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Abstract. Let F be a field of characteristic zero and let ft,n be
the stabilization homomorphism from the nth integral homology of
SLt(F ) to the nth integral homology of SLt+1(F ). We prove the
following results: For all n, ft,n is an isomorphism if t ≥ n+ 1 and is
surjective for t = n, confirming a conjecture of C-H. Sah. fn,n is an
isomorphism when n is odd and when n is even the kernel is isomorphic
to the (n + 1)st power of the fundamental ideal of the Witt Ring of
F . When n is even the cokernel of fn−1,n is isomorphic to the nth
Milnor-Witt K-theory group of F . When n is odd, the cokernel of
fn−1,n is isomorphic to the square of the nth Milnor K-group of F .

2010 Mathematics Subject Classification: 19G99, 20G10
Keywords and Phrases: K-theory, special linear group, group homol-
ogy

1. Introduction

Given a family of groups {Gt}t∈N with canonical homomorphisms Gt → Gt+1,
we say that the family has homology stability if there exist constants K(n)
such that the natural maps Hn(Gt,Z) → Hn(Gt+1,Z) are isomorphisms for
t ≥ K(n). The question of homology stability for families of linear groups over
a ring R - general linear groups, special linear groups, symplectic, orthogo-
nal and unitary groups - has been studied since the 1970s in connection with
applications to algebraic K-theory, algebraic topology, the scissors congruence
problem, and the homology of Lie groups. These families of linear groups are
known to have homology stability at least when the rings satisfy some appro-
priate finiteness condition, and in particular in the case of fields and local rings
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([4],[26],[27],[25], [5],[2], [21],[15],[14]). It seems to be a delicate - but inter-
esting and apparently important - question, however, to decide the minimal
possible value of K(n) for a particular class of linear groups (with coefficients
in a given class of rings) and the nature of the obstruction to extending the
stability range further.
The best illustration of this last remark are the results of Suslin on the integral
homology of the general linear group of a field in the paper [23]. He proved
that, for an infinite field F , the maps Hn(GLt(F ),Z) → Hn(GLt+1(F ),Z) are
isomorphisms for t ≥ n (so that K(n) = n in this case), while the cokernel of
the map Hn(GLn−1(F ),Z) → Hn(GLn(F ),Z) is naturally isomorphic to the
nth Milnor K-group, KM

n (F ). In fact, if we let

Hn(F ) := Coker(Hn(GLn−1(F ),Z) → Hn(GLn(F ),Z)),

his arguments show that there is an isomorphism of graded rings H•(F ) ∼=
KM

• (F ) (where the multiplication on the first term comes from direct sum of
matrices and cross product on homology). In particular, the non-negatively
graded ring H•(F ) is generated in dimension 1.
Recent work of Barge and Morel ([1]) suggested that Milnor-WittK-theory may
play a somewhat analogous role for the homology of the special linear group.
The Milnor-Witt K-theory of F is a Z-graded ring KMW

• (F ) surjecting natu-
rally onto Milnor K-theory. It arises as a ring of operations in stable motivic
homotopy theory. (For a definition see section 2 below, and for more details see
[17, 18, 19].) Let SHn(F ) := Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) for
n ≥ 1, and let SH0(F ) = Z [F×] for convenience. Barge and Morel construct
a map of graded algebras SH•(F ) → KMW

• (F ) for which the square

SH•(F ) //

��

KMW
• (F )

��
H•(F ) // KM

• (F )

commutes.
A result of Suslin ([24]) implies that the map H2(SL2(F ),Z) = SH2(F ) →
KMW

2 (F ) is an isomorphism. Since positive-dimensional Milnor-Witt K-theory
is generated by elements of degree 1, it follows that the map of Barge and
Morel is surjective in even dimensions greater than or equal to 2. They ask the
question whether it is in fact an isomorphism in even dimensions.
As to the question of the range of homology stability for the special linear
groups of an infinite field, as far as the authors are aware the most general re-
sult to date is still that of van der Kallen [25], whose results apply to much more
general classes of rings. In the case of a field, he proves homology stability for
Hn(SLt(F ),Z) in the range t ≥ 2n+1. On the other hand, known results when
n is small suggest a much larger range. For example, the theorems of Mat-
sumoto and Moore imply that the maps H2(SLt(F ),Z) → H2(SLt+1(F ),Z)
are isomorphisms for t ≥ 3 and are surjective for t = 2. In the paper
[22] (Conjecture 2.6), C-H. Sah conjectured that for an infinite field F (and
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more generally for a division algebra with infinite centre), the homomorphism
Hn(SLt(F ),Z) → Hn(SLt+1(F ), ) is an isomorphism if t ≥ n+ 1 and is surjec-
tive for t = n.
The present paper addresses the above questions of Barge/Morel and Sah in
the case of a field of characteristic zero. We prove the following results about
the homology stability for special linear groups:

Theorem 1.1. Let F be a field of characteristic 0. For n, t ≥ 1, let ft,n be the
stabilization homomorphism Hn(SLt(F ),Z) → Hn(SLt+1(F ),Z)

(1) ft,n is an isomorphism for t ≥ n+ 1 and is surjective for t = n.
(2) If n is odd fn,n is an isomorphism
(3) If n is even the kernel of fn,n is isomorphic to In+1(F ).
(4) For even n the cokernel of fn−1,n is naturally isomorphic to KMW

n (F ).
(5) For odd n ≥ 3 the cokernel of fn−1,n is naturally isomorphic to

2KM
n (F ).

Proof. The proofs of these statements can be found below as follows:

(1) Corollary 5.11.
(2) Corollary 6.12.
(3) Corollary 6.13.
(4) Corollary 6.11.
(5) Corollary 6.13

�

Our strategy is to adapt Suslin’s argument for the general linear group in [23] to
the case of the special linear group. Suslin’s argument is an ingenious variation
on the method of van der Kallen in [25], in turn based on ideas of Quillen.
The broad idea is to find a highly connected simplicial complex on which the
group Gt acts and for which the stabilizers of simplices are (approximately) the
groups Gr, with r ≤ t, and then to use this to construct a spectral sequence
calculating the homology of the Gn in terms of the homology of the Gr. Suslin
constructs a family E(n) of such spectral sequences, calculating the homology
of GLn(F ). He constructs partially-defined products E(n)×E(m) → E(n+m)
and then proves some periodicity and decomposabilty properties which allow
him to conclude by an easy induction.
Initially, the attempt to extend these arguments to the case of SLn(F ) does not
appear very promising. Two obstacles to extending Suslin’s arguments become
quickly apparent.
The main obstacle is Suslin’s Theorem 1.8 which says that a certain inclusion of
a block diagonal linear group in a block triangular group is a homology isomor-
phism. The corresponding statement for subgroups of the special linear group
is emphatically false, as elementary calculations easily show. Much of Suslin’s
subsequent results - in particular, the periodicity and decomposability proper-
ties of the spectral sequences E(n) and of the graded algebra S•(F ) which plays
a central role - depend on this theorem. And, indeed, the analogous spectral
sequences and graded algebra which arise when we replace the general linear
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with the special linear group do not have these periodicity and decomposability
properties.
However, it turns out - at least when the characteristic is zero - that the failure
of Suslin’s Theorem 1.8 is not fatal. A crucial additional structure is available
to us in the case of the special linear group; almost everything in sight in a
Z[F×]-module. In the analogue of Theorem 1.8, the map of homology groups
is a split inclusion whose cokernel has a completely different character as a
Z[F×]-module than the homology of the block diagonal group. The former is
‘additive ’, while the latter is ‘multiplicative ’, notions which we define and
explore in section 4 below. This leads us to introduce the concept of ‘AM
modules’, which decompose in a canonical way into a direct sum of an additive
factor and a multiplicative factor. This decomposition is sufficiently canonical
that in our graded ring structures the additive and multiplicative parts are
each ideals. By working modulo the messy additive factors and projecting onto
multiplicative parts, we recover an analogue of Suslin’s Theorem 1.8 (Theorem
4.23 below), which we then use to prove the necessary periodicity (Theorem
5.10) and decomposability (Theorem 6.8) results.
A second obstacle to emulating the case of the general linear group is the van-
ishing of the groups H1(SLn(F ),Z). The algebra H•(F ), according to Suslin’s
arguments, is generated by degree 1. On the other hand, SH1(F ) = 0 =
H1(SL1(F ),Z) = 0. This means that the best we can hope for in the case of
the special linear group is that the algebra SH•(F ) is generated by degrees 2
and 3. This indeed turns out to be essentially the case, but it means we have
to work harder to get our induction off the ground. The necessary arguments
in degree n = 2 amount to the Theorem of Matsumoto and Moore, as well as
variations due to Suslin ([24]) and Mazzoleni ([11]). The argument in degree
n = 3 was supplied recently in a paper by the present authors ([8]).
We make some remarks on the hypothesis of characteristic zero in this paper:
This assumption is used in our definition of AM-modules and the derivation
of their properties in section 4 below. In fact, a careful reading of the proofs
in that section will show that at any given point all that is required is that
the prime subfield be sufficiently large; it must contain an element of order
not dividing m for some appropriate m. Thus in fact our arguments can easily
be adapted to show that our main results on homology stability for the nth
homology group of the special linear groups are true provided the prime field is
sufficiently large (in a way that depends on n). However, we have not attempted
here to make this more explicit. To do so would make the statements of the
results unappealingly complicated, and we will leave it instead to a later paper
to deal with the case of positive characteristic. We believe that an appropriate
extension of the notion of AM-module will unlock the characteristic p > 0
case.
As to our restriction to fields rather than more general rings, we note that
Daniel Guin [5] has extended Suslin’s results to a larger class of rings with
many units. We have not yet investigated a similar extension of the results
below to this larger class of rings.
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2. Notation and Background Results

2.1. Group Rings and Grothendieck-Witt Rings. For a group G, we
let Z [G] denote the corresponding integral group ring. It has an additive Z-
basis consisting of the elements g ∈ G, and is made into a ring by linearly
extending the multiplication of group elements. In the case that the group G
is the multiplicative group, F×, of a field F , we will denote the basis elements
by 〈a〉, for a ∈ F×. We use this notation in order, for example, to distinguish
the elements 〈1− a〉 from 1 − 〈a〉, or 〈−a〉 from −〈a〉, and also because it
coincides, conveniently for our purposes, with the notation for generators of the
Grothendieck-Witt ring (see below). There is an augmentation homomorphism
ǫ : Z [G] → Z, 〈g〉 7→ 1, whose kernel is the augmentation ideal IG, generated
by the elements g − 1. Again, if G = F×, we denote these generators by
〈〈a〉〉 := 〈a〉 − 1.
The Grothendieck-Witt ring of a field F is the Grothendieck group, GW(F ),
of the set of isometry classes of nondgenerate symmetric bilinear forms under
orthogonal sum. Tensor product of forms induces a natural multiplication on
the group. As an abstract ring, this can be described as the quotient of the
ring Z

[
F×/(F×)2

]
by the ideal generated by the elements 〈〈a〉〉 · 〈〈1 − a〉〉,

a 6= 0, 1. (This is just a mild reformulation of the presentation given in Lam,
[9], Chapter II, Theorem 4.1.) Here, the induced ring homomorphism Z [F×] →
Z
[
F×/(F×)2

]
→ GW(F ), sends 〈a〉 to the class of the 1-dimensional form with

matrix [a]. This class is (also) denoted 〈a〉. GW(F ) is again an augmented
ring and the augmentation ideal, I(F ), - also called the fundamental ideal - is
generated by Pfister 1-forms, 〈〈a〉〉. It follows that the n-th power, In(F ), of
this ideal is generated by Pfister n-forms 〈〈a1, . . . , an〉〉 := 〈〈a1〉〉 · · · 〈〈an〉〉.
Now let h := 〈1〉 + 〈−1〉 = 〈〈−1〉〉 + 2 ∈ GW(F ). Then h · I(F ) = 0, and the
Witt ring of F is the ring

W (F ) :=
GW(F )

〈h〉
=

GW(F )

h · Z
.

Since h 7→ 2 under the augmentation, there is a natural ring homomorphism
W (F ) → Z/2. The fundamental ideal I(F ) of GW(F ) maps isomorphically to
the kernel of this ring homomorphism under the map GW(F ) → W (F ), and
we also let I(F ) denote this ideal.
For n ≤ 0, we define In(F ) := W (F ). The graded additive group I•(F ) =
{In(F )}n∈Z is given the structure of a commutative graded ring using the
natural graded multiplication induced from the multiplication on W (F ). In
particular, if we let η ∈ I−1(F ) be the element corresponding to 1 ∈ W (F ),
then multiplication by η : In+1(F ) → In(F ) is just the natural inclusion.

2.2. Milnor K-theory and Milnor-Witt K-theory. The Milnor ring of
a field F (see [12]) is the graded ring KM

• (F ) with the following presentation:
Generators: {a} , a ∈ F×, in dimension 1.
Relations:

(a) {ab} = {a}+ {b} for all a, b ∈ F×.
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(b) {a} · {1− a} = 0 for all a ∈ F× \ {1}.

The product {a1} · · · {an} in KM
n (F ) is also written {a1, . . . , an}. So K

M
0 (F ) =

Z and KM
1 (F ) is an additive group isomorphic to F×.

We let kM• (F ) denote the graded ring KM
• (F )/2 and let in(F ) :=

In(F )/In+1(F ), so that i•(F ) is a non-negatively graded ring.
In the 1990s, Voevodsky and his collaborators proved a fundamental and deep
theorem - originally conjectured by Milnor ([13]) - relating Milnor K-theory to
quadratic form theory:

Theorem 2.1 ([20]). There is a natural isomorphism of graded rings kM• (F ) ∼=
i•(F ) sending {a} to 〈〈a〉〉.
In particular for all n ≥ 1 we have a natural identification of kMn (F ) and
in(F ) under which the symbol {a1, . . . , an} corresponds to the class of the form
〈〈a1, . . . , an〉〉.

The Milnor-Witt K-theory of a field is the graded ring KMW
• (F ) with the

following presentation (due to F. Morel and M. Hopkins, see [17]):
Generators: [a], a ∈ F×, in dimension 1 and a further generator η in dimension
−1.
Relations:

(a) [ab] = [a] + [b] + η · [a] · [b] for all a, b ∈ F×

(b) [a] · [1− a] = 0 for all a ∈ F× \ {1}
(c) η · [a] = [a] · η for all a ∈ F×

(d) η · h = 0, where h = η · [−1] + 2 ∈ KMW
0 (F ).

Clearly there is a unique surjective homomorphism of graded rings KMW
• (F ) →

KM
• (F ) sending [a] to {a} and inducing an isomorphism

KMW
• (F )

〈η〉
∼= KM

• (F ).

Furthermore, there is a natural surjective homomorphism of graded rings
KMW

• (F ) → I•(F ) sending [a] to 〈〈a〉〉 and η to η. Morel shows that there
is an induced isomorphism of graded rings

KMW
• (F )

〈h〉
∼= I•(F ).

The main structure theorem on Milnor-Witt K-theory is the following theorem
of Morel:

Theorem 2.2 (Morel, [18]). The commutative square of graded rings

KMW
• (F ) //

��

KM
• (F )

��
I•(F ) // i•(F )

is cartesian.
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Thus for each n ∈ Z we have an isomorphism

KMW
n (F ) ∼= KM

n (F )×in(F ) I
n(F ).

