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1. Introduction and statement of main results

This article studies a refinement of a conjecture of Tate concerning the values
at s = 1 of Artin L-functions. We recall that Tate’s conjecture was originally
formulated in [26, Chap. I, Conj. 8.2] as an analogue of (Tate’s reformulation
of) the main conjecture of Stark on the leading terms at s = 0 of Artin L-
functions and that the precise form of the ‘regulators’ and ‘periods’ that Tate
introduced in this context were natural generalisations of earlier constructions
of Serre in [24].
The refinement of Tate’s conjecture that we study here was formulated by
the present authors in [5, Conj. 3.3] and predicts an explicit formula for the
leading term at s = 1 of the zeta-function of a finite Galois extension of number
fields L/K in terms of the Euler characteristic of a certain perfect complex of
Gal(L/K)-modules (see (3) for a statement of this formula). In comparison to
Tate’s conjecture, this refinement predicts not only that the quotient by Tate’s
regulator of the leading term at s = 1 of the Artin L-function of a complex
character χ of Gal(L/K) is an algebraic number but also that as χ varies these
algebraic numbers should be related by certain types of integral congruence
relations. We further recall that [5, Conj. 3.3] is also known to imply the
‘Ω(1)-Conjecture’ that was formulated by Chinburg in [13].
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In the sequel we write Q(1)L for the motive h0(SpecL)(1), considered as defined
over K and endowed with the natural action of the group ring Q[Gal(L/K)].
We recall that the ‘equivariant Tamagawa number conjecture’ applies in par-
ticular to pairs of the form (Q(1)L,Z[Gal(L/K)]) and was formulated by Flach
and the second named author in [9] as a natural refinement of the seminal
‘Tamagawa number conjecture’ of Bloch and Kato [3]. The main technical
result of the present article is then the following

Theorem 1.1. Let L be a finite complex Galois extension of Q. If Leopoldt’s
Conjecture is valid for L, then [5, Conj. 3.3] is equivalent to the equivariant
Tamagawa number conjecture of [9, Conj. 4] for the pair (Q(1)L,Z[Gal(L/Q)]).

Corollary 1.2. If Leopoldt’s Conjecture is valid for every number field, then
for every Galois extension of number fields L/K the conjecture [5, Conj. 3.3]
is equivalent to the conjecture [9, Conj. 4] for the pair (Q(1)L,Z[Gal(L/K)]).

These results connect the explicit leading term formula of [5, Conj. 3.3] to
a range of interesting results and conjectures. For example, [9, Conj. 4(iv)] is
known to be a consequence of the ‘main conjecture of non-commutative Iwasawa
theory’ that is formulated by Fukaya and Kato in [18, Conj. 2.3.2] and also of
the ‘main conjecture of non-commutative Iwasawa theory for Tate motives’
that is formulated by Venjakob and the second named author in [12, Conj.
7.1]. Corollary 1.2 therefore allows one to regard the study of the explicit
conjecture [5, Conj. 3.3] as an attempt to provide supporting evidence for
these more general conjectures. Indeed, when taken in conjunction with the
philosophy described by Huber and Kings in [19, §3.3] and by Fukaya and Kato
in [18, §2.3.5], Corollary 1.2 suggests that, despite its comparatively elementary
nature, [5, Conj. 3.3] may well play a particularly important role in the context
of the very general conjecture of Fukaya and Kato.
In addition to the above consequences, our proof of Theorem 1.1 also answers
an explicit question posed by Flach and the second named author in [7] (see
Remark 5.1) and combines with previous work to give new evidence in support
of the conjectures made in [5] including the following unconditional results.

Corollary 1.3. If L is abelian over Q, and K is any subfield of L, then both
[5, Conj. 3.3] and [5, Conj. 4.1] are valid for the extension L/K.

Corollary 1.4. There exists a natural infinite family of quaternion extensions
L/Q with the property that, if K is any subfield of L, then both [5, Conj. 3.3]
and [5, Conj. 4.1] are valid for the extension L/K.

We recall (from [5, Prop. 4.4(i)]) that [5, Conj. 4.1] is a natural refinement of
the ‘main conjecture of Stark at s = 0’. For details of connections between
[5, Conj. 3.3 and Conj. 4.1] and other interesting conjectures of Chinburg, of
Gruenberg, Ritter and Weiss and of Solomon see [5, Prop. 3.6 and Prop. 4.4]
and the recent thesis of Jones [20].
The main contents of this article is as follows. In §2 we recall the explicit state-
ment of [5, Conj. 3.3] and in §3 we review (and clarify) certain constructions
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in étale cohomology that are made in [8]. In §4 we make a detailed analysis of
the p-adic completion of the perfect complex that occurs in [5, Conj. 3.3]. In
§5 we prove Theorem 1.1 and in §6 we use Theorem 1.1 to prove Corollaries
1.2, 1.3 and 1.4.
Acknowledgements. It is a pleasure for us to thank Werner Bley and
Matthias Flach and also the referee of [5] for some very useful comments about
this paper. In addition, the first author would like to thank the Isaac Newton
Institute where part of this paper was written.

2. The explicit leading term conjecture

In this section we quickly review [5, Conj. 3.3]. To do this it is necessary to
summarise some background about K-theory and homological algebra.

2.1. K-theory. Let R be an integral domain of characteristic 0, E an ex-
tension of the field of fractions of R, and G a finite group. We denote the
relative algebraic K-group associated to the ring homomorphism R[G]→ E[G]
by K0(R[G], E); a description of K0(R[G], E) in terms of generators and rela-
tions is given in [25, p. 215]. The group K0(R[G], E) is functorial in the pair
(R,E) and also sits inside a long exact sequence of relative K-theory. In this
paper we will use the homomorphisms ∂1R[G],E : K1(E[G])→ K0(R[G], E) and

∂0R[G],E : K0(R[G], E)→ K0(R[G]) from the latter sequence.

Let Z(E[G])× denote the multiplicative group of the centre of the finite dimen-
sional semisimple E-algebra E[G]. The reduced norm induces a homomorphism
nr : K1(E[G])→ Z(E[G])× and we denote its image by Z(E[G])×+. In this pa-
per E will always be either R or Cp for some prime number p. In both cases the
map nr is injective and hence we can use it to identifyK1(E[G]) and Z(E[G])×+.
In particular we will consider ∂1R[G],E as a map Z(E[G])×+ → K0(R[G], E). If

E = Cp then Z(E[G])×+ = Z(E[G])×.
For every prime p and embedding j : R → Cp there are induced homomor-
phisms j∗ : K0(Z[G],R) → K0(Zp[G],Cp) and j∗ : Z(R[G])× → Z(Cp[G])

×.

In [5, §2.1.2] it is shown that there exists a (unique) homomorphism ∂̂1G :
Z(R[G])× → K0(Z[G],R) which coincides with ∂1

Z[G],R on Z(R[G])×+ and is

such that for every prime p and embedding j : R → Cp one has j∗ ◦ ∂̂1G =
∂1
Zp[G],Cp

◦ j∗ : Z(R[G])× → K0(Zp[G],Cp).

2.2. Homological algebra. For our homological algebra constructions in
this paper we use the same notations and sign conventions as in [5]. So in
particular by a complex we mean a cochain complex of left R-modules for a
ring R, we use the phrase ‘distinguished triangle’ in the sense specified in [5,
§2.2.1] and by a perfect complex we mean a complex that in the derived category
D(R) is isomorphic to a bounded complex of finitely generated projective left
R-modules. The full triangulated subcategory of D(R) consisting of the perfect
complexes will be denoted by Dperf(R).
Now let R, E and G be as in §2.1. For any object C of D(R[G]) we write
Hev(C) and Hod(C) for the direct sums ⊕i evenH

i(C) and ⊕i oddH
i(C) where
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i runs over all even and all odd integers respectively. A trivialisation t (over
E) of a complex C in Dperf(R[G]) is an isomorphism of E[G]-modules of the

form t : Hev(C)⊗R E
∼=−→ Hod(C)⊗R E. We write χR[G],E(C, t) for the Euler

characteristic inK0(R[G], E) defined in [4, Definition 5.5]. To simplify notation
in the sequel we write χG for χZ[G],R.
We shall interpret certain complexes in the derived category in terms of
Yoneda extension classes as in [8, p. 1353]. To be specific, for any com-
plex E that is acyclic outside degrees 0 and n ≥ 1 we associate the class in
Extn+1

R (Hn(E), H0(E)) given by the truncated complex E′ := τ≤nτ≥0E with

the induced maps H0(E)
∼=−→ H0(E′)→ (E′)0 and (E′)n → Hn(E′)

∼=−→ Hn(E)
considered as a Yoneda extension.

2.3. Notation for number fields. Let L be a number field. We write OL

for the ring of integers of L and S(L) for the set of all places of L. For any place
w ∈ S(L) we denote the completion of L at w by Lw. For a non-archimedean
place w we write Ow for the ring of integers of Lw, mw for the maximal ideal

of Ow and U
(1)
Lw

for the group 1 +mw of principal units in Lw.
If L is an extension of K and v ∈ S(K) then Sv(L) is the set of all places of
L above v. We also use the notation Sf (L) and S∞(L) for the sets of all non-
archimedean and archimedean places, SR(L) for the set of real archimedean
places and SC(L) for the set of complex archimedean places.
From now on let L/K be a Galois extension of number fields with Galois group
G. For w in S(L) we let Gw denote the decomposition group of w. For any place
v in S(K) we set Lv :=

∏
w∈Sv(L) Lw and (if v ∈ Sf (K)) OL,v :=

∏
w∈Sv(L)Ow

and mL,v :=
∏

w∈Sv(L) mw. Note that Lv, OL,v and mL,v are G-modules in an

obvious way.
Let S be a finite subset of S(K). The G-stable set of places of L that lie above
a place in S will also be denoted by S. This should not cause any confusion
because places of K will be called v and places of L will be called w. For a finite
subset S of S(K) which contains all archimedean places we let OL,S be the ring
of S-integers in L. Note that OL,S is a G-module and that if S = S∞(K), then
OL = OL,S .

