtain: it suffices again to verify these statements
in the case when L consists of a single element. Now, we have Spec(K;) =
@Mgm(U) for U € SmVar, k(U) = K;. Therefore ([21)) yields: it suffices to
verify assertions required for Z = My, (U — P) instead, where U € SmVar,
U is open in P € SmPrVar.

The Gysin distinguished triangle for Voevodsky’s motives (see Proposition 2.4.5
of [9]) easily yields by induction that Z € ObjDMZ/ (1).

Since Chow®!/ is — @ Z(1)[2]-stable, we obtain that there exists a wWchouw-
Postnikov tower for Z such that all of its terms are divisible by Z(1); this yields
the vanishing of E3* Ty, (H,Z). Lastly, the fact that Z € DM wenow=0
was (essentially) proved by easy induction (using the Gysin triangle) in the
proof of Theorem 6.2.1 of [7].

In the case chark > 0, de Jong’s alterations allow to replace My, (F;) in
the reasoning above by some Chow motives (with rational coefficients); see
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Appendix B of [14]; we will not write down the details here.
O

Remark 4.8.2. Assertion 2 is not very actual for cohomology of smooth varieties
since any Z € SmPrVar is birationally isomorphic to P € SmPrVar (at least
for char k = 0). Yet the statement becomes more interesting when applied for
X = Mg, (Z).

4.9 BIRATIONAL MOTIVES; CONSTRUCTING THE GERSTEN WEIGHT STRUC-
TURE BY GLUING; OTHER POSSIBLE WEIGHT STRUCTURES

An alternative way to prove Proposition [.81)(2) is to consider (following [I5])
the category of birational comotives. It satisfies the following properties:

(i) All birational cohomology theories factorize through it.

(ii) Chow and Gersten weight structures induce the same weight structure on
it (see Definition 2.7.T[(4)).

(iii) More generally, for any n > 0 Chow and Gersten weight structures induce
weight structures on the localizations D(n)/D(n + 1) = Dy, (we call these
localizations slices) that differ only by a shift.

Moreover, one could ’almost recover’ original Chow and Gersten weight struc-
tures starting from this single weight structure.

Now we describe the constructions and facts mentioned in more detail. We
will be rather sketchy here, since we will not use the results of this subsection
elsewhere in the paper. Possibly, the details will be written down in another
paper.

As we will show in §5.4.3] below, the Tate twist functor could be extended (as
an exact functor) from DMZ]S to D; this functor is compatible with (small)
products.

PROPOSITION 4.9.1. I The functor — ® Z(1)[1] is weight-ezact with respect to
w on Dg; — R Z(1)[2] is weight-exact with respect to Wehow on D (we will say
that w is — @ Z(1)[1]-stable, and wenew is — @ Z(1)[2]-stable).

II Let ®y;, denote the localization of ® by D(1); B is the localization functor.
We denote B(Ds) by Ds pir-

1. Wehow induces a weight structure wy . on Dy;.. Besides, w induces a weight
structure Wy, 0N D piy-

Wy <0 w};,, <0 Whir 20 wy;,. >0 '
2. We have Dy C/ Db.ir ; Do C Dy (i.e. the embedding
(Ds,birs Woir) = (Dpir, wy,;,.) s weight-exact).

3. For any pro-scheme U we have B(My,(U)) € ®%5r=".

s,bir

Proof. 1 This is easy, since the functors mentioned obviously map the corre-
sponding hearts (of weight structures) into themselves.

IT 1. By assertion I, wepew induces a weight structure on D(1) (i.e. D(1) is a
triangulated category, Obj® (1) N DWchrow<0 and ObiD(1) N DWchow=0 yield a
weight structure on it). Hence by Proposition 8.1.1(1) of [6] we obtain existence
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(and uniqueness) of wy;,. The same argument also implies the existence of some
Wpir ON 33s,bir-

2. Now we compare wp;, with wy,.. Since w is bounded, wy;, also is (see
loc.cit.). Hence it suffices to check that Hw,,. C Huwj, (see Theorem
Z2ZTY(TI)).

Moreover, it suffices to check that for X = [],c; Mym(K;) we have B(X) €

’DZ;‘/;”'ZO (since ’DZ‘;{;’”:O is Karoubi-closed in ®y,;,., here we also apply Propo-
sition E7.T)(2)). As in the proof of Proposition EE8.T(2), we will consider the
case char k = 0; the case chark = p is treated similarly. Then we choose P, €
SmPrVar such that K; are their function fields; we have a natural morphism
X — [[ Mg (F;). Tt remains to check that Cone(X — [[ Mg (F))) € D4(1).
Now, since D(1) and the class of distinguished triangles are closed with respect
to small products, it suffices to consider the case when L consists of a single
element. In this case the statement is immediate from Corollary

3. Immediate from Corollary

O

Remark 4.9.2. 1. Assertion II easily implies Proposition [£8.1}2).

Indeed, any extended birational H (as in loc.cit.) could be factorized as G o B
for a cohomological G : Dy, — A. Since B is weight-exact with respect to
Wehow (and its restriction to D is weight-exact with respect to w), (the trivial
case of) Proposition 27.3(12) implies that for any X € Obj®D (any choice)
of Ty (G,B(X)) is naturally isomorphic starting from E» to any choice of
Twenow (H, X); for any X € Obj®; (any choice) of Ty,,, (G, B(X)) is naturally
isomorphic starting from FEs to any choice of T,,(H, X).