It follows that for all n there is a natural short exact sequence

0 → In+1(F ) → KMW
n (F ) → KM

n (F ) → 0

where the inclusion In+1(F ) → KMW
n (F ) is given by

〈〈a1, . . . , an+1〉〉 7→ η[a1] · · · [an].

Similarly, for n ≥ 0, there is a short exact sequence

0 → 2KM
n (F ) → KMW

n (F ) → In(F ) → 0

where the inclusion 2KM
n (F ) → KMW

n (F ) is given (for n ≥ 1) by

2{a1, . . . , an} 7→ h[a1] · · · [an].

Observe that, when n ≥ 2,

h[a1][a2] · · · [an] = ([a1][a2]− [a2][a1])[a3] · · · [an] = [a21][a2] · · · [an].

(The first equality follows from Lemma 2.3 (3) below, the second from the
observation that [a21] · · · [an] ∈ Ker(KMW

n (F ) → In(F )) = 2KM
n (F ) and the

fact, which follows from Morel’s theorem, that the composite 2KM
n (F ) →

KMW
n (F ) → KM

n (F ) is the natural inclusion map.)
When n = 0 we have an isomorphism of rings

GW(F ) ∼=W (F )×Z/2 Z ∼= KMW
0 (F ).

Under this isomorphism 〈〈a〉〉 corresponds to η[a] and 〈a〉 corresponds to η[a]+
1. (Observe that with this identification, h = η[−1] + 2 = 〈1〉 + 〈−1〉 ∈
KMW

0 (F ) = GW(F ), as expected.)
Thus each KMW

n (F ) has the structure of a GW(F )-module (and hence also of a
Z [F×]-module), with the action given by 〈〈a〉〉 · ([a1] · · · [an]) = η[a][a1] · · · [an].
We record here some elementary identities in Milnor-Witt K-theory which we
will need below.

Lemma 2.3. Let a, b ∈ F×. The following identities hold in the Milnor-Witt
K-theory of F :

(1) [a][−1] = [a][a].
(2) [ab] = [a] + 〈a〉[b].
(3) [a][b] = −〈−1〉[b][a].

Proof.

(1) See, for example, the proof of Lemma 2.7 in [7].
(2) 〈a〉b = (η[a] + 1)[b] = η[a][b] + [b] = [ab]− [a].
(3) See [7], Lemma 2.7.

�
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2.3. Homology of Groups. Given a group G and a Z [G]-module M ,
Hn(G,M) will denote the nth homology group of G with coefficients in
the module M . B•(G) will denote the right bar resolution of G: Bn(G)
is the free right Z [G]-module with basis the elements [g1| · · · |gn], gi ∈ G.
(B0(G) is isomorphic to Z [G] with generator the symbol [ ].) The boundary
d = dn : Bn(G) → Bn−1(G), n ≥ 1, is given by

d([g1| · · · |gn]) =
n−1∑

i=o

(−1)i[g1| · · · |ĝi| · · · |gn] + (−1)n[g1| · · · |gn−1] 〈gn〉 .

The augmentation B0(G) → Z makes B•(G) into a free resolution of the trivial
Z [G]-module Z, and thus Hn(G,M) = Hn(B•(G)⊗Z[G] M).
If C• = (Cq, d) is a non-negative complex of Z [G]-modules, then E•,• :=
B•(G) ⊗Z[G] C• is a double complex of abelian groups. Each of the two fil-
trations on E•,• gives a spectral sequence converging to the homology of the
total complex of E•,•, which is by definition, H•(G,C). (see, for example,
Brown, [3], Chapter VII).
The first spectral sequence has the form

E2
p,q = Hp(G,Hq(C)) =⇒ Hp+q(G,C).

In the special case that there is a weak equivalence C• → Z (the complex
consisting of the trivial module Z concentrated in dimension 0), it follows that
H•(G,C) = H•(G,Z).
The second spectral sequence has the form

E1
p,q = Hp(G,Cq) =⇒ Hp+q(G,C).

Thus, if C• is weakly equivalent to Z, this gives a spectral sequence converging
to H•(G,Z).
Our analysis of the homology of special linear groups will exploit the action of
these groups on certain permutation modules. It is straightforward to compute
the map induced on homology groups by a map of permutation modules. We
recall the following basic principles (see, for example, [6]): If G is a group and
if X is a G-set, then Shapiro’s Lemma says that

Hp(G,Z[X]) ∼=
⊕

y∈X/G

Hp(Gy,Z),

the isomorphism being induced by the maps

Hp(Gy,Z) → Hp(G,Z[X])

described at the level of chains by

Bp ⊗Z[Gy] Z → Bp ⊗Z[G] Z[X], z ⊗ 1 7→ z ⊗ y.

Let Xi, i = 1, 2 be transitive G-sets. Let xi ∈ Xi and let Hi be the stabiliser
of xi, i = 1, 2. Let φ : Z[X1] → Z[X2] be a map of Z[G]-modules with

φ(x1) =
∑

g∈G/H2

nggx2, with ng ∈ Z.
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Then the induced map φ• : H•(H1,Z) → H•(H2,Z) is given by the formula

φ•(z) =
∑

g∈H1\G/H2

ngcor
H2

g−1H1g∩H2
resg

−1H1g
g−1H1g∩H2

(
g−1 · z

)
(1)

There is an obvious extension of this formula to non-transitive G-sets.

2.4. Homology of SLn(F ) and Milnor-Witt K-theory. Let F be an
infinite field.
The theorem of Matsumoto and Moore ([10], [16]) gives a presentation of the
group H2(SL2(F ),Z). It has the following form: The generators are symbols
〈a1, a1〉, ai ∈ F×, subject to the relations:

(i) 〈a1, a2〉 = 0 if ai = 1 for some i
(ii) 〈a1, a2〉 = 〈a−1

2 , a1〉
(iii) 〈a1, a2b2〉+ 〈a2, b2〉 = 〈a1a2, b2〉+ 〈a1, a2〉
(iv) 〈a1, a2〉 = 〈a1,−a1a2〉
(v) 〈a1, a2〉 = 〈a1, (1− a1)a2〉

It can be shown that for all n ≥ 2, KMW
n (F ) admits a (generalised) Matsumoto-

Moore presentation:

Theorem 2.4 ([7], Theorem 2.5). For n ≥ 2, KMW
n (F ) admits the following

presentation as an additive group:
Generators: The elements [a1][a2] · · · [an], ai ∈ F×.
Relations:

(i) [a1][a2] · · · [an] = 0 if ai = 1 for some i.
(ii) [a1] · · · [ai−1][ai] · · · [an] = [a1] · · · [a

−1
i ][ai−1] · · · [an]

(iii) [a1] · · · [an−1][anbn] + [a1] · · · [̂an−1][an][bn] = [a1] · · · [an−1an][bn] +
[a1] · · · [an−1][an]

(iv) [a1] · · · [an−1][an] = [a1] · · · [an−1][−an−1an]
(v) [a1] · · · [an−1][an] = [a1] · · · [an−1][(1− an−1)an]

In particular, it follows when n = 2 that there is a natural isomorphism
KMW

2 (F ) ∼= H2(SL2(F ),Z). This last fact is essentially due to Suslin ([24]).
A more recent proof, which we will need to invoke below, has been given by
Mazzoleni ([11]).
Recall that Suslin ([23]) has constructed a natural surjective homomorphism
Hn(GLn(F ),Z) → KM

n (F ) whose kernel is the image of Hn(GLn−1(F ),Z).
In [8], the authors proved that the map H3(SL3(F ),Z) → H3(GL3(F ),Z) is
injective, that the image of the composite H3(SL3(F ),Z) → H3(GL3(F ),Z) →
KM

3 (F ) is 2KM
3 (F ) and that the kernel of this composite is precisely the image

of H3(SL2(F ),Z).
In the next section we will construct natural homomorphisms Tn ◦ ǫn :
Hn(SLn(F ),Z) → KMW

n (F ), in a manner entirely analogous to Suslin’s con-
struction. In particular, the image of Hn(SLn−1(F ),Z) is contained in the
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kernel of Tn ◦ ǫn and the diagrams

Hn(SLn(F ),Z) //

��

KMW
n (F )

��
Hn(GLn(F ),Z) // KM

n (F )

commute. It follows that the image of T3 ◦ ǫ3 is 2KM
3 (F ) ⊂ KMW

3 (F ), and its
kernel is the image of H3(SL2(F ),Z).

3. The algebra S̃(F •)

In this section we introduce a graded algebra functorially associated to F which
admits a natural homomorphism to Milnor-Witt K-theory and from the ho-
mology of SLn(F ). It is the analogue of Suslin’s algebra S•(F ) in [24], which
admits homomorphisms to MilnorK-theory and from the homology of GLn(F ).
However, we will need to modify this algebra in the later sections below, by
projecting onto the ‘multiplicative ’ part, in order to derive our results about
the homology of SLn(F ).
We say that a finite set of vectors v1, . . . , vq in an n-dimensional vector space V
are in general position if every subset of size min(q, n) is linearly independent.
If v1, . . . , vq are elements of the n-dimensional vector space V and if E is an
ordered basis of V , we let [v1| · · · |vq]E denote the n × q matrix whose i-th
column is the components of vi with respect to the basis E .

3.1. Definitions. For a field F and finite-dimensional vector spaces V and
W , we let Xp(W,V ) denote the set of all ordered p-tuples of the form

((w1, v1), . . . , (wp, vp))

where (wi, vi) ∈ W ⊕ V and the vi are in general position. We also define
X0(W,V ) := ∅. Xp(W,V ) is naturally an A(W,V )-module, where

A(W,V ) :=

(
IdW Hom(V,W )
0 GL(V )

)
⊂ GL(W ⊕ V )

Let Cp(W,V ) = Z[Xp(W,V )], the free abelian group with basis the elements
of Xp(W,V ). We obtain a complex, C•(W,V ), of A(W,V )-modules by intro-
ducing the natural simplicial boundary map

dp+1 : Cp+1(W,V ) → Cp(W,V )

((w1, v1), . . . , (wp+1, vp+1)) 7→
p+1∑

i=1

(−1)i+1((w1, v1), . . . , ̂(wi, vi), . . . , (wp+1, vp+1))

Lemma 3.1. If F is infinite, then Hp(C•(W,V )) = 0 for all p.

Documenta Mathematica · Extra Volume Suslin (2010) 267–315



Homology stability for SLn(F ) 277

Proof. If

z =
∑

i

ni((w
i
1, v

i
1), . . . , (w

i
p, v

i
p)) ∈ Cp(W,V )

is a cycle, then since F is infinite, it is possible to choose v ∈ V such that
v, vi1, . . . , v

i
p are in general position for all i. Then z = dp+1((−1)psv(z)) where

sv is the ‘partial homotopy operator’ defined by sv((w1, v1), . . . , (wp, vp)) =
{

((w1, v1), . . . , (wp, vp), (0, v)), if v, v1, . . . vp are in general position,
0, otherwise

�

We will assume our field F is infinite for the remainder of this section. (In later
sections, it will even be assumed to be of characteristic zero.)
If n = dimF (V ), we let H(W,V ) := Ker(dn) = Im(dn+1). This is an

A(W,V )-submodule of Cn(W,V ). Let S̃(W,V ) := H0(SA(W,V ), H(W,V )) =
H(W,V )SA(W,V ) where SA(W,V ) := A(W,V ) ∩ SL(W ⊕ V ).
If W ′ ⊂ W , there are natural inclusions Xp(W

′, V ) → Xp(W,V ) inducing a
map of complexes of A(W ′, V )-modules C•(W

′, V ) → C•(W,V ).

WhenW = 0, we will use the notation, Xp(V ), Cp(V ), H(V ) and S̃(V ) instead

of Xp(0, V ), Cp(0, V ), H(0, V ) and S̃(0, V )
Since, A(W,V )/SA(W,V ) ∼= F×, any homology group of the form

Hi(SA(W,V ),M), where M is a A(W,V )-module,

is naturally a Z[F×]-module: If a ∈ F× and if g ∈ A(W,V ) is any element
of determinant a, then the action of a is the map on homology induced by
conjugation by g on A(W,V ) and multiplication by g on M . In particular, the

groups S̃(W,V ) are Z[F×]-modules.
Let e1, . . . , en denote the standard basis of Fn. Given a1, . . . , an ∈ F×, we let
⌊a1, . . . , an⌉ denote the class of dn+1(e1, . . . , en, a1e1 + · · ·+ anen) in S̃(Fn). If
b ∈ F×, then 〈b〉 · ⌊a1, . . . , an⌉ is represented by

dn+1(e1, . . . , bei, . . . , en, a1e1 + · · · aibei · · ·+ anen)

for any i. (As a lifting of b ∈ F×, choose the diagonal matrix with b in the
(i, i)-position and 1 in all other diagonal positions.)

Remark 3.2. Given x = (v1, . . . , vv, v) ∈ Xn+1(F
n), let A = [v1| · · · |vn] ∈

GLn(F ) of determinant detA and let A′ = diag(1, . . . , 1, detA). Then B =
A′A−1 ∈ SLn(F ) and thus x is in the SLn(F )-orbit of

(e1, . . . , en−1, detAen, A
′w) with w = A−1v,

and hence dn+1(x) represents the element 〈detA〉 ⌊w⌉ in S̃(Fn).

Theorem 3.3. S̃(Fn) has the following presentation as a Z[F×]-module:
Generators: The elements ⌊a1, . . . , an⌉, ai ∈ F×
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Relations: For all a1, . . . , an ∈ F× and for all b1, . . . , bn ∈ F× with bi 6= bj for
i 6= j

⌊b1a1, . . . , bnan⌉ − ⌊a1, . . . , an⌉ =
n∑

i=1

(−1)n+i
〈
(−1)n+iai

〉
⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , an(bn − bi), bi⌉.

Proof. Taking SLn(F )-coinvariants of the exact sequence of Z[GLn(F )]-
modules

Cn+2(F
n)

dn+2 // Cn+1(F
n)

dn+1 // H(Fn) // 0

gives the exact sequence of Z[F×]-modules

Cn+2(F
n)SLn(F )

dn+2 // Cn+1(F
n)SLn(F )

dn+1 // S̃(Fn) // 0.

It is straightforward to verify that

Xn+1(F
n) ∼=

∐

a=(a1,...,an),ai 6=0

GLn(F ) · (e1, . . . , en, a)

as a GLn(F )-set. It follows that

Cn+1(F
n) ∼=

⊕

a

Z[GLn(F )] · (e1, . . . , en, a)

as a Z[GLn(F )]-module, and thus that

Cn+1(F
n)SLn(F )

∼=
⊕

a

Z[F×] · (e1, . . . , en, a)

as a Z[F×]-module.
Similarly, every element of Xn+2(F

n) is in the GLn(F )-orbit of a unique el-
ement of the form (e1, . . . , en, a, b · a) where a = (a1, . . . , an) with ai 6= 0 for
all i and b = (b1, . . . , bn) with bi 6= 0 for all i and bi 6= bj for all i 6= j, and
b · a := (b1a1, . . . , bnan). Thus

Xn+2(F
n) ∼=

∐

(a,b)

GLn(F ) · (e1, . . . , en, a, b · a)

as a GLn(F )-set and

Cn+2(F
n)SLn(F )

∼=
⊕

(a,b)

Z[F×] · (e1, . . . , en, a, b · a)

as a Z[F×]-module.
So dn+1 induces an isomorphism

⊕Z[F×] · (e1, . . . , en, a)

〈dn+2(e1, . . . , en, a, b · a)|(a, b)〉
∼= S̃(Fn).