2.4. The conjecture. Let L/K be a Galois extension of number fields with
Galois groupG. Let S be a finite subset of S(K) which contains all archimedean
places and all places which ramify in L/K and is such that Pic(OL,S) = 0. In
[5, Lemma 2.7(ii)] it is shown that the leading term ζ∗L/K,S(1) at s = 1 of the

S-truncated zeta-function of L/K belongs to Z(R[G])×+. In this subsection

we recall the explicit conjectural description of ∂̂1G(ζ
∗
L/K,S(1)) formulated in [5,

Conj. 3.3].
For each v ∈ S∞(K) we let exp : Lv → L×

v denote the product of the (real or
complex) exponential maps Lw → L×

w for w ∈ Sv(L). If v ∈ Sf (K), then for
sufficiently large i the exponential map exp : mi

L,v → L×
v is the product of the

p-adic exponential maps mi
w → L×

w for w ∈ Sv(L).
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To state [5, Conj. 3.3] we need to choose certain lattices. For each v ∈ Sf :=
S ∩ Sf (K), with residue characteristic p, we choose a full projective Zp[G]-
lattice Lv ⊆ OL,v which is contained in a sufficiently large power of mL,v to
ensure that the exponential map is defined on Lv. Let L be the full projective
Z[G]-sublattice of OL which has p-adic completions

(1) L ⊗Z Zp =

( ∏

v∈Sp(K)\S

OL,v

)
×
( ∏

v∈Sp(K)∩S

Lv

)
.

We set LS :=
∏

v∈S Lv and LS :=
∏

v∈S Lv (where Lv := Lv for each v ∈
S∞(K)) and we let expS denote the map LS → L×

S that is induced by the
product of the respective exponential maps. We also write ∆S for the natural
diagonal embedding from L× to L×

S .
Following the notation of [23, Chap. VIII] we write IL for the group of idèles
of L and regard L× as embedded diagonally in IL. The idèle class group is
CL := IL/L

× and the S-idèle class group is CS(L) := IL/(L
×UL,S), where

UL,S :=
∏

w∈S{1} ×
∏

w/∈S O×
w . We remark that since Pic(OL,S) = 0, the

natural map L×
S → CS(L) is surjective with kernel ∆S(O×

L,S). There is also a

canonical invariant isomorphism invL/K,S : H2(G,CS(L))
∼=−→ 1

|G|Z/Z and we

write eglobS for the element of Ext2Z[G](Z, CS(L)) = H2(G,CS(L)) that is sent

by invL/K,S to 1
|G| .

Let ES be a complex in D(Z[G]) which corresponds (in the sense of the last

paragraph of §2.2) to eglobS . Then by [5, Lemma 2.4] there is a unique morphism
αS : LS [0] ⊕ L[−1] → ES in D(Z[G]) for which H0(αS) is the composite

LS
expS−−−→ L×

S → CS(L) and H
1(αS) is the restriction of the trace map trL/Q :

L→ Q to L. Let ES(L) be any complex which lies in a distinguished triangle
in D(Z[G]) of the form

(2) LS [0]⊕ L[−1] αS−−→ ES
βS−−→ ES(L) γS−−→ .

To describe the cohomology of ES(L) we set L∞ :=
∏

w∈S∞(L) Lw and

write L0
∞ for the kernel of the map L∞ → R defined by (lw)w∈S∞(L) 7→∑

w∈S∞(L) trLw/R(lw). We write exp∞ for the product of the exponential maps

L∞ → L×
∞, ∆∞ for the diagonal embedding L× → L×

∞ and log∞(O×
L ) for the

full sublattice of L0
∞ comprising elements x of L∞ with exp∞(x) ∈ ∆∞(O×

L ).
In [5, Lemma 3.1] it is shown that ES(L) is a perfect complex of G-modules,
that ES(L)⊗Q is acyclic outside degrees −1 and 0, that H−1(γS) induces an
identification of H−1(ES(L)) with {x ∈ LS : expS(x) ∈ ∆S(O×

L )} and that
H0(γS) induces an identification of H0(ES(L)) ⊗ Q with ker(trL/Q). In addi-
tion, the projection LS → L∞ induces an isomorphism of Q[G]-modules from
{x ∈ LS : expS(x) ∈ ∆S(O×

L )}⊗Q to log∞(O×
L )⊗Q. With these identifications

the isomorphism ker(trL/Q)⊗QR
∼=−→ L0

∞ = log∞(O×
L )⊗R which is obtained by

restricting the natural isomorphism L⊗Q R
∼=−→ L∞ to ker(trL/Q)⊗Q R gives a

trivialisation µL : H0(ES(L))⊗ R
∼=−→ H−1(ES(L))⊗ R of ES(L). In [5, Conj.
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3.3] it is conjectured that

(3) ∂̂1G(ζ
∗
L/K,S(1)) = −χG(ES(L), µL).

For a discussion of the basic properties of this conjecture see [5, §3]. In par-
ticular for a proof of the fact that this conjecture refines Tate’s conjecture [26,
Chap. I, Conj. 8.2] see [5, Prop. 3.6(i)].

3. Preliminaries concerning étale cohomology

To relate the conjectural equality (3) to [9, Conj. 4] we will use constructions
in étale cohomology that are made in [8]. However, to do this certain aspects
of the exposition in [8] require clarification and so in this section we review the
relevant parts of these constructions.
We fix L/K and S as in §2.4 but for simplicity we also assume henceforth that
S contains at least one non-archimedean place. For each w ∈ S(L) we denote
the algebraic closure of L in Lw by Lh

w. For w ∈ Sf (L) we let Oh
w be the ring of

integers in Lh
w; note that Oh

w is the henselization of (the localization of) OL at
w (compare [21, Chap. I, Exam. 4.10(a)]) and that Lh

w is the field of fractions
of Oh

w.
Similarly, for a place v ∈ S(K) we define Kh

v as the algebraic closure of K in
Kv. The inclusions OK,S ⊂ Kh

v ⊂ Kv induce canonical maps ghv : SpecKh
v →

SpecOK,S , fv : SpecKv → SpecKh
v and gv = ghv ◦ fv : SpecKv → SpecOK,S .

3.1. General conventions. Let X be any scheme and F an étale sheaf on
X, i.e. a sheaf on the étale site Xet. If Y is an étale X-scheme then we denote
by RΓ(Y,F) the complex in the derived category D(Z) which is obtained by
applying the right derived functor of the section functor Γ(Y,−) to the sheaf F ;
thus RΓ(Y,F) is defined up to canonical isomorphism in D(Z). If Y = SpecR
for some commutative ring R, then we will write RΓ(R,F) for RΓ(SpecR,F)
and Hi(R,F) for the cohomology groups Hi(RΓ(R,F)).
Now let v ∈ S(K), w ∈ Sv(L) and let F be an étale sheaf on SpecKh

v .
The Gw-action on SpecLh

w induces a Gw-action on the sections Γ(SpecLh
w,F)

and hence the complex RΓ(Lh
w,F) naturally lies in D(Z[Gw]). Similarly, if

F is an étale sheaf on SpecOK,S , then RΓ(OL,S ,F) belongs to D(Z[G]).
Finally for v ∈ S(K) and F an étale sheaf on SpecOK,S we can consider⊕

w∈Sv(L)RΓ(L
h
w, (g

h
v )

∗F) as a complex in D(Z[G]). This is possible because

there is a canonical isomorphism

⊕

w∈Sv(L)

RΓ(Lh
w, (g

h
v )

∗F) ∼= RΓ
( ∐

w∈Sv(L)

SpecLh
w, (g

h
v )

∗F
)
,

and
∐

w∈Sv(L) SpecL
h
w is a Galois covering of SpecKh

v with group G. Of course

the same is true with Lh
w and ghv replaced by Lw and gv respectively.
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3.2. Local cohomology. Let v be a place of K and w ∈ Sv(L). Recall
that fv : SpecKv → SpecKh

v corresponds to the inclusion Kh
v → Kv. For

any étale sheaf F on SpecKh
v the canonical map RΓ(Lh

w,F) −→ RΓ(Lw, f
∗
vF)

is an isomorphism in D(Z[Gw]). Indeed, if Lw is an algebraic closure of Lw

and Lh
w is the algebraic closure of Lh

w in Lw, then the restriction map gives

an isomorphism Gal(Lw/Kv)
∼=−→ Gal(Lh

w/K
h
v ). Thus, upon identifying étale

cohomology and Galois cohomology the claimed isomorphism follows.
If F = Gm on (SpecKh

v )et, then f∗vGm is not isomorphic to the sheaf Gm

on (SpecKv)et. However the complexes RΓ(Lh
w,Gm) ∼= RΓ(Lw, f

∗
vGm) and

RΓ(Lw,Gm) are related as follows.

Lemma 3.1. There is a distinguished triangle in D(Z[Gw])

RΓ(Lh
w,Gm) −→ RΓ(Lw,Gm) −→ (L×

w/(L
h
w)

×)[0] −→,
whose cohomology sequence in degree 0 identifies with the canonical short ex-
act sequence 0 −→ (Lh

w)
× −→ L×

w −→ L×
w/(L

h
w)

× −→ 0. The Gw-module
L×
w/(L

h
w)

× is uniquely divisible and hence cohomologically trivial.

Proof. There is a canonical injection f∗vGm → Gm of sheaves on (SpecKv)et
such that the sequence

0 −→ f∗vGm −→ Gm −→ Gm/f
∗
vGm −→ 0

corresponds to the exact sequence 0 → Lh
w

× → Lw
× → Lw

×
/Lh

w

× → 0 of

Gal(Lw/Kv)-modules. Now Lw
×
/Lh

w

×
is uniquely divisible. Also, the isomor-

phism Gal(Lw/Kv) ∼= Gal(Lh
w/K

h
v ) combines with Hilbert’s Theorem 90 to

imply H0(Gal(Lw/Lw), Lw
×
/Lh

w

×
) = L×

w/(L
h
w)

× as Gw-modules. It follows
that L×

w/(L
h
w)

× is uniquely divisible and hence cohomologically trivial (as a
Gw-module). In addition, by applying RΓ(Lw,−) to the displayed exact se-
quence we obtain the claimed distinguished triangle. �

Lemma 3.2. There are canonical isomorphisms of Gw-modules

Hi(Lw,Gm) ∼=





L×
w if i = 0,

0 if i = 1,
Br(Lw) if i = 2.