It is also easily seen that the isomorphism T, ., (H, X) — T,,(H, X) is com-
patible with the comparison morphism M (see loc.cit.).

2. The proof of existence of wy;- and of assertion 3 works with integral co-
efficients even if chark > 0. Hence we obtain that that the category image
B(Mgm(U)), U € SmVar, is negative. We can apply this statement in C be-
ing the idempotent completion of B(DM, ;ﬁlf ) i.e. in the category of birational
comotives. Hence Theorem [ZZT|(I])) yields: there exists a weight structure for
C whose heart is the category of birational Chow motives (defined as in §5 of
[I5]). Note also that one can pass to the inductive limit with respect to base
change in this statement (cf. §4.6)); hence one does not need to require k to be
countable.

Now we explain that w and wgpew could be ’almost recovered’ from
(Dpir, wy,;,.). Exactly the same reasoning as above shows that for any n > 0 the
localization of © by D(n) could be endowed with a weight structure w/, com-
patible with wepew, whereas the localization of 5 by D;(n) could be endowed
with a weight structure w,, compatible with w.

Next, we have a short exact sequence of triangulated categories ©/®D(n) 3
D/D(n +1) L5 Dy, Here the notation for functors comes from the ’classical’
gluing data setting (cf. §8.2 of [6]); i. could be given by — ® Z(1)[s] for any
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s € Z, j* is just the localization. Now, if we choose s = 2 then i, is weight-
exact with respect to wj, and wj, ,; if we choose s = 1 then the restriction of
ix 10 Ds/D4(n) is weight-exact with respect to w, and wy11.

Next, an argument similar to the one used in §8.2 of [6] shows: for any short

exact sequence D =5 C' Ly Eof triangulated categories, if D and E are endowed
with weight structures, then there exist at most one weight structure on C such
that both i, and j* are weight-exact (see also Lemma 4.6 of [3] for the proof
of a similar statement for t-structures). Hence one can recover w, and w),
from (copies of) wy,.; the main difference between them is that the first one
is — ® Z(1)[1]-stable, whereas the second one is — ® Z(1)[2]-stable. It is quite
amazing that weight structures corresponding to spectral sequences of quite
distinct geometric origin differ just by [1] here! If one calls the filtration of ©
by @ (n) the slice filtration (this term was already used by A. Huber, B. Kahn,
M. Levine, V. Voevodsky, and other authors for other 'motivic’ categories),
then one may say that w, and w/, could be recovered from slices; the difference
between them is "how we shift the slices’.

Moreover, Theorem 8.2.3 of [6] shows: if both adjoints to 4, and j* exist, then
one can use this gluing data in order to glue (any pair) of weight structures
for D and E into a weight structure for C. So, suppose that we have a weight
structure w, , for ®/D(n) that is — ® (1)[s]-stable and compatible with wy,,
on all slices (in the sense described above; so w)], = wy 2, wy, is the restriction
of w1 to D,/Ds(n), and all wy s coincide with wj,.). General homological
algebra (see Proposition 3.3 of [I8]) yields that all the adjoints required do
exist in our case. Hence one can construct wy,4+1,s for ©/®(n+ 1) that satisfies
similar properties. So, w, s exist for all n > 0 and all s € Z. Hence Gersten
and Chow weight structures (for ®,/D,(n) C ©/D(n)) are members of a rather
natural family of weight structures indexed by a single integral parameter. It
could be interesting to study other members of it (for example, the one that is
— ® Z(1)-stable), though possibly w!, is the only member of this family whose
heart is cocompactly generated.

This approach could allow to construct w in the case of a not necessarily
countable k. Note here that the system of ©,;/D4(n) yields a fine approx-
imation of ®,. Indeed, if X € SmPrVar, n > dim X, then Poincare du-
ality yields: for any Y € ObjDM;zlf we have DM;j;f(Y(n),Mgm(X)) &
DM/ (Y ® X(n — dim X)[—2dim X], Z); this is zero if n > dim X since Z
is a birational motif. Hence (by Yoneda’s lemma) for any n > 0 the full sub-
category of DM ;;;f generated by motives of varieties of dimension less than n
fully embeds into DM /DMELT (n) € D/D(n).

It follows that the restrictions of w,, s to a certain series of (sufficiently small)
subcategories of ©/®(n) are induced by a single — ® (1)[s]-stable weight struc-
ture w; for the corresponding subcategory of ©. Here for the corresponding
subcategory of ®/D(n) (or ®) one can take the union of the subcategories
of ©/D(n) (resp. D) generated (in an appropriate sense) by comotives of
(smooth) varieties of dimension < r (with r running through all natural num-
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bers). Note that this subcategory of D contains DMgefnf .

We also relate briefly our results with the (conjectural) picture for t-structures
described in [3]. There another (geometric) filtration for motives was consid-
ered; this filtration (roughly) differs from the filtration considered above by (a
certain version of) Poincare duality. Now, conjecturally the gr,, of the category
of birational motives with rational coefficients (cf. §4.2 of ibid.) should be (the
homotopy category of complexes over) an abelian semisimple category. Hence it
supports a t-structure which is simultaneously a weight structure. This struc-
ture should be the building block of all relevant weight and t-structures for
comotives. Certainly, this picture is quite conjectural at the present moment.