Now dn+2(e1, . . . , en, a, b · a) =
n∑

i=1

(−1)i+1(e1, . . . , êi, . . . , en, a, b · a) + (−1)i
(
(e1, . . . , en, b · a)− (e1, . . . , en, a)

)
.
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Applying the idea of Remark 3.2 to the terms (e1, . . . , êi, . . . , en, a, b · a) in
the sum above, we let Mi(a) := [e1| · · · |êi| · · · |en|a] and δi = detMi(a) =
(−1)n−iai. Since

Mi(a)
−1 =




1 . . . 0 −a1/ai 0 . . . 0

0
. . .

...
...

...
...

...
0 . . . 1 −ai−1/ai 0 . . . 0
0 . . . 0 −ai+1ai 1 . . . 0

0 . . . 0
... 0

. . . 0
0 . . . 0 −an/ai 0 . . . 1
0 . . . 0 1/ai 0 . . . 0




it follows that dn+1(e1, . . . , êi, . . . , en, a, b·a) represents 〈δi〉 ⌊wi⌉ ∈ S̃(Fn) where

wi = Mi(a)
−1(b · a) = (a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , an(bn − bi), bi). This

proves the theorem. �

3.2. Products. If W ′ ⊂W , there is a natural bilinear pairing

Cp(W
′, V )× Cq(W ) → Cp+q(W ⊕ V ), (x, y) 7→ x ∗ y

defined on the basis elements by

((w
′
1, v1), . . . , (w

′
p, vp)) ∗ (w1, . . . , wq) :=

(

(w
′
1, v1), . . . , (w

′
p, vp), (w1, 0), . . . , (wq , 0)

)

.

This pairing satisfies dp+q(x ∗ y) = dp(x) ∗ y + (−1)px ∗ dq(y).
Furthermore, if α ∈ A(W ′, V ) ⊂ GL(W ⊕ V ) then (αx) ∗ y = α(x ∗ y), and if
α ∈ GL(V ) ⊂ A(W ′, V ) ⊂ GL(W ⊕ V ) and β ∈ GL(W ) ⊂ GL(W ⊕ V ), then
(αx) ∗ (βy) = (α · β)(x ∗ y). (However, if W ′ 6= 0 then the images of A(W ′, V )
and GL(W ) in GL(W ⊕ V ) don’t commute.)
In particular, there are induced pairings on homology groups

H(W ′, V )⊗H(W ) → H(W ⊕ V ),

which in turn induce well-defined pairings

S̃(W ′, V )⊗H(W ) → S̃(W,V ) and S̃(V )⊗ S̃(W ) → S̃(W ⊕ V ).

Observe further that this latter pairing is Z[F×]-balanced: If a ∈ F×, x ∈ S̃(W )

and y ∈ S̃(V ), then (〈a〉x) ∗ y = x ∗ (〈a〉 y) = 〈a〉 (x ∗ y). Thus there is a well-
defined map

S̃(V )⊗Z[F×] S̃(W ) → S̃(W ⊕ V ).

In particular, the groups {H(Fn)}n≥0 form a natural graded (associative) al-

gebra, and the groups {S̃(Fn)}n≥0 = S̃(F •) form a graded associative Z[F×]-
algebra.
The following explicit formula for the product in S̃(F •) will be needed below:

Lemma 3.4. Let a1, . . . , an and a′1, . . . , a
′
m be elements of F×. Let b1, . . . , bn,

b′1, . . . , b
′
m be any elements of F× satisfying bi 6= bj for i 6= j and b′s 6= b′t for

s 6= t.
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Then

⌊a1, . . . , an⌉ ∗ ⌊a
′
1, . . . , a

′
m⌉ =

=
n
∑

i=1

m
∑

j=1

(−1)m+n+i+j
〈

(−1)i+j
aia

′
j

〉

×

×⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , bi, a
′
1(b

′
1 − b

′
j), . . . , ̂a′

j(b
′
j − b′j), . . . , b

′
j⌉

+(−1)n
n
∑

i=1

(−1)i+1
〈

(−1)i+1
ai

〉

⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , bi, b
′
1a

′
1, . . . , b

′
ma

′
m⌉

+(−1)m
m
∑

j=1

(−1)j+1
〈

(−1)j+1
a
′
j

〉

⌊b1a1, . . . , bnan, a
′
1(b

′
1 − b

′
j), . . . , ̂a′

j(b
′
j − b′j), . . . , b

′
j⌉

+⌊b1a1, . . . , bnan, b
′
1a

′
1, . . . , b

′
ma

′
m⌉

Proof. This is an entirely straightforward calculation using the defini-
tion of the product, Remark 3.2, the matrices Mi(a), Mj(a

′) as in
the proof of Theorem 3.3, and the partial homotopy operators sv with
v = (a1b1, . . . , anbn, a

′
1b

′
1, . . . , a

′
mb

′
m). �

3.3. The maps ǫV . If dimF (V ) = n, then the exact sequence of GL(V )-
modules

0 // H(V ) // Cn(V )
dn // Cn−1(V )

dn−1 // · · ·
d1 // C0(V ) = Z // 0

gives rise to an iterated connecting homomorphism

ǫV : Hn(SL(V ),Z) → H0(SL(V ), H(V )) = S̃(V ).

Note that the collection of groups {Hn(SLn(F ),Z)} form a graded Z[F×]-
algebra under the graded product induced by exterior product on homology,
together with the obvious direct sum homomorphism SLn(F ) × SLm(F ) →
SLn+m(F ).

Lemma 3.5. The maps ǫn : Hn(SLn(F ),Z) → S̃(Fn), n ≥ 0, give a well-defined
homomorphism of graded Z[F×]-algebras; i.e.

(1) If a ∈ F× and z ∈ Hn(SLn(F ),Z), then ǫn(〈a〉 z) = 〈a〉 ǫn(z) in S̃(Fn),
and

(2) If z ∈ Hn(SLn(F ),Z) and w ∈ Hm(SLm(F ),Z) then

ǫn+m(z × w) = ǫn(z) ∗ ǫm(w) in S̃(Fn+m).

Proof.

(1) The exact sequence above is a sequence of GL(V )-modules and hence
all of the connecting homomorphisms δi : Hn−i+1(SL(V ), Im(di)) →
Hn−i(SL(V ),Ker(di)) are F

×-equivariant.
(2) Let Cτ

• (V ) denote the truncated complex.

Cτ
p (V ) =

{
Cp(V ), p ≤ dimF (V )

0, p > dimF (V )
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Thus H(V ) → Cτ
• (V ) is a weak equivalence of complexes (where we regard

H(V ) as a complex concentrated in dimension dim (V )). Since the complexes
Cτ
• (V ) are complexes of free abelian groups, it follows that for two vector spaces
V andW , the map H(V )⊗ZH(W ) → T•(V,W ) is an equivalence of complexes,
where T•(V,W ) is the total complex of the double complex Cτ

• (V ) ⊗Z Cτ
• (W ).

Now T•(V,W ) is a complex of SL(V ) × SL(W )-modules, and the product ∗
induces a commutative diagram of complexes of SL(V )× SL(W )-complexes:

H(V )⊗Z H(W ) //

∗

��

Cτ
• (V )⊗ Cτ

• (W )

∗

��
H(V ⊕W ) // Cτ

• (V ⊕W )

which, in turn, induces a commutative diagram

Hn(SL(V ),Z)⊗Hm(SL(W ),Z)
ǫV ⊗ǫW //

×

��

H0(SL(V ), H(V ))⊗H0(SL(W ), H(W ))

×

��
Hn+m(SL(V )× SL(W ),Z⊗ Z)

ǫT• //

��

H0(SL(V )× SL(W ), H(V )⊗H(W ))

��
Hn+m(SL(V ⊕W ),Z)

ǫV ⊕W // H0(SL(V ⊕W ), H(V ⊕W ))

(where n = dim (V ) and m = dim (W )).
�

Lemma 3.6. If V =W ⊕W ′ with W ′ 6= 0, then the composite

Hn(SL(W ),Z) // Hn(SL(V ),Z)
ǫV // S̃(V )

is zero.

Proof. The exact sequence of SL(V )-modules

0 → Ker(d1) → C1(V ) → Z → 0

is split as a sequence of SL(W )-modules via the map Z → C1(V ),m 7→ m · e
where e is any nonzero element of W ′. It follows that the connecting homo-
morphism δ1 : Hn(SL(W ),Z) → Hn−1(SL(W ),Ker(d1)) is zero. �

Let SHn(F ) denote the cokernel of the map Hn(SLn−1(F ),Z)→Hn(SLn(F ),Z).

It follows that the maps ǫn give well-defined homomorphisms SHn(F ) → S̃(Fn),

which yield a homomorphism of graded Z[F×]-algebras ǫ• : SH•(F ) → S̃(F •).

3.4. The maps DV . Suppose now that W and V are vector spaces and that
dim (V ) = n. Fix a basis E of V . The group A(W,V ) acts transitively on
Xn(W,V ) (with trivial stabilizers), while the orbits of SA(W,V ) are in one-to-
one correspondence with the points of F× via the correspondence

Xn(W,V ) → F×, ((w1, v1), . . . , (wn, vn)) 7→ det ([v1| · · · |vn]E) .
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Thus we have an induced isomorphism

H0(SA(W,V ), Cn(W,V ))
det
∼=

// Z[F×].

Taking SA(W,V )-coinvariants of the inclusion H(W,V ) → Cn(W,V ) then
yields a homomorphism of Z[F×]-modules

DW,V : S̃(W,V ) → Z[F×].

In particular, for each n ≥ 1 we have a homomorphism of Z[F×]-modules

Dn : S̃(Fn) → Z[F×].

We will also set D0 : S̃(F 0) = Z → Z equal to the identity map. Here Z is a
trivial F×-module.
We set

An =





Z, n = 0
IF× , n odd
Z[F×], n > 0 even

We have An ⊂ Z[F×] for all n and we make A• into a graded algebra by using
the multiplication on Z[F×].

Lemma 3.7.

(1) The image of Dn is An.

(2) The maps D• : S̃(F •) → A• define a homomorphism of graded Z[F×]-
algebras.

(3) For each n ≥ 0, the surjective map Dn : S̃(Fn) → An has a Z[F×]-
splitting.

Proof.

(1) Consider a generator ⌊a1, . . . , an⌉ of S̃(Fn).
Let e1, . . . , en be the standard basis of Fn. Let a := a1e1+· · ·+anen.

Then

⌊a1, . . . , an⌉ = dn+1(e1, . . . , en, a)

=
n∑

i=1

(−1)i+1(e1, . . . , êi, . . . , en, a) + (−1)n(e1, . . . , en).

Thus

Dn(⌊a1, . . . , an⌉) =

n∑

i=1

(−1)i+1 〈det ([e1| · · · |êi| · · · |en|a])〉+ (−1)n 〈1〉

=

{
〈a1〉 − 〈−a2〉+ · · ·+ 〈an〉 − 〈1〉 , n odd
〈−a1〉 − 〈a2〉+ · · · − 〈an〉+ 〈1〉 , n > 0 even

Thus, when n is even, Dn(⌊−1, 1,−1, . . . ,−1, 1⌉) = 〈1〉 andDn maps
onto Z[F×].

When n is odd, clearly, Dn(⌊a1, . . . , an⌉) ∈ IF× . However, for any
a ∈ F×, Dn(⌊a,−1, 1, . . . ,−1, 1⌉) = 〈〈a〉〉 ∈ An = IF× .
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(2) Note that Cn(F
n) ∼= Z[GLn(F )] naturally. Let µ be the homomor-

phism of additive groups

µ : Z[GLn(F )]⊗ Z[GLm(F )] → Z[GLn+m(F )],

A⊗B 7→

(
A 0
0 B

)

The formula Dm+n(x ∗ y) = Dn(x) ·Dm(y) now follows from the com-
mutative diagram

H(Fn)⊗H(Fm)
∗ //

��

H(Fn+m)

��
Cn(F

n)⊗ Cm(Fm)
∗ //

∼=

��

Cn+m(Fn+m)

∼=

��
Z[GLn(F )]⊗ Z[GLm(F )]

µ //

det⊗ det

��

Z[GLn+m(F )]

det

��
Z[F×]⊗ Z[F×]

· // Z[F×]

(3) When n is even the maps Dn are split surjections, since the image is a
free module of rank 1.

It is easy to verify that the map D1 : S̃(F ) → A1 = IF× is an

isomorphism. Now let E ∈ S̃(F 2) be any element satisfying D2(E) =
〈1〉 (eg. we can take E = ⌊−1, 1⌉). Then for n = 2m + 1 odd, the

composite S̃(F ) ∗ E∗m → S̃(Fn) → IF× = An is an isomorphism.

�

We will let S̃(W,V )+ = Ker(DW,V ). Thus S̃(F
n) ∼= S̃(Fn)+ ⊕An as a Z[F×]-

module by the results above.
Observe that it follows directly from the definitions that the image of ǫV is
contained in S̃(V )+ for any vector space V .

3.5. The maps Tn.

Lemma 3.8. If n ≥ 2 and b1, . . . , bn are distinct elements of F× then

[b1][b2] · · · [bn] =
n∑

i=1

[b1 − bi] · · · [bi−1 − bi][bi][bi+1 − bi] · · · [bn − bi] in K
MW
n (F ).
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Proof. We will use induction on n starting with n = 2: Suppose that b1 6= b2 ∈
F×. Then

[b1 − b2]([b1]− [b2])

=

(
[b1] + 〈b1〉

[
1−

b2
b1

])(
−〈b1〉

[
b2
b1

])
by Lemma 2.3 (2)

= −〈b1〉[b1]

[
b2
b1

]
since [x][1− x] = 0

= [b1]([b1]− [b2]) by Lemma 2.3(2) again

= [b1]([−1]− [b2]) by Lemma 2.3 (1)

= [b1](−〈−1〉[−b2])

= [−b2][b1] by Lemma 2.3 (3).

Thus

[b1][b2 − b1] + [b1 − b2][b2] = −〈−1〉[b2 − b1][b1] + [b1 − b2][b2]

= −([b1 − b2]− [−1])[b1] + [b1 − b2][b2]

= −[b1 − b2]([b1]− [b2]) + [−1][b1]

= −[−b2][b1] + [−1][b1] = ([−1]− [−b2])[b1]

= −〈−1〉[b2][b1] = [b1][b2]

proving the case n = 2.
Now suppose that n > 2 and that the result holds for n− 1. Let b1, . . . , bn be
distinct elements of F×.We wish to prove that

( n−1∑

i=1

[b1 − bi] · · · [bi] · · · [bn−1 − bi]

)
[bn] =

n∑

i=1

[b1 − bi] · · · [bi] · · · [bn − bi].

