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1. Introduction

Throughout this note (besides of §3 and §4) F is a field of characteristic 6= 2.
The basic reference for the material related to involutions on central simple
algebras is [13]. The degree degA of a (finite-dimensional) central simple F -
algebra A is the integer

√
dimF A; the index indA of A is the degree of a central

division algebra Brauer-equivalent to A. An orthogonal involution σ on A is
hyperbolic, if the hermitian form A × A → A, (a, b) 7→ σ(a) · b on the right
A-module A is so. This means that the variety X

(
(degA)/2; (A, σ)

)
of §2 has

a rational point.
The main result of this paper is as follows (the proof is given in §7):

Theorem 1.1 (Main theorem). A non-hyperbolic orthogonal involution σ on
a central simple F -algebra A remains non-hyperbolic over the function field of
the Severi-Brauer variety of A.

1Partially supported by the Collaborative Research Centre 701 of the Bielefeld University
and by the Max-Planck-Institut für Mathematik in Bonn
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To explain the statement of Abstract, let us note that the function field L of
the Severi-Brauer variety of a central simple algebra A is a splitting field of A,
that is, the L-algebra AL is Brauer-trivial.
A stronger version of Theorem 1.1, where the word “non-hyperbolic” (in each
of two appearances) is replaced by “anisotropic”, is, in general, an open con-
jecture, cf. [11, Conjecture 5.2].
Let us recall that the index of a central simple algebra possessing an orthogonal
involution is a power of 2. Here is the complete list of indices indA and coindices
coindA = degA/ indA of A for which Theorem 1.1 is known (over arbitrary
fields of characteristic 6= 2), given in the chronological order:

• indA = 1 — trivial;
• coindA = 1 (the stronger version) — [11, Theorem 5.3];
• indA = 2 — [5] and independently (the stronger version) [16, Corollary

3.4];
• coindA odd — [7, appendix by Zainoulline] and independently [12, Theorem

3.3];
• indA = 4 and coindA = 2 — [19, Proposition 3];
• indA = 4 — [8, Theorem 1.2].

Let us note that Theorem 1.1 for any given (A, σ) with coindA = 2 implies
the stronger version of Theorem 1.1 for this (A, σ): indeed, by [12, Theorem

3.3], if coindA = 2 and σ becomes isotropic over the function field of the
Severi-Brauer variety, then σ becomes hyperbolic over this function field and
the weaker version applies. Therefore we get

Theorem 1.2. An anisotropic orthogonal involution on a central simple F -
algebra of coindex 2 remains anisotropic over the function field of the Severi-
Brauer variety of the algebra. �

Sivatski’s proof of the case with degA = 8 and indA = 4, mentioned above, is
based on the following theorem, due to Laghribi:

Theorem 1.3 ([14, Théorème 4]). Let ϕ be an anisotropic quadratic form of
dimension 8 and of trivial discriminant. Assume that the index of the Clifford
algebra C of ϕ is 4. Then ϕ remains anisotropic over the function field F (X1)
of the Severi-Brauer variety X1 of C.

The following alternate proof of Theorem 1.3, given by Vishik, is a prototype of
our proof of Main theorem (Theorem 1.1). Let Y be the projective quadric of
ϕ and let X2 be the Albert quadric of a biquaternion division algebra Brauer-
equivalent to C. Assume that ϕF (X1) is isotropic. Then for any field extension
E/F , the Witt index of ϕE is at least 2 if and only if X2(E) 6= ∅. By [21,
Theorem 4.15] and since the Chow motive M(X2) of X2 is indecomposable, it
follows that the motive M(X2)(1) is a summand of the motive of Y . The
complement summand of M(Y ) is then given by a Rost projector on Y in the
sense of Definition 5.1. Since dimY + 1 is not a power of 2, it follows that Y
is isotropic (cf. [6, Corollary 80.11]).
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After introducing some notation in §2 and discussing some important general
principles concerning Chow motives in §3, we produce in §4 a replacement
of [21, Theorem 4.15] (used right above to split off the summand M(X2)(1)
from the motive of Y ) valid for more general (as projective quadrics) algebraic
varieties (see Proposition 4.6). In §5 we reproduce some recent results due to
Rost concerning the modulo 2 Rost correspondences and Rost projectors on
more general (as projective quadrics) varieties. In §6 we apply some standard
motivic decompositions of projective homogeneous varieties to certain varieties
related to a central simple algebra with an isotropic orthogonal involution. We
also reproduce (see Theorem 6.1) some results of [9] which contain the needed
generalization of indecomposability of the motive of an Albert quadric used in
the previous paragraph. Finally, in §7 we prove Main theorem (Theorem 1.1)
following the strategy of [8] and using results of [9] which were not available at
the time of [8].

Acknowledgements. Thanks to Anne Quéguiner for asking me the question
and to Alexander Vishik for telling me the alternate proof of Theorem I am
also grateful to the referee for finding several insufficiently explained points in
the manuscript.

2. Notation

We understand under a variety a separated scheme of finite type over a field.
Let D be a central simple F -algebra. The F -dimension of any right ideal in D
is divisible by degD; the quotient is the reduced dimension of the ideal. For
any integer i, we write X(i;D) for the generalized Severi-Brauer variety of the
right ideals in D of reduced dimension i. In particular, X(0;D) = SpecF =
X(degD;D) and X(i,D) = ∅ for i < 0 and for i > degD.
More generally, let V be a right D-module. The F -dimension of V is then
divisible by degD and the quotient rdimV = dimF V/degD is called the
reduced dimension of V . For any integer i, we write X(i;V ) for the projective
homogeneous variety of the D-submodules in V of reduced dimension i (non-
empty iff 0 ≤ i ≤ rdimV ). For a finite sequence of integers i1, . . . , ir, we write
X(i1 ⊂ · · · ⊂ ir;V ) for the projective homogeneous variety of flags of the D-
submodules in V of reduced dimensions i1, . . . , ir (non-empty iff 0 ≤ i1 ≤ · · · ≤
ir ≤ rdimV ).
Now we additionally assume that D is endowed with an orthogonal involution
τ . Then we write X(i; (D, τ)) for the variety of the totally isotropic right ideals
in D of reduced dimension i (non-empty iff 0 ≤ i ≤ degD/2).
If moreover V is endowed with a hermitian (with respect to τ) form h, we
write X(i; (V, h)) for the variety of the totally isotropic D-submodules in V of
reduced dimension i.
We refer to [10] for a detailed construction and basic properties of the above va-
rieties. We only mention here that for the central simple algebra A := EndD V
with the involution σ adjoint to the hermitian form h, the varieties X(i; (A, σ))
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and X(i; (V, h)) (for any i ∈ Z) are canonically isomorphic. Besides, degA =
rdimV , and the following four conditions are equivalent:

(1) σ is hyperbolic;
(2) X((degA)/2; (A, σ))(F ) 6= ∅;
(3) X((rdimV )/2; (V, h))(F ) 6= ∅;
(4) h is hyperbolic.