If w is non-archimedean then Hi(Lw,Gm) = 0 for i ≥ 3 and the local in-
variant isomorphism gives a canonical identification Br(Lw) ∼= Q/Z. With
respect to this identification the class of RΓ(Lw,Gm) in Ext3Z[Gw](Q/Z, L

×
w)
∼=

H2(Gw, L
×
w) is the local canonical class.

Proof. This is [8, Prop. 3.5.(a)]. �

3.3. Cohomology with compact support. For any étale sheaf F on
SpecOK,S we define the complex RΓc(OL,S ,F) in D(Z[G]) by

(4) RΓc(OL,S ,F) := cone

(
RΓ(OL,S ,F)→

⊕

w∈S

RΓ(Lh
w, (g

h
v(w))

∗F)
)
[−1],
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where, for every w ∈ S, v(w) denotes the place of K below w. Thus this
complex lies in a distinguished triangle

(5) RΓc(OL,S ,F) −→ RΓ(OL,S ,F) −→
⊕

w∈S

RΓ(Lh
w, (g

h
v(w))

∗F) −→ .

In [8, (3)] a complex RΓc(OL,S ,F) is defined just as in (4) but with Lh
w and

ghv(w) replaced by Lw and gv(w) respectively. However, the observation made

at the beginning of §3.2 ensures that this definition coincides with that given
above.

3.3.1. The complex RΓc(OL,S ,Gm). We define a G-module Ch
S(L) in the same

way as CS(L) is defined in §2.4 but with Lw replaced by Lh
w for each w ∈

S(L) and Ow replaced by Oh
w for each w ∈ Sf (L). Then, since we assume

Pic(OL,S) = 0, the natural map
∏

w∈S(L
h
w)

× → Ch
S(L) is surjective with kernel

O×
L,S .

Lemma 3.3. There are canonical isomorphisms of G-modules

Hi(RΓc(OL,S ,Gm)) ∼=





Ch
S(L) if i = 1,

Q/Z if i = 3,
0 otherwise.

Proof. We first note that there are canonical isomorphisms of G-modules

Hi(OL,S ,Gm) ∼=





O×
L,S if i = 0,

0 if i = 1,
ker
(
Br(L)→⊕

w/∈S Br(Lw)
)

if i = 2,⊕
w∈SR(L)H

i(Lw,Gm) if i ≥ 3,

(cf. [22, Chap. II, Prop. 2.1, Rem. 2.2] and recall that Pic(OL,S) = 0 and
Sf 6= ∅). Now, for every w ∈ S one has (ghv(w))

∗Gm = Gm on (SpecKh
v(w))et

because Kh
v(w) is an algebraic extension of K. The cohomology sequence of the

distinguished triangle (5) with F = Gm thus combines with Lemmas 3.1 and
3.2 and the above displayed isomorphisms to give exact sequences

0→ H0(RΓc(OL,S ,Gm))→ O×
L,S →

⊕
w∈S

(Lh
w)

×

→ H1(RΓc(OL,S ,Gm))→ 0

and

0→ H2(RΓc(OL,S ,Gm))→ ker
(
Br(L)→

⊕
w/∈S

Br(Lw)
)

→
⊕

w∈S
Br(Lw)→ H3(RΓc(OL,S ,Gm))→ 0

and an equality Hi(RΓc(OL,S ,Gm)) = 0 for each i ≥ 4. All maps here are
the canonical ones, thus for i = 0 and i = 1 the claimed description follows
immediately and for i = 2 and i = 3 it follows by using the canonical exact
sequence 0→ Br(L)→⊕

w∈S(L) Br(Lw)→ Q/Z→ 0. �
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3.3.2. The complex R̂Γc(OL,S ,Gm). Recall that for every w ∈ S there is a
canonical map gv(w) : SpecKv(w) → SpecOK,S of schemes and an inclusion
g∗v(w)Gm → Gm of étale sheaves on SpecKv(w). Thus we can consider the

composite morphism

RΓ(OL,S ,Gm) −→
⊕

w∈S

RΓ(Lw, g
∗
v(w)Gm) −→

⊕

w∈S

RΓ(Lw,Gm)

in D(Z[G]). We then define the complex R̂Γc(OL,S ,Gm) by setting

R̂Γc(OL,S ,Gm) := cone

(
RΓ(OL,S ,Gm) −→

⊕

w∈S

RΓ(Lw,Gm)

)
[−1].

Lemma 3.4. There are canonical isomorphisms of G-modules

Hi(R̂Γc(OL,S ,Gm)) ∼=





CS(L) if i = 1,
Q/Z if i = 3,
0 otherwise.

The class of R̂Γc(OL,S ,Gm)[1] in Ext3Z[G](Q/Z, CS(L)) ∼= H2(G,CS(L)) is the
global canonical class.

Proof. The computation of the cohomology is similar to the proof of Lemma
3.3, except that the role of (5) is now played by the distinguished triangle

(6) R̂Γc(OL,S ,Gm) −→ RΓ(OL,S ,Gm) −→
⊕

w∈S

RΓ(Lw,Gm) −→

that is induced by the definition of R̂Γc(OL,S ,Gm). In degree 1 we also use the
fact that, since Pic(OL,S) = 0, CS(L) is canonically isomorphic to the cokernel
of the diagonal embedding O×

L,S →
∏

w∈S L
×
w . For the extension class see [8,

Prop. 3.5(b)] (but note that the result and proof in [8] apply to R̂Γc(OL,S ,Gm)
rather than to RΓc(OL,S ,Gm) as incorrectly stated in loc. cit.). �

Lemma 3.5. There is a distinguished triangle in D(Z[G])

RΓc(OL,S ,Gm) −→ R̂Γc(OL,S ,Gm) −→
⊕

w∈S

(L×
w/(L

h
w)

×)[−1] −→

which on cohomology in degree 1 induces the canonical exact sequence

0→ Ch
S(L)→ CS(L)→

∏

w∈S

L×
w/(L

h
w)

× → 0

and on cohomology in degree 3 induces the identity map Q/Z
=−→ Q/Z.

Proof. This follows upon combining the distinguished triangle in Lemma 3.1
for each w ∈ S with the distinguished triangle (5) with F = Gm and the
distinguished triangle (6). �
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4. Pro-p-completion

Let L/K be a Galois extension of number fields, G = Gal(L/K), and S a set of
places of K as in §2.4. We will assume throughout this section that L is totally
complex. We fix a prime number p and also assume henceforth that S contains
all places of residue characteristic p. As in §2.4 we choose lattices Lv for v ∈ Sf

and define L by (1). We fix an algebraic closure K of K containing L and write
KS for the maximal extension of K inside K which is unramified outside S.
For each natural number n we write µpn for the group of pn-th roots of unity

in K and let Zp(1) denote the continuous Gal(KS/K)-module lim←−n
µpn where

the limit is taken with respect to p-th power maps. In this section we relate
ES(L) ⊗ Zp to the explicit complex RΓc(OL,S ,Zp(1)) that is defined in [9, p.
522]. For convenience we often abbreviate RΓc(OL,S ,Zp(1)) to RΓc(Zp(1)).
For any abelian group A and natural number m we write A[m] for the kernel
of the endomorphism given by multiplication by m. For each natural number
n we consider the Z/pn[G]-module

∏
w∈S∞(L)(L

×
w)[pn] ⊂ L×

∞. We then define a

Zp[G]-module by setting L(1)p := lim←−n

(∏
w∈S∞(L)(L

×
w)[pn]

)
where the transi-

tion morphisms are the p-th power maps. We set Lp :=
∏

w∈Sp(L) Lw and note

that Lp :=
∏

v∈Sp(K) Lv is a full projective Zp[G]-sublattice of Lp. We write

λp for the natural localization map O×
L ⊗ Zp →

∏
w∈Sp(L) U

(1)
Lw

. Recall that

Leopoldt’s Conjecture for the field L and prime number p is the statement that
λp is injective. With these notations we can now describe the cohomology of
the complex RΓc(OL,S ,Zp(1))⊗Zp

Qp.

Lemma 4.1. If λp is injective (as predicted by Leopoldt’s Conjecture for the
field L and prime p), then there are canonical isomorphisms

Hi(RΓc(OL,S ,Zp(1)))⊗Zp
Qp
∼=





L(1)p ⊗Zp
Qp if i = 1,

cok(λp)⊗Zp
Qp if i = 2,

Qp if i = 3,

0 otherwise.

Before proving Lemma 4.1 we first state the main result of this section and
introduce some further notation.

Proposition 4.2. There is a distinguished triangle in Dperf(Zp[G]) of the form

(7) Lp[0]⊕ Lp[−1] −→ RΓc(OL,S ,Zp(1))[2] −→ ES(L)⊗ Zp −→ .

Now assume that λp is injective (as predicted by Leopoldt’s Conjecture for the
field L and prime p). With respect to the isomorphisms in Lemma 4.1 and the
description of the cohomology groups Hi(ES(L))⊗Q given in §2.4, the image
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under −⊗Zp
Qp of the cohomology sequence of (7) is equal to

0 // L(1)p ⊗Zp
Qp

θ1 // H−1(ES(L))⊗Qp

θ2 // Lp

expp
// cok(λp)⊗Zp

Qp
0 // H0(ES(L))⊗Qp

⊂
// Lp

trLp/Qp
// Qp

// 0

(8)

where θ1 sends an element (rw ·{exp(2π
√
−1/pn)}n≥0)w∈S∞(L) of L(1)p⊗Zp

Qp

to the element (rw · 2π
√
−1)w∈S∞(L) of ker(exp∞) ⊗ Qp ⊂ H−1(ES(L)) ⊗ Qp

and θ2 is induced by the projection LS → Lp.

