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Abstract. We study Voevodsky’s slice tower for S1-spectra, and
raise a number of questions regarding its properties. We show that
the 0th slice does not in general admit transfers, although it does for
a P

1-loop-spectrum. We define a new tower for each of the higher
slices, and show that the layers in these towers have the structure of
Eilenberg-Maclane spectra on effective motives.
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394 Marc Levine

Introduction

Voevodsky [22] has defined an analog of the classical Postnikov tower in the
setting of motivic stable homotopy theory by replacing the simplicial suspension
Σs := − ∧ S1 with P

1-suspension ΣP1 := − ∧ P
1; we call this construction the

motivic Postnikov tower.
Let SH(k) denote the motivic stable homotopy category of P1-spectra. One of
the main results on motivic Postnikov tower in this setting is

Theorem 1. Let k be a field of characteristic zero. For E ∈ SH(k), the slices
snE have the natural structure of an HZ-module, and hence determine objects
in the category of motives DM(k).

The statement is a bit imprecise, as the following expansion will make clear:
Röndigs-Østvær [19, 20] have shown that the homotopy category of strict HZ-
modules is equivalent to the category of motives, DM(k). Additionally, Vo-
evodsky [22] and the author [11] have shown that the 0th slice of the sphere
spectrum S in SH(k) is isomorphic to HZ. Each E ∈ SH(k) has a canonical
structure of a module over the sphere spectrum S, and thus the slices snE
acquire an HZ-module structure, in SHS1(k). This has been refined to the
model category level by Pelaez [17], showing that the slices of a P

1-spectrum
E have a natural structure of a strict HZ-module, hence are motives.
Let SptS1(k) denote the category of S1-spectra, with its homotopy category
(for the A

1 model structure) SHS1(k). The analog for motives is the cat-
egory complexes of presheaves with transfer and its A

1-homotopy category
DMeff (k), the category of effective motives over k. We consider the motivic
Postnikov tower inSHS1(k), and ask the questions:

(1) Is there a ring object in SptS1(k), HZeff , such that the homotopy

category of HZeff modules is equivalent to the category of effective
motives DMeff (k)?

(2) What properties (if any) need an S1-spectrum E have so that the
slices snE have a natural structure of Eilenberg-Maclane spectra of a
homotopy invariant complex of presheaves with transfer?

Naturally, if HZeff exists as in (1), we are asking the slices in (2) to be (strict)

HZeff modules. Of course, a natural candidate for HZeff would be the 0-S1-
spectrum of HZ, Ω∞

P1HZ, but as far as I know, this property has not yet been
investigated.
As we shall see, the 0-S1-spectrum of a P

1-spectrum does have the property
that its (S1) slices are motives, while one can give examples of S1-spectra for
which the 0th slice does not have this property. This suggests a relation of the
question of the structure of the slices of an S1-spectrum with a motivic version
of the recognition problem:

(3) How can one tell if a given S1-spectrum is an n-fold P
1-loop spectrum?

In this paper, we prove two main results about the “motivic” structure on the
slices of S1-spectra:
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Theorem 2. Suppose char k = 0. Let E be an S1-spectrum. Then for each
n ≥ 1, there is a tower

. . .→ ρ≥p+1snE → ρ≥psnE → . . .→ snE

in SHS1(k) with the following properties:

(1) the tower is natural in E.
(2) Let sp,nE be the cofiber of ρ≥p+1snE → ρ≥psnE. Then there is a ho-

motopy invariant complex of presheaves with transfers π̂p((snE)(n))∗ ∈

DMeff
− (k) and a natural isomorphism in SHS1(k),

EMA1(π̂p((snE)(n))∗) ∼= sp,nE,

where EMA1 : DMeff
− (k) → SHS1(k) is the Eilenberg-Maclane spec-

trum functor.