Remark 4.9.3. The author also hopes to carry over (some of) the results of the
current paper to relative motives (i.e. motives over a base scheme that is not a
field), relative comotives, and their cohomology. One of the possible methods
for this is the usage of gluing of weight structures (see §8.2 of [6], especially
Remark 8.2.4(3) of loc.cit.). Possibly for this situation the ’version of ®’ that
uses motives with compact support (see §6.41below) could be more appropriate.

5 THE CONSTRUCTION OF © AND ®’; BASE CHANGE AND TATE TWISTS

Now we construct our categories ® and © using the differential graded cate-
gories formalism.

In §5.71 we recall the definitions of differential graded categories, modules over
them, shifts and cones (of morphisms).

In §5:2 we recall main properties of the derived category of (modules over) a
differential graded category.

In §5.3] we define ®’ and © as the categories opposite to the corresponding
categories of modules; then we prove that they satisfy the properties required.
In §5.4 we use the differential graded modules formalism to define base change
for motives (extension and restriction of scalars). This yields: our results on di-
rect summands of comotives (and cohomology) of function fields (proved above)
could be carried over to pro-schemes obtained from them via base change.
We also define tensoring of comotives by motives, as well as a certain ’co-
internal Hom’ (i.e. the corresponding left adjoint functor to X ® — for X €
ObjDM 5,{1)( ). These results do not require k& to be countable.

5.1 DG-CATEGORIES AND MODULES OVER THEM

We recall some basic definitions; cf. [16] and [I2].

An additive category A is called graded if for any P,Q € ObjA there is a
canonical decomposition A(P,Q) = @;A*(P,Q) defined; this decomposition
satisfies A’(*,%) o AJ(x,%) C A" (x,%). A differential graded category (cf.
[12]) is a graded category endowed with an additive operator § : A*(P,Q) —
AHY(P,Q) for all i € Z,P,Q € ObjA. § should satisfy the equalities 62 = 0
(so A(P,Q) is a complex of abelian groups); §(fog) =dfog+ (—1)'fodg for
any P,Q, R € ObjA, f € AY(P,Q), g € A(Q, R). In particular, 6(idp) = 0.
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We denote § restricted to morphisms of degree i by &°.

Now we give a simple example of a differential graded category.

For an additive category B we consider the category B(B) whose objects are
the same as for C'(B) whereas for P = (P?), Q = (Q*) we define B(B)!(P,Q) =
[jez B(P7,Q"7). Obviously B(B) is a graded category. We will also consider
a full subcategory B(B) C B(B) whose objects are bounded complexes.
Weset 0f =dgof—(—1)"fodp, where f € B'(P,Q), dp and d, are the differ-
entials in P and Q. Note that the kernel of §°(P, Q) coincides with C(A4)(P, Q)
(the morphisms of complexes); the image of ! are the morphisms homotopic
to 0.

Note also that the opposite category to a differential graded category becomes
differential graded also (with the same gradings and differentials) if we define
fePo g = (—1)Pi(go f)°P for g, f being composable homogeneous morphisms
of degrees p and ¢, respectively.

For any differential graded A we define an additive category H(A) (some au-
thors denote it by H°(A)); its objects are the same as for A; its morphisms are
defined as

H(A)(P,Q) = Ker 63 (P, Q)/Im 3" (P, Q).

In the case when H(A) is triangulated (as a full subcategory of the category
K(A) described below) we will say that A is a (differential graded) enhancement
for H(A).

We will also need Z(A): ObjZ(A) = ObjA; Z(A)(P,Q) = Kerdy(P,Q).
We have an obvious functor Z(A4) — H(A). Note that Z(B(B)) = C(B);
H(B(B)) = K(B).

Now we define (left differential graded) modules over a small differential graded
category A (cf. §3.1 of [16] or §14 of [12]): the objects DG-Mod(A) are those
additive functors of the underlying additive categories A — B(Ab) that pre-
serve gradings and differentials for morphisms. We define DG-Mod(A)*(F, G)
as the set of transformations of additive functors of degree i; for h €
DG-Mod(A)!(F,G) we define °(h) = dg o f — (—1)f o dr. We have a natural
Yoneda embedding Y : A°? — DG-Mod(A) (one should apply Yoneda’s lemma
for the underlying additive categories); it is easily seen to be a full embedding
of differential graded categories.

Now we define shifts and cones in DG-Mod(A) componentwisely. For F €
Obj DG-Mod(A) we set F[1](X) = F(X)[1]. For h € Kerdpq proq(a)(F:G)
we define the object Cone(h): Cone(h)(X) = Cone(F(X) — G(X)) for all
X € ObjA.

Note that for A = B(B) both of these definitions are compatible with the
corresponding notions for complexes (with respect to the Yoneda embedding).