In the proofs of Lemma 4.1 and Proposition 4.2 we will need the complex
RΓc(µpn) := RΓc(OL,S , µpn) for each natural number n. This complex can be
considered in two different ways. On the one hand, since µpn is a continuous
Gal(KS/K)-module, we can consider RΓc(µpn) as the concrete complex of
Z/pn[G]-modules that is constructed using continuous cochains in [9, p. 522].
On the other hand, there is a natural étale sheaf µpn on SpecOK,S and we can
consider the cohomology with compact support as defined in §3.3. However this
will not cause any confusion because it can be shown that these two possible
definitions of RΓc(µpn) agree (up to canonical isomorphism), and whenever it
is necessary to distinguish between these two constructions of RΓc(µpn) we will
emphasize which one we are using.

Proof of Lemma 4.1. Recall that the complex RΓc(Zp(1)) defined in [9, p. 522]
is equal to lim←−n

RΓc(µpn), where RΓc(µpn) denotes the complex constructed

using continuous cochains and the transition morphisms are induced by the

p-th power map µpn+1 → µpn . From the exact sequence 0 → µpn → Gm
pn

−→
Gm → 0 of étale sheaves on SpecOK,S we obtain the distinguished triangle

(9) RΓc(µpn)
θ−→ RΓc(OL,S ,Gm)

pn

−→ RΓc(OL,S ,Gm) −→

in D(Z[G]). To compute the modules Hi(RΓc(Zp(1))) explicitly we combine
the cohomology sequence of (9) with the identifications of Lemma 3.3 and then
pass to the inverse limit over n. In particular, since each module L×

w/(L
h
w)

× is
uniquely divisible (by Lemma 3.1), one obtains in this way canonical isomor-
phisms

(10) Hi(RΓc(Zp(1))) ∼=





lim←−n
CS(L)[pn] if i = 1,

lim←−n
CS(L)/p

n if i = 2,

Zp if i = 3,

0 otherwise.
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To describe this cohomology more explicitly we use the natural exact sequence
of finite G-modules

(11) 0→ (O×
L,S)[pn]

∆S−−→
∏

w∈S

(L×
w)[pn] → CS(L)[pn]

→ O×
L,S/p

n ∆S/pn

−−−−→
∏

w∈S

L×
w/p

n → CS(L)/p
n → 0.

For each place (resp. finite place) w of L we write L×
w⊗̂Zp (resp. O×

Lw
⊗̂Zp)

for the pro-p-completion of L×
w (resp. O×

Lw
). Note that O×

Lw
⊗̂Zp

∼= U
(1)
Lw

if

w ∈ Sp(L), and that O×
Lw
⊗̂Zp is finite if w ∈ Sf (L) \ Sp(L). Hence from the

commutative diagram

O×
L ⊗ Zp

//

⊂

��

∏
w∈Sf

O×
Lw
⊗̂Zp

⊂

��

O×
L,S ⊗ Zp

lim←−n
∆S/pn

//
∏

w∈S L
×
w⊗̂Zp

we can deduce that the map lim←−n
∆S/p

n is injective (since λp : O×
L ⊗ Zp →∏

w∈Sp(L) U
(1)
Lw

is injective by assumption), and that cok
(
lim←−n

∆S/p
n
)
⊗Zp

Qp =

cok(λp)⊗Zp
Qp.

Now the limit lim←−n
(O×

L,S)[pn] vanishes and one has lim←−n

∏
w∈S(L

×
w)[pn] =

lim←−n

∏
w∈S∞(L)(L

×
w)[pn] = L(1)p. By passing to the inverse limit over

n the sequence (11) thus induces identifications lim←−n
CS(L)[pn] = L(1)p

and lim←−n
CS(L)/p

n = cok
(
lim←−n

∆S/p
n
)
. The explicit description of

Hi(RΓc(Zp(1)))⊗Zp
Qp given in Lemma 4.1 therefore follows from (10) and the

identification cok
(
lim←−n

∆S/p
n
)
⊗Zp

Qp = cok(λp)⊗Zp
Qp described above. �

The proof of Proposition 4.2 will occupy the rest of this section. As the first
step in this proof we introduce a useful auxiliary complex.

Lemma 4.3. There exists a complex Q in D(Z[G]) which corresponds (in the

sense of the third paragraph of §2.2) to the extension class eglobS and also pos-
sesses all of the following properties.

(i) Q is a complex of Z-torsion-free G-modules of the form Q−1 → Q0 →
Q1 (where the first term is placed in degree −1).

(ii) The morphism αS used in the distinguished triangle (2) is represented
by a morphism of complexes of G-modules α : LS [0]⊕ L[−1]→ Q.

(iii) For each natural number n the complex Q/pn consists of finite projec-
tive Z/pn[G]-modules.

Proof. At the outset we fix a representative of eglobS of the form A
δ−→ B as in [5,

Rem. 3.2] with B a finitely generated projective Z[G]-module. We write d−1

for the composite of expS : LS → CS(L) and the inclusion CS(L) ⊂ A. Since
cok(expS) is finite we may choose a finitely generated free Z[G]-module F and
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a homomorphism π : F → A such that the morphism (d−1, π) : LS ⊕F → A is

surjective. We take Q to be the complex ker((d−1, π))
⊂−→ LS ⊕ F

δ◦(d−1,π)−−−−−−→ B
where the first term is placed in degree −1. Then (d−1, π) restricts to give a
surjection ker(δ ◦ (d−1, π))→ CS(L) which induces an identification of H0(Q)
with CS(L). Via this identification, the morphism from Q to A → B that is
equal to (d−1, π) in degree 0 and to the identity map in degree 1 induces the

identity map on cohomology in each degree and so Q represents eglobS . Further,
we obtain a morphism α as in claim (ii) by defining α0 to be the inclusion

LS ⊂ LS ⊕ F and α1 to be any lift L tr′−→ B of L tr−→ Z through the given
surjection B → Z.
It is easy to see that (LS⊕F )/pn and B/pn are finite and projective as Z/pn[G]-
modules. So to prove claim (iii) it remains to show that ker((d−1, π))/pn

is a finite projective Z/pn[G]-module. The proof of [5, Lemma 3.1] shows
that ker(LS → CS(L)) is finitely generated, from which we can deduce
that ker((d−1, π)) is finitely generated. Since furthermore ker((d−1, π)) is Z-
torsion-free, it follows that ker((d−1, π)) is in fact Z-free. But the exact se-
quence 0 → ker((d−1, π)) → LS ⊕ F → A → 0 implies that the G-module
ker((d−1, π)) is cohomologically trivial, and any cohomologically trivial Z-free
Z[G]-module is a projective Z[G]-module. From this it immediately follows that
ker((d−1, π))/pn is finite and projective as Z/pn[G]-module, as required. �

We now fix a complex Q as in Lemma 4.3, and set Qlim := lim←−n
Q/pn where

the inverse limit is taken with respect to the natural transition morphisms.
To compute the cohomology Hi(Qlim) = lim←−n

Hi(Q/pn) we use the short exact

sequence 0→ Q
pn

−→ Q→ Q/pn → 0 together with the identifications H0(Q) =
CS(L) and H

1(Q) = Z to compute the cohomology of Q/pn and then pass to
the inverse limit over n. We find that (similar to the proof of Lemma 4.1)
H−1(Qlim) = lim←−n

CS(L)[pn], H
0(Qlim) = lim←−n

CS(L)/p
n, H1(Qlim) = Zp, and

Hi(Qlim) = 0 otherwise. Hence, if we assume that Leopoldt’s Conjecture is
valid for L at the prime p and use the same identifications as in the proof of
Lemma 4.1, then we obtain isomorphisms

Hi(Qlim)⊗Zp
Qp
∼=





L(1)p ⊗Zp
Qp if i = −1,

cok(λp)⊗Zp
Qp if i = 0,

Qp if i = 1,

0 otherwise.

(12)

Lemma 4.4. There exists an isomorphism Qlim
∼= RΓc(Zp(1))[2] in D(Zp[G]).

Further, if Leopoldt’s Conjecture is valid for L at the prime p and we use
the isomorphisms in Lemma 4.1 and (12) to identify the cohomology groups
of RΓc(Zp(1))[2] ⊗Zp

Qp and Qlim ⊗Zp
Qp respectively, then this isomorphism

induces the identity map in each degree of cohomology after tensoring with Qp.
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Proof. Applying RΓc to the short exact sequence 0→ µpn → Gm
pn

−→ Gm → 0
and combining the resulting distinguished triangle with the triangle of Lemma
3.5 and the fact that each module L×

w/(L
h
w)

× is uniquely divisible (by Lemma
3.1) one obtains the following commutative diagram of distinguished triangles

RΓc(µpn) // RΓc(OL,S ,Gm)
pn

//

��

RΓc(OL,S ,Gm) //

��

RΓc(µpn) // R̂Γc(OL,S ,Gm)
pn

// R̂Γc(OL,S ,Gm) //

(13)

Rotating the lower row of (13) (without changing the signs of the maps) gives
the distinguished triangle

R̂Γc(OL,S ,Gm)[1]
pn

−→ R̂Γc(OL,S ,Gm)[1]
̺′

n−→ RΓc(µpn)[2]→ .

It is not difficult to see that one obtains the same identifications for
Hi(RΓc(µpn)) (and hence also for Hi(RΓc(Zp(1))) = lim←−n

Hi(RΓc(µpn))) if

one computes the cohomology using this distinguished triangle instead of the
first row of (13).

Let Q̂ denote the complex

Q−1 → Q0 → Q1 → Q

where Q−1 is placed in degree −1, the first two arrows are the differentials of
Q and the third is the natural map Q1 → H1(Q) = Z ⊂ Q. Associated to the

natural short exact sequence 0 → Q̂
pn

−→ Q̂ → Q/pn → 0 is a distinguished
triangle

Q̂
pn

−→ Q̂
̺n−→ Q/pn → .