3. Krull-Schmidt principle

The characteristic of the base field F is arbitrary in this section.
Our basic reference for Chow groups and Chow motives (including notation)
is [6]. We fix an associative unital commutative ring Λ (we shall take Λ = F2

in the application) and for a variety X we write CH(X; Λ) for its Chow group
with coefficients in Λ. Our category of motives is the category CM(F,Λ) of
graded Chow motives with coefficients in Λ, [6, definition of §64]. By a sum of
motives we always mean the direct sum.
We shall often assume that our coefficient ring Λ is finite. This simplifies
significantly the situation (and is sufficient for our application). For instance,
for a finite Λ, the endomorphism rings of finite sums of Tate motives are also
finite and the following easy statement applies:

Lemma 3.1. An appropriate power of any element of any finite associative (not
necessarily commutative) ring is idempotent.

Proof. Since the ring is finite, any its element x satisfies xa = xa+b for some
a ≥ 1 and b ≥ 1. It follows that xab is an idempotent. �

Let X be a smooth complete variety over F . We call X split, if its integral
motive M(X) ∈ CM(F,Z) (and therefore its motive with any coefficients) is
a finite sum of Tate motives. We call X geometrically split, if it splits over a
field extension of F . We say that X satisfies the nilpotence principle, if for any
field extension E/F and any coefficient ring Λ, the kernel of the change of field
homomorphism End(M(X)) → End(M(X)E) consists of nilpotents. Any pro-
jective homogeneous variety is geometrically split and satisfies the nilpotence
principle, [3, Theorem 8.2].

Corollary 3.2 ([9, Corollary 2.2]). Assume that the coefficient ring Λ is finite.
Let X be a geometrically split variety satisfying the nilpotence principle. Then
an appropriate power of any endomorphism of the motive of X is a projector.

We say that the Krull-Schmidt principle holds for a given pseudo-abelian cat-
egory, if every object of the category has one and unique decomposition in a
finite direct sum of indecomposable objects. In the sequel, we are constantly
using the following statement:

Corollary 3.3 ([4, Corollary 35], see also [9, Corollary 2.6]). Assume that the
coefficient ring Λ is finite. The Krull-Schmidt principle holds for the pseudo-
abelian Tate subcategory in CM(F,Λ) generated by the motives of the geomet-
rically split F -varieties satisfying the nilpotence principle. �
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Remark 3.4. Replacing the Chow groups CH(−; Λ) by the reduced Chow
groups CH(−; Λ) (cf. [6, §72]) in the definition of the category CM(F,Λ), we
get a “simplified” motivic category CM(F,Λ) (which is still sufficient for the
main purpose of this paper). Working within this category, we do not need the
nilpotence principle any more. In particular, the Krull-Schmidt principle holds
(with a simpler proof) for the pseudo-abelian Tate subcategory in CM(F,Λ)
generated by the motives of the geometrically split F -varieties.

4. Splitting off a motivic summand

The characteristic of the base field F is still arbitrary in this section.
In this section we assume that the coefficient ring Λ is connected. We shall
often assume that Λ is finite.
Before climbing to the main result of this section (which is Proposition 4.6),
let us do some warm up.
The following definition of [9] extends some terminology of [20]:

Definition 4.1. Let M ∈ CM(F,Λ) be a summand of the motive of a smooth
complete irreducible variety of dimension d. The summand M is called upper,
if CH0(M ; Λ) 6= 0. The summand M is called lower, if CHd(M ; Λ) 6= 0. The
summand M is called outer, if it is simultaneously upper and lower.

For instance, the whole motive of a smooth complete irreducible variety is an
outer summand of itself. Another example of an outer summand is the motive
given by a Rost projector (see Definition 5.1).
Given a correspondence α ∈ CHdimX(X×Y ; Λ) between some smooth complete
irreducible varieties X and Y , we write multα ∈ Λ for the multiplicity of α,
[6, definition of §75]. Multiplicity of a composition of two correspondences is the
product of multiplicities of the composed correspondences (cf. [11, Corollary

1.7]). In particular, multiplicity of a projector is idempotent and therefore
∈ {0, 1} because the coefficient ring Λ is connected.
Characterizations of outer summands given in the two following Lemmas are
easily obtained:

Lemma 4.2 (cf. [9, Lemmas 2.8 and 2.9]). Let X be a smooth complete irreducible
variety. The motive (X, p) given by a projector p ∈ CHdimX(X×X; Λ) is upper
if and only if mult p = 1. The motive (X, p) is lower if and only if mult pt = 1,
where pt is the transpose of p.

Lemma 4.3 (cf. [9, Lemma 2.12]). Assume that a summand M of the motive of
a smooth complete irreducible variety of dimension d decomposes into a sum of
Tate motives. Then M is upper if and only if the Tate motive Λ is present in
the decomposition; it is lower if and only if the Tate motive Λ(d) is present in
the decomposition.

The following statement generalizes (the finite coefficient version of) [21, Corol-

lary 3.9]:
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Lemma 4.4. Assume that the coefficient ring Λ is finite. Let X and Y be
smooth complete irreducible varieties such that there exist multiplicity 1 corre-
spondences

α ∈ CHdimX(X × Y ; Λ) and β ∈ CHdimY (Y ×X; Λ).

Assume that X is geometrically split and satisfies the nilpotence principle. Then
there is an upper summand of M(X) isomorphic to an upper summand of
M(Y ). Moreover, for any upper summand MX of M(X) and any upper sum-
mand MY of M(Y ), there is an upper summand of MX isomorphic to an upper
summand of MY .

Proof. By Corollary 3.2, the composition p := (β ◦ α)◦n for some n ≥ 1 is a
projector. Therefore q := (α◦β)◦2n is also a projector and the summand (X, p)
of M(X) is isomorphic to the summand (Y, q) of M(Y ). Indeed, the morphisms
α : M(X) → M(Y ) and β′ := β ◦ (α ◦ β)◦(2n−1) : M(Y ) → M(X) satisfy the
relations β′ ◦ α = p and α ◦ β′ = q.
Since mult p = (multβ · multα)n = 1 and similarly mult q = 1, the summand
(X, p) of M(X) and the summand (Y, q) of M(Y ) are upper by Lemma 4.2.
We have proved the first statement of Lemma 4.4. As to the second statement,
let

p′ ∈ CHdimX(X ×X; Λ) and q′ ∈ CHdimY (Y × Y ; Λ)

be projectors such that MX = (X, p′) and MY = (Y, q′). Replacing α and β
by q′ ◦ α ◦ p′ and p′ ◦ β ◦ q′, we get isomorphic upper motives (X, p) and (Y, q)
which are summands of MX and MY . �

Remark 4.5. Assume that the coefficient ring Λ is finite. Let X be a geo-
metrically split irreducible smooth complete variety satisfying the nilpotence
principle. Then the complete motivic decomposition of X contains precisely
one upper summand and it follows by Corollary 3.3 (or by Lemma 4.4) that an
upper indecomposable summands of M(X) is unique up to an isomorphism.
(Of course, the same is true for the lower summands.)

Here comes the needed replacement of [21, Theorem 4.15]:

Proposition 4.6. Assume that the coefficient ring Λ is finite. Let X be a
geometrically split, geometrically irreducible variety satisfying the nilpotence
principle and let M be a motive. Assume that there exists a field extension
E/F such that

(1) the field extension E(X)/F (X) is purely transcendental;
(2) the upper indecomposable summand of M(X)E is also lower and is a

summand of ME.

Then the upper indecomposable summand of M(X) is a summand of M .