We have a natural triangle of morphisms in 6]03(}—M od(A)’

P P = Cone(f) — P[1]. (30)
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5.2 THE DERIVED CATEGORY OF A DIFFERENTIAL GRADED CATEGORY

We define K(A) = H(DG-Mod(A)). It was shown in §2.2 of [I6] that K(A) is a
triangulated category with respect to shifts and cones of morphisms that were
defined above (i.e. a triangle is distinguished if it is isomorphic to those of the
form (30).
We will say that f € Ker (5]03G_Mod(A)(F, G) is a quasi-isomorphism if for any
X € ObjA it yields an isomorphism F(X) — F(Y). We define D(A) as the
localization of IC(A) with respect to quasi-isomorphisms; so it is a triangulated
category. Note that quasi-isomorphisms yield a localizing class of morphisms
in K (A). Moreover, the functor X — H°(F(X)) : K(A) — Ab is corepresented
by DG-Mod(A)(X,—) € ObjK(A); hence for any X € ObjA, F € ObjK(A) we
have

D(A)(Y(X),F) 2 K(A)(Y(X), F). (31)

Hence we have an embedding H(A)°? — D(A).

We define C(A) as Z(DG-Mod(A)). Tt is easily seen that C(A) is closed with
respect to (small filtered) direct limits, and lim F; is given by X — thFl(X ).
Now we recall (briefly) that differential graded modules admit certain 'resolu-
tions’ (i.e. any object is quasi-isomorphic to a semi-free one in the terms of §14

of [12]).

PROPOSITION 5.2.1. There exists a full triangulated K' C K(A) such that the
projection K(A) — D(A) induces an equivalence K' = D(A). K’ is closed with
respect to all (small) coproducts.

Proof. See §14.8 of [12] O

Remark 5.2.2. In fact, there exists a (Quillen) model structure for C(A) such
that D(A) its homotopy category; see Theorem 3.2 of [I6]. Moreover (for the
first model structures mentioned in loc.cit) all objects of C(A) are fibrant, all
objects coming from A are cofibrant. For this model structure two morphisms
are homotopic whenever they become equal in K(A). So, one could take K’
whose objects are the cofibrant objects of C(A).

Using these facts, one could verify most of Proposition BT (for ®" and D
described below).

5.3 THE CONSTRUCTION OF ©’ AND ©; THE PROOF OF PROPOSITION [B.1.1]

It was proved in §2.3 of [4] (cf. also [19] or §8.3.1 of [7]) that DMZ// could be
described as H(A), where A is a certain (small) differential graded category.
Moreover, the functor K*(SmCor) — DMg}{ could be presented as H(f),
where f : B®(SmCor) — A is a differential graded functor. We will not
describe the details for (any of) these constructions since we will not need
them.

We define ® = C(A)°P, © = D(A)°?, p is the natural projection. We verify that
these categories satisfy Proposition BTl Assertion [I0 follows from the fact
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that any localization of a triangulated category that possesses an enhancement
is enhanceable also (see §§3.4-3.5 of [12]).

The embedding H(A)°? — D(A) yields DMgefnf C ®©'. Since all objects coming
from A are cocompact in K(A)°P, Proposition [1.Z1 yields that the same is true
in ©. We obtain assertion [

D’ is closed with respect to inverse limits since C(A) is closed with respect to
direct ones. Since the projection C(A) — K(A) respects coproducts (as well as
all other (filtered) colimits), Proposition E.2.1] yields that p respects products
also. We obtain assertion 21

The descriptions of C(A) and D(A) yields all the properties of shifts and cones
required. This yields assertions Bl [ and [6l Since D(A) is a localization of
K(A), we also obtain assertion

Next, since D(A) is a localization of K(A) with respect to quasi-isomorphisms,
we obtain assertion [8

Recall that filtered direct limits of exact sequences of abelian groups are exact.
Hence for any X € ObjA C Obj®’, Y : L — DG-Mod(A) we have

K(A)(DG-Mod(A)(X, -), limy, Y1) = H((lim Y1) (A))
— H°(liny(¥i(A))) = liy H(Yi(A)) = lim, K(4)(DG-Mod(A)(X, -), Yy).

Applying BI)) we obtain assertion [

It remains to verify assertion [d of loc.cit. Since the inverse limit with respect
to a projective system is isomorphic to the inverse limit with respect to any its
unbounded subsystem, and the same is true for @ L in the countable case, we
can assume that I is the category of natural numbers, i.e. we have a sequence
of F; connected by morphisms.

In this case we have functorial morphisms lim F; EN I1E N 11 F; as in 27).
Hence it suffices to check that these morpﬁms yield a distinguished trian-
gle in ®. Note that g o f = 0; hence g could be factorized through a mor-
phism h : Conef — [[F; in ©'. Since for any X € ObjA the morphism
h* : [lo Fi(X) — Cone F(X) is a quasi-isomorphism, h becomes an isomor-
phism in . This finishes the proof.

Remark 5.3.1. 1. Note that the only part of our argument when we needed k
to be countable in the proof of assertion [@ of loc.cit.

2. The constructions of A (i.e. of the ’enhancement’ for DM;,];f mentioned
above) that were described in [4], [19], and in [7], are easily seen to be functorial
with respect to base field change (see below). Still, the constructions mentioned
are distinct and far from being the only ones possible; the author does not
know whether all possible ® are isomorphic. Still, this makes no difference for
cohomology (of pro-schemes); see Remark

Moreover, note that assertion [I0 of Proposition B.1.1] was not very important
for us (without if we would only have to consider a certain weakly exact weight
complex functor in §6.1] below; see §3 of [6]). The author doubts that this
condition follows from the other parts of Proposition B.1.1l
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5.4 BASE CHANGE AND TATE TWISTS FOR COMOTIVES

Our differential graded formalism yields certain functoriality of comotives with
respect to embeddings of base fields. We construct both extension and re-
striction of scalars (the latter one for the case of a finite extension of fields
only). The construction of base change functors uses induction for differential
graded modules. This method also allows to define certain tensor products and
Co — Hom for comotives. In particular, we obtain a Tate twist functor which
is compatible with (29)) (and a left adjoint to it).