This result is proven in section 9.
One can say a bit more about the tower appearing in theorem 2. For in-
stance, holimp fib(ρ≥psnE → snE) is weakly equivalent to zero, so the spectral
sequence associated to this tower is weakly convergent. If snE is globally
N -connected (i.e., there is an N such that snE(X) is N -connected for all
X ∈ Sm/k) then the spectral sequence is strongly convergent. The “π̂p” ap-

pears in the notation due to the construction of π̂p((snE)(n))∗(X) arising from
a “Bloch cycle complex” of codimension n cycles on X ×∆∗ with coefficients
in πp(Ω

nsnE).
In other words, the higher slices of an arbitrary S1-spectrum have some sort of
transfers “up to filtration”. The situation for the 0th slice appears to be more
complicated, but for a P

1-loop spectrum we have at least the following result:

Theorem 3. Suppose char k = 0. Take E ∈ SHP1(k). Then for all m, the
homotopy sheaf πm(s0ΩP1E) has a natural structure of a homotopy invariant
sheaf with transfers.

We actually prove a more precise result (corollary 8.5) which states that the
0th slice s0ΩP1E is itself a presheaf with transfers, with values in the stable
homotopy category SH, i.e., s0ΩP1E has “transfers up to homotopy”. This
raises the question:

(4) Is there an operad acting on s0Ω
n
P1E which shows that s0Ω

n
P1E admits

transfers up to homotopy and higher homotopies up to some level?

Part of the motivation for this paper came out of discussions with Hélène Es-
nault concerning the (admittedly vague) question: Given a smooth projective
variety X over some field k, that admits a 0-cycle of degree 1, are there “mo-
tivic” properties of X that lead to the existence of a k-point, or conversely, that
give obstructions to the existence of a k-point? The fact that the existence of
0-cycles of degree 1 has something to do with the transfer maps from 0-cycles
on XL to 0-cycles on X, as L runs over finite field extensions of k, while the
lack of a transfer map in general appears to be closely related to the subtlety
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of the existence of k-points led to our inquiry into the “motivic” nature of the
spaces Ωn

P1Σn
P1X+, or rather, their associated S

1-spectra.

Notation and conventions. Throughout this paper the base-field k will
be a field of characteristic zero. Sm/k is the category of smooth finite type
k-schemes. We let Spc• denote the category of pointed space, i.e., pointed
simplicial sets, and H• the homotopy category of Spc•, the unstable homo-
topy category. Similarly, we let Spt denote the category of spectra and SH
its homotopy category, the stable homotopy category. We let Spc•(k) denote
the category of pointed spaces over k, that is, the category of Spc•-valued
presheaves on Sm/k, and SptS1(k) the category of S1-spectra over k, that
is, the category of Spt-valued presheaves on Sm/k. We let SptP1(k) de-
note the category of P1-spectra over k, which we take to mean the category
of ΣP1 -spectrum objects over SptS1(k). Concretely, an object is a sequence
(E0, E1, . . .), En ∈ SptS1(k), together with bonding maps ǫn : ΣP1En → En+1.
Regarding the categories SptS1(k), SHS1(k) and SH(k), we will use the no-
tation spelled out in [11]. In addition to this source, we refer the reader to
[8, 14, 15, 20, 22]. Relying on these sources for details, we remind the reader
that H•(k) is the homotopy category of the category of Spc•(k), for the so-
called A

1-model structure. Similarly SHS1(k) and SptP1(k) have model struc-
tures, which we call the A

1-model structures, and SHS1(k), SH(k) are the

respective homotopy categories. For details on the category DMeff (k), we
refer the reader to [3, 5].
We will be passing from the unstable motivic (pointed) homotopy category over
k, H•(k), to the motivic homotopy category of S1-spectra over k, SHS1(k), via
the infinite (simplicial) suspension functor

Σ∞
s : H•(k)→ SHS1(k)

For a smooth k-scheme X ∈ Sm/k and a subscheme Y of X (sometimes closed,
sometimes open), we let (X,Y ) denote the homotopy push-out in the diagram

Y //

��

X

Spec k

and as usual write X+ for (X ∐ Spec k, Spec k). We often denote Spec k by ∗.
For an object S of H•(k), we often use S to denote Σ∞

s S ∈ SHS1(k) when the
context makes the meaning clear; we also use this convention when passing to
various localizations of SHS1(k).
We let [n] denote the set {0, . . . , n} with the standard total order, and
let Ord denote the category with objects [n], n = 0, 1, . . . and morphisms
the order-preserving maps of sets. Let ∆n denote the algebraic n-simplex
Spec k[t0, . . . , tn]/