Proof. We may assume that M = (Y, p, n) for some irreducible smooth com-
plete F -variety Y , a projector p ∈ CHdimY (Y × Y ; Λ), and an integer n.
By the assumption (2), we have morphisms of motives f : M(X)E → ME

and g : ME → M(X)E with mult(g ◦ f) = 1. By [9, Lemma 2.14], in order to
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prove Proposition 4.6, it suffices to construct morphisms f ′ : M(X) → M and
g′ : M → M(X) (over F ) with mult(g′ ◦ f ′) = 1.
Let ξ : SpecF (X) → X be the generic point of the (irreducible) variety X.
For any F -scheme Z, we write ξZ for the morphism ξZ = (ξ × idZ) : ZF (X) =
SpecF (X) ×Z → X ×Z. Note that for any α ∈ CH(X ×Z), the image ξ∗Z(α) ∈
CH(ZF (X)) of α under the pull-back homomorphism ξ∗Z : CH(X × Z,Λ) →
CH(ZF (X),Λ) coincides with the composition of correspondences α ◦ [ξ], [6,
Proposition 62.4(2)], where [ξ] ∈ CH0(XF (X),Λ) is the class of the point ξ:

(∗) ξ∗Z(α) = α ◦ [ξ].

In the commutative square

CH(XE × YE ; Λ)
ξ∗YE−−−−→ CH(YE(X); Λ)

resE/F

x resE(X)/F (X)

x

CH(X × Y ; Λ)
ξ∗Y−−−−→ CH(YF (X); Λ)

the change of field homomorphism resE(X)/F (X) is surjective1 because of the
assumption (1) by the homotopy invariance of Chow groups [6, Theorem 57.13]

and by the localization property of Chow groups [6, Proposition 57.11]. Moreover,
the pull-back homomorphism ξ∗Y is surjective by [6, Proposition 57.11]. It follows
that there exists an element f ′ ∈ CH(X × Y ; Λ) such that ξ∗YE

(f ′
E) = ξ∗YE

(f).
Recall that mult(g ◦ f) = 1. On the other hand, mult(g ◦ f ′

E) = mult(g ◦
f). Indeed, mult(g ◦ f) = deg ξ∗XE

(g ◦ f) by [6, Lemma 75.1], where deg :
CH(XE(X)) → Λ is the degree homomorphism. Furthermore, ξ∗XE

(g ◦ f) =
(g ◦f)◦ [ξE ] by (∗). Finally, (g ◦f)◦ [ξE ] = g ◦ (f ◦ [ξE ]) and f ◦ [ξE ] = ξ∗YE

(f) =
ξ∗YE

(f ′
E) by the construction of f ′.

Replacing f ′ be the composition p ◦ f ′, we get a morphism f ′ : M(X) → M .
Since the composition g ◦ f ′

E is not changed, we still have mult(g ◦ f ′
E) = 1.

Since mult(g ◦ f ′
E) = 1 and the indecomposable upper summand of M(X)E

is lower, we have mult((f ′
E)t ◦ gt) = 1. Therefore we may apply the above

procedure to the dual morphisms

gt : M(X)E → (Y, p, dimX − dimY − n)E

and (f ′

E)t : (Y, p, dimX − dimY − n)E → M(X)E .

This way we get a morphism g′ : M → M(X) such that mult((f ′)t ◦ (g′)t) = 1.
It follows that mult(g′ ◦ f ′) = 1. �

Remark 4.7. Replacing CM(F,Λ) by CM(F,Λ) in Proposition 4.6, we get a
weaker version of Proposition 4.6 which is still sufficient for our application.
The nilpotence principle is no more needed in the proof of the weaker version.
Because of that, there is no more need to assume that X satisfies the nilpotence
principle.

1In fact, resE(X)/F (X) is even an isomorphism, but we do not need its injectivity (which

can be obtained with a help of a specialization).
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5. Rost correspondences

In this section, X stands for a smooth complete geometrically irreducible vari-
ety of a positive dimension d.
The coefficient ring Λ of the motivic category is F2 in this section. We write
Ch(−) for the Chow group CH(−;F2) with coefficients in F2. We write degX/F

for the degree homomorphism Ch0(X) → F2.

Definition 5.1. An element ρ ∈ Chd(X ×X) is called a Rost correspondence
(on X), if ρF (X) = χ1× [XF (X)]+[XF (X)]×χ2 for some 0-cycle classes χ1, χ2 ∈
Ch0(XF (X)) of degree 1. A Rost projector is a Rost correspondence which is a
projector.

Remark 5.2. Our definition of a Rost correspondence differs from the defini-
tion of a special correspondence in [17]. Our definition is weaker in the sense
that a special correspondence on X (which is an element of the integral Chow
group CHd(X × X)) considered modulo 2 is a Rost correspondence but not
any Rost correspondence is obtained this way. This difference gives a reason
to reproduce below some results of [17]. Actually, some of the results below
are formally more general than the corresponding results of [17]; their proofs,
however, are essentially the same.

Remark 5.3. Clearly, the set of all Rost correspondences on X is stable un-
der transposition and composition. In particular, if ρ is a Rost correspon-
dence, then its both symmetrizations ρt ◦ ρ and ρ ◦ ρt are (symmetric) Rost
correspondences. Writing ρF (X) as in Definition 5.1, we have (ρt ◦ ρ)F (X) =
χ1 × [XF (X)] + [XF (X)]×χ1 (and (ρ ◦ ρt)F (X) = χ2 × [XF (X)] + [XF (X)]×χ2).

Lemma 5.4. Assume that the variety X is projective homogeneous. Let ρ ∈
Chd(X × X) be a projector. If there exists a field extension E/F such that
ρE = χ1 × [XE ] + [XE ] × χ2 for some 0-cycle classes χ1, χ2 ∈ Ch0(XE) of
degree 1, then ρ is a Rost projector.

Proof. According to [3, Theorem 7.5], there exist some integer n ≥ 0 and for
i = 1, . . . , n some integers ri > 0 and some projective homogeneous varieties
Xi satisfying dimXi + ri < d such that for M =

⊕n
i=1 M(Xi)(ri) the motive

M(X)F (X) decomposes as F2 ⊕ M ⊕ F2(d). Since there is no non-zero mor-
phism between different summands of this three terms decomposition, the ring
EndM(X) decomposes in the product of rings

EndF2 × EndM × EndF2(d) = F2 × EndM × F2.

Let χ ∈ Ch0(XF (X)) be a 0-cycle class of degree 1. We set

ρ′ = χ× [XF (X)] + [XF (X)] × χ ∈ F2 × F2

⊂ F2 × EndM × F2 = EndM(X)F (X) = Chd(XF (X) ×XF (X))

and we show that ρF (X) = ρ′. The difference ε = ρF (X)−ρ′ vanishes over E(X).
Therefore ε is a nilpotent element of EndM . Choosing a positive integer m
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with εm = 0, we get

ρF (X) = ρmF (X) = (ρ′ + ε)m = (ρ′)m + εm = (ρ′)m = ρ′. �

Lemma 5.5. Let ρ ∈ Chd(X ×X) be a projector. The motive (X, ρ) is isomor-
phic to F2 ⊕ F2(d) iff ρ = χ1 × [X] + [X] × χ2 for some some 0-cycle classes
χ1, χ2 ∈ Ch0(X) of degree 1.