We note that the results of this subsection (probably) could not be deduced
from the ’axioms’ of ® listed in Proposition B.I.1t yet they are quite natural.

5.4.1 INDUCTION AND RESTRICTION FOR DIFFERENTIAL GRADED MODULES:
REMINDER

We recall certain results of §14 of [I2] on functoriality of differential graded
modules. These extend the corresponding (more or less standard) statements
for modules over differential graded algebras (cf. §14.2 of ibid.).

If f: A— B is a functor of differential graded categories, we have an obvious
restriction functor f* : C(B) — C(A). It is easily seen that f* also induces
functors K(B) — K(A) and D(B) — D(A). Certainly, the latter functor
respects homotopy colimits (i.e. the direct limits from C(B)).

Now, it is not difficult to construct an induction functor f, : DG-Mod(A) —
DG-Mod(B) which is left adjoint to f*; see §14.9 of ibid. By Example 14.10 of
ibid, for any X € Obj A this functor sends X* = A(X, —) to f(X)*.

f« also induces functors C(A) — C(B) and K(A) — K(B). Restricting the
latter one to the category of semi-free modules K’ (see Proposition (.2.1)) one
obtains a functor Lf, : D(A) — D(B) which is also left adjoint to the corre-
sponding f*; see §14.12 of [I2]. Since all functors of the type X* are semi-free
by definition, we have Lf.(X*) = A(X,—) = Lf(X)*. It can also be shown
that Lf, respects direct limits of objects of AP (considered as A-modules via
the Yoneda embedding). In the case of countable limits this follows easily from
the definition of semi-free modules and the expression of the homotopy colimit
in D(A) as lim X; = Cone(@ X; — @ X;) (this is just the dual to [27))). For
uncountable limits, one could prove the fact using a ’resolution’ of the direct
limit similar to those described in §A3 of [21].

5.4.2 EXTENSION AND RESTRICTION OF SCALARS FOR COMOTIVES

Now let I/k be an extension of perfect fields.

Recall that ®" and ® were described (in §5.3)) in terms of modules over a certain
differential graded category A. It was shown in [I9] that the corresponding
version of A is a tensor (differential graded) category; we also have an extension
of scalars functor A, — A;. It is most probable that both of these properties
hold for the version of A described in [4] (note that they obviously hold for
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BY(SmCor)). Moreover, if [ /k is finite, then we have the functor of restriction
of scalars in inverse direction.

So, the induction for the corresponding differential graded modules yields
an exact functor of extension of scalars Ext;;, : ©p — ©;. The reasoning
above shows that Ext;/, is compatible with the 'usual’ extension of scalars
for smooth varieties (and complexes of smooth correspondences). Moreover,
since Ext;/, respects homotopy limits, this compatibility extends to comotives
of pro-schemes and their products. It can also be easily shown that Ext,;
respects Tate twists.

We immediately obtain the following result.

PROPOSITION 5.4.1. Let k be countable (and perfect), let | O k be a perfect
field.

1. Let S be a connected primitive scheme over k, let Sy be its generic point.
Then Mgm(S1) is a retract of Mgm (Sor) in D;.

2. Let K be a function field over k. Let K' be the residue field for a geometric
valuation v of K of rank r. Then Mg, (K| (r)[r]) is a retract of Mgy (K;) in
9.

Asin[4.3] this result immediately implies similar statements for any cohomology
of pro-schemes mentioned (constructed from a cohomological H : DM, geTJ;f 1 — A
via Proposition [[2.1]).

Next, if I/k is finite, induction for differential graded modules applied to
the restriction of scalars for A’s also yields a restriction of scalars functor
Res;/ : ©; — Dg. Similarly to Ext;/;, this functor is compatible with re-
striction of scalars for smooth varieties, pro-schemes, and complexes of smooth
correspondences; it also respects Tate twists.

It follows: [/k is finite, then Ext;/;, maps D4z to Dgr; Res;/p maps Dg; to Dy
Besides, if we also assume [ to be countable, then both of these functors respect
weight structures (i.e. they map D,"= to D=0, ©,=% to ©,"=°, and vice
versa).

Remark 5.4.2. Tt seems that one can also define restriction of scalars via re-
striction of differential graded modules (applied to the extension of scalars for
A’s). To this end one needs to check the corresponding adjunction for DMgej;f;
the corresponding (and related) statement for the motivic homotopy categories
was proved by J. Ayoub. This would allow to define Res;/;, also in the case
when [/k is infinite; this seems to be rather interesting if [ is a function field
over k. Note that Res;/;, (in this case) would (probably) also map 9,0 to

0,0 and D,,"=° to D= (if | is countable).