∑
i ti − 1, with vertices vn0 , . . . , v

n
n , where v

n
i is defined by

tj = 0 for j 6= i. As is well-known, sending g : [n] → [m] to the affine-linear
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extension ∆(g) : ∆n → ∆m of the map on the set of vertices, vnj 7→ vmg(j) defines

the cosimplicial k-scheme n 7→ ∆n.
We recall that, for a category C, the category of pro-objects in C, pro-C, has as
objects functors f : I → C, i ∈ I, where I is a small left-filtering category, a
morphism (f : I → C) → (g : J → C) is a pair (ρ : I → J, θ : f → g ◦ ρ), with
the evident composition, and we invert morphisms of the form

(ρ : I → J, id : f := g ◦ ρ→ g ◦ ρ)

if ρ : I → J has image a left co-final subcategory of J . In this paper we use
categories of pro-objects to allow us to use various localizations of smooth finite
type k-schemes. This is a convenience rather than a necessity, as all maps and
relations lift to the level of finite type k-schemes.
I am very grateful to the referee for making a number of perceptive and useful
comments, which led to the correction of some errors and an improvement of
the exposition.
Dedication. This paper is warmly dedicated to Andrei Suslin, who has given
me more inspiration than I can hope to tell.

1. Infinite P
1-loop spectra

We first consider the case of the 0-S1-spectrum of a P
1-spectrum. We recall

some constructions and results from [20]. We let

Ω∞
P1 : SH(k)→ SHS1(k)

Ω∞
P1,mot : DM(k)→ DMeff (k)

be the (derived) 0-spectrum (resp. 0-complex) functor, let

EMA1 : DM(k)→ SH(k)

EMeff
A1 : DMeff (k)→ SHS1(k)

the respective Eilenberg-Maclane spectrum functors. The functors Ω∞
P1 , Ω∞

P1,mot

are right adjoints to the respective infinite suspension functors

Σ∞
P1 : SHS1(k)→ SH(k)

Σ∞
P1,mot : DM

eff (k)→ DM(k)

and the functors EMA1 , EMeff
A1 are similarly right adjoints to the “lineariza-

tion” functors

Z
tr : SH(k)→ DM(k)

Z
tr : SHS1(k)→ DMeff (k)

induced by the functor Ztr from simplicial presheaves on Sm/k to presheaves
with transfer on Sm/k sending the representable presheaf HomSm/k(−, X)
to the free presheaf with transfers Z

tr
X := HomSmCor(k)(−X), and taking the

Kan extension. The discussion in [20, §2.2.1] show that both these adjoint pairs
arise from Quillen adjunctions on suitable model categories (followed by a chain
of Quillen equivalences), where on the model categories, the functors EMA1 ,

Documenta Mathematica · Extra Volume Suslin (2010) 393–443
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EMeff
A1 are just forgetful functors and the functors Ω∞ just take a sequence

E0, E1, . . . to E0. Thus one has

(1.1) EMeff
A1 ◦ Ω

∞
P1,mot

∼= Ω∞
P1 ◦ EMA1

as one has an identity of the two functors on the model categories.

Theorem 1.1. Fix an integer n ≥ 0. Then there is a functor

Moteff (sn) : SH(k)→ DMeff (k)

and a natural isomorphism

ϕn : EMeff
A1 ◦Moteff (sn)→ seffn ◦ Ω∞

P1

of functors from SH(k) to SHS1(k).

In other words, for E ∈ SH(k), there is a canonical lifting of the slice seffn (Ω∞
P1E)

to a motive Moteff (sn)(E).

Proof. By Pelaez [18, theorem 3.3], there is a functor

Mot(sn) : SH(k)→ DM(k)

and a natural isomorphism

Φn : EMA1 ◦Mot(sn)→ sn

i.e., the slice snE lifts canonically to a motive Mot(sn)(E). Now apply the
0-complex functor to define

Moteff (sn) := Ω∞
P1,mot ◦Mot(sn).