It is easy to see that one obtains the same identifications for Hi(Q/pn) (and
hence also for Hi(Qlim) = lim←−n

Hi(Q/pn)) if one computes the cohomology

using this distinguished triangle instead of the short exact sequence 0→ Q
pn

−→
Q→ Q/pn → 0.
The second assertion of Lemma 3.4 combines with the fact that Q corresponds

to eglobS to imply the existence of an isomorphism ξ : Q̂ ∼= R̂Γc(OL,S ,Gm)[1] in
D(Z[G]) which induces the identity map on each degree of cohomology.
We now consider the following diagram in D(Z[G])

Q̂
pn

//

ξ

��

Q̂
̺n //

ξ

��

Q/pn //

R̂Γc(OL,S ,Gm)[1]
pn

// R̂Γc(OL,S ,Gm)[1]
̺′

n // RΓc(µpn)[2] //

(14)

Since the left hand square of (14) commutes there exists an isomorphism

ξn : Q/pn → RΓc(µpn)[2]

Documenta Mathematica · Extra Volume Suslin (2010) 119–146



On Equivariant Dedekind Zeta-Functions at s = 1 133

in D(Z[G]) that makes the diagram into an isomorphism of distinguished tri-
angles. In fact the isomorphisms ξn can be chosen to be compatible with the
inverse systems over n, i.e. such that for every n the square

Q/pn
ξn //

����

RΓc(µpn)[2]

����

Q/pn−1
ξn−1

// RΓc(µpn−1)[2]

commutes in D(Z[G]). This can be seen for example as follows: if we com-

pute R̂Γc(OL,S ,Gm) and RΓc(µpn) using the concrete realisation of all chain
complexes given by the Godement resolution of the sheaves (as described, for
example, in [21, Chap. III, Rem. 1.20(c)]), then we obtain a short exact se-
quence

0→ RΓc(µpn)→ R̂Γc(OL,S ,Gm)
pn

−→ R̂Γc(OL,S ,Gm)→ 0.

Then both the top and the bottom row of (14) are canonically isomorphic to
the distinguished triangles coming from short exact sequences (i.e. the distin-
guished triangles which are constructed using mapping cones), and for such
distinguished triangles the statement is easy to see.
To be able to pass to the inverse limit we must replace the maps ξn in D(Z[G])
by actual maps of complexes. Since both Q/pn and RΓc(µpn)[2] are coho-
mologically bounded complexes of Z/pn[G]-modules, the natural restriction of
scalars homomorphism

(15) HomD(Zp[G])(Q/p
n, RΓc(µpn)[2])→ HomD(Z[G])(Q/p

n, RΓc(µpn)[2])

is bijective (cf. [8, Lemma 17]). Thus for each n the map ξn : Q/pn →
RΓc(µpn)[2] can be represented as Q/pn

∼←− Tn
∼−→ RΓc(µpn)[2] where Tn is

a complex of Zp[G]-modules and Q/pn
∼←− Tn and Tn

∼−→ RΓc(µpn)[2] are
quasi-isomorphisms of complexes of Zp[G]-modules. By choosing a projective
resolution we can assume that Tn is a bounded above complex of projective
Zp[G]-modules. There exists a morphism Tn → Tn−1 in D(Zp[G]) such that
the diagram

Q/pn

����

Tn

��
✤

✤

✤

∼oo ∼ // RΓc(µpn)[2]

����

Q/pn−1 Tn−1
∼oo ∼ // RΓc(µpn−1)[2]

commutes in D(Zp[G]). Since Tn is a bounded above complex of projective
Zp[G]-modules, the morphism Tn → Tn−1 in D(Zp[G]) can be realised by an
actual map of complexes, and the above diagram will commute up to homo-
topy. The same argument as in [8, p. 1367] shows that after modifying the
horizontal maps in this diagram by homotopies we can assume that the dia-
gram is commutative. Finally, we can add suitable acyclic complexes to the Tn
to guarantee that the maps Tn → Tn−1 are surjective.
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To summarise, we have constructed morphisms of inverse systems of complexes
of Zp[G]-modules (Q/pn) ← (Tn) → (RΓc(µpn)[2]) such that for each n the

composite Q/pn
∼←− Tn ∼−→ RΓc(µpn)[2] considered as a map in D(Z[G]) is equal

to ξn. Furthermore the transition maps in each inverse system are surjective.
Passing to the inverse limit gives morphisms of complexes of Zp[G]-modules

Qlim = lim←−
n

Q/pn ←− lim←−
n

Tn −→ lim←−
n

RΓc(µpn)[2] = RΓc(Zp(1))[2].

Now [8, Lemma 9] implies that these morphisms are quasi-isomorphisms and
that the resulting map Qlim → RΓc(Zp(1))[2] in D(Zp[G]) has the required
properties. �

We now fix a morphism α as in Lemma 4.3(ii). Then, for each natural number
n one has a commutative diagram of morphisms of complexes of G-modules

LS [0]⊕ L[−1] α //
� _

pn

��

Q
β

//
� _

pnpn

��

cone(α)
γ

//
� _

pnpn

��

LS [0]⊕ L[−1] α //

����

Q
β

//

����

cone(α)
γ

//

����

LS/p
n[0]⊕ L/pn[−1] α/pn

// Q/pn
β/pn

// cone(α/pn)
γ/pn

//

(16)

In this diagram the maps β and γ come from the definition of cone(α) and
so the first (and second) row is an explicit representative of the triangle (2).
Also, the columns are the short exact sequences which result from the fact
that LS , L and all terms of Q (and hence also of cone(α)) are Z-torsion-
free. Now Lp is canonically isomorphic to both lim←−n

LS/p
n and lim←−n

L/pn.
Furthermore, as cone(α) is a perfect complex of Z-torsion-free modules, there
is a natural isomorphism cone(α)⊗Zp

∼= lim←−n
cone(α)/pn in Dperf(Zp[G]), and

clearly lim←−n
cone(α)/pn ∼= lim←−n

cone(α/pn) ∼= cone(lim←−n
α/pn) (where in all

cases the limits are taken with respect to the natural transition morphisms).
Hence, upon passing to the inverse limit of the lower row of (16), we obtain a
distinguished triangle in Dperf(Zp[G]) of the form

(17) Lp[0]⊕ Lp[−1]
lim←−n

α/pn

−−−−−−→ Qlim

lim←−n
β/pn

−−−−−−→ cone(α)⊗ Zp

lim←−n
γ/pn

−−−−−−→ .

The distinguished triangle (17) together with the isomorphism Qlim
∼=

RΓc(Zp(1))[2] from Lemma 4.4 show the existence of a triangle of the form
(7).
It remains to show that if Leopoldt’s Conjecture is valid for L at the prime p
and we use the identifications of the cohomology ofQlim given in (12), then after
tensoring with Qp the long exact sequence of cohomology of the triangle (17)
is equal to (8). Now the identifications of the cohomology of the three terms in
(17) come from the columns in (16). In particular we have natural isomorphisms
Hi(Lp[0] ⊕ Lp[−1]) ∼= lim←−n

Hi(LS [0] ⊕ LS [−1])/pn and Hi(cone(α) ⊗ Zp) ∼=
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lim←−n
Hi(cone(α))/pn for all i, and Hi(Qlim) ∼= lim←−n

Hi(Q)/pn for i = 0 and

i = 1. Therefore by considering the cohomology sequences of the second and
third rows in (16), we can easily deduce the explicit description of all maps in (8)
except for the map L(1)p⊗Zp

Qp = H−1(Qlim)⊗Zp
Qp → H−1(ES(L))⊗Qp =

log∞(O×
L )⊗Qp.

To compute this map we consider the following diagram.

H−1(Q/pn)
H−1(β/pn)

//
� _

��

H−1(cone(α)/pn)

H0(LS [0]⊕L[−1])
H0(α)

//

pn

��

H0(Q)

pn

��

H−1(cone(α))
� � H

−1(γ)
//

��

H0(LS [0]⊕L[−1])
H0(α)

// H0(Q)

H−1(cone(α)/pn)

By an easy computation with cochains one shows that if an element of

H0(LS [0] ⊕ L[−1]) lies in the kernel of H0(LS [0] ⊕ L[−1])
pn·H0(α)−−−−−−→ H0(Q),

then its images under the two maps

H0(LS [0]⊕L[−1])
H0(α)−−−−→ H0(Q)← H−1(Q/pn)

H−1(β/pn)−−−−−−−→ H−1(cone(α)/pn)

and

H0(LS [0]⊕ L[−1]) pn

−→ H0(LS [0]⊕ L[−1])
H−1(γ)←−−−−− H−1(cone(α))

→ H−1(cone(α)/pn)

coincide (note that the inverse arrows make sense in this context). By consid-
ering the elements (rw · 2π

√
−1/pn)w∈S∞

∈ L∞ ⊆ LS = H0(LS [0]⊕L[−1]) for
rw ∈ Z we see that the map H−1(Q/pn)→ H−1(cone(α)/pn) sends the image
of (rw · exp(2π

√
−1/pn))w∈S∞(L) ∈ (L×

S )[pn] ⊂ L×
S in CS(L)[pn] = H−1(Q/pn)

to the image of the element (rw ·2π
√
−1)w∈S∞(L) ∈ ker(exp∞) ⊆ H−1(cone(α))

in H−1(cone(α)/pn). Passing to the inverse limit gives the desired description
of θ1. This completes the proof of Proposition 4.2.
q

5. The proof of Theorem 1.1

In this section we prove Theorem 1.1. Let L/K be a Galois extension of number
fields with Galois group G. We define an element of K0(Z[G],R) by setting

TΩ(L/K, 1) := ∂̂1G(ζ
∗
L/K,S(1)) + χG(ES(L), µL)

where the terms on the right hand side are as in §2.4. The element TΩ(L/K, 1)
depends only upon L/K (see [5, Prop. 3.4]), and the conjectural equality (3)
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asserts that TΩ(L/K, 1) vanishes. We also recall that [9, Conj. 4(iv)] for
the pair (Q(1)L,Z[G]) asserts the vanishing of an element TΩ(Q(1)L,Z[G])
of K0(Z[G],R) that is defined (unconditionally) in [9, Conj. 4(iii)]. To prove
Theorem 1.1 it is therefore enough to prove the following result.

Proposition 5.1. Let L be a complex Galois extension of Q and G =
Gal(L/Q). If Leopoldt’s Conjecture is valid for L and all prime numbers p,
then TΩ(L/Q, 1) = TΩ(Q(1)L,Z[G]).