5.4.3 TENSOR PRODUCTS AND ’CO-INTERNAL HOM’ FOR COMOTIVES; TATE
TWISTS

Now, for X € ObjA we apply restriction and induction of differential graded
modules for the functor X ® — : A — A. Induction yields a certain functor
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X ®—:9 — D, whereas restriction yields its left adjoint which we will denote
by Co— Hom(X,—) : ® — ©. Both of them respect homotopy limits. Also,
X ®— is compatible with tensoring by X on DM 5,]7? . Besides, the isomorphisms
classes of these functors only depend on the quasi-isomorphism class of X in
DG-Mod(A). Indeed, it is easily seen that both X ® Y and Co — Hom(X,Y)
are exact with respect to X if we fix Y; since they are obviously zero for X = 0,
it remains to note that quasi-isomorphic objects could be connected by a chain
of quasi-isomorphisms.

Now suppose that X is a Tate motif i.e. X = Z(m)[n], m > 0, n € Z. Then we
obtain that the formal Tate twists defined by ([29) are the true Tate twists i.e.
they are given by tensoring by X on ®. Then recall the Cancellation Theorem
for motives: (see Theorem 4.3.1 of [25], and [27])): X ® — is a full embedding
of DM ge,J;f into itself. Then one can deduce that X ® — is fully faithful on ©
also (since all objects of ® come from semi-free modules over A). Moreover,
Co— Hom(X,—) o (X ® —) is easily seen to be isomorphic to the identity on
® (for such an X).

6 SUPPLEMENTS

We describe some more properties of comotives, as well as certain possible
variations of our methods and results. We will be somewhat sketchy sometimes.

In §6.1] we define an additive category D9¢™ of generic motives (a variation
of those studied in [9]). We also prove that the exact conservative weight
complez functor (that exists by the general theory of weight structures) could
be modified to an exact conservative WC : ®, — K°(D9°"). Besides, we prove
assertions on retracts of the pro-motif of a function field K/k, that are similar
to (and follow from) those for its comotif.

In §6. 2 we prove that HI has a nice description in terms of Hw. This is a sort of
Brown representability: a cofunctor Hw — Ab is representable by a (homotopy
invariant) sheaf with transfers whenever it converts all small products into
direct sums. This result is similar to the corresponding results of §4 of [6] (on
the connection between the hearts of adjacent structures).

In §6:3 we note that our methods could be used for motives (and comotives)
with coefficients in an arbitrary commutative unital ring R; the most important
cases are rational (co)motives and ’torsion’ (co)motives.

In §6.41 we note that there exist natural motives of pro-schemes with compact
support in DM, Tt seems that one could construct alternative ® and D’
using this observation (yet this probably would not affect our main results
significantly).

We conclude the section by studying which of our arguments could be extended
to the case of an uncountable k.
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6.1 THE WEIGHT COMPLEX FUNCTOR; RELATION WITH GENERIC MOTIVES

We recall that the general formalism of weight structures yields a conservative
exact weight complex functor t : ®, — K°(Huw); it is compatible with Defini-
tion ZZT2([@)). Next we prove that one can compose it with a certain ’projection’
functor without losing the conservativity.

LEMMA 6.1.1. There exists an exact conservative functor t : ®, — K°(Hw)
that sends X € ObjD, to a choice of its weight complex (coming from any
choice of a weight Postnikov tower for it).

Proof. Immediate from Remark 6.2.2(2) and Theorem 3.3.1(V) of [6] (note that
D has a differential graded enhancement by Proposition B.LII[IQ])).
O

Now, since all objects of Hw are retracts of those that come via p from inverse
limits of objects of j(C®(SmCor)), we have a natural additive functor Hw —
Dnaive (see §LH). Its categorical image will be denoted by D9¢"; this is a
slight modification of Deglise’s category of generic motives. We will denote the
"projection’ Hw — 9" and K°(Hw) — K°(D9") by pr.

THEOREM 6.1.2. 1. The functor WC = prot: D, — K*(D9") is exact and
conservative.

2. Let S be a connected primitive scheme, let Sy be its generic point. Then
pr(Mgm (S)) is a retract of pr(Mgm(So)) in D9,

3. Let K be a function field over k. Let K' be the residue field for some
geometric valuation v of K of rank r. Then pr(Mg,(K')(r)[r]) is a retract of
pr(Mym(K)) in D9,

Proof. 1. The exactness of W' is obvious (from Lemma [6.1.T]). Now we check
that WC' is conservative.
By Proposition BT[], it suffices to check: if WC(X) is acyclic for some
X € ObjD,, then D(X,Y)=0forall Y € ObjDMge,J;f. We denote the terms
of £(X) by X'.
We consider the coniveau spectral sequence T'(H,X) for the functor H =
D(—,Y) (see Remark EZ2). Since WC(X) is acyclic, we obtain that the
complexes D (X~ Y[j]) are acyclic for all j € Z. Indeed, note that the restric-
tion of a functor (X %, —) to DM;Lf could be expressed in terms of pr(X ~%);
see Remark B:211 Hence E5(T) vanishes. Since T converges (see Proposition
[MZT](2)) we obtain the claim.
2. Immediate from Corollary FEZ2[(1).
3. Immediate from Corollary FZ22)(2).

O

Remark 6.1.3. For X = My, (2), Z € SmVar, it easily seen that WC(X)
could be described as a 'naive’ limit of complexes of motives; cf. §1.5.

Now, the terms of ¢(X) are just the factors of (some possible) weight Postnikov
tower for X; so one can calculate them (at least, up to an isomorphism) for
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X = My (Z). Unfortunately, it seems difficult to describe the boundary for
t(X) completely since Hw is finer than ©9°".