We re-write this as:
n−1∑

i=1

[b1 − bi] · · · [bi] · · · [bn−1 − bi]([bn]− [bn − bi]) = [b1 − bn] · · · [bn−1 − bn][bn].

Now

[b1 − bi] · · · [bi] · · · [bn−1 − bi]([bn]− [bn − bi])

= (−〈−1〉)n−i[b1 − bi] · · · [bn−1 − bi]

(
[bi]([bn]− [bn − bi])

)

= (−〈−1〉)n−i[b1 − bi] · · · [bn−1 − bi]

(
[bi − bn][bn]

)

= [b1 − bi] · · · [bi − bn] · · · [bn−1 − bi][bn].

So the identity to be proved reduces to
( n−1∑

i=1

[b1 − bi] · · · [bi − bn] · · · [bn−1 − bi]

)
[bn] = [b1 − bn] · · · [bn−1 − bn][bn].
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Letting b′i = bi − bn for 1 ≤ i ≤ n− 1, then bj − bi = b′j − b′i for i, j ≤ n− 1 and
this reduces to the case n− 1. �

Theorem 3.9.

(1) For all n ≥ 1, there is a well-defined homomorphism of Z[F×]-modules

Tn : S̃(Fn) → KMW
n (F )

sending ⌊a1, . . . , an⌉ to [a1] · · · [an].
(2) The maps {Tn} define a homomorphism of graded Z[F×]-algebras

S̃(F •) → KMW
• (F ): We have

Tn+m(x ∗ y) = Tn(x) · Tm(y), for all x ∈ S̃(Fn), y ∈ S̃(Fm).

Proof.

(1) By Theorem 3.3, in order to show that Tn is well-defined we must prove
the identity

[b1a1] · · · [bnan]− [a1] · · · [an] =
n∑

i=1

(−〈−1〉)n+i〈ai〉[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [an(bn − bi][bi]

in KMW
n (F ).

Writing [biai] = [ai] + 〈ai〉[bi] and [aj(bj − bi)] = [aj ] + 〈aj〉[bj − bi]
and expanding the products on both sides and using (3) of Lemma 2.3
to permute terms, this identity can be rewritten as

∑

∅6=I⊂{1,...,n}

(−〈−1〉)sgn(σI)〈ai1 · · · aik〉[aj1 ] · · · [ajs ][bi1 ] · · · [bik ] =

∑

∅6=I⊂{1,...,n}

(−〈−1〉)sgn(σI)〈ai1 · · · aik〉[aj1 ] · · · [ajs ]×

×

( k∑

t=1

[bi1 − bit ] · · · [bit ] · · · [bik − bit ]

)

where I = {i1 < · · · < ik} and the complement of I is {j1 < · · · < js}
(so that k + s = n) and σI is the permutation

(
1 . . . s s+ 1 . . . n
j1 . . . js i1 . . . ik

)
.

The result now follows from the identity of Lemma 3.8.
(2) We can assume that x = ⌊a1, . . . , an⌉ and y = ⌊a′1, . . . , a

′
m⌉ with

ai, a
′
j ∈ F×. From the definition of Tn+m and the formula of Lemma

3.4,
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Tn+m(x ∗ y) =
n
∑

i=1

m
∑

j=1

(−1)n+m+i+j
〈

(−1)i+j
aia

′
j

〉

×

× [a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi][a
′
1(b

′
1 − b

′
j)] · · · [ ̂a′

j(b
′
j − b′j)] · · · [b

′
j ]

+(−1)n
n
∑

i=1

(−1)i+1
〈

(−1)i+1
ai

〉

[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi][b
′
1a

′
1] · · · [b

′
ma

′
m]

+(−1)m
m
∑

j=1

(−1)j+1
〈

(−1)j+1
a
′
j

〉

[b1a1] · · · [bnan][a
′
1(b

′
1 − b

′
j)] · · · [ ̂a′

j(b
′
j − b′j)] · · · [b

′
j ]

+[b1a1] · · · [bnan][bi][b
′
1a

′
1] · · · [b

′
ma

′
m]

which factors as X · Y with X =
n
∑

i=1

(−1)n+i+1
〈

(−1)i+1
ai

〉

[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi] + [b1a1] · · · [bnan]

= [a1] · · · [an] = Tn(x) by part (1)

and Y =
m
∑

j=1

(−1)m+j+1
〈

(−1)j+1
a
′
j

〉

[a′
1(b

′
1 − b

′
j)] · · · [ ̂a′

j(b
′
j − b′j)] · · · [b

′
j ] + [b′1a

′
1] · · · [b

′
ma

′
m]

= [a′
1] · · · [a

′
m] = Tm(y) by (1) again.

�

Note that T1 is the natural surjective map S̃(F ) ∼= IF× → KMW
1 (F ), ⌊a⌉ ↔

〈〈a〉〉 7→ [a]. It has a nontrivial kernel in general.
Note furthermore that SH2(F ) = H2(SL2(F ),Z). It is well-known ([24],[11],
and [7]) that H2(SL2(F ),Z) ∼= KM

2 (F )×kM
2 (F ) I

2(F ) ∼= KMW
2 (F ).

In fact we have:

Theorem 3.10. The composite T2 ◦ ǫ2 : H2(SL2(F ),Z) → KMW
2 (F ) is an

isomorphism.

Proof. For p ≥ 1, let X̄p(F ) denote the set of all p-tuples (x1, . . . , xp) of points
of P1(F ) and let X̄0(F ) = ∅. We let C̄p(F ) denote the GL2(F ) permuta-
tion module Z[X̄p(F )] and form a complex C̄•(F ) using the natural simplicial
boundary maps, d̄p. This complex is acyclic and the map F 2 \ {0} → P1(F ),
v 7→ v induces a map of complexes C•(F

2) → C̄•(F ).
Let H̄2(F ) := Ker(d̄2 : C̄2(F ) → C̄1(F )) and let S̄2(F ) = H0(SL2(F ), H̄2(F )).
We obtain a commutative diagram of SL2(F )-modules with exact rows:

C4(F
2)

��

d4 // C3(F
2)

��

d3 // H(F 2)

��

// 0

C̄4(F )
d̄4 // C̄3(F )

d̄3 // H̄2(F ) // 0
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Taking SL2(F )-coinvariants gives the diagram

H0(SL2(F ), C4(F
2))

��

d4 // H0(SL2(F ), C3(F
2))

��

d3 // S̃(F 2)

φ

��

// 0

H0(SL2(F ), C̄4(F ))
d̄4 // H0(SL2(F ), C̄3(F ))

d̄3 // S̄2(F ) // 0

Now the calculations of Mazzoleni, [11], show that H0(SL2(F ), C̄3(F )) ∼=
Z[F×/(F×)2] via

class of (∞, 0, a) 7→ 〈a〉 ∈ Z[F×/(F×)2],

where a ∈ P1(F ) = e1 + ae2 and ∞ := e1. Furthermore S̄2(F ) ∼= GW(F ) in
such a way that the induced map Z[F×/(F×)2] → GW(F ) is the natural one.
Since ⌊a, b⌉ = d3(e1, e2, ae1 + be2), it follows that φ(⌊a, b⌉) = 〈a/b〉 = 〈ab〉 in
GW(F ).
Associated to the complex C̄•(F ) we have an iterated connecting homomor-
phism ω : H2(SL2(F ),Z) → S̄2(F ) = GW(F ). Observe that ω = φ ◦ ǫ2. In
fact, (Mazzoleni, [11], Lemma 5) the image of ω is I2(F ) ⊂ GW(F ).

On the other hand, the module S̃(F 2)+ is generated by the elements
[[a, b]] := ⌊a, b⌉−D2(⌊a, b⌉)·E (where E, as above, denotes the element ⌊−1, 1⌉).
Note that T2([[a, b]]) = T2(⌊a, b⌉) = [a][b] since T2(E) = [−1][1] = 0 in
KMW

2 (F ).
Furthermore,

φ([[a, b]]) = φ(⌊a, b⌉)−D2(⌊a, b⌉)φ(E)

= 〈ab〉 − (〈−a〉 − 〈b〉+ 〈1〉)〈−1〉

= 〈ab〉 − 〈a〉+ 〈−b〉 − 〈−1〉

= 〈ab〉 − 〈a〉 − 〈b〉+ 〈1〉

= 〈〈a, b〉〉

(using the identity 〈b〉+ 〈−b〉 = 〈1〉+ 〈−1〉 in GW(F )).
Using these calculations we thus obtain the commutative diagram

H2(SL2(F ),Z)
ǫ2 //

ω

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

S̃(F 2)+

φ

��

T2 // KMW
2 (F )

yysss
ss
ss
ss
s

I2(F )

Now, the natural embedding F× → SL2(F ), a 7→ diag(a, a−1) := ã induces a
homomorphism, µ:

2∧(
F×

)
∼= H2(F

×,Z) → H2(SL2(F ),Z),

a ∧ b 7→
(
[ã|b̃]− [b̃|ã]

)
⊗ 1 ∈ B2(SL2(F ))⊗Z[SL2(F )] Z.
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Mazzoleni’s calculations (see [11], Lemma 6) show that µ(
∧2

(F×)) = Ker(ω)

and that there is an isomorphism µ(
∧2

(F×)) ∼= 2 ·KM
2 (F ) given by µ(a∧ b) 7→

2{a, b}.
On the other hand, a straightforward calculation shows that ǫ2 (µ(a ∧ b)) =

〈a〉 ⌊b,
1

ab
⌉ − ⌊b,

1

b
⌉ − 〈a〉 ⌊1,

1

a
⌉+ 〈b〉 ⌊1,

1

b
⌉+ ⌊a,

1

a
⌉ − 〈b〉 ⌊a,

1

ab
⌉ := Ca,b

Now by the diagram above,

T2(Ca,b) = T2(ǫ2 (µ(a ∧ b))) ∈ Ker(KMW
2 (F ) → I2(F )) ∼= 2KM

2 (F ).

Recall that the natural embedding 2KM
2 (F ) → KMW

2 (F ) is given by 2{a, b} 7→
[a2][b] = [a][b]− [b][a] and the composite

2KM
2 (F ) // KMW

2 (F )
κ2 // KM

2 (F )

is the natural inclusion map. Since

κ2 (T2(Ca,b)) =

{
b,

1

ab

}
−

{
b,
1

b

}
−

{
1,

1

a

}
+

{
1,

1

b

}
+

{
a,

1

a

}
−

{
a,

1

ab

}

= {a, b} − {b, a} = 2{a, b},

it follows that we have a commutative diagram with exact rows

0 // µ(
∧2

(F×)) //

∼=

��

H2(SL2(F ),Z)
ω //

T2◦ǫ2

��

I2(F ) //

=

��

0

0 // 2KM
2 (F ) // KMW

2 (F ) // I2(F ) // 0

proving the theorem. �

4. AM-modules

From the results of the last section, it follows that there is a Z[F×]-
decomposition

S̃(F 2) ∼= KMW
2 (F )⊕ Z[F×]⊕?

It is not difficult to determine that the missing factor is isomorphic to the
1-dimensional vector space F (with the tautological F×-action). However,
as we will see, this extra term will not play any role in the calculations of
Hn(SLk(F ),Z).
As Z[F×]-modules, our main objects of interest (Milnor-Witt K-theory, the
homology of the special linear group, the powers of the fundamental ideal in
the Grothendieck-Witt ring) are what we call below ‘multiplicative ’; there
exists m ≥ 1 such that, for all a ∈ F×, 〈am〉 acts trivially. This is certainly not
true of the vector space F above. In this section we formalise this difference,
and use this formalism to prove an analogue of Suslin’s Theorem 1.8 ([23]) (see
Theorem 4.23 below).
Throughout the remainder of this article, F will denote a field of characteristic
0.
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Let SF ⊂ Z[F×] denote the multiplicative set generated by the elements
{〈〈a〉〉 = 〈a〉 − 1 | a ∈ F× \ {1}}. Note that 0 6∈ SF , since the elements of SF

map to units under the natural ring homomorphism Z[F×] → F . We will also
let S+

Q ⊂ Z[Q×] denote the multiplicative set generated by {〈〈a〉〉 = 〈a〉−1 | a ∈

Q× \ {±1}}.

Definition 4.1. A Z[F×]-moduleM is said to be multiplicative if there exists
s ∈ S+

Q with sM = 0.

Definition 4.2. We will say that a Z[F×]-module is additive if every s ∈ S+
Q

acts as an automorphism on M .

Example 4.3. Any trivial Z[F×]-module M is multiplicative , since 〈〈a〉〉 an-
nihilates M for all a 6= 1.

Example 4.4. GW(F ), and more generally In(F ), is multiplicative since 〈〈a2〉〉
annihilates these modules for all a ∈ F×.

Example 4.5. Similarly, the groups Hn(SLn(F ),Z) are multiplicative since
they are annihilated by the elements 〈〈am〉〉.

Example 4.6. Any vector space over F , with the induced action of Z[F×], is
additive since all elements of SF act as automorphisms.

Example 4.7. More generally, if V is a vector space over F , then for all
r ≥ 1, the rth tensor power Tr

Z(V ) = Tr
Q(V ) is an additive module since,

if a ∈ Q \ {±1}, 〈a〉 acts as multiplication by ar and hence 〈〈a〉〉 acts as
multiplication by ar − 1. For the same reasons, the rth exterior power,

∧r
Z(V ),

is an additive module.

Remark 4.8. Observe that if 〈〈am〉〉 acts as an automorphism of the Z[F×]-
module M for some a ∈ F×, m > 1, then so does 〈〈a〉〉, since 〈〈am〉〉 =
〈〈a〉〉(

〈
am−1

〉
+ · · ·+ 〈a〉+ 1) = (

〈
am−1

〉
+ · · ·+ 〈a〉+ 1)〈〈a〉〉 in Z[F×].

Lemma 4.9. Let
0 →M1 →M →M2 → 0

be a short exact sequence of Z[F×]-modules.
Then M is multiplicative if and only if M1 and M2 are.

Proof. SupposeM is multiplicative . If s ∈ S+
Q satisfies sM = 0, it follows that

sM1 = sM2 = 0.
Conversely, if M1 and M2 are multiplicative then there exist s1, s2 ∈ S+

Q with

siMi = 0 for i = 1, 2. It follows that sM = 0 for s = s1s2 ∈ S+
Q . �

Lemma 4.10. Let
0 → A1 → A→ A2 → 0

be a short exact sequence of Z[F×]-modules. If A1 and A2 are additive modules,
then so is A.

Proof. This is immediate from the definition. �
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Lemma 4.11. Let φ :M → N be a homomorphism of Z[F×]-modules.

(1) If M and N are multiplicative , then so are Ker(φ) and Coker(φ).
(2) If M and N are additive , then so are Ker(φ) and Coker(φ).

Proof. (1) This follows from Lemma 4.9 above.
(2) If s ∈ S+

Q , then s acts as an automorphism of M and N , and hence of

Coker(φ) and Ker(φ).
�

Corollary 4.12. Let C = (C•, d) be a complex of Z[F×]-modules. If C• is
additive (i.e. if each Cn is an additive module), then each Hn(C) is an additive
module. If each Cn is multiplicative then each Hn(C) is a multiplicative module.