We have canonical isomorphisms

EMeff
A1 ◦ Ω

∞
P1,mot ◦Mot(sn) ∼= Ω∞

P1 ◦ EMA1 ◦Mot(sn)

∼= Ω∞
P1 ◦ sn

∼= seffn ◦ Ω∞
P1 .

Indeed, the first isomorphism is (1.1) and the second is Pelaez’s isomorphism
Φn. For the third, we have given in [11] an explicit model for sn in terms of
the functors seffm as follows: given a P

1-spectrum E, represented as a sequence
of S1-spectra E0, E1, . . . together with bonding maps ΣP1En → En+1, suppose
that E is fibrant. In particular, the adjoints En → ΩP1En+1 of the bonding
maps are weak equivalences and E0 = Ω∞

P1E. It follows from [11, theorem 9.0.3]

that snE is represented by the sequence (seffn E0, s
eff
n+1E1, . . . , s

eff
n+mEm, . . .),

with certain bonding maps (defined in [11, §8.3]). In addition, by [11, theorem
4.1.1] this new sequence is termwise weakly equivalent to its fibrant model.
This defines the natural isomorphism Ω∞

P1snE ∼= seffn E0
∼= seffn ΩP1E. �

In other words, the slices of an infinite P
1-loop spectrum are effective motives.
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2. An example

We now show that the 0th slice of an S1-spectrum is not always a motive. In
fact, we will give an example of an Eilenberg-Maclane spectrum whose 0th slice
does not admit transfers.
For this, note the following:

Lemma 2.1. Let p : Y → X be a finite Galois cover in Sm/k, with Galois
group G. Let F be a presheaf with transfers on Sm/k. Then the composition

p∗ ◦ p∗ : F(Y )→ F(Y )

is given by

p∗ ◦ p∗(x) =
∑

g∈G

g∗(x)

Proof. Letting Γp ⊂ Y ×X be the graph of p, and Γg ⊂ Y × Y the graph of
g : Y → Y for g ∈ G, one computes that

Γt
p ◦ Γp =

∑

g∈G

Γg,

whence the result. �

Now let C be a smooth projective curve over k, having no k-rational points.
We assume that C has genus g > 0, so every map A

1
F → CF over a field F ⊃ k

is constant (C is A1-rigid).
Let ZC be the representable presheaf:

ZC(Y ) := Z[HomSm/k(Y,C)].

ZC is automatically a Nisnevich sheaf; since C is A1-rigid, ZC is also homotopy
invariant. Furthermore ZC is a birational sheaf, that is, for each dense open
immersion U → Y in Sm/k, the restriction map ZC(Y )→ ZC(U) is an isomor-
phism. To see this, it suffices to show that HomSm/k(Y,C)→ HomSm/k(U,C)
is an isomorphism, and for this, take a morphism f : U → C. Then the projec-
tion to Y of the closure Γ̄ of the graph of f in Y ×C is proper and birational.
But since Y is regular, each fiber of Γ̄→ Y is rationally connected, hence maps
to a point of C, and thus Γ̄ → Y is birational and 1-1. By Zariski’s main
theorem, Γ̄→ Y is an isomorphism, hence f extends to f̄ : Y → C, as claimed.
Next, ZC satisfies Nisnevich excision. This is just a general property of bira-
tional sheaves. In fact, let

V
jV

//

f|V

��

Y

f

��

U
jU

// X

be an elementary Nisnevich square, i.e., the square is cartesian, f is étale, jU
and jV are open immersions, and f induces an isomorphism Y \ V → X \ U .
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We may assume that U and V are dense in X and Y . Let F be a birational
sheaf on Sm/k, and apply F to this diagram. This gives us the square

F(X)
j∗U //

f∗

��

F(U)

f∗
|V

��

F(Y )
j∗V

// F(V )

As the horizontal arrows are isomorphisms, we have the exact sequence

0→ F(X)→ F(U)⊕F(Y )→ F(V )→ 0.