6.2 THE RELATION OF THE HEART OF w WITH HI (’BROWN REPRE-
SENTABILITY)

In Theorem 4.4.2(4) of [6], for a pair of adjacent structures (w,t) for C
(see Remark [Z5.7) it was proved that Ht is a full subcategory of Hw, (=
AddFun(Hw°?, Ab)). This result cannot be extended to arbitrary orthog-
onal structures since our definition of a duality did not include any non-
degenerateness conditions (in particular, ® could be 0). Yet for our main
example of orthogonal structures the statement is true; moreover, HI has a
natural description in terms of Hw. This statement is very similar to a certain
Brown representability-type result (for adjacent structures) proved in Theorem
4.5.2(I1.2) of ibid.

Note that Hw is closed with respect to arbitrary small products; see Proposition

ATI(2).

PROPOSITION 6.2.1. HI is naturally isomorphic to a full abelian subcategory
Huw! of Hw, that consists of functors that convert all products in Hw into
direct sums (of the corresponding abelian groups).

Proof. First, note that for any G € ObjDMiff the functor ® — Ab that sends
X € 0bj® to ®(X,G) (P is the duality constructed in Proposition [L5.T]) is
cohomological. Moreover, it converts homotopy limits into injective limits (of
the corresponding abelian groups); hence its restrlctlon to Hw belongs to Hw',
We obtain an additive functor DM eff — Hw'. In fact, it factorizes through
HI (by (28). For G € ObjHI we denote the functor Hw — Ab obtained by
G'.

Next, for any (additive) F': Hw’? — Ab we define F' : ©; — Ab by:

F'(X) = (Ker(F(X°) = F(X™))/Im(F(X") — F(X°)); (32)

here X is a weight complex for X. It easily seen from Lemma [6.1.1] that F’ is
a well-defined cohomological functor. Moreover, Theorem Z2T[I9) yields that
F’ vanishes on D¥<~! and on ®%Z! (since it vanishes on D¥=* for all i # 0).
Hence F’ defines an additive functor F” = F' o My, : SmCor°? — Abie. a
presheaf with transfers. Since Mg, (Z) = My (Z % Al) for any Z € SmVar,
F” is homotopy invariant. We should check that F" is actually a (lenev1ch)
sheaf. By Proposition 5.5 of [26], it suffices to check that F is a Zariski sheaf.
Now, the the Mayer-Vietoris triangle for motives (§2 of [25]) yields: to any
Zariski covering U [[V — U UV there corresponds a long exact sequence

= F' (Mg (UNWV)[1]) = F'(UUV) = F'(U F'(V) = F'(UNV) —
g

Since My, (UNV) € D=0 by part 5 of Proposition ILIT], we have F' (Mg, (UN
V)[1]) = {0}; hence F” is a sheaf indeed.
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So, F +— F” yields an additive functor Hw, — HI.

Now we check that the functor G — G’ (described above) and the restrictions
of F — F" to Hw!, C Hw, yield mutually inverse equivalences of the categories
in question.

4) immediately yields that the functor HI — HI that sends G € ObjHI to
(G")" is isomorphic to idgy.

Now for F € ObjHw', we should check: for any P € ®¥=% we have a natu-
ral isomorphism (F")'(P) = F(P). Since Hw is the idempotent completion
of H, it suffices to consider P being of the form [],.; My, (K;)(ng)[ni] (here
K are function fields over k, n; > 0; n; and the transcendence degrees of
K;/k are bounded); see part 2 of Proposition LTIl Moreover, since F' con-
verts products into direct sums, it suffices to consider P = My, (K")(n)[n]
(K'/k is a function field, n > 0). Lastly, part 2 of Corollary reduces the
situation to the case P = My, (K) (K/k is a function field). Now, by the defi-
nition of the functor G — G’, we have (F")' (Mg, (K)) = lim, F"(Mgm (Uh)),
where K = lim _ U;, Uy € SmVar. We have F'"(U;) = Ker F(Mg,(K)) —
F(HzeUll Mym(2)(1)[1]); here U} is the set of points of U, of codimen-
sion 1. Since F(HzeUll Mg (2)(D[1]) = @.cpnF(Mgm(2)(1)[1]); we have

lim, F(HzeUll My (2)(1)[1]) = {0}; this yields the result.

O

6.3 MOTIVES AND COMOTIVES WITH RATIONAL AND TORSION COEFFI-
CIENTS

Above we considered (co)motives with integral coefficients. Yet, as was shown
in [20], one could do the theory of motives with coefficients in an arbitrary
commutative associative ring with a unit R. One should start with the naturally
defined category of R-correspondences: Obj(SmCorg) = SmVar; for X,Y in
SmVar we set SmCorg(X,Y) = @, R for all integral closed U C X x Y that
are finite over X and dominant over a connected component of X. Then one
obtains a theory of motives that would satisfy all properties that are required in
order to deduce the main results of this paper. So, we can define R-comotives
and extend our results to them.

A well-known case of motives with coefficients are the motives with rational
coefficients (note that Q is a flat Z-algebra). Yet, one could also take R = Z/nZ
for any n prime to char k.

So, the results of this paper are also valid for rational (co)motives and ’torsion’
(co)motives.