Lemma 4.13. Let M be a multiplicative Z[F×]-module and A an additive
Z[F×]-module. Then HomZ[F×](M,A) = 0 and HomZ[F×](A,M) = 0.

Proof. Let f : M → A be a Z[F×]-homomorphism. Every s ∈ S+
Q acts as an

automorphism of A. However, there exists s ∈ S+
Q with sM = 0. Thus, for

m ∈M , 0 = f(sm) = sf(m) =⇒ f(m) = 0.
Let g : A → M be a Z[F×]-homomorphism. Again, choose s ∈ S+

Q acting as
an automorphism of A and annihilating M . If a ∈ A, then there exists b ∈ a
with a = sb. Hence g(a) = sg(b) = 0 in M . �

Lemma 4.14. If P is a Z[F×]-module and if A is an additive submodule and
M a multiplicative submodule, then A ∩M = 0.

Proof. There exists s ∈ Z[Q×] which annihilates any submodule of M but is
injective on any submodule of A. �

Lemma 4.15.

(1) If

0 // M // H
π // A // 0

is an exact sequence of Z[F×]-modules with M multiplicative and A
additive then the sequence splits (over Z[F×]).

(2) Similarly, if

0 // A // H // M // 0

is an exact sequence of Z[F×]-modules with M multiplicative and A
additive then the sequence splits.

Proof. As above we can find s ∈ Z[Q×] such that s ·M = 0 and s acts as an
automorphism of A.

(1) Then sH is a Z[F×]-submodule of H and π induces an isomorphism
sH ∼= A, since π(sH) = sπ(H) = sA = A and if π(sh) = 0 then
sπ(h) = 0 in A, so that π(h) = 0 and h ∈M .

(2) We have sH = A and multiplication by s gives an automorphism, α,
of A. Thus the Z[F×]-homomorphism H → A, h 7→ α−1(s · h) splits
the sequence.
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�

Definition 4.16. We will say that a Z[F×]-module H is an AM module if
there exists a multiplicative Z[F×]-module M and an additive Z[F×] module
A and an isomorphism of Z[F×]-modules H ∼= A⊕M .

Lemma 4.17. Let H be an AM module and let φ : H → A⊕M be an isomor-
phism of Z[F×]-modules, with M multiplicative and A additive .
Then

φ−1(A) =
⋃

A′⊂H,A′additive

A′ and φ−1(M) =
⋃

M ′⊂H,M ′multiplicative

M ′

Proof. Let M ′ ⊂ H be multiplicative. Then the composite

M ′ // H
φ // A⊕M // A

is zero by Lemma 4.13, and thus M ′ ⊂ φ−1(M).
An analogous argument can be applied to φ−1(A). �

It follows that the submodules φ−1(A) and φ−1(M) are independent of the
choice of φ, A and M . We will denote the first as HA and the second as HM.
Thus if H is an AM module then there is a canonical decomposition H =
HA⊕HM, where HA (resp. HM) is the maximal additive (resp. multiplicative
) submodule of H. We have canonical projections

πA : H → HA, πM : H → HM.

Lemma 4.18. Let H be a AM module. Suppose that H is also a module over
a ring R and that the action of R commutes with that of Z[F×]. Then HA and
HM are R-submodules of H.

Proof. Let r ∈ R. Then the composite

HA
r· // H

πM // HM

is a Z[F×]-homomorphism and thus is 0 by Lemma 4.13. It follows that r·HA ⊂
Ker(πM) = HA. �

Lemma 4.19. Let f : H → H ′ be a Z[F×]-homomorphism of AM modules.
Then there exist Z[F×]-homomorphisms fA : HA → H ′

A and fM : HM →
H ′

M such that f = fA ⊕ fM.
Suppose that H and H ′ are modules over a ring R and that the R-action com-
mutes with the Z[F×]-action in each case. If f is an R-homomorphism, then
so are fA and fM.

Proof. This is immediate from Lemmas 4.13 and 4.18. �

Lemma 4.20. If

0 // L
j // H

π // K // 0

is a short exact sequence of Z[F×]-modules and if L and K are AM modules,
then so is H.
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Proof. Let H̃ = π−1(KM). Then the exact sequence

0 → L→ H̃ → KM → 0

gives the exact sequence

0 →
L

LM
→

H̃

j(LM)
→ KM → 0.

Since L/LM
∼= LA is additive , this latter sequence is split, by Lemma 4.15

(2).

So H̃/j(LM) is a AM module, and there is a Z[k×]-isomorphism

H̃/j(LM)
φ

∼=
// LA ⊕KM.

Let φ̄ be the composite

H̃ // H̃/j(LM)
φ // LA ⊕KM.

Let Hm = φ̄−1(KM) ⊂ H̃ ⊂ H. Then, we have an exact sequence

0 → LM → Hm → KM → 0

so that Hm is multiplicative .
On the other hand, since H̃/Hm

∼= LA and H/H̃ ∼= KA, we have a short exact
sequence

0 → LA →
H

Hm
→ KA → 0.

This implies that H/Hm is additive , and thus H is AM by Lemma 4.15
(1). �

Lemma 4.21. Let (C•, d) be a complex of Z[k×]-modules. If each Cn is AM,
then H•(C) is AM, and furthermore

H•(CA) = H•(C)A
H•(CM) = H•(C)M

Proof. The differentials d decompose as d = dA ⊕ dM by Lemma 4.19. �

Theorem 4.22. Let (Er, dr) be a first quadrant spectral sequence of Z[k×]-
modules converging to the Z[k×]-module H• = {Hn}n≥0.
If for some r0 ≥ 1 all of the modules Er0

p,q are AM, then the same holds for all
the modules Er

p,q for all r ≥ r0 and hence for the modules E∞
p,q.

Furthermore, H• is AM and the spectral sequence decomposes as a direct sum
Er = Er

A ⊕Er
M (r ≥ r0) with Er

A converging to H•A and Er
M converging

to H•M.
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Proof. Since Er+1 = H(Er, dr) for all r, the first statement follows from Lemma
4.21.
Since Er is a first quadrant spectral sequence (and, in particular, is bounded),
it follows that for any fixed (p, q), E∞

p,q = Er
p,q for all sufficiently large r. Thus

E∞ is also AM.
Now Hn admits a filtration 0 = F0Hn ⊂ · · · ⊂ FnHn = Hn with corresponding
quotients grpHn

∼= E∞
p,n−p.

Since all the quotients are AM, it follows by Lemma 4.20, together with an
induction on the filtration length, that Hn is AM.
The final two statements follow again from Lemma 4.21. �

If G is a subgroup of GL(V ), we let SG denote G ∩ SL(V ).

Theorem 4.23. Let V , W be finite-dimensional vector spaces over F and let
G1 ⊂ GL(W ), G2 ⊂ GL(V ) be subgroups and suppose that G2 contains the
group F× of scalar matrices.
Let M be a subspace of HomF (V,W ) for which G1M =M =MG2.
Let

G =

(
G1 M
0 G2

)
⊂ GL(W ⊕ V ).

Then, for i ≥ 1, the groups Hi(SG,Z) are AM and the natural embedding
j : S(G1 ×G2) → SG induces an isomorphism

Hi(S(G1 ×G2),Z) ∼= Hi(SG,Z)M.

Proof. We begin by noting that the groups Hi(SG,Z) are Z[F
×]-modules: The

action of F× is derived from the short exact sequence

1 // SG // G
det // F× // 1

We have a split extension of groups (split by the map j) which is F×-stable:

0 // M // SG
π // S(G1 ×G2) // 1.

The resulting Hochschild-Serre spectral sequence has the form

E2
p,q = Hp(S(G1 ×G2),Hq(M,Z)) =⇒ Hp+q(SG,Z).

This spectral sequence exists in the category of Z[F×]-modules and all differ-
entials and edge homomorphisms are Z[F×]-maps.
Since the map π is split by j it induces a split surjection on integral homology
groups. Thus

Hn(S(G1 ×G2),Z) = E2
n,0 = E∞

n,0 for all n ≥ 0.

Observe furthermore that the Z[F×]-module Hn(S(G1 ×G2),Z) is multiplica-
tive : Given a ∈ F×, the element

ρa :=

(
IdW 0
0 a · IdV

)
∈ G
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has determinant am ( m = dimF (V )) and centralizes S(G1 × G2). It follows
that 〈am〉 acts trivially on Hn(S(G1 ×G2),Z) for all n; i.e. 〈〈a

m〉〉 annihilates
Hn(S(G1 ×G2),Z).
Recall (Example 4.7 above) that for q ≥ 1, the modules Hq(M,Z) =

∧q
Z(M),

with the Z[F×]-action derived from the action of F by scalars on M , are addi-
tive modules.
Now if a ∈ F×, then conjugation by ρa is trivial on S(G1 × G2) but acts on
M as scalar multiplication by a. It follows that for q > 0, 〈〈am〉〉 acts as an
automorphism on Hp(S(G1 × G2),Hq(M,Z)) for all a ∈ Q \ {±1}. Thus, for
q > 0, the groups Hp(S(G1 ×G2),Hq(M,Z)) are additive Z[F×]-modules; i.e.,
all E2

p,q are additive for q > 0. It follows at once that the groups E∞
p,q are

additive for all q > 0. Thus, from the convergence of the spectral sequence,
we have a short exact sequence

0 → H → Hn(SG,Z) → E∞
n,0 = j (Hn(S(G1 ×G2),Z)) → 0

and H has a filtration whose graded quotients are all additive .
So Hn(SG,Z) is AM as claimed, and Hn(SG,Z)M

∼= Hn(S(G1 ×G2),Z).
�

Corollary 4.24. Suppose that W ′ ⊂ W . Then there is a corresponding in-
clusion SA(W ′, V ) → SA(W,V ). This inclusion induces an isomorphism

Hn(SA(W
′, V ),Z)M ∼=

// Hn(SA(W,V ),Z)M
∼= Hn(SL(V ),Z)

for all n ≥ 1.

5. The spectral sequences

Recall that F is a field of characteristic 0 throughout this section.
In this section we use the complexes C•(W,V ) to construct spectral sequences

converging to 0 in dimensions less than n = dimF (V ), and to S̃(W,V ) in
dimension n. By projecting onto the multiplicative part, we obtain spectral se-
quences with good properties: the terms in the E1-page are just the kernels and
cokernels of the stabilization maps ft,n : Hn(SLt(F ),Z) → Hn(SLt+1(F ),Z).
We then prove that the higher differentials are all zero. Since the spectral se-
quences converge to 0 in low degrees, this already implies the main stability
result (Corollary 5.11); the maps ft,n are isomorphisms for t ≥ n + 1 and are
surjective for t = n. The remainder of the paper is devoted to an analysis of
the case t = n− 1, which requires some more delicate calculations.
Let Cτ

• (W,V ) denote the truncated complex.

Cτ
p (W,V ) =

{
Cp(W,V ), p ≤ dimF (V )

0, p > dimF (V )

Thus

Hp(C
τ
• (W,V )) =

{
0, p 6= n
H(W,V ), p = n

where n = dimF (V ).
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Thus the natural action of SA(W,V ) on Cτ
• (W,V ) gives rise to a spectral se-

quence E(W,V ) which has the form

E1
p,q = Hp(SA(W,V ), Cτ

q (W,V )) =⇒ Hp+q−n(SA(W,V ), H(W,V )).

The groups Cτ
q (W,V ) are permutation modules for SA(W,V ) and thus the E1-

terms (and the differentials d1) can be computed in terms of the homology of
stabilizers.
Fix a basis {e1, . . . , en} of V . Let Vr be the span of {e1, . . . , er} and let V ′

s be
the span of {en−s, . . . , en}, so that V = Vr ⊕ V ′

n−r if 0 ≤ r ≤ n.
For any 0 ≤ q ≤ n − 1, the group SA(W,V ) acts transitively on the basis of
Cτ
q (W,V ) and the stabilizer of

(
(0, e1), . . . , (0, eq)

)

is SA(W ⊕ Vq, V
′
n−q).

Thus, for q ≤ n− 1,

E1
p,q = Hp(SA(W,V ), Cτ

q (W,V )) ∼= Hp(SA(W ⊕ Vq, V
′
n−q),Z)

by Shapiro’s Lemma.
By the results in section 4 we have:

Lemma 5.1. The terms E1
p,q in the spectral sequence E(W,V ) are AM for

q > 0, and

(E1
p,q)M = Hp(SL(V

′
n−q),Z)

∼= Hp(SLn−q(F ),Z).

For q = n, the orbits of SA(W,V ) on the basis of Cτ
n(W,V ) are in bijective

correspondence with F× via

(
(w1, v1), . . . , (wn, vn)

)
7→ det ([v1| · · · |vn]E) .

The stabilizer of any basis element of Cτ
n(W,V ) is trivial. Thus

E1
p,n =

{
Z[F×], p = 0
0, p > 0

Of course, E1
p,q = 0 for q > n.

The first column of the E1-page of the spectral sequence E(W,V ) has the form

E1
0,q =





Z, q < n
Z[F×], q = n
0, q > n

and the differentials are easily computed: For q < n

d10,q : E1
0,q → E1

0,q =

{
IdZ, q is odd
0, q is even

and

d10,n : Z[F×] → Z =

{
augmentation , n odd
0, n even
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It follows that E2
0,q = 0 for q 6= n and

E2
0,n =

{
IF× , n odd
Z[F×], n even

Note that the composite

S̃(W,V )
edge // E∞

0,n ⊂ E2
0,n = An

is just the map DW,V of section 3 above.

Lemma 5.2. The map DW,V is a split surjective homomorphism of Z[F×]-
modules.

Proof. If W = 0, this is Lemma 3.7 (1) and (3), since V ∼= Fn.
In general the natural map of complexes Cτ

• (V ) → Cτ
• (W,V ) gives rise to a

commutative diagram of Z[F×]-modules

S̃(V ) //

DV ""❉
❉❉

❉❉
❉❉

❉
S̃(W,V )

DW,V{{✇✇
✇✇
✇✇
✇✇
✇

An

�

We let S̃(W,V )+ := Ker(DW,V : S̃(W,V ) → An), so that S̃(W,V ) ∼=
S̃(W,V )+ ⊕An for all W,V .

Corollary 5.3. In the spectral sequence E(W,V ), we have E2
0,q = E∞

0,q for all
q ≥ 0.
All higher differentials dr0,q : Er

0,q → Er
r−1,q+r are zero.

It follows that the spectral sequences E(W,V ) decompose as a direct sum of
two spectral sequences

E(W,V ) = E0(W,V )⊕ E+(W,V )

where E0(W,V ) is the first column of E(W,V ) and E+(W,V ) involves only the
terms Er

p,q with q > 0.

The spectral sequence E0(W,V ) converges in degree d to
{

0, d 6= n
An, d = n

The spectral sequence E+(W,V ) converges in degree d to




0, d < n

S̃(W,V )+, d = n
Hd−n(SA(W,V ), H(W,V )), d > n

By Lemma 5.1 above, all the terms of the spectral sequence E+(W,V ) are AM.
We thus have

Corollary 5.4.
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(1) The Z[F×]-modules S̃(W,V )+ are AM.

(2) The graded submodule S̃(F •)+A ⊂ S̃(F •) is an ideal.