Proof. A morphism F2 ⊕ F2(d) → (X, ρ) is given by some

f ∈ Hom
(
F2,M(X)

)
= Ch0(X) and f ′ ∈ Hom

(
F2(d),M(X)

)
= Chd(X).

A morphism in the inverse direction is given by some

g ∈ Hom(M(X),F2) = Ch0(X) and g′ ∈ Hom(M(X),F2(d)) = Chd(X).

The two morphisms F2 ⊕F2(d) ↔ (X, ρ) are mutually inverse isomorphisms iff
ρ = f × g + f ′ × g′ and degX/F (fg) = 1 = degX/F (f ′g′). The degree condition

means that f ′ = [X] = g and degX/F (f) = 1 = degX/F (g′). �

Corollary 5.6. If X is projective homogeneous and ρ is a projector on X
such that

(X, ρ)E ≃ F2 ⊕ F2(d)

for some field extension E/F , then ρ is a Rost projector. �

A smooth complete variety is called anisotropic, if the degree of its any closed
point is even.

Lemma 5.7 ([17, Lemma 9.2], cf. [18, proof of Lemma 6.2]). Assume that X
is anisotropic and possesses a Rost correspondence ρ. Then for any inte-
ger i 6= d and any elements α ∈ Chi(X) and β ∈ Chi(XF (X)), the im-
age of the product αF (X) · β ∈ Ch0(XF (X)) under the degree homomorphism
degXF (X)/F (X) : Ch0(XF (X)) → F2 is 0.

Proof. Let γ ∈ Chi(X ×X) be a preimage of β under the surjection

ξ∗X : Chi(X ×X) → Chi(SpecF (X) ×X)

(where ξ∗X is as defined in the proof of Proposition 4.6). We consider the 0-cycle
class

δ = ρ · ([X] × α) · γ ∈ Ch0(X ×X).

Since X is anisotropic, so is X × X, and it follows that deg(X×X)/F δ = 0.

Therefore it suffices to show that deg(X×X)/F δ = degXF (X)/F (X)(αF (X) · β).

We have deg(X×X)/F δ = deg(X×X)F (X)/F (X)(δF (X)) and

δF (X) = (χ1 × [XF (X)] + [XF (X)] × χ2) · ([XF (X)] × αF (X)) · γF (X) =

(χ1 × [XF (X)]) · ([XF (X)] × αF (X)) · γF (X)

(because i 6= d) where χ1, χ2 ∈ Ch0(XF (X)) are as in Definition 5.1. For the
first projection pr1 : XF (X) ×XF (X) → XF (X) we have

deg(X×X)F (X)/F (X) δF (X) = degXF (X)/F (X)(pr1)∗(δF (X))
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and by the projection formula

(pr1)∗(δF (X)) = χ1 · (pr1)∗
(
([XF (X)] × αF (X)) · γF (X)

)
.

Finally,

(pr1)∗
(
([XF (X)]×αF (X)) · γF (X)

)
= mult

(
([XF (X)]×αF (X)) · γF (X)

)
· [XF (X)]

and

mult
(
([XF (X)] × αF (X)) · γF (X)

)
= mult

(
([X] × α) · γ

)
.

Since multχ = degXF (X)/F (X) ξ
∗
X(χ) for any element χ ∈ Chd(X × X) by [6,

Lemma 75.1], it follows that

mult
(
([X] × α) · γ

)
= deg(αF (X) · β). �

For anisotropic X, we consider the homomorphism deg/2 : Ch0(X) → F2

induced by the homomorphism CH0(X) → Z, α 7→ deg(α)/2.

Corollary 5.8. Assume that X is anisotropic and possesses a Rost corre-
spondence. Then for any integer i 6= d and any elements α ∈ Chi(X) and

β ∈ Chi(X) with βF (X) = 0 one has (deg/2)(α · β) = 0.

Proof. Let β′ ∈ CHi(X) be an integral representative of β. Since βF (X) = 0,

we have β′

F (X) = 2β′′ for some β′′ ∈ CHi(XF (X)). Therefore

(deg/2)(α · β) = degXF (X)/F (X)

(
αF (X) · (β′′ mod 2)

)
= 0

by Lemma 5.7. �

Corollary 5.9. Assume that X is anisotropic and possesses a Rost corre-
spondence ρ. For any integer i 6∈ {0, d} and any α ∈ Chi(X) and β ∈ Chi(X)
one has

(deg/2)
(
(α× β) · ρ

)
= 0.

Proof. Let α′ ∈ CHi(X) and β′ ∈ CHi(X) be integral representatives of α and
β. Let ρ′ ∈ CHd(X ×X) be an integral representative of ρ. It suffices to show
that the degree of the 0-cycle class (α′ × β′) · ρ′ ∈ CH0(X ×X) is divisible by
4.
Let χ1 and χ2 be as in Definition 5.1. Let χ′

1, χ
′
2 ∈ CH0(XF (X)) be integral

representatives of χ1 and χ2. Then ρ′F (X) = χ′
1 × [XF (X)] + [XF (X)]× χ′

2 + 2γ

for some γ ∈ CHd(XF (X) ×XF (X)). Therefore (since i 6∈ {0, d})

(α′

F (X) × β′

F (X)) · ρ′F (X) = 2(α′

F (X) × β′

F (X)) · γ.
Applying the projection pr1 onto the first factor and the projection formula,
we get twice the element α′

F (X) · (pr1)∗
(
([XF (X)]× β′

F (X)) · γ
)

whose degree is

even by Lemma 5.7 (here we use once again the condition that i 6= d). �

Lemma 5.10. Assume that X is anisotropic and possesses a Rost correspon-
dence ρ. Then (deg/2)(ρ2) = 1.
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Proof. Let χ1 and χ2 be as in Definition 5.1. Let χ′
1, χ

′
2 ∈ CH0(XE) be integral

representatives of χ1 and χ2. The degrees of χ′
1 and χ′

2 are odd. Therefore,
the degree of the cycle class

(χ′

1 × [XF (X)] + [XF (X)] × χ′

2)2 = 2(χ′

1 × χ′

2) ∈ CH0(XF (X) ×XF (X))

is not divisible by 4.
Let ρ′ ∈ CHd(X ×X) be an integral representative of ρ. Since ρ′F (X) is χ′

1 ×
[XF (X)] + [XF (X)] × χ′

2 modulo 2, (ρ′F (X))
2 is (χ′

1 × [XF (X)] + [XF (X)] × χ′
2)2

modulo 4. Therefore (deg/2)(ρ2) = 1. �

Theorem 5.11 ([17, Theorem 9.1], see also [18, proof of Lemma 6.2]). Let X be
an anisotropic smooth complete geometrically irreducible variety of a positive
dimension d over a field F of characteristic 6= 2 possessing a Rost correspon-
dence. Then the degree of the highest Chern class cd(−TX), where TX is the
tangent bundle on X, is not divisible by 4.