Remark 5.1. Recall that we write ∂0
Z[G],R for the natural homomorphism of K-

groups K0(Z[G],R) → K0(Z[G]). The argument of [5, Prop. 3.6(ii)] combines
with the equality of Proposition 5.1 to imply that if Leopoldt’s Conjecture
is valid, then ∂0

Z[G],R(TΩ(Q(1)L,Z[G])) is equal to the element Ω(L/K, 1) of

K0(Z[G]) defined by Chinburg in [13]. Proposition 5.1 therefore answers the
question raised in [7, Question 1.54].

5.1. Preliminaries. From now on let L/Q be a complex Galois extension
with Galois group G. For each p and each embedding j : R → Cp there is
an induced homomorphism j∗ : K0(Z[G],R) → K0(Zp[G],Cp) and it is known
that

⋂
p,j ker(j∗) = {0} where p runs over all primes and j over all embeddings

R → Cp (cf. [5, Lemma 2.1]). To prove Proposition 5.1 it is thus enough to
prove that for all p and j one has

(18) j∗(TΩ(L/Q, 1)) = j∗(TΩ(Q(1)L,Z[G])).

The proof of this equality will occupy the rest of this section.
We fix a prime p and in the sequel assume that Leopoldt’s Conjecture is valid
for L and p. We also fix an embedding j : R → Cp and often suppress it
from our notation; so in particular in a tensor product of the form −⊗R Cp we
consider Cp as an R-module via j. Just as in §4 we will always assume that S
contains all places of residue characteristic p.
In the following we will need to use the language of virtual objects. To this
end we consider the Picard categories V(Zp[G]), V(Cp[G]) and V(Zp[G],Cp[G])
discussed in [4, §5]. We fix a unit object 1V(Cp[G]) of V(Cp[G]) and for each

object X of V(Cp[G]) we fix an inverse, i.e. an object X−1 of V(Cp[G]) together
with an isomorphism X ⊗ X−1 ∼= 1V(Cp[G]) in V(Cp[G]). We also write ι :
π0V(Zp[G],Cp[G]) ∼= K0(Zp[G],Cp) for the group isomorphism described in [4,
Lemma 5.1].
We need to slightly generalise the definition of a trivialised complex and
its Euler characteristic. If P is a perfect complex of Zp[G]-modules and
τ : [Hev(P ⊗Zp

Cp)] → [Hod(P ⊗Zp
Cp)] an isomorphism in V(Cp[G]), then

we will sometimes call the pair (P, τ) a trivialised complex. Its Euler char-
acteristic χZp[G],Cp

(P, τ) is defined as in [4, Definition 5.5] except that [t] is
replaced by τ . Clearly any trivialised complex (P, t) as in §2.2 gives rise to the
trivialised complex (P, [t]) in the new sense, but in general not every triviali-
sation τ : [Hev(P ⊗Zp

Cp)] → [Hod(P ⊗Zp
Cp)] of P will be of the form [t] for

some isomorphism t : Hev(P ⊗Zp
Cp)→ Hod(P ⊗Zp

Cp).
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5.2. The element j∗(TΩ(L/Q, 1)). We set RΓc(Zp(1)) := RΓc(OL,S ,Zp(1))
and also Hi

c(Cp(1)) := Hi(RΓc(Zp(1)) ⊗Zp
Cp). Furthermore we write

Hev
c (Cp(1)) and Hod

c (Cp(1)) for the direct sums ⊕i evenH
i
c(Cp(1)) and

⊕i oddH
i
c(Cp(1)) respectively.

We start by defining an isomorphism

ψ : [Hev
c (Cp(1))]⊗ [im(θ2)⊗Qp

Cp]
∼=−→ [Hod

c (Cp(1))]⊗ [im(θ2)⊗Qp
Cp]

in V(Cp[G]) which is induced by the identifications from Lemma 4.1, the exact
sequence (8) in Proposition 4.2, and µL. More precisely, we let ψ be the
following composite map.

[H2
c (Cp(1))]⊗ [im(θ2)⊗Qp

Cp]
α1−→ [Lp ⊗Qp

Cp]
α2−→ [H0(ES(L))⊗ Cp]⊗ [Cp]
α3−→ [H−1(ES(L))⊗ Cp]⊗ [Cp]
α4−→ [L(1)p ⊗Zp

Cp]⊗ [im(θ2)⊗Qp
Cp]⊗ [Cp]

α5−→ [H1
c (Cp(1))⊕H3

c (Cp(1))]⊗ [im(θ2)⊗Qp
Cp].

Here α1 is induced by the isomorphism H2
c (Cp(1)) ∼= cok(λp) ⊗Zp

Cp and the
short exact sequence

(19) im(θ2)⊗Qp
Cp

� � ⊂
// Lp ⊗Qp

Cp

expp
// // cok(λp)⊗Zp

Cp,

α2 and α4 are induced by the short exact sequences

(20) H0(ES(L))⊗ Cp
� � // Lp ⊗Qp

Cp
tr // // Cp

and

(21) L(1)p ⊗Zp
Cp

� �
θ1⊗QpCp

// H−1(ES(L))⊗ Cp

θ2⊗QpCp
// // im(θ2)⊗Qp

Cp

respectively, α3 = [µL ⊗R Cp] ⊗ id, and α5 is induced by the isomorphisms
H1

c (Cp(1)) ∼= L(1)p ⊗Zp
Cp and H3

c (Cp(1)) ∼= Cp.
Now by the properties of a Picard category there exists a unique isomorphism

ν : [Hev
c (Cp(1))]

∼=−→ [Hod
c (Cp(1))]

in V(Cp[G]) such that ψ = ν ⊗ id. We will consider this isomorphism as a
trivialisation of the complex RΓc(Zp(1)).

Lemma 5.2. In K0(Zp[G],Cp) one has

j∗(TΩ(L/Q, 1)) = ∂1Zp[G],Cp

(
j∗(ζ

∗
L/Q,S(1))

)
+ χZp[G],Cp

(RΓc(Zp(1)), ν).

Proof. To simplify the notation we will abbreviate ‘χZp[G],Cp
’ to ‘χp’.

It is clear that j∗(∂̂
1
G(ζ

∗
L/Q,S(1))) = ∂1

Zp[G],Cp
(j∗(ζ

∗
L/Q,S(1))) (compare §2.1) and

also j∗(χZ[G],R(ES(L), µL)) = χp(ES(L) ⊗ Zp, µL ⊗R Cp). Moreover it follows
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from [4, Prop. 5.6.3] that χp(RΓc(Zp(1)), ν) = χp(RΓc(Zp(1))[2], ν). It is thus
enough to prove that in K0(Zp[G],Cp) one has

(22) χp(ES(L)⊗ Zp, µL ⊗R Cp) = χp(RΓc(Zp(1))[2], ν).

To do this we will apply the additivity criterion of [4, Theorem 5.7] to the exact
triangle (7) in Proposition 4.2. On the complex Lp[0] ⊕ Lp[−1] we consider
the trivialisation given by the identity map id : Lp ⊗Zp

Cp → Lp ⊗Zp
Cp, on

RΓc(Zp(1))[2] we consider the trivialisation ν, and on ES(L)⊗Zp we consider
the trivialisation µL ⊗R Cp. Note that the additivity criterion in [4] is only
stated for trivialisations as defined in §2.2, however it is easy to check that it
remains valid for generalised trivialisations as defined in §5.1.
In our context, the map a in [4, Theorem 5.7] is the map Lp[0] ⊕ Lp[−1] →
RΓc(Zp(1))[2] in the distinguished triangle (7), and Σ = Cp[G]. There-
fore ker(HevaΣ) = im(θ2) ⊗Qp

Cp and ker(HodaΣ) = L0
p ⊗Qp

Cp where

L0
p = ker(trLp/Qp

: Lp → Qp). To apply the additivity criterion we must
show that the following diagram commutes in V(Cp[G]).

[cok(λp)⊗Zp
Cp]

⊗[im(θ2)⊗Qp
Cp]⊗ [L0

p ⊗Qp
Cp]

sev //

ν⊗id⊗[−id]

��

[Lp ⊗Qp
Cp]⊗ [H0(ES(L))⊗ Cp]

id⊗[µL⊗RCp]

��
[L(1)p ⊗Zp

Cp ⊕ Cp]
⊗[im(θ2)⊗Qp

Cp]⊗ [L0
p ⊗Qp

Cp]
sod // [Lp ⊗Qp

Cp]⊗ [H−1(ES(L))⊗ Cp]

Here the horizontal maps are induced by the even respectively odd part of the
cohomology sequence (8) after tensoring with Cp, i.e. the top horizontal map
sev is induced by the short exact sequence (19) and the isomorphism

(23) H0(ES(L))⊗ Cp
∼= L0

p ⊗Qp
Cp,

and the bottom horizontal map sod is induced by (21) and

(24) L0
p ⊗Qp

Cp
� � ⊂

// Lp ⊗Qp
Cp

tr // // Cp.

To see the commutativity of the above diagram we will show that the auto-
morphism

κ := (id⊗ [µL ⊗R Cp])
−1 ◦ (sod) ◦ (ν ⊗ id⊗ [−id]) ◦ (sev)−1

of [Lp ⊗Qp
Cp] ⊗ [H0(ES(L)) ⊗ Cp] is the identity map. For this we use the

isomorphism

[Lp ⊗Qp
Cp]⊗ [H0(ES(L))⊗ Cp] ∼= [L0

p ⊗Qp
Cp]⊗ [Cp]⊗ [L0

p ⊗Qp
Cp]

which is induced by the short exact sequence (24) and the isomorphism (23).
Using ν ⊗ id⊗ [−id] = ψ ⊗ [−id] and the definition of ψ, it is easy to see that
then κ becomes the automorphism of [L0

p ⊗Qp
Cp] ⊗ [Cp] ⊗ [L0

p ⊗Qp
Cp] which

is given by (using the obvious abuse of notation)

a⊗ b⊗ c 7→ [−id](c)⊗ b⊗ a,

Documenta Mathematica · Extra Volume Suslin (2010) 119–146



On Equivariant Dedekind Zeta-Functions at s = 1 139

i.e. the morphism in V(Cp[G]) which swaps the two copies of [L0
p⊗Qp

Cp] com-
posed with the map [−id] on one of the two copies. It now follows from the
general properties of a determinant functor (see e.g. [15, §4.9]), that this auto-
morphism (and hence also κ) is the identity morphism as required.
The additivity criterion [4, Theorem 5.7] now implies that

χp(RΓc(Zp(1))[2], ν) = χp(Lp[0]⊕ Lp[−1], id) + χp(ES(L)⊗ Zp, µL ⊗R Cp).