Proof.

(1) This follows from Theorem 4.22.

(2) This follows from Lemma 4.18, since S̃(F •)+ is an ideal in S̃(F •) by
Lemma 3.7 (2).

�

Corollary 5.5. The natural embedding H(V ) → H(W,V ) induces an iso-
morphism

S̃(V )+M

∼= // S̃(W,V )+M.

Proof. The map of complexes of SL(V )-modules Cτ
• (V ) → Cτ

• (W,V ) gives
rise to a map of spectral sequences E+(V ) → E+(W,V ) and hence a map
E+(V )M → E+(W,V )M. The induced map on the E1-terms is

Hp(SLn−q(F ),Z)
Id //

∼=

��

Hp(SLn−q(F ),Z)

∼=

��
Hp(SL(V ), Cτ

q (V ))
M

// Hp(SA(W,V ), Cτ
q (W,V ))

M

and thus is an isomorphism.
It follows that there is an induced isomorphism of abutments

S̃(V )+M
∼= S̃(W,V )+M

and
Hk(SL(V ), H(V ))M

∼= Hk(SA(W,V ), H(W,V ))M.

�

For convenience, we now define

S̃(W,V )M :=
S̃(W,V )

S̃(W,V )+A

(even though S̃(W,V ) is not an AM module).
This gives:

Corollary 5.6.

S̃(W,V )M
∼= S̃(W,V )+M ⊕An

∼= S̃(V )+M ⊕An
∼= S̃(V )M

as Z[F×]-modules, and S̃(F •)M is a graded Z[F×]-algebra.

Lemma 5.7. For any k ≥ 1, the corestriction map

cor : Hi(SLk(F ),Z) → Hi(SLk+1(F ),Z)

is F×-invariant;i.e. if a ∈ F× and z ∈ Hi(SLk(F ),Z), then

cor(〈a〉 z) = 〈a〉 cor(z) = cor(z).
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Proof. Of course, cor is a homomorphism of Z[F×]-modules. However, for
a ∈ F×,

〈
ak

〉
acts trivially on Hi(SLk(F ),Z) while

〈
ak+1

〉
acts trivially on

Hi(SLk+1(F ),Z) so that

cor(〈a〉 z) = cor(
〈
ak+1

〉
z) =

〈
ak+1

〉
cor(z) = cor(z).

�

Lemma 5.8. For 0 ≤ q < n, the differentials of the spectral sequence
E+(W,V )M

d1p,q : (E1
p,q)M

∼= Hp(SLn−q(F ),Z) → (E1
p,q−1)M

∼= Hp(SLn−q+1(F ),Z)

are zero when q is even and are equal to the corestriction map when q is odd.

Proof. d1 is derived from the map dq : Cτ
q (W,V ) → Cτ

q−1(W,V ) of permutation
modules. Here

dq
(
(0, e1), . . . , (0, eq)

)
=

q∑

i=1

(−1)i+1
(
(0, e1), . . . , (̂0, ei), . . . , (0, eq)

)

=

q∑

i=1

(−1)i+1φi
(
(0, e1), . . . , (0, eq−1)

)

where φi ∈ SA(W,V ) can be chosen to be of the form

φi =

(
IdW 0
0 ψi

)
, ψi =

(
σi 0
0 τi

)
∈ GL(V )

with σi ∈ GL(Vq) a permutation matrix of determinant ǫi and τi ∈ GL(V ′
n−q)

also of determinant ǫi.
φi normalises SA(W⊕Vq, V

′
n−q,) and SL(V ′

n−q). Thus for z ∈ Hp(SL(V
′
n−q),Z),

d1(z) =

q∑

i=1

(−1)i+1cor(τiz)

=

q∑

i=1

(−1)i+1cor(〈ǫi〉 z)

=

q∑

i=1

(−1)i+1cor(z) =

{
cor(z), q odd
0, q even

�

Let E := ⌊−1, 1⌉ ∈ S̃(F 2)M. E is represented by the element

Ẽ := d3(e1, e2, e2−e1) = (e2, e2−e1)−(e1, e2−e1)+(e1, e2) ∈ H(F 2) ⊂ Cτ
2 (F

2).

Multiplication by Ẽ induces a map of complexes of GLn−2(F )-modules

Cτ
• (F

n−2)[2] → Cτ
• (F

n)

There is an induced map of spectral sequences E(Fn−2)[2] → E(Fn),
which in turn induces a map E+(Fn−2)[2] → E+(Fn), and hence a map
E+(Fn−2)M[2] → E+(Fn)M.
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By the work above, the E1-page of E+(Fn)M has the form

E1
p,q = Hp(SLn−q(F ),Z) (p > 0)

while the E1-page of E+(Fn−2)M[2] has the form

E′1
p,q =

{
Hp(SL(n−2)−(q−2)(F ),Z) = Hp(SLn−q(F ),Z), q ≥ 2, p > 0
0, q ≤ 1 or p = 0

Lemma 5.9. For q ≥ 2 (and p > 0), the map

E′1
p,q

∼= Hp(SLn−q(F ),Z) → E1
p,q = Hp(SLn−q(F ),Z)

induced by Ẽ ∗ − is the identity map.

Proof. There is a commutative diagram

E′1
p,q = Hp(SLn−q(F ), Z) //

(Ẽ∗−)M

��

Hp(SA(Fq−2, Fn−q), Z)
∼= //

Ẽ∗−

��

Hp(SLn−2(F ), Cτ
q−2(F

n−2))

Ẽ∗−

��
E1

p,q = Hp(SLn−q(F ), Z) // Hp(SA(Fq, Fn−q), Z)
∼= // Hp(SLn(F ), Cτ

q (Fn))

We number the standard basis of Fn−2 e3, . . . , en so that the inclusion
SLn−2(F ) → SLn(F ) has the form

A 7→

(
I2 0
0 A

)
.

So we have a commutative diagram of inclusions of groups

SLn−q(F ) //

=

��

SA(F q−2, Fn−q) //

��

SLn−2(F )

��
SLn−q(F ) // SA(F q, Fn−q) // SLn(F ).

Let B• = B•(SLn(F )) be the right bar resolution of SLn(F ). We can use it to
compute the homology of any of the groups occurring in this diagram.
Suppose now that q ≥ 2 and we have a class, w, in E′1

p,q = Hp(SLn−q(F ),Z)
represented by a cycle

z ⊗ 1 ∈ Bp ⊗Z[SLn−q(F )] Z.

Its image in Hp(SLn−2(F ), C
τ
q−2(F

n−2)) is represented by z⊗ (e3, . . . , eq). The
image of this in Hp(SLn(F ), C

τ
q (F

n)) is

z ⊗
[
Ẽ ∗ (e3, . . . , eq)

]

= z ⊗ [(e2, e2 − e1, e3, . . .)− (e1, e2 − e1, e3, . . .) + (e1, e2, e3, . . .)]

= z ⊗ [(g1 − g2 + 1)(e1, e2, e3, . . .)] ∈ Bp ⊗Z[SLn(F )] C
τ
q (F

n)
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where

g1 =




0 −1 0 . . . 0
1 1 0 . . . 0

0 0 1 0
...

...
... 0

. . . 0
0 0 0 . . . 1



, g2 =




1 −1 0 . . . 0
0 1 0 . . . 0

0 0 1 0
...

...
... 0

. . . 0
0 0 0 . . . 1




∈ SLn(F ).

This corresponds to the element in Hp(SLn−q(F ),Z) represented by

z(g1 − g2 + 1)⊗ 1 ∈ Bp ⊗Z[SLn−q(F )] Z

Since the elements gi centralize SLn−q(F ) it follows that this is (g1−g2+1)·w =
w. �

Recall that the spectral sequence E+(Fn)M converges in degree n to S̃(Fn)+M.
Thus there is a filtration

0 = Fn,−1 ⊂ Fn,0 ⊂ Fn,1 ⊂ · · · Fn,n = S̃(Fn)+M

with
Fn,i

Fn,i−1

∼= E∞
n−i,i.

The E1-page of E+(Fn)M has the form

0 0 0 . . . 0

0 H1(SL2(F ),Z)

��

H2(SL2(F ),Z)

��

. . . Hn(SL2(F ),Z)

��
...

...

cor

��

...

cor

��

. . . ...

cor

��
0 H1(SLn−2(F ),Z)

0

��

H2(SLn−2(F ),Z)

0

��

. . . Hn(SLn−2(F ),Z)

0

��
0 H1(SLn−1(F ),Z)

cor

��

H2(SLn−1(F ),Z)

cor

��

. . . Hn(SLn−1(F ),Z)

cor

��
0 H1(SLn(F ),Z) H2(SLn(F ),Z) . . . Hn(SLn(F ),Z)

Theorem 5.10.

(1) The higher differentials d2, d3, . . . , in the spectral sequence E+(Fn)M
are all 0.

(2) S̃(Fn−2)M
∼= E ∗ S̃(Fn−2)M and this latter is a direct summand of

S̃(Fn)M.
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Proof.

(1) We will use induction on n. For n ≤ 2 the statement is true for trivial
reasons.

On the other hand, if n > 2, by Lemma 5.9, the map

Ẽ ∗ − : E+(Fn−2)M[2] → E+(Fn)M

induces an isomorphism on E1-terms for q ≥ 2. By induction (and the

fact that E′1
p,q = 0 for q ≤ 1), the result follows for n.

(2) The map of spectral sequences E+(Fn−2)M[2] → E+(Fn)M induces a
homomorphism on abutments

S̃(Fn−2)+M

E∗− // S̃(Fn)+M

By Lemma 5.9 again, it follows that the composite

S̃(Fn−2)+M

E∗− // S̃(Fn)+M
//
(
S̃(Fn)+M

)
/Fn,1

is an isomorphism.
Thus S̃(Fn−2)+M

∼= E ∗ S̃(Fn−2)+M and

S̃(Fn)+M
∼=

(
E ∗ S̃(Fn−2)+M

)
⊕Fn,1.

�

As a corollary we obtain the following general homology stability result for the
homology of special linear groups:

Corollary 5.11.
The corestriction maps Hp(SLn−1(F ),Z) → Hp(SLn(F ),Z) are isomorphisms
for p < n− 1 and are surjective when p = n− 1.

Proof. Using (1) of Theorem 5.10 and Lemma 5.8, we have (for the spectral
sequence E+(Fn)M) that E∞

p,q = E2
p,q =

Ker(d1)

Im(d1)
=

{
Ker(Hp(SLn−q(F ),Z) → Hp(SLn−q+1(F ),Z)) q odd
Coker(Hp(SLn−q−1(F ),Z) → Hp(SLn−q(F ),Z)) q even

But the abutment of the spectral sequence is 0 in dimensions less than n. It
follows that E∞

p,q = 0 whenever p+ q ≤ n− 1. �

Remark 5.12. Note that in the spectral sequence E+(Fn)M,

E∞
n,0 = Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) = SHn(F ).

Clearly, the edge homomorphism Hn(SLn(F ),Z) → E∞
n,0 → S̃(Fn)M is just

the iterated connecting homomorphism ǫn of section 3 above. Thus we have:

Corollary 5.13. The maps

ǫ• : SH•(F ) → S̃(F •)M

define an injective homomorphism of graded Z[F×]-algebras.
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Corollary 5.14. S̃(F 2)M = F2,1 ⊕ Z[F×]E and for all n ≥ 3,

S̃(Fn)M = (E ∗ S̃(Fn−2)M)⊕Fn,1
∼= S̃(Fn−2)M ⊕Fn,1.

Proof. Clearly S̃(F 2)+M = F1,2, while for n ≥ 3 we have

S̃(Fn)M =

{
S̃(Fn)+M ⊕ Z[F×]E∗n

2 n even

S̃(Fn)+M ⊕
(
S̃(F ) ∗ E∗n−1

2

)
n odd

�

Corollary 5.15. For all n ≥ 3,

S̃(Fn)M
∼=

{
Fn,1 ⊕Fn−2,1 ⊕ · · · ⊕ F2,1 ⊕ Z[F×] n even
Fn,1 ⊕Fn−2,1 ⊕ · · · ⊕ F3,1 ⊕ IF× n odd

as a Z[F×]-module.

Note that F1,1 = S̃(F ) = IF× , and for all n ≥ 2, Fn,1 fits into an exact
sequence associated to the spectral sequence E+(Fn)M:

0 → E∞
n,0 = Fn,0 → Fn,1 → E∞

n−1,1 → 0.

Corollary 5.16. For all n ≥ 2 we have an exact sequence

Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z) → Fn,1 →

Hn−1(SLn−1(F ),Z) → Hn−1(SLn(F ),Z) → 0.

Lemma 5.17. For all n ≥ 2, the map Tn induces a surjective map Fn,1 →
KMW

n (F ).

Proof. First observe that since KMW
n (F ) is generated by the elements of the

form [a1] · · · [an] it follows from the definition of Tn that Tn : S̃(Fn) →
KMW

n (F ) is surjective for all n ≥ 1.
Next, since KMW

• (F ) is multiplicative, T• factors through an algebra homo-

morphism S̃(F •)M → KMW
• (F ). The lemma thus follows from Corollary 5.14

and the fact that T2(E) = 0. �

Lemma 5.18. F2,1 = F2,0 and T2 : F2,1 → KMW
2 (F ) is an isomorphism.

Proof. Since H1(SL1(F ),Z) = 0, F2,1 = F2,0 = E∞
2,0 = ǫ2(H2(SL2(F ),Z)).

Now apply Theorem 3.10. �

It is natural to define elements [a, b] ∈ F2,0 ⊂ S̃(F 2)M by [a, b] := T−1
2 ([a][b]).

Lemma 5.19. In S̃(F 2)M we have the formula

[a, b] = ⌊a⌉ ∗ ⌊b⌉ − 〈〈a〉〉〈〈b〉〉E.

Proof. The results above show that the maps T2 andD2 induce an isomorphism

(T2, D2) : S̃(F
2)M

∼= KMW
2 (F )⊕ Z[F×].

Since D2(⌊a⌉ ∗ ⌊b⌉) = 〈〈a〉〉〈〈b〉〉, while D2(E) = 1, the result follows. �

Theorem 5.20.
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(1) The product ∗ respects the filtrations on S̃(Fn); i.e. for all n,m ≥ 1
and i, j ≥ 0

Fn,i ∗ Fm,j ⊂ Fn+m,i+j .

(2) For n ≥ 1, let ǫn+1,1 denote the composite Fn+1,1 → E∞
n,1 = E2

n,1 →

Hn(SLn(F ),Z). For all a ∈ F× and for all n ≥ 1 the following diagram
commutes:

Fn,0
⌊a⌉∗ // Fn+1,1

ǫn+1,1

��
Hn(SLn(F ),Z)

ǫn

OO

〈〈a〉〉· // Hn(SLn(F ),Z)

Proof.

(1) The filtration on S̃(Fn)M is derived from the spectral sequence E(Fn).
This is the spectral sequence of the double complex B•⊗SLn(F )C

τ
• (F

n),
regarded as a filtered complex by truncating Cτ

• (F
n) at i for i = 0, 1, . . ..

Since the product ∗ is derived from a graded bilinear pairing on the
complexes Cτ

• (F
n), the result easily follows.