Proof. In this proof, we write c•(−TX) for the total Chern class ∈ Ch(X) in the
Chow group with coefficient in F2. It suffices to show that (deg/2)(cd(−TX)) =
1.
Let SqX

• : Ch(X) → Ch(X) be the modulo 2 homological Steenrod operation,
[6, §59]. We have a commutative diagram

Chd(X ×X)

Chd(X)

Ch0(X ×X)

Ch0(X) Ch0(X)

F2

ww♦♦
♦♦
♦♦
♦(pr1)∗

��

SqX×X
d

��

SqX
d

ww♦♦
♦♦
♦♦
♦(pr1)∗

��

deg/2

''❖
❖❖

❖❖
❖❖ (pr2)∗

''❖
❖❖

❖❖
❖❖

❖❖

deg/2 ww♦♦
♦♦
♦♦
♦♦
♦

deg/2

Since (pr1)∗(ρ) = [X] and SqX
d ([X]) = cd(−TX) [6, formula (60.1)], it suffices to

show that

(deg/2)
(

SqX×X
d (ρ)

)
= 1.

We have SqX×X
• = c•(−TX×X) ·Sq•

X×X , where Sq• is the cohomological Steen-
rod operation, [6, §61]. Therefore

SqX×X
d (ρ) =

d∑

i=0

cd−i(−TX×X) · Sqi
X×X(ρ).

The summand with i = d is Sqd
X×X(ρ) = ρ2 by [6, Theorem 61.13]. By Lemma

5.10, its image under deg/2 is 1.
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Since c•(−TX×X) = c•(−TX) × c•(−TX) and Sq0 = id, the summand with
i = 0 is 


d∑

j=0

cj(−TX) × cd−j(−TX)


 · ρ.

Its image under deg/2 is 0 because

(deg/2)
((

c0(−TX) × cd(−TX)
)
· ρ

)
= (deg/2)(cd(−TX)) =

(deg/2)
((

cd(−TX) × c0(−TX)
)
· ρ

)

while for j 6∈ {0, d}, we have (deg/2)
((

cj(−TX) × cd−j(−TX)
)
· ρ

)
= 0 by

Corollary 5.9.
Finally, for any i with 0 < i < d the ith summand is the sum

d−i∑

j=0

(
cj(−TX) × cd−i−j(−TX)

)
· Sqi

X×X(ρ).

We shall show that for any j the image of the jth summand under deg/2
is 0. Note that the image under deg/2 coincides with the image under the
composition (deg/2) ◦ (pr1)∗ and also under the composition (deg/2) ◦ (pr2)∗
(look at the above commutative diagram). By the projection formula we have

(pr1)∗

((
cj(−TX) × cd−i−j(−TX)

)
· Sqi

X×X(ρ)
)

=

cj(−TX) · (pr1)∗

((
[X] × cd−i−j(−TX)

)
· Sqi

X×X(ρ)
)

and the image under deg/2 is 0 for positive j by Corollary 5.8 applied to

α = cj(−TX) and β = (pr1)∗

((
[X] × cd−i−j(−TX)

)
· Sqi

X×X(ρ)
)

. Corollary

5.8 can be indeed applied, because since ρF (X) = χ1 × [XF (X)] + [XF (X)] × χ2

and i > 0, we have Sqi
(X×X)F (X)

(ρ)F (X) = 0 and therefore βF (X) = 0.

For j = 0 we use the projection formula for pr2 and Corollary 5.8 with α =
cd−i(−TX) and β = (pr2)∗

(
Sqi

X×X(ρ)
)
. �

Remark 5.12. The reason of the characteristic exclusion in Theorem 5.11 is
that its proof makes use of Steenrod operations on Chow groups with coeffi-
cients in F2 which (the operations) -are not available in characteristic 2.

We would like to mention

Lemma 5.13 ([17, Lemma 9.10]). Let X be an anisotropic smooth complete equidi-
mensional variety over a field of arbitrary characteristic. If dimX + 1 is not a
power of 2, then the degree of the integral 0-cycle class cdimX(−TX) ∈ CH0(X)
is divisible by 4.

Corollary 5.14 ([17, Corollary 9.12]). In the situation of Theorem 5.11, the
integer dimX + 1 is a power of 2. �
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6. Motivic decompositions of some isotropic varieties

The coefficient ring Λ is F2 in this section. Throughout this section, D is a
central division F -algebra of degree 2r with some positive integer r.
We say that motives M and N are quasi-isomorphic and write M ≈ N , if there
exist decompositions M ≃ M1 ⊕ · · · ⊕Mm and N ≃ N1 ⊕ · · · ⊕Nn such that

M1(i1) ⊕ · · · ⊕Mm(im) ≃ N1(j1) ⊕ · · · ⊕Nn(jn)

for some (shift) integers i1, . . . , im and j1, . . . , jn.
We shall use the following

Theorem 6.1 ([9, Theorems 3.8 and 4.1]). For any integer l = 0, 1, . . . , r, the
upper indecomposable summand Ml of the motive of the generalized Severi-
Brauer variety X(2l;D) is lower. Besides of this, the motive of any finite direct
product of any generalized Severi-Brauer varieties of D is quasi-isomorphic to
a finite sum of Ml (with various l).

For the rest of this section, we fix an orthogonal involution on the algebra D.

Lemma 6.2. Let n be an positive integer. Let h be a hyperbolic hermitian form
on the right D-module D2n and let Y be the variety X(ndegD; (D2n, h)) (of the
maximal totally isotropic submodules). Then the motive M(Y ) is isomorphic
to a finite sum of several shifted copies of the motives M0,M1, . . . ,Mr.

Proof. By [10, §15] the motive of the variety Y is quasi-isomorphic to the
motive of the “total” variety

X(∗;Dn) =
∐

i∈Z

X(i;Dn) =
2rn∐

i=0

X(i;Dn)

of D-submodules in Dn (the range limit 2rn is the reduced dimension of the
D-module Dn). (Note that in our specific situation we always have i = j in the
flag varieties X(i ⊂ j;Dn) which appear in the general formula of [10, Sled-

stvie 15.14].) Furthermore, M(X(∗;Dn)) ≈ M(X(∗;D))⊗n by [10, Sled-

stvie 10.19]. Therefore the motive of Y is a direct sum of the motives of
products of generalized Severi-Brauer varieties of D. (One can also come to
this conclusion by [2] computing the semisimple anisotropic kernel of the con-
nected component of the algebraic group Aut(D2n, h).) We finish by Theorem
6.1. �

As before, we write Ch(−) for the Chow group CH(−;F2) with coefficients in
F2. We recall that a smooth complete variety is called anisotropic, if the degree
of its any closed point is even (the empty variety is anisotropic). The following
statement is a particular case of [9, Lemma 2.21].

Lemma 6.3. Let Z be an anisotropic F -variety with a projector p ∈ ChdimZ(Z×
Z) such that the motive (Z, p)L ∈ CM(L,F2) for a field extension L/F is
isomorphic to a finite sum of Tate motives. Then the number of the Tate
summands is even. In particular, the motive in CM(F,F2) of any anisotropic
F -variety does not contain a Tate summand.
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Proof. Mutually inverse isomorphisms between (Z, p)L and a sum of, say,
n Tate summands, are given by two sequences of homogeneous elements
a1, . . . , an and b1, . . . , bn in Ch(ZL) with pL = a1 × b1 + · · · + an × bn and
such that for any i, j = 1, . . . , n the degree deg(aibj) is 0 for i 6= j and 1 ∈ F2

for i = j. The pull-back of p via the diagonal morphism of Z is therefore a
0-cycle class on Z of degree n (modulo 2). �

Lemma 6.4. Let n be an integer ≥ 0. Let h′ be a hermitian form on the
right D-module Dn such that h′

L is anisotropic for any finite odd degree field
extension L/F . Let h be the hermitian form on the right D-module Dn+2 which
is the orthogonal sum of h′ and a hyperbolic D-plane. Let Y ′ be the variety of
totally isotropic submodules of Dn+2 of reduced dimension 2r (= indD). Then
the complete motivic decomposition of M(Y ′) ∈ CM(F,F2) (cf. Corollary 3.3)
contains one summand F2, one summand F2(dimY ′), and does not contain
any other Tate motive.