Since clearly χp(Lp[0] ⊕ Lp[−1], id) = 0 this completes the proof of (22) and
hence of Lemma 5.2. �

5.3. The element j∗(TΩ(Q(1)L,Z[G])). The motive Q(1)L is pure of weight
−2. The argument of [10, §2] therefore shows that

(25) j∗(TΩ(Q(1)L,Z[G])) = ∂1Zp[G],Cp

(
j∗(ζ

∗
L/Q,S(1))

)
+ ι
(
([RΓc(Zp(1))], ω)

)

with ω the composite morphism

[RΓc(Zp(1))⊗Zp
Cp]

ϑ̃p⊗QpCp−−−−−−→ [Ξ(Q(1)L)⊗Q Cp]
ϑ∞⊗RCp−−−−−−→ 1V(Cp[G])

where ϑ̃p and ϑ∞ are as defined in [10, p. 479, resp. p. 477]. Indeed, whilst the
argument of [10, §2] is phrased solely in terms of abelian groups G it extends
immediately to the general case upon replacing graded determinants by virtual
objects and then (25) is the non-abelian generalisation of the equality [10, (11)].
Given the observations of [7, §1.1, §1.3] it is also a straightforward exercise to

explicate the space Ξ(Q(1)L) and the morphisms ϑ̃p and ϑ∞. To describe the
result we introduce further notation. We write Σ(L) for the set of all complex
embeddings L→ C and consider

⊕
Σ(L) C as a G×Gal(C/R)-module where G

acts via L and Gal(C/R) acts diagonally. We write HB for the G×Gal(C/R)-

submodule
⊕

Σ(L) 2π
√
−1 ·Z of

⊕
Σ(L) C and let H+

B and
(⊕

Σ(L) C
)+

denote

the G-submodules comprising elements invariant under the action of Gal(C/R).
We also set H1

f := im(λp)⊗Zp
Qp. Then ω is equal to the composite

[RΓc(Zp(1))⊗Zp
Cp] ∼= [H1

c (Cp(1))]
−1 ⊗ [H2

c (Cp(1))]⊗ [H3
c (Cp(1))]

−1

∼= [H1
c (Cp(1))]

−1 ⊗
(
[H1

f ⊗Qp
Cp]⊗ [H2

c (Cp(1))]
)

⊗ [H1
f ⊗Qp

Cp]
−1 ⊗ [H3

c (Cp(1))]
−1

∼=
(
[H+

B ⊗ Cp]
−1 ⊗ [L⊗Q Cp]

)

⊗
(
[O×

L ⊗ Cp]
−1 ⊗ [Cp]

−1
)

∼=
[∏

S∞(L)
Cp

]
⊗
[∏

S∞(L)
Cp

]−1

∼= 1V(Cp[G])

(26)
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where the maps are defined as follows. The first, second and fifth maps are
clear. The third map is induced by the exact sequence

0→ L(1)p ⊗Zp
Cp

∼=−→ H1
c (Cp(1))

0−→ H1
f ⊗Qp

Cp
⊂−→

∏

w∈Sp(L)

U
(1)
Lw
⊗Zp

Cp

π−→ H2
c (Cp(1))→ 0→ 0→ H3

c (Cp(1))
∼=−→ Cp → 0,

where π is induced by the identification H2
c (Cp(1)) ∼= cok(λp) ⊗Zp

Cp

from Lemma 4.1 (this sequence is the cohomology sequence of the dis-
tinguished triangle of [10, (3)] with M = Q(1)L and A = Q[G]), to-
gether with the isomorphism L(1)p ∼= H+

B ⊗ Zp that sends an ele-

ment
(
nw · {exp(2π

√
−1/pn)}n≥0

)
w∈S∞(L)

in L(1)p to the element
(
nwσ

·
σ̂(2π

√
−1)

)
σ∈Σ(L)

in H+
B ⊗ Zp (where wσ denotes the place of L correspond-

ing to σ, and σ̂ : Lwσ
→ C is the unique continuous extension of σ), the

isomorphism

(27)
∏

w∈Sp(L)

U
(1)
Lw
⊗Zp

Cp
∼=
( ∏

w∈Sp(L)

Lw

)
⊗Qp

Cp = L⊗Q Cp

induced by the p-adic logarithm maps U
(1)
Lw
→ Lw, and the isomorphism λp⊗Zp

Cp : O×
L ⊗ Cp

∼= H1
f ⊗Qp

Cp. The fourth map is induced by (the image under

−⊗R Cp of) the short exact sequence

(28) O×
L ⊗ R

� � Reg
//
∏

S∞(L)
R // // R

where Reg : O×
L ⊗ R → ∏

S∞(L) R denotes the usual regulator map u ⊗ r 7→
r · (2 log|σw(u)|)w∈S∞(L) (here σw is a complex embedding of L corresponding
to the place w), the natural isomorphism

(29)
(⊕

Σ(L)
C

)+ ∼= L⊗Q R

and (the image under −⊗R Cp of) the short exact sequence

(30) H+
B ⊗ R

� � ⊂
//
(⊕

Σ(L)
C

)+
// //
∏

S∞(L)
R

in which the second arrow sends each element (zσ)σ∈Σ(L) of
(⊕

Σ(L) C
)+

to

(zσw
+ zσw

)w∈S∞(L) in
∏

S∞(L) R (where σw and σw denote the two complex

embeddings of L corresponding to the place w).

5.4. Completion of the proof. Let

ψ′ : [Hev
c (Cp(1))]⊗ [H1

f ⊗Qp
Cp]

∼=−→ [Hod
c (Cp(1))]⊗ [H1

f ⊗Qp
Cp]
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denote the composite isomorphism

[H2
c (Cp(1))]⊗ [H1

f ⊗Qp
Cp]

α′

1−→ [L⊗Q Cp]

α′

2−→
[(⊕

Σ(L)
C

)+
⊗R Cp

]

α′

3−→ [H+
B ⊗ Cp]⊗

[∏
S∞(L)

Cp

]

α′

4−→ [L(1)p ⊗Zp
Cp]⊗ [O×

L ⊗ Cp]⊗ [Cp]

α′

5−→ [H1
c (Cp(1))⊕H3

c (Cp(1))]⊗ [H1
f ⊗Qp

Cp]

where α′
1 is induced by the short exact sequence

H1
f ⊗Qp

Cp
� � //

∏
w∈Sp(L)

U
(1)
Lw
⊗Zp

Cp // // H2
c (Cp(1))

and the isomorphism (27), the map α′
2 is induced by the isomorphism (29), the

map α′
3 is induced by (the image under −⊗R Cp of) the short exact sequence

(30), α′
4 is induced by (the image under −⊗R Cp of) the short exact sequence

(28) and the isomorphism H+
B ⊗ Cp

∼= L(1)p ⊗Zp
Cp, and α

′
5 is induced by the

isomorphisms H1
c (Cp(1)) ∼= L(1)p ⊗Zp

Cp, H
3
c (Cp(1)) ∼= Cp and O×

L ⊗ Cp
∼=

H1
f ⊗Qp

Cp.

Let ν′ : [Hev
c (Cp(1))]

∼=−→ [Hod
c (Cp(1))] be the unique isomorphism in

V(Cp[G]) such that ν′ ⊗ id = ψ′. We recall that the Euler characteristic
χZp[G],Cp

(RΓc(Zp(1)), ν
′) is defined to be ι

(
([RΓc(Zp(1))], λ)

)
, where λ is the

composite isomorphism

[RΓc(Cp(1))] ∼= [Hev
c (Cp(1))]⊗ [Hod

c (Cp(1))]
−1

ν′⊗id−−−→ [Hod
c (Cp(1))]⊗ [Hod

c (Cp(1))]
−1 ∼= 1V(Cp[G])

in V(Cp[G]) (compare [4, Definition 5.5]). Now by comparing ω and λ one can
show that

(31) ι
(
([RΓc(Zp(1))], ω)

)
= χZp[G],Cp

(RΓc(Zp(1)), ν
′).

The isomorphism (27) restricts to an isomorphism

ϕ : H1
f ⊗Qp

Cp
∼= im(θ2)⊗Qp

Cp

of Cp[G]-modules and we will show below that the following diagram in
V(Cp[G]) is commutative.

[Hev
c (Cp(1))]⊗ [H1

f ⊗Qp
Cp]

id⊗[ϕ]
//

ν′⊗id

��

[Hev
c (Cp(1))]⊗ [im(θ2)⊗Qp

Cp]

ν⊗id

��

[Hod
c (Cp(1))]⊗ [H1

f ⊗Qp
Cp]

id⊗[ϕ]
// [Hod

c (Cp(1))]⊗ [im(θ2)⊗Qp
Cp]
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From this diagram it follows that ν = ν′. In view of Lemma 5.2 and equations
(25) and (31) this implies the required equality (18) and hence Proposition 5.1.
It now only remains to show that the above diagram in V(Cp[G]) is commuta-
tive. For this we consider the following diagram.

[H2
c (Cp(1))]⊗ [H1

f ⊗Qp
Cp]

id⊗[ϕ]
//

α′

1

��

[H2
c (Cp(1))]⊗ [im(θ2)⊗Qp

Cp]

α1

��

[L⊗Q Cp]

α′

3◦α
′

2

��

[L⊗Q Cp]

α3◦α2

��

[H+
B ⊗ Cp]⊗

[(∏
S∞(L)

R

)
⊗R Cp

]

β1

��

[H−1(ES(L))⊗ Cp]⊗ [Cp]

α4

��

[L(1)p ⊗Zp
Cp]

⊗[im(θ2)⊗Qp
Cp]⊗ [Cp]

β2

��

[L(1)p ⊗Zp
Cp]

⊗[im(θ2)⊗Qp
Cp]⊗ [Cp]

α5

��

[H1
c (Cp(1))⊕H3

c (Cp(1))]
⊗[H1

f ⊗Qp
Cp]

id⊗[ϕ]
//
[H1

c (Cp(1))⊕H3
c (Cp(1))]

⊗[im(θ2)⊗Qp
Cp]

Here the maps αi and α
′
i are as above. The map β1 is induced by the isomor-

phism L(1)p ⊗Zp
Cp
∼= H+

B ⊗ Cp and the short exact sequence

(32) im(θ2)⊗Qp
Cp

� � //

(∏
S∞(L)

R

)
⊗R Cp // // Cp

which is obtained by applying − ⊗R Cp to the short exact sequence (28) and
using the identification O×

L ⊗ Cp
∼= im(θ2)⊗Qp

Cp, and the map β2 is induced

by the isomorphisms H1
c (Cp(1)) ∼= L(1)p ⊗Zp

Cp, H
3
c (Cp(1)) ∼= Cp and ϕ.