(2) The spectral sequence E(Fn+1) calculates

H•(SLn+1(F ), C
τ (Fn+1)) ∼= H•(SLn+1(F ), H(Fn+1)[n+ 1]

(where [n+ 1] denotes a degree shift by n+ 1).
Let C[1, n] denote the truncated complex

Cτ
1 (F

n+1)
d1 // Cτ

0 (F
n+1)

and let Z1 denote the kernel of d1. Then

H•(SLn+1(F ), C[1, n]) ∼= H•(SLn+1(F ), Z1)[1].

If Fi denotes the filtration on H•(SLn+1(F ), C
τ (Fn+1)) associated to

the spectral sequence E(Fn+1), then from the definition of this filtra-
tion, F1Hk(SLn+1(F ), C

τ (Fn+1)) =

Im(Hk(SLn+1(F ), C[1, n]) → Hk(SLn+1(F ), C
τ (Fn+1))).

In particular,

Fn+1,1
∼= Im(Hn+1(SLn+1(F ), C[1, n]) → Hn+1(SLn+1(F ), C

τ (Fn+1)))

and with this identification the diagram

Hn+1(SLn+1(F ), C[1, n]) // Fn+1,1

ǫn+1,1

��
Hn(SLn+1(F ), Z1)

∼=

OO

// Hn(SLn+1(F ), C
τ
1 (F

n+1))

commutes (and Hn(SLn+1(F ), C
τ
1 (F

n+1)) ∼= Hn(SA(F, F
n),Z) by

Shapiro’s Lemma, of course).
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We consider SLn(F ) ⊂ SA(F, Fn) ⊂ SLn+1(F ) ⊂ GLn+1(F ) where
the first inclusion is obtained by inserting a 1 in the (1, 1) posi-
tion. Let B• denote a projective resolution of Z over Z[GLn+1(F )].
Let z ∈ Hn(SLn(F ),Z) be represented by x ⊗ 1 ∈ Bn ⊗Z[SLn(F )]

Z = Bn ⊗Z[SLn(F )] C
τ
0 (F

n). Then ⌊a⌉ ∗ ǫn(z) is represented by
z ⊗ [(ae1) − (e1)] ∈ Bn ⊗SLn+1(F ) Z1 which maps to the element of

Hn(SLn+1(F ), C
τ
1 (F

n+1)) represented by z(g − 1) ⊗ (e1) where g =
diag(a, 1, . . . , 1, a−1). But this is just the image of 〈〈a〉〉z under the
map Hn(SLn(F ),Z) → Hn(SA(F, F

n),Z) ∼= Hn(SLn+1(F ), C
τ
1 (F

n+1)).

�

Lemma 5.21. The map T3 : F3,1 → KMW
3 (F ) is an isomorphism.

Proof. Consider the short exact sequence

0 → E∞
3,0 → F3,1 → E∞

2,1 → 0.

Here ǫ3 induces an isomorphism

E∞
3,0

∼= Coker(H3(SL2(F ),Z) → H3(SL3(F ),Z)).

By the main result of [8] (Theorem 4.7 - see also section 2.4 of this article), T3
thus induces an isomorphism E∞

3,0
∼= 2KM

3 (F ) ⊂ KMW
3 (F ).

On the other hand,

E∞
2,1

∼= Ker(H2(SL2(F ),Z) → H2(SL3(F ),Z)) ∼= I3(F )

Thus we have a commutative diagram

0 // E∞
3,0

T3
∼=

��

// F3,1

T3

��

ρ // I3(F )

α

��

// 0

0 // 2KM
3 (F ) // KMW

3 (F )
p3 // I3(F ) // 0

where the vertical arrows are surjections.
Now the inclusion I3(F ) → KMW

2 (F ) is given by 〈〈a, b, c〉〉 7→ 〈〈a〉〉[b][c]. Thus
the inclusion j : I3(F ) → H2(SL2(F ),Z) is given by 〈〈a, b, c〉〉 7→ 〈〈a〉〉〈b, c〉
where 〈b, c〉 = ǫ−1

2 ([b, c]). Thus for all a, b, c ∈ F× we have

j ◦ ρ(⌊a⌉ ∗ [b, c]) = ǫ3,1(⌊a⌉ ∗ [b, c]) = 〈〈a〉〉〈b, c〉

using Theorem 5.20 (2), and thus ρ(⌊a⌉ ∗ [b, c]) = 〈〈a, b, c〉〉 ∈ I3(F ). It follows
from the diagram that

α(〈〈a, b, c〉〉) = α ◦ ρ(⌊a⌉ ∗ [b, c]) = p3 ◦ T3(⌊a⌉ ∗ [b, c]) = 〈〈a, b, c〉〉

so that α is the identity map, and the result follows. �

Lemma 5.22. For all a ∈ F×, ⌊a⌉ ∗ E = E ∗ ⌊a⌉ in S̃(F 3)M.

Proof. By the calculations above, F3,1 = S̃(F 3)+M = Ker(D3). Thus
Ra := ⌊a⌉ ∗E−E ∗ ⌊a⌉ ∈ F3,1. But then T3(Ra) = 0 since T2(E) = 0 and thus
Ra = 0 by the previous lemma. �
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Lemma 5.23.

(1) For all a, b, c ∈ F×

⌊a⌉ ∗ [b, c] = [a, b] ∗ ⌊c⌉ in S̃(F 3)M.

(2) For all a, b, c ∈ F×

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ = ⌊c⌉ ∗ ⌊a⌉ ∗ ⌊b⌉ in S̃(F 3)M.

(3) For all a, b, c, d ∈ F×

[a, b] ∗ [c, d] = [a, c−1] ∗ [b, d] in S̃(F 4)M.

Proof. The calculations above have established that the map

(T3, D3) : S̃(F
3)M → KMW

3 (F )⊕ IF×

is an isomorphism.

(1) This follows from the identities

T3(⌊a⌉ ∗ [b, c]) = [a][b][c] = T3([a, b] ∗ ⌊c⌉)

and
D3(⌊a⌉ ∗ [b, c]) = 〈〈a, b, c〉〉 = D3([a, b] ∗ ⌊c⌉)

(2) This follows from the fact that [a][b][c] = [c][a][b] in KMW
3 (F ).

(3) We begin by observing that, since S̃(F ) ∼= IF× as a Z[F×]-module we
have 〈〈a〉〉⌊b⌉ = ⌊ab⌉ − ⌊a⌉ − ⌊b⌉ = 〈〈b〉〉⌊a⌉ for all a, b ∈ F×.

For x1, . . . , xn ∈ F× and i, j ≥ 1 with i+ j = n we set

Li,j(x1, . . . , xn) := 〈〈x1〉〉 · · · 〈〈xi〉〉 (⌊xi+1⌉ ∗ · · · ∗ ⌊xn⌉) ∈ S̃(F j)M.

By the observation just made, we have

Li,j(x1, . . . , xn) = Li,j(xσ(1), . . . , xσ(n))

for any permutation σ of 1, . . . , n.
So

[a, b] ∗ [c, d] = (⌊a⌉ ∗ ⌊b⌉ − 〈〈a〉〉〈〈b〉〉E) ∗ (⌊c⌉ ∗ ⌊d⌉ − 〈〈c〉〉〈〈d〉〉E)

= ⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − 2L2,2(a, b, c, d) ∗ E + 〈〈a〉〉〈〈b〉〉〈〈c〉〉〈〈d〉〉E∗2

Let R = [a, b] ∗ [c, d]− [a, c−1] ∗ [b, d].
So R =

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉ − 2(L2,2(a, b, c, d)− L2,2(a, c
−1

, b, d)) ∗ E

+〈〈a〉〉〈〈d〉〉
[

(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E
]

∗ E.

However, since [b, c] = [c−1, b] in S̃(F 2)M we have (by Lemma 5.19)

(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E = ⌊b⌉ ∗ ⌊c⌉ − ⌊c−1⌉ ∗ ⌊b⌉.

Thus 〈〈a〉〉〈〈d〉〉
[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]
∗ E =

(L2,2(a, b, c, d)− L2,2(a, c
−1, b, d)) ∗ E

and hence R =

⌊a⌉∗⌊b⌉∗⌊c⌉∗⌊d⌉−⌊a⌉∗⌊c−1⌉∗⌊b⌉∗⌊d⌉−(L2,2(a, b, c, d)−L2,2(a, c
−1, b, d))∗E.
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Now

(L2,2(a, b, c, d)− L2,2(a, c
−1, b, d)) ∗ E

= ⌊a⌉ ∗ ⌊d⌉ ∗
[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]

= ⌊a⌉ ∗ ⌊d⌉ ∗
[
⌊b⌉ ∗ ⌊c⌉ − ⌊c−1⌉ ∗ ⌊b⌉

]

= ⌊a⌉ ∗ (⌊d⌉ ∗ ⌊b⌉ ∗ ⌊c⌉)− ⌊a⌉ ∗ (⌊d⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉)

= ⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉

using (2) in the last step.

�

Theorem 5.24. For all n ≥ 2 there is a homomorphism µn : KMW
n (F ) → Fn,1

such that the composite Tn ◦ µn is the identity map.

Proof. For n ≥ 2 and a1, . . . , an ∈ F×, let {{a1, . . . , an}} :=
{

[a1, a2] ∗ · · · ∗ [an−1, an], n even
⌊a1⌉ ∗ [a2, a3] ∗ · · · ∗ [an−1, an], n odd

}
∈ Fn,1 ⊂ S̃(Fn)M.

By Lemma 5.23 (1) and (3), as well as the definition of [x, y], the elements
{{a1, . . . , an}} satisfy the ‘Matsumoto-Moore’ relations (see Section 2.4 above),
and thus there is a well-defined homomorphism of groups

µn : KMW
n (F ) → Fn,1, [a1] · · · [an] 7→ {{a1, . . . , an}}.

Since Tn({{a1, . . . , an}}) = [a1] · · · [an], the result follows. �

Corollary 5.25. The subalgebra of SH2•(F ) generated by SH2(F ) =
H2(SL2(F ),Z) is isomorphic to KMW

2• (F ) and is a direct summand of SH2•(F ).

Proof. This is immediate from Theorems 3.10 and 5.24. �

6. Decomposabilty

Recall that F is a field of characteristic 0 throughout this section.
In [24], Suslin proved that Hn(GLn(F ),Z)/Hn(GLn−1(F ),Z) ∼= KM

n (F ). This
is, in particular, a decomposability result. It says that Hn(GLn(F ),Z) is gen-
erated, modulo the image of Hn(GLn−1(F ),Z) by products of 1-dimensional
cycles. In this section we will prove analogous results for the special linear
group, with Milnor-Witt K-theory replacing Milnor K-theory. To do this, we
prove the decomposability of the algebra S̃(F •)M (for n ≥ 3). Theorem 6.2 is
an analogue of Suslin’s Proposition 3.3.1. The proof is essentially identical, and
we reproduce it here for the convenience of the reader. From this we deduce our
decomposability result (Theorem 6.8), which requires still a little more work
than in the case of the general linear group.

Lemma 6.1. For any finite-dimensional vector spaces W and V , the image of
the pairing

S̃(W,V )⊗H(W ) → S̃(W ⊕ V )M(2)
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coincides with the image of the pairing

S̃(V )⊗ S̃(W ) → S̃(W ⊕ V )M(3)

Proof. The image of the pairing (2) is equal to the image of

S̃(W,V )M ⊗H(W ) → S̃(W ⊕ V )M

which coincides with the image of

S̃(V )M ⊗ S̃(W )M → S̃(W ⊕ V )M

by the isomorphism of Corollary 5.6. �

Let S̃(Fn)dec ⊂ S̃(Fn)M be the Z[F×]-submodule of decomposable elements ;

i.e. S̃(Fn)dec is the image of

⊕
p+q=n,p,q>0

(
S̃(F p)M ⊗ S̃(F q)M

)
∗ // S̃(Fn)M.

More generally, note that if V = V1 ⊕ V2 = V ′
1 ⊕ V ′

2 and if dimF (Vi) =

dimF (V ′
i ) for i = 1, 2, then the image of S̃(V1)⊗ S̃(V2) → S̃(V ) coincides with

S̃(V ′
1)⊗ S̃(V ′

2) → S̃(V ). This follows from the fact that there exists φ ∈ SL(V )
with φ(Vi) = V ′

i for i = 1, 2.

Therefore S̃(Fn)dec is the image of

⊕
Fn=V1⊕V2,Vi 6=0

(
S̃(V1)M ⊗ S̃(V2)M

)
∗ // S̃(Fn)M.

If x =
∑

i ni(x
i
1, . . . , x

i
p) ∈ Cp(V ) and y =

∑
j mj(y

j
1, . . . , y

j
q) ∈ Cq(V ) and if

(xi1, . . . , x
i
p, y

j
1, . . . , y

j
q) ∈ Xp+q(V ) for all i, j, then we let

x⊛ y :=
∑

i,j

nimj(x
i
1, . . . , x

i
p, y

j
1, . . . , y

j
q) ∈ Cp+q(V ).

Of course, if x ∈ Cp(V1) and y ∈ Cq(V2) with V = V1 ⊕ V2, then x⊛ y = x ∗ y.
Furthermore, when x⊛ y is defined, we have

d(x⊛ y) = d(x)⊛ y + (−1)px⊛ d(y).

Theorem 6.2. Let n ≥ 1. For any a1, . . . , an, b ∈ F× and for any 1 ≤ i ≤ n

⌊a1, . . . , bai, . . . , an⌉ ∼= 〈b〉 ⌊a1, . . . , an⌉ (mod S̃(Fn)dec).

Proof. Let a = a1e1 + · · ·+ baiei + · · · anen.
We have

⌊a1, . . . , bai, . . . , an⌉ − 〈b〉 ⌊a1, . . . , an⌉

= d(e1, . . . , ei, . . . , en, a)− d(e1, . . . , biei, . . . , en, a)

= d

(
(e1, . . . , ei−1)⊛ ((ei)− (bei))⊛ (ei+1, . . . , en, a)

)

= d(e1, . . . , ei−1)⊛ ((ei)− (bei))⊛ (ei+1, . . . , en, a)

+ (−1)i(e1, . . . , ei−1)⊛ ((ei)− (bei))⊛ d(ei+1, . . . , en, a)
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Let u = a1e1 + · · ·+ ai−1ei−1 + baiei = a−
∑n

j=i+1 ajej .Then

(−1)i−1(e1, . . . , ei−1) = d
(
(e1, . . . , ei−1)⊛ (u)

)
− d(e1, . . . , ei−1)⊛ (u)

and

(ei+1, . . . , en, a) = d
(
(u)⊛ (ei+1, . . . , en, a)

)
+ (u)⊛ d(ei+1, . . . , en, a).