Proof. Since Y ′(F ) 6= ∅, M(Y ′) contains an exemplar of the Tate motive F2

and an exemplar of the Tate motive F2(dimY ′).
According to [10, Sledstvie 15.14] (see also [10, Sledstvie 15.9]), M(Y ′) is
quasi-isomorphic to the sum of the motives of the products

X(i ⊂ j;D) ×X(j − i; (Dn, h′))

where i, j run over all integers (the product is non-empty only if 0 ≤ i ≤ j ≤ 2r).
The choices i = j = 0 and i = j = 2r give two exemplars of the Tate motive F2

(up to a shift). The variety obtained by any other choice of i, j but i = 0, j = 2r

is anisotropic because the algebra D is division. The variety with i = 0, j = 2r

is anisotropic by the assumption involving the odd degree field extensions.
Lemma 6.3 terminates the proof. �

7. Proof of Main theorem

We fix a central simple algebra A of index > 1 with a non-hyperbolic orthogonal
involution σ. Since the involution is an isomorphism of A with its dual, the
exponent of A is 2; therefore, the index of A is a power of 2, say, indA = 2r for
a positive integer r. We assume that σ becomes hyperbolic over the function
field of the Severi-Brauer variety of A and we are looking for a contradiction.
According to [12, Theorem 3.3], coindA = 2n for some integer n ≥ 1. We assume
that Main theorem (Theorem 1.1) is already proven for all algebras (over all
fields) of index < 2r as well as for all algebras of index 2r and coindex < 2n.
Let D be a central division algebra Brauer-equivalent to A. Let X0 be the
Severi-Brauer variety of D. Let us fix an (arbitrary) orthogonal involution τ
on D and an isomorphism of F -algebras A ≃ EndD(D2n). Let h be a hermitian
(with respect to τ) form on the right D-module D2n such that σ is adjoint to
h. Then hF (X0) is hyperbolic. Since the anisotropic kernel of h also becomes
hyperbolic over F (X0), our induction hypothesis ensures that h is anisotropic.
Moreover, hL is hyperbolic for any field extension L/F such that hL is isotropic.
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It follows by [1, Proposition 1.2] that hL is anisotropic for any finite odd degree
field extension L/F .
Let Y be the variety of totally isotropic submodules in D2n of reduced di-
mension ndegD. (The variety Y is a twisted form of the variety of maximal
totally isotropic subspaces of a quadratic form studied in [6, Chapter XVI].) It
is isomorphic to the variety of totally isotropic right ideals in A of reduced
dimension (degA)/2 (=n2r). Since σ is hyperbolic over F (X0) and the field
F is algebraically closed in F (X0) (because the variety X0 is geometrically
integral), the discriminant of σ is trivial. Therefore the variety Y has two con-
nected components Y+ and Y− corresponding to the components C+ and C−

(cf. [6, Theorem 8.10]) of the Clifford algebra C(A, σ). Note that the varieties
Y+ and Y− are projective homogeneous under the connected component of the
algebraic group Aut(D2n, h) = Aut(A, σ).
The central simple algebras C+ and C− are related with A by the formula [13,
(9.14)]:

[C+] + [C−] = [A] ∈ Br(F ).

Since [C+]F (X0) = [C−]F (X0) = 0 ∈ Br(F (X0)), we have [C+], [C−] ∈ {0, [A]}
and it follows that [C+] = 0, [C−] = [A] up to exchange of the indices +,−.
By the index reduction formula for the varieties Y+ and Y− of [15, page 594], we
have: indDF (Y+) = indD, indDF (Y−) = 1.
Below we will work with the variety Y+ and not with the variety Y−. One
reason of this choice is Lemma 7.1. Another reason of the choice is that we
need DF (Y+) to be a division algebra when applying Proposition 4.6 in the
proof of Lemma 7.2.

Lemma 7.1. For any field extension L/F one has:

a) Y−(L) 6= ∅ ⇔ DL is Brauer-trivial ⇔ DL is Brauer-trivial and σL is
hyperbolic;

b) Y+(L) 6= ∅ ⇔ σL is hyperbolic.

Proof. Since σF (X0) is hyperbolic, Y (F (X0)) 6= ∅. Since the varieties Y+ and
Y− become isomorphic over F (X0), each of them has an F (X0)-point. More-
over, X0 has an F (Y−)-point. �

For the sake of notation simplicity, we write Y for Y+ (we will not meet the
old Y anymore).
The coefficient ring Λ is F2 in this section. We use the F -motives M0, . . . ,Mr

introduced in Theorem 6.1. Note that for any field extension E/F such that
DE is still a division algebra, we also have the E-motives M0, . . . ,Mr.

Lemma 7.2. The motive of Y decomposes as R1 ⊕ R2, where R1 is quasi-
isomorphic to a finite sum of several copies of the motives M0, . . . ,Mr−1, and
where (R2)F (Y ) is isomorphic to a finite sum of Tate motives including one
exemplar of F2.

Proof. According to Lemma 6.2, the motive M(Y )F (Y ) is isomorphic to a sum
of several shifted copies of the F (Y )-motives M0, . . . ,Mr (introduced in The-
orem 6.1). Since YF (Y ) 6= ∅, a (non-shifted) copy of the Tate motive F2 shows
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up. If for some l = 0, . . . , r − 1 there is at least one copy of Ml (with a shift
j ∈ Z) in the decomposition, let us apply Proposition 4.6 taking as X the
variety Xl = X(2l;D), taking as M the motive M(Y )(−j), and taking as E
the function field F (Y ).
Since DE is a division algebra, condition (2) of Proposition 4.6 is fulfilled. Since
indDF (X) < 2r, the hermitian form hF (X) is hyperbolic by the induction hy-
pothesis; therefore the variety YF (X) is rational (see Remark 7.1) and condition
(1) of Proposition 4.6 is fulfilled as well.
It follows that the F -motive Ml is a summand of M(Y )(−j). Let now M
be the complement summand of M(Y )(−j). By Corollary 3.3, the complete
decomposition of MF (Y ) is the complete decomposition of M(Y )(−j)F (Y ) with
one copy of Ml erased. If MF (Y ) contains one more copy of a shift of Ml (for
some l = 0, . . . , r − 1), we once again apply Proposition 4.6 to the variety Xl

and an appropriate shift of M . Doing this until we can, we get the desired
decomposition in the end. �

Now let us consider a minimal right D-submodule V ⊂ D2n such that V
becomes isotropic over a finite odd degree field extension of F (Y ). We set
v = dimD V . Clearly, v ≥ 2 (because DF (Y ) is a division algebra). For v > 2,
let Y ′ be the variety X(2r; (V, h|V )) of totally isotropic submodules in V of

reduced dimension 2r (that is, of “D-dimension” 1). Writing F̃ for an odd

degree field extension of F (Y ) with isotropic VF̃ , we have Y ′(F̃ ) 6= ∅ (because
DF̃ is a division algebra). Therefore there exists a correspondence of odd
multiplicity (that is, of multiplicity 1 ∈ F2) α ∈ ChdimY (Y × Y ′).
If v = 2, then h|V becomes hyperbolic over (an odd degree extension of) F (Y ).
Therefore h|V becomes hyperbolic over F (X0), and our induction hypothesis
actually insures that n = v = 2. In this case we simply take Y ′ := Y (our
component).
The variety Y ′ is projective homogeneous (in particular, irreducible) of dimen-
sion

dimY ′ = 2r−1(2r − 1) + 22r(v − 2)

which is equal to a power of 2 minus 1 only if r = 1 and v = 2. Moreover,
the variety Y ′ is anisotropic (because the hermitian form h is anisotropic and
remains anisotropic over any finite odd degree field extension of the base field).
Surprisingly, we can however prove the following

Lemma 7.3. There is a Rost projector (Definition 5.1) on Y ′.

Proof. By the construction of Y ′, there exists a correspondence of odd multi-
plicity (that is, of multiplicity 1 ∈ F2) α ∈ ChdimY (Y ×Y ′). On the other hand,
since hF (Y ′) is isotropic, hF (Y ′) is hyperbolic and therefore there exist a rational
map Y ′

99K Y and a multiplicity 1 correspondence β ∈ ChdimY ′(Y ′ × Y ) (e.g.,
the class of the closure of the graph of the rational map). Since the summand
R2 of M(Y ) given by Lemma 7.2 is upper (cf. Definition 4.1 and Lemma 4.3),
by Lemma 4.4 there is an upper summand of M(Y ′) isomorphic to a summand
of R2.
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Let ρ ∈ ChdimY ′(Y ′ × Y ′) be the projector giving this summand. We claim
that ρ is a Rost projector. We prove the claim by showing that the motive
(Y ′, ρ)F̃ is isomorphic to F2 ⊕ F2(dimY ′), cf. Corollary 5.6, where F̃ /F (Y ) is

a finite odd degree field extension such that V becomes isotropic over F̃ .
Since (R2)F (Y ) is a finite sum of Tate motives, the motive (Y ′, ρ)F̃ is also a finite
sum of Tate motives. Since (Y ′, ρ)F̃ is upper, the Tate motive F2 is included
(Lemma 4.3). Now, by the minimal choice of V , the hermitian form (h|V )F̃
satisfies the condition on h in Lemma 6.4: (h|V )F̃ is an orthogonal sum of a
hyperbolic DF̃ -plane and a hermitian form h′ such that h′

L is anisotropic for

any finite odd degree field extension L/F̃ of the base field F̃ . Indeed, otherwise
– if h′

L is isotropic for some such L, the module VL contains a totally isotropic
submodule W of D-dimension 2; any D-hyperplane V ′ ⊂ V , considered over
L, meets W non-trivially; it follows that V ′

L is isotropic and this contradicts
to the minimality of V . (This is a very standard argument in the theory of
quadratic forms over field which we applied now to a hermitian form over a
division algebra.)
Therefore, by Lemma 6.4, the complete motivic decomposition of Y ′

F̃
has one

copy of F2, one copy of F2(dimY ′), and no other Tate summands. By Corollary
3.3 and anisotropy of the variety Y ′ (see Lemma 6.3), it follows that

(Y ′, ρ)F̃ ≃ F2 ⊕ F2(dimY ′). �

If we are away from the case where r = 1 and v = 2, then Lemma 7.3 contra-
dicts to Corollary 5.14 thus proving Main theorem (Theorem 1.1). Note that
Corollary 5.14 is a formal consequence of Theorem 5.11 and Lemma 5.13. We
can avoid the use of Lemma 5.13 by showing that deg cdimY ′(−TY ′) is divisible
by 4 for our variety Y ′. Indeed, if v > 2, then let K be the field F (t1, . . . , tv2r )
of rational functions over F in v2r variables. Let us consider the (generic)
diagonal quadratic form 〈t1, . . . , tv2r 〉 on the K-vector space Kv2r . Let Y ′′

be the variety of 2r-dimensional totally isotropic subspaces in Kv2r . The de-
gree of any closed point on Y ′′ is divisible by 22

r

. In particular, the integer
deg cdimY ′′(−TY ′′) is divisible by 22

r

. Since over an algebraic closure K̄ of K
the varieties Y ′ and Y ′′ become isomorphic, we have

deg cdimY ′(−TY ′) = deg cdimY ′′(−TY ′′).

If v = 2 and r > 1, we can play the same game, taking as Y ′′ a component of the
variety of 2r-dimensional totally isotropic subspaces of the (generic) diagonal
quadratic form (of trivial discriminant) 〈t1, . . . , tv2r−1, t1 . . . tv2r−1〉, because
the degree of any closed point on Y ′′ is divisible by 22

r
−1.

Finally, the remaining case where r = 1 and v = 2 needs a special argument
(or reference). Indeed, in this case, the variety Y ′ is a conic, and therefore
Lemma 7.3 does not provide any information on Y ′. Of course, a reference to
[16] allows one to avoid consideration of the case of r = 1 (and any v) at all.
Also, [13, §15.B] covers our special case of r = 1 and v = 2. Finally, to stay
with the methods of this paper, we can do this special case as follows: if the
anisotropic conic Y ′ becomes isotropic over (an odd degree extension of) the
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function field of the conic X0, then X0 becomes isotropic over the function field
of Y ′ and, therefore, of Y ; but this is not the case because the algebra DF (Y )

is not split by the very definition of Y (we recall that X0 is the Severi-Brauer
variety of the quaternion algebra D).
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Appendix A.

Hyperbolicity of Symplectic and Unitary Involutions

by Jean-Pierre Tignol

The purpose of this note is to show how Karpenko’s results in [4] and [6] can be
used to prove the following analogues for symplectic and unitary involutions:

Theorem A.1. Let A be a central simple algebra of even degree over an arbi-
trary field F of characteristic different from 2 and let L be the function field
over F of the generalized Severi–Brauer variety X2(A) of right ideals of dimen-
sion 2 degA (i.e., reduced dimension 2) in A (see [7, (1.16)]). If a symplectic
involution σ on A is not hyperbolic, then its scalar extension σL = σ ⊗ idL on
AL = A⊗F L is not hyperbolic. Moreover, if A is a division algebra then σL is
anisotropic.

By a standard specialization argument, it suffices to find a field extension L′/F
such that AL′ has index 2 and σL′ is not hyperbolic to prove the first part. If
A is a division algebra we need moreover σL′ anisotropic.

Theorem A.2. Let B be a central simple algebra of exponent 2 over an arbi-
trary field K of characteristic different from 2, and let τ be a unitary involution
on B. Let F be the subfield of K fixed under τ and let M be the function field
over F of the Weil transfer RK/F (X(B)) of the Severi–Brauer variety of B. If
τ is not hyperbolic, then its scalar extension τM = τ ⊗ idM on BM = B ⊗F M
is not hyperbolic. Moreover, if B is a division algebra, then τM is anisotropic.
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Again, by a standard specialization argument, it suffices to find a field extension
M ′/F such that BM ′ is split and τM ′ is not hyperbolic (τM ′ anisotropic if B
is a division algebra).