By definition the composite of the right vertical maps is ψ = ν⊗id. Furthermore
it is not difficult to see that β2 ◦ β1 = α′

5 ◦ α′
4, hence the composite of the left

vertical maps is ψ′ = ν′ ⊗ id.
Clearly the bottom square is commutative. The isomorphism of short exact
sequences

H1
f ⊗Qp

Cp
� � //

ϕ

��

∏
w∈Sp(L)

U
(1)
Lw
⊗Zp

Cp // //

∼=

��

H2
c (Cp(1))

∼=

��

im(θ2)⊗Qp
Cp

� � // L⊗Q Cp
// // cok(λp)⊗Zp

Cp

implies that the top square is commutative. The commutativity of the middle
rectangle follows from the properties of a determinant functor applied to the
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following commutative diagram of short exact sequences.

L(1)p ⊗Zp
Cp

� �
θ1⊗QpCp

//

∼=

��

H−1(ES(L))⊗ Cp

θ2⊗QpCp
// //

� _

��

im(θ2)⊗Qp
Cp� _

��

H+
B ⊗ Cp

� � // L⊗Q Cp
// //

tr

����

(∏
S∞(L)

R

)
⊗R Cp

����

Cp Cp

Here the top horizontal and right vertical short exact sequences are (21) and
(32) respectively. The middle horizontal short exact sequence comes from com-
bining (30) with the isomorphism (29), and the middle vertical short exact
sequence comes from combining (20) with the isomorphism µL ⊗R Cp. The
commutativity of this diagram is easily checked.

6. The proofs of Corollaries 1.2, 1.3 and 1.4

In this section we use Theorem 1.1 to prove Corollaries 1.2, 1.3 and 1.4.

6.1. The proof of Corollary 1.2. Let F/E be a Galois extension of num-
ber fields and set Γ := Gal(F/E). Let L be a totally complex finite Ga-
lois extension of Q containing F and set G := Gal(L/Q). We write π for
the natural composite homomorphism K0(Z[G],R) → K0(Z[Gal(L/E)],R) →
K0(Z[Γ],R) where the first arrow is restriction and the second projection. Then
it is known that π(TΩ(L/Q, 1)) = TΩ(F/E, 1) and π(TΩ(Q(1)L,Z[G])) =
TΩ(Q(1)F ,Z[Γ]) (see [5, Prop. 3.5] and [9, Prop. 4.1]). In particular, to prove
that TΩ(F/E, 1) = TΩ(Q(1)F ,Z[Γ]) it is enough to prove that TΩ(L/Q, 1) =
TΩ(Q(1)L,Z[G]). Given this observation, Corollary 1.2 is an immediate con-
sequence of Theorem 1.1.

6.2. The proof of Corollary 1.3. By the functorial properties of the con-
jectures (see [5, Prop. 3.5 and Rem. 4.2]) it suffices to consider the case K = Q

and L totally complex. Since L is abelian over Q, Leopoldt’s Conjecture is
known to be valid for L and all primes p [6]. In addition, the validity of [9,
Conj. 4(iv)] for the pair (Q(1)L,Z[Gal(L/Q)]) has been proved by Flach and
the second named author in [11, Cor. 1.2]. (The proof of [11, Cor. 1.2] re-
lies on certain 2-adic results of Flach in [16] and unfortunately the relevant
results in [16] are now known to contain errors. However, in [17] Flach has
recently provided the necessary corrections so that, in particular, the result
of [11, Cor. 1.2] is valid as stated.) Given the validity of [9, Conj. 4(iv)] for
(Q(1)L,Z[Gal(L/Q)]), the first assertion of Corollary 1.3 follows immediately
from Theorem 1.1.
We now assume that [5, Conj. 3.3] is valid for L/Q. Then [5, Theorem 5.2]
implies that [5, Conj. 4.1] is valid for L/Q if and only if [5, Conj. 5.3] is valid
for L/Q. Also, in [5, Rem. 5.4] it is shown that [5, Conj. 5.3] is equivalent to
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the earlier conjecture [2, Conj. 4.1]. To prove the second assertion of Corollary
1.3 we therefore need only note that [2, Conj. 4.1] is proved for abelian exten-
sions L/Q of odd conductor in [2, Cor. 6.2] and for abelian extensions L/Q of
arbitrary conductor in [11, Theorem 1.1] (see in particular the discussion at
the end of [11, §3.1]).
This completes the proof of Corollary 1.3.

Remark 6.1. By using the main result of Bley in [1] one can prove an analogue
of Corollary 1.3 for certain classes of abelian extensions of imaginary quadratic
fields.

6.3. The proof of Corollary 1.4. Let p, q and r be distinct (odd) rational
primes which satisfy p ≡ r ≡ −q ≡ 3 (mod 4) and are such that the Legendre
symbols (pq ) and ( rq ) are both equal to −1. Then if ℓ is any odd prime such

that ( ℓ
pr ) = −(

ℓ
q ) = 1 Chinburg has shown that there exists a unique totally

complex field Lp,q,r,ℓ which contains Q(
√
pr,
√
q), is Galois over Q with group

isomorphic to the quaternion group of order 8 and is such that Lp,q,r,ℓ/Q is
ramified precisely at p, q, r, ℓ and infinity (cf. [14, Prop. 4.1.3]). We observe
that the primes p = 3, q = 5 and r = 7 satisfy the congruence conditions
described above and will now prove that the conjectures [5, Conj. 3.3] and [5,
Conj. 4.1] are both valid for any extension of the form L3,5,7,ℓ/K. To do this
we set Lℓ := L3,5,7,ℓ and Gℓ := Gal(L3,5,7,ℓ/Q).
We note first that Lℓ/K is tamely ramified and we recall that for any tamely
ramified extension of number fields F/E the element TΩloc(F/E, 1) that is
defined in [5, §5.1.1] vanishes (by [5, Prop. 5.7(i)]) and hence that the conjec-
tures [5, Conj. 3.3] and [5, Conj. 4.1] are equivalent for F/E (by [5, Theorem
5.2]). It therefore suffices for us to prove that [5, Conj. 3.3] is valid for all
extensions Lℓ/K. We recall that this is equivalent to asserting that the ele-
ment TΩ(Lℓ/K, 1) of K0(Z[Gal(Lℓ/K)],R) that is defined in [5, §3.2] vanishes.
Taking account of the functorial behaviour described in [5, Prop. 3.5(i)] it is
therefore enough to prove that each element TΩ(Lℓ/Q, 1) vanishes.
We claim next that TΩ(Lℓ/Q, 1) belongs to the subgroup K0(Z[Gℓ],Q)tor
of K0(Z[Gℓ],R). Indeed, since TΩloc(Lℓ/Q, 1) vanishes the equality of [5,
Theorem 5.2] implies TΩ(Lℓ/Q, 1) = ψ∗

Gℓ
(TΩ(Lℓ/Q, 0)) where ψ∗

Gℓ
is the

involution of K0(Z[Gℓ],R) defined in [5, §2.1.4] and TΩ(Lℓ/Q, 0) the ele-
ment of K0(Z[Gℓ],R) defined in [5, §4]. Now ψ∗

Gℓ
preserves the subgroup

K0(Z[Gℓ],Q)tor and from [5, Prop. 4.4(ii)] one knows that TΩ(Lℓ/Q, 0) be-
longs to K0(Z[Gℓ],Q)tor if the ‘strong Stark conjecture’ of Chinburg is valid
for Lℓ/Q. It thus suffices to recall that, since every complex character of Gℓ is
rational valued, the strong Stark conjecture for Lℓ/Q has been proved by Tate
in [26, Chap. II].
We write Fℓ for the maximal abelian extension of Q in Lℓ (and note that
Fℓ/Q is biquadratic). Then, since the element TΩ(Lℓ/Q, 1) belongs to
K0(Z[Gℓ],Q)tor, the result of [10, Lemma 4] implies TΩ(Lℓ/Q, 1) vanishes
if it belongs to the kernels of both the natural projection homomorphism
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q : K0(Z[Gℓ],R) → K0(Z[Gal(Fℓ/Q)],R) and the connecting homomorphism
∂0
Z[Gℓ],R

: K0(Z[Gℓ],R)→ K0(Z[Gℓ]).

Now from [5, Prop. 3.6(ii)] one knows that TΩ(Lℓ/Q, 1) belongs to ker(∂0
Z[Gℓ],R

)

if Chinburg’s ‘Ω1-Conjecture’ [13, Question 3.2] is valid for Lℓ/Q. In addition,
the equality of [13, (3.2)] shows that the Ω1-Conjecture is valid for Lℓ/Q if
the ‘Ω3-Conjecture’ [13, Conj. 3.1] and ‘Ω2-Conjecture’ [13, Question 3.1] are
both valid for Lℓ/Q. But Chinburg proves the Ω3-Conjecture for Lℓ/Q in [14]
and, since Lℓ/Q is tamely ramified, the validity of the Ω2-Conjecture for Lℓ/Q
follows directly from [13, Theorems 3.2 and 3.3].
At this stage it suffices to prove that TΩ(Lℓ/Q, 1) belongs to ker(q). But, by
[5, Prop. 3.5(ii)], this is equivalent to asserting that [5, Conj. 3.3] is valid for
the extension Fℓ/Q and since Fℓ/Q is abelian this follows from Corollary 1.3.
This completes the proof of Corollary 1.4.
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