Thus ⌊a1, . . . , bai, . . . , an⌉ − 〈b〉 ⌊a1, . . . , an⌉ = X1 −X2 +X3 where

X1 = d(e1, . . . , ei−1)⊛
(
(ei)− (bei)

)
⊛ d(u, ei+1, . . . , en, a),

X2 = d(e1, . . . , ei−1, u)⊛
(
(ei)− (bei)

)
⊛ d(ei+1, . . . , en, a), and

X3 = d(e1, . . . , ei−1)⊛

[(
(ei)− (bei)

)
⊛ (u) + (u)⊛

(
(ei)− (bei)

)]
⊛

⊛ d(ei+1, . . . , en, a)

We show that each Xi is decomposable: Let V ⊂ Fn be the span of
u, ei+1, . . . , en (which is also equal to the span of a, ei+1, . . . , en), and let V ′ be
the span of e1, . . . , ei−1. Then Fn = V ′ ⊕ V and d(u, ei+1, . . . , en, a) ∈ H(V )
while
d(e1, . . . , ei−1)⊛

(
(ei)− (bei)

)
∈ H(V, V ′).

Thus X1 lies in the image of

H(V, V ′)⊗H(V )
∗ // S̃(Fn)M

and so is decomposable.
Similarly, if we let W be the span of e1, . . . , ei and W

′ the span of ei+1, . . . , en,
then

d(e1, . . . , ei−1, u) ⊛
(

(ei) − (bei)
)

, d(e1, . . . , ei−1) ⊛

[

(

(ei) − (bei)
)

⊛ (u) + (u) ⊛
(

(ei) − (bei)
)

]

belongs to H(W ) and d(ei+1, . . . , en, a) ∈ H(W,W ′).Thus X2, X3 lie in the
image of

H(W )⊗H(W,W ′)
∗ // S̃(Fn)M

and are also decomposable. �

Let S̃(Fn)ind := S̃(Fn)M/S̃(Fn)dec.

The main goal of this section is to show that S̃(Fn)ind = 0 for all n ≥ 3
(Theorem 6.8 below).

Lemma 6.3. For all n ≥ 3, S̃(Fn)ind is a multiplicative Z[F×]-module.

Proof. We have

An
∼=

{
Z[F×]E∗n/2, n even

S̃(F ) ∗ E∗(n−1)/2, n odd

and these modules are decomposable for all n ≥ 3. It follows that the map

S̃(Fn)+M → S̃(Fn)ind

is surjective for all n ≥ 3. �
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Remark 6.4. Since E ∗ S̃(Fn−2)M ⊂ S̃(Fn)dec, in fact we have that Fn,1 →

S̃(Fn)ind is surjective.

Theorem 6.2 shows that for all a1, . . . , an ∈ F×

⌊a1, . . . , an⌉ ∼=

〈
∏

i

ai

〉
⌊1, . . . , 1⌉ (mod S̃(Fn)dec).

In other words the map

Z[F×] → S̃(Fn)ind, α 7→ α⌊1, . . . , 1⌉

is a surjective homomorphism of Z[F×]-modules. Thus, we are required to

establish that ⌊1, . . . , 1⌉ ∈ S̃(Fn)dec for all n ≥ 3.

For convenience below, we will let Σ̃n(F ) denote the free Z[F
×]-module on the

symbols
[
a1, . . . , an

]
, a1, . . . , an ∈ F×. Let pn : Σ̃n(F ) → S̃(Fn) be the Z[F×]-

module homomorphism sending
[
a1, . . . , an

]
to ⌊a1, . . . , an⌉. We will say that

σ ∈ S̃(Fn) is represented by σ̃ ∈ Σ̃n(F ) if pn(σ̃) = σ.

Note that Σ̃•(F ) can be given the structure of a graded Z[F×]-algebra by
setting [

a1, . . . , an
]
·
[
an+1, . . . , an+m

]
:=

[
a1, . . . , an+m

]
;

i.e., we can identify Σ̃•(F ) with the tensor algebra over Z[F×] on the free
module with basis

[
a
]
, a ∈ F×.

Let Π• : Σ̃•(F ) → Z[F×][x] be the homomorphism of graded Z[F×]-algebras
sending

[
a
]
to 〈a〉x.

For all n ≥ 1 we have a commutative square of surjective homomorphisms of
Z[F×]-modules

Σ̃n(F )
Πn //

pn

��

Z[F×] · xn

γn

��
S̃(Fn) // S̃(Fn)ind

where γn(x
n) = ⌊1, . . . , 1⌉.

Lemma 6.5. If n is odd and n ≥ 3 then S̃(Fn)ind = 0; i.e.,

S̃(Fn)M = S̃(Fn)dec.

Proof. From the fundamental relation in S̃(Fn) (Theorem 3.3), if b1, . . . , bn are

distinct elements of F×, then 0 ∈ S̃(Fn) is represented by Rb :=

[

b1, . . . , bn
]

−
[

1, . . . , 1
]

−
n
∑

j=1

(−1)
n+j

〈

(−1)
n+j

〉

[

b1 − bj , . . . , ̂bj − bj , . . . , bn − bj , bj
]

in ∈ Σ̃n(F ).
Now Πn(Rb) =





〈

∏

i

bi

〉

− 〈1〉 −
n
∑

j=1

(−1)
n+j 〈

(bj − b1) · · · (bj − bj−1) · (bj+1 − bj) · · · (bn − bj) · bj
〉



 x
n
.
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We choose bi = i, i = 1, . . . , n. Then

Πn(Rb) =


〈n!〉 − 〈1〉 −

n∑

j=1

(−1)n+j 〈j!(n− j)!〉


xn = −〈1〉xn since n is odd.

It follows that −⌊1, . . . , 1⌉ = 0 in S̃(Fn)ind as required. �

The case n even requires a little more work.
The maps {pn}n do not define a map of graded algebras. However, we do have
the following:

Lemma 6.6. For 1 6= a ∈ F×, let

L(x) := 〈−1〉
[
1− x, 1

]
− 〈x〉

[
1−

1

x
,
1

x

]
+
[
1, 1

]
∈ Σ̃2(F ).

Then for all a1, . . . , an ∈ F× \ {1}, the product

n∏

i=1

⌊1, ai⌉ = ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ ∈ S̃(F 2n)

is represented by
∏

i L(ai) ∈ Σ̃2n(F ).

Proof. For convenience of notation, we will represent standard basis elements
of Cq(F

n) as n× q matrices [v1| · · · |vq].
Let e = (1, . . . , 1) and let σi(C) denote the sum of the entries in the ith row
of the n× n matrix C. By Remark 3.2, if A ∈ GLn(F ) and [A|e] ∈ Xn+1(F

n)

then dn+1([A|e]) represents 〈detA〉 ⌊σ1(A
−1), . . . , σn(A

−1)⌉ ∈ S̃(Fn).

Now, for a 6= 1, ⌊1, a⌉ is represented in S̃(F 2) by

d3

([
1 0 1
0 1 a

])
=

[
0 1
1 a

]
−

[
1 1
0 a

]
+

[
1 0
0 1

]
= T1(a)−T2(a)+T3(a) ∈ C2(F

2).

From the definition of the product ∗, it follows that ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ is
represented by

Z :=
∑

j=(j1,...,jn)∈(1,2,3)n

(−1)k(j)



Tj1(a1)

. . .

Tjn(an)


 =

∑

j

(−1)k(j)T (j, a).

where k(j) := |{i ≤ n|ji = 2}|
Since ai 6= 1 for all i, the vector e = (1, . . . , 1) is in general position with respect
to the columns of all these matrices. Thus we can use the partial homotopy
operator se to write this cycle as a boundary:

Z =
∑

j

(−1)k(j)d2n+1 ([T (j, a)|e]) .
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By the remarks above

d2n+1 ([T (j, a)|e]) =

〈
∏

i

detTji(ai)

〉
×

×⌊σ1(Tj1(a1)), σ2(Tj1(a1)), σ1(Tj2(a2)), . . . , σ1(Tjn(an)), σ2(Tjn(an))⌉.

This is represented by
〈
∏

i

detTji(ai)

〉
×

×
[
σ1(Tj1(a1)), σ2(Tj1(a1)), σ1(Tj2(a2)), . . . , σ1(Tjn(an)), σ2(Tjn(an))

]

=

n∏

i=1

(
〈detTji(ai)〉

[
σ1(Tji(ai)), σ2(Tji(ai))

])
∈ Σ̃2n(F ).

Thus Z is represented by

∑

j

(−1)k(j)
n∏

i=1

(
〈detTji(ai)〉

[
σ1(Tji(ai)), σ2(Tji(ai))

])
=

=

n∏

i=1

( 3∑

j=1

(−1)j+1 〈detTj(ai)〉
[
σ1(Tj(ai)), σ2(Tj(ai))

])
=

n∏

i=1

L(ai) ∈ Σ̃2n(F ).

�

Observe that all of our multiplicative modules (and in particular S̃(Fn)M) have
the following property: they admit a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mt =M such that each of the associated quotients Mr/Mr−1 is annihilated by
I(F×)kr for some kr ≥ 1. From this observation it easily follows that

Lemma 6.7.

S̃(Fn)ind = 0 ⇐⇒ S̃(Fn)ind/(I(F×)r · S̃(F
n)ind) = 0 for all r ≥ 1.

Theorem 6.8. S̃(Fn)ind = 0 for all n ≥ 3.

Proof. The case n odd has already been dealt with in Lemma 6.5
For the even case, by Lemma 6.7 it will be enough to prove that for all r ≥ 1

Z[F×/(F×)r]⊗Z[F×] S̃(F
n)ind = 0.

Fix r ≥ 1. If a ∈ (F×)r \ {1}, then

Π2(L(a)) =

(
〈a− 1〉 −

〈
1−

1

a

〉
+ 〈1〉

)
x2 = 〈1〉x2 ∈ Z[F×/(F×)r]x2

since

1−
1

a
=
a− 1

a
≡ a− 1 (mod (F×)r).
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Now let n > 1 and choose a1, . . . , an ∈ (F×)r \ {1}. Let σ = ⌊1, a1⌉ ∗ · · · ∗
⌊1, an⌉ ∈ S̃(F 2n), so that σ 7→ 0 in S̃(F 2n)ind. By Lemma 6.6, σ is represented

by σ̃ =
∏n

i=1 L(ai) in Σ̃2n(F ) and thus

Π2n(σ̃) =
n∏

i=1

(
Π2(L(ai))

)
= 〈1〉 ∈ Z[F×/(F×)r]x2n

so that the image of σ in Z[F×/(F×)r]⊗Z[F×] S̃(F
2n)ind is 1⊗⌊1, . . . , 1⌉. This

proves the theorem. �

Corollary 6.9. For all n ≥ 2, the map Tn induces an isomorphism Fn,1
∼=

KMW
n (F ).

Proof. Since, by the computations above, S̃(F 2)M = S̃(F )∗2 + Z[F×]E it fol-

lows, using Theorem 6.8 and induction on n, that S̃(F •)M is generated as a

Z[F×]-algebra by {⌊a⌉ ∈ S̃(F )|1 6= a ∈ F×} and E.

Thus E is central in the algebra S̃(F •)M and for all n ≥ 2,

S̃(Fn)M
E ∗ S̃(Fn−2)M

is generated by the elements of the form ⌊a1⌉∗ · · · ∗ ⌊an⌉, and hence also by the
elements {{a1, . . . , an}} since [a, b] ≡ ⌊a⌉ ∗ ⌊b⌉ (mod 〈E〉) for all a, b ∈ F×.
Since

Fn,1
∼=

S̃(Fn)M
E ∗ S̃(Fn−2)M

by Corollary 5.14, it follows that Fn,1 is generated by the elements
{{a1, . . . , an}}, and thus that the homomorphisms µn of Theorem 5.24
are surjective. �

Corollary 6.10. For all n ≥ 3,

S̃(Fn)M
∼=

{
KMW

n (F )⊕KMW
n−2 (F )⊕ · · · ⊕KMW

2 (F )⊕ Z[F×] n even

KMW
n (F )⊕KMW

n−2 (F )⊕ · · · ⊕KMW
3 (F )⊕ IF× n odd

as a Z[F×]-module.

Corollary 6.11. For all even n ≥ 2 the cokernel of the map

Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)

is isomorphic to KMW
n (F ).

Proof. Recall that ǫ2 induces an isomorphism H2(SL2(F ),Z) ∼= F2,1 = F2,0.

Let 〈a, b〉 denote the generator ǫ−1
2 ([a, b]) of H2(SL2(F ),Z). Then for even n

{{a1, . . . , an}} = [a1, a2] ∗ · · · ∗ [an−1, an]

= ǫ2(〈a1, a2〉) ∗ · · · ∗ ǫ2(〈an−1, an〉)

= ǫn(〈a1, a2〉 × · · · × 〈an−1, an〉)

by Lemma 3.5 (2).
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Since Fn,1 is generated by the elements {{a1, . . . , an}}, it follows that Fn,1 =
ǫn(Hn(SLn(F ),Z)) = E∞

n,0 = Fn,0, proving the result. �

Corollary 6.12. For all odd n ≥ 1 the maps

Hn(SLk(F ),Z) → Hn(SLk+1(F ),Z)

are isomorphisms for k ≥ n.

Proof. In view of Corollary 5.11, the only point at issue is the injectivity of

Hn(SLn(F ),Z) → Hn(SLn+1(F ),Z).

But the proof of Corollary 6.11 shows that the term

Fn+1,1/E
∞
n+1,0

∼= E∞
n,1 = Ker(Hn(SLn(F ),Z) → Hn(SLn+1(F ),Z))

in the spectral sequence E+(Fn+1)M is zero. �

Corollary 6.13. If n ≥ 3 is odd, then

Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) ∼= 2KM
n (F )

Ker(Hn−1(SLn−1(F ),Z) → Hn−1(SLn(F ),Z)) ∼= In(F ).

Proof. Since we have already proved this result for n = 3 above, we will assume
that n ≥ 5 (n odd).
Let a1, . . . , an ∈ F× and let z ∈ Hn−1(SLn−1(F ),Z) satisfy ǫn−1(z) =
{{a2, . . . , an}} ∈ Fn−1,0

∼= KMW
n−1 (F ). Thus {{a1, . . . , an}} = ⌊a1⌉ ∗ ǫn−1(z)

and hence ǫn,1({{a1, . . . , an}}) = 〈〈a1〉〉z by Theorem 5.20 (2). It follows that
the diagram

Fn,1
ǫn,1 //

Tn
∼=

��

Hn−1(SLn−1(F ),Z)

Tn−1◦ǫn−1

��
KMW

n (F )
η // KMW

n−1 (F )

commutes.
Now Ker(ǫn,1) = Im(ǫn : Hn(SLn(F ),Z) → Fn,1). Since Im(ǫ3) =

T−1
3 (2KM

3 (F )) and Im(ǫn−3) = Fn−3,1 = T−1
n−3(K

MW
n−3 (F )) we have

Tn(Im(ǫn)) = Im(Tn ◦ ǫn) ⊃ 2KM
3 (F ) ·KMW

n−3 (F ) = 2KM
n (F ) ⊂ KMW

n (F )

(using the fact that T• and ǫ• are algebra homomorphisms).
Thus we get a commutative diagram

KMW
n (F )

2KM
n (F )

T−1
n //

η∼=

��

Fn,1

Ker(ǫn,1)

Tn−1◦ǫn−1◦ǫn,1zztt
tt
tt
tt
t

In(F )

from which it follows that the map T−1
n in this diagram is an isomorphism, and

hence Im(ǫn) = Ker(ǫn,1) ∼= 2KM
n (F ) and Im(ǫn,1) ∼= In(F ). �
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