A.1. Symplectic involutions. Consider the algebra of iterated twisted Lau-
rent series in two indeterminates

Â = A((ξ))((η; f))

where f is the automorphism of A((ξ)) that maps ξ to −ξ and is the identity
on A. Thus, ξ and η anticommute and centralize A. Let x = ξ2 and y = η2;

the center of Â is the field of Laurent series F̂ = F ((x))((y)). Moreover, ξ and

η generate over F̂ a quaternion algebra (x, y)F̂ , and we have Â = A⊗F (x, y)F̂ .

Let σ̂ be the involution on Â extending σ and mapping ξ to −ξ and η to
−η. This involution is the tensor product of σ and the canonical (conjugation)
involution on (x, y)F̂ . Since σ is symplectic, it follows that σ̂ is orthogonal.

Proposition A.3. If σ is anisotropic (resp. hyperbolic), then σ̂ is anisotropic
(resp. hyperbolic).

Proof. If σ is hyperbolic, then A contains an idempotent e such that σ(e) =

1 − e, see [7, (6.7)]. Since (A, σ) ⊂ (Â, σ̂), this idempotent also lies in Â and
satisfies σ̂(e) = 1 − e, hence σ̂ is hyperbolic. Now, suppose σ̂ is isotropic and

let a ∈ Â be a nonzero element such that σ̂(a)a = 0. We may write

a =

∞∑

i=z

aiη
i

for some ai ∈ A((ξ)) with az 6= 0. The coefficient of η2z in σ̂(a)a is
(−1)zfz(σ̂(az)az), hence σ̂(az)az = 0. Now, let

az =
∞∑

j=y

ajzξ
j

with ajz ∈ A and ayz 6= 0. The coefficient of ξ2y in σ̂(az)az is (−1)yσ(ayz)ayz,
hence σ(ayz)ayz = 0, which shows σ is isotropic. �

Proof of Theorem A.1. Substituting for (A, σ) its anisotropic kernel, we may

assume σ is anisotropic. Proposition A.3 then shows (Â, σ̂) is anisotropic. Let

L′ be the function field over F̂ of the Severi–Brauer variety of Â. By Karpenko’s

theorem in [6], the algebra with involution (ÂL′ , σ̂L′) is not hyperbolic. There-
fore, it follows from Proposition A.3 that (AL′ , σL′) is not hyperbolic. In par-
ticular, AL′ is not split since every symplectic involution on a split algebra is

hyperbolic. On the other hand, ÂL′ is split, hence AL′ is Brauer-equivalent to
(x, y)L′ . We have thus found a field L′ such that AL′ has index 2 and σL′ is
not hyperbolic, and the first part of Theorem A.1 follows. If A is a division

algebra, then Â also is division. Karpenko’s theorem in [4] then shows that σ̂L′

is anisotropic, hence σL′ is anisotropic since (AL′ , σL′) ⊂ (ÂL′ , σ̂L′). �
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Remark A.4. The last assertion in Theorem A.1 also holds if charF = 2, as a
result of another theorem of Karpenko [5]2: if (A, σ) is a central division algebra
with symplectic involution over a field F of characteristic 2 and Q = [x, y)F (x,y)

is a “generic” quaternion algebra where x and y are independent indeterminates
over F , then A ⊗F Q is a central division algebra over F (x, y) and we may
consider on this algebra the quadratic pair (σ⊗γ, f⊗) where γ is the conjugation
involution on Q and f⊗ is defined in [7, (5.20)]. By [5, Theorem 3.3], this
quadratic pair remains anisotropic over the function field L′ of the Severi–
Brauer variety of A⊗Q, hence σL′ also is anisotropic, while AL′ has index 2.

A.2. Unitary involutions. The proof of Theorem A.2 follows a line of ar-
gument similar to the proof of Theorem A.1. Since the exponent of B is 2, the
algebra B carries an orthogonal involution ν. Let g = ν ◦ τ , which is an outer
automorphism of B, and consider the algebra of twisted Laurent series

B̃ = B((ξ; g)).

It is readily checked that B̃ carries an involution τ̃ extending τ such that

τ̃(ξ) = ξ. To describe the center F̃ of B̃, pick an element u ∈ B̃ such that

ν(u) = τ(u) = u and g2(b) = ubu−1 for all b ∈ B,

see [2, Lemma 3.1], and let x = u−1ξ2. Then F̃ = F ((x)), and B̃ is central

simple over F̃ by [1, Theorem 11.10]. By computing the dimension of the space
of τ̃ -symmetric elements as in [3, Proposition 1.9], we see that τ̃ is orthogonal.

The algebra with involution (B̃, τ̃) can be alternatively described as follows: let
β be the Brauer class of the central simple F -algebra B1 = B⊕Bζ where ζ2 = u

and ζb = g(b)ζ for all b ∈ B. Then (B̃, τ̃) is the unique orthogonal quadratic
extension of (B, τ)F̃ with Brauer class βF̃ + (K,x)F̃ , see [3, Proposition 1.9].

Proposition A.5. If τ is anisotropic (resp. hyperbolic), then τ̃ is anisotropic
(resp. hyperbolic).

Proof. If τ is hyperbolic, then τ̃ also is hyperbolic because (B, τ) ⊂ (B̃, τ̃). If
τ̃ is isotropic, a leading term argument as in Proposition A.3 shows that τ is
isotropic. �

Proof of Theorem A.2. Substituting for (B, τ) its anisotropic kernel, we may
assume τ is anisotropic, hence τ̃ also is anisotropic. Let M ′ be the function

field over F̃ of the Severi–Brauer variety of B̃. By Karpenko’s theorem in [6],

the algebra with involution (B̃M ′ , τ̃M ′) is not hyperbolic, hence (BM ′ , τM ′) is

not hyperbolic. On the other hand, B̃M ′ is split, and BM ′ is the centralizer

of K in B̃M ′ , hence BM ′ is split. We have thus found an extension M ′/F
such that BM ′ is split and τM ′ is not hyperbolic, which proves the first part

of Theorem A.2. If B is a division algebra, then B̃ also is a division algebra,
and Karpenko’s theorem in [4] shows that τ̃M ′ is anisotropic. Then τM ′ is

anisotropic since (BM ′ , τM ′) ⊂ (B̃M ′ , τ̃M ′). �

2I am grateful to N. Karpenko for calling my attention on this reference.
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Remark A.6. As for symplectic involutions, the last assertion in Theorem A.2
also holds if charF = 2, with almost the same proof: take ℓ ∈ K such that

τ(ℓ) = ℓ + 1, and consider the quadratic pair (τ̃ , f) on B̃ where f is defined

by f(s) = TrdB̃(ℓs) for any τ̃ -symmetric element s ∈ B̃. If B is a division

algebra, then B̃ is a division algebra, hence Karpenko’s Theorem 3.3 in [5]
shows that the quadratic pair (τ̃ , f) remains anisotropic after scalar extension
to M ′. Therefore, τM ′ is anisotropic.
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