Still, note that there could be idempotents for R-motives that do not come
from integral ones. In particular, for the naturally defined rational motivic
categories we have DM;,{LfQ #+ DMgefnf ® Q; also Chow®ffQ # Chowtf ® Q
(here Chow®/’Q C DM, ge,flf Q denote the corresponding R-hulls). Certainly,
this does not matter at all in the current paper.
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6.4 ANOTHER POSSIBILITY FOR ®; MOTIVES WITH COMPACT SUPPORT OF
PRO-SCHEMES

In the case chark = 0, Voevodsky developed a nice theory of motives with
compact support that is compatible with Poincare duality; see Theorem 4.3.7
of [25]. Moreover, the explicit constructions of [25] yield that the functor of
motif with compact support Mg, : SmVar® — DM;JJ is compatible with
a certain j¢ : SmVary) — C~(Shv(SmCor)) (which sends X to the Suslin
complex of L¢(X), see §4.2 loc.cit.); this observation was kindly communicated
to the author by Bruno Kahn). This allows to define j¢(V') for a pro-scheme
V as the corresponding direct limit (in C'(Shv(SmCor))).

Starting from this observation, one could try to develop an analogue of our
theory using the functor Mg,,. One could consider © = DM °P: then it
would contain DM, ;,J;f °P as the full category of cocompact objects. It seems
that our arguments could be carried over to this context. One can construct
some ®’ for this ® using certain differential graded categories.

Though motives with compact support are Poincare dual to ordinary motives
of smooth varieties (up to a certain Tate twist), we do not have a covariant
embedding DM;,J;f — D (for this ’alternative’ ©), since (the whole) DM;,J:Lf is
not self-dual. Still, DM g,flf has a nice embedding into (Voevodsky’s) self-dual
category DMyg,,; it contains an exhausting system of self-dual subcategories.
Hence this alternative ® would yield a theory that is compatible with (though
not ’isomorphic’ to) the theory developed above.

Since the alternative version of ® is closely related with DM Tor , it seems
reasonable to call its objects comotives (as we did for the objects of our’ D).
These observations show that one can dualize all the direct summands results
of #lto obtain their natural analogues for motives of pro-schemes with compact
support. Indeed, to prove them we may apply the duals of our arguments in
§4 without any problem; see part 2 of Remark Note that we obtain
certain direct summand statements for objects of DM this way. This is an
advantage of our ’axiomatic’ approach in §3.71

One could also take D = UpezDME]T (—n) (more precisely, this is the direct
limit of copies of DM;fnf with connecting morphisms being — ® Z(1)). Then
we have a covariant embedding DM;,];f —+ DMgn, — D.

Note that both of these alternative versions of © are not closed with respect to
all (countable) products, and so not closed with respect to all (filtered count-
able) homotopy limits; yet they contain all products and homotopy limits that
are required for our main arguments.

6.5 WHAT HAPPENS IF k IS UNCOUNTABLE

We describe which of the arguments above could be applied in the case of an
uncountable k (and for which of them the author has no idea how to achieve
this). The author warns that he didn’t check the details thoroughly here.
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As we have already noted above, it is no problem to define ©, ®’, or even D
for any k. The main problem here that (if £ is uncountable) the comotives of
generic points of varieties (and of other pro-schemes) can usually be presented
only as uncountable homotopy limits of motives of varieties. The general for-
malism of inverse limits (applied to the categories of modules over a differential
graded category) allows to extend to this case all parts of Proposition B.I.Tl ex-
pect part [@l This actually means that instead of the short exact sequence (I?EI)
one obtains a spectral sequence whose Fi-terms are certain lim’; here l'gﬂ is
the j’s derived functor of 'mI; cf. Appendix A of [2I]. This does not seem to
be catastrophic; yet the author has absolutely no idea how to control higher
projective limits in the proof of Proposition B.5.} note that part 2 of loc.cit.
is especially important for the construction of the Gersten weight structure.
Besides, the author does not know how to pass to an uncountable homotopy
limit in the Gysin distinguished triangle. It seems that to this end one either
needs to lift the functoriality of the (usual) motivic Gysin triangle to ®’, or
to find a way to describe the isomorphism class of an uncountable homotopy
limit in ® in terms of D-only (i.e. without fixing any lifts to D’; this seems to
be impossible in general). So, one could define the ’Gersten’ weight tower for a
comotif of a pro-scheme as as the homotopy limit of "geometric towers’ (as in the
proof of Corollary B.6.2)); yet it seems to be rather difficult to calculate factors
of such a tower. It seems that the problems mentioned do not become simpler
for the alternative versions of ® described in §6.41 So, currently the author does
not know how to prove the direct summand results of §4.2if k is uncountable
(they even could be wrong). The problem here that the splittings of §4.2] are
not canonical (see Remark L23)), so one cannot apply a limit argument (as in
§2.6) here.

It seems that constructing the Gersten weight structure is easier for D /D(n)
(for some n > 0); see L0

Lastly, one can avoid the problems with homotopy limits completely by re-
stricting attention to the subcategory of Artin-Tate motives in DMgefnf (i.e.
the triangulated category generated by Tate twists of motives of finite exten-
sions of k, as considered in [30]). Note that coniveau spectral sequences for
cohomology of such motives (could be chosen to be) very ’economic’.
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