Thus, F transforms elementary Nisnevich squares to distinguished triangles in
D(Ab); by definition, F therefore satisfies Nisnevich excision.
Let EMs(ZC) denote presheaf of Eilenberg-Maclane spectra on Sm/k asso-
ciated to ZC , that is, for U ∈ Sm/k, EMs(ZC)(U) ∈ Spt is the Eilenberg-
Maclane spectrum associated to the abelian group ZC(U). Since ZC is homo-
topy invariant and satisfies Nisnevich excision, EMs(ZC) is weakly equivalent
as a presheaf on Sm/k to its fibrant model in SHS1(k) (EMs(ZC) is quasi-
fibrant)2. In addition, the canonical map

EMs(ZC)→ s0(EMs(ZC))

is an isomorphism in SHS1(k). Indeed, since EMs(ZC) is quasi-fibrant, a
quasi-fibrant model for s0(EMs(ZC)) may be computed by the method of [11,
§5] as follows: Take Y ∈ Sm/k and let F = k(Y ). Let ∆n

F,0 be the semi-local
algebraic n-simplex over F , that is,

∆n
F,0 = Spec(O∆n

F ,v); v = {v0, . . . , vn}.

The assignment n 7→ ∆n
F,0 forms a cosimplicial subscheme of n 7→ ∆n

F and for

a quasi-fibrant S1-spectrum E, there is a natural isomorphism in SH

s0(E)(Y ) ∼= E(∆∗
F,0),

where E(∆∗
F,0) denotes the total spectrum of the simplicial spectrum n 7→

E(∆n
F,0). If now E happens to be a birational S1-spectrum, meaning that j∗ :

E(Y )→ E(U) is a weak equivalence for each dense open immersion j : U → Y
in Sm/k, then the restriction map

j∗ : E(∆∗
Y )→ E(∆∗

F,0)
∼= s0(E)(Y )

is a weak equivalence. Thus, as E is quasi-fibrant and hence homotopy invari-
ant, we have the sequence of isomorphisms in SH

E(Y )→ E(∆∗
Y )→ E(∆∗

F,0)
∼= s0(E)(Y ),

and hence E → s0(E) is an isomorphism in SHS1(k). Taking E = EMs(ZC)
verifies our claim.

2The referee has pointed out that, using the standard model (ZC , BZC , . . . , BnZC , . . .)
for EMs(ZC), EMs(ZC) is actually fibrant in the projective model structure.
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Finally, ZC does not admit transfers. Indeed, suppose ZC has transfers. Let
k → L be a Galois extension such that C(L) 6= ∅; let G be the Galois group.
Since ZC(k) = {0} (as we have assumed that C(k) = ∅), the push-forward map

p∗ : ZC(L)→ ZC(k)

is the zero map, hence p∗ ◦ p∗ = 0. But for each L-point x of C, lemma 2.1
tells us that

p∗ ◦ p∗(x) =
∑

g∈G

xg 6= 0,

a contradiction.
Thus the homotopy sheaf

π0(s0EMs(ZC)) = π0(EMs(ZC)) = ZC

does not admit transfers, giving us the example we were seeking.
Even if we ask for transfers in a weaker sense, namely, that there is a functorial
separated filtration F ∗

ZC admitting transfers on the associated graded gr∗FZC ,
a slight extension of the above argument shows that this is not possible as long
as the filtration on ZC(L) is finite. Indeed, p∗p∗ would send Fn

ZC(L) to
Fn+1

ZC(L), so (p∗p∗)
N = 0 for some N ≥ 1, and hence N ·

∑
g∈G x

g = 0, a
contradiction.

3. Co-transfer

In this section, k will be an arbitrary perfect field. We recall how one uses the
deformation to the normal bundle to define the “co-transfer”

(P1
F , 1F )→ (P1

F (x), 1F )

for a closed point x ∈ A
1
F ⊂ P

1
F , with chosen generator f ∈ mx/m

2
x. For later

use, we work in a somewhat more general setting: Let S be a smooth finite
type k-scheme and x a regular closed subscheme of P1

S \{1} ⊂ P
1
S , such that the

projection x → S is finite. Let mx ⊂ OP1
S
be the ideal sheaf of x. We assume

that the invertible sheaf mx/m
2
x on x is isomorphic to the trivial invertible

sheaf Ox, and we choose a generator f ∈ Γ(x,mx/m
2
x) over Ox.

We will eventually replace S with a semi-local affine scheme, S = SpecR, for
R a smooth semi-local k-algebra, essentially of finite type over k, for instance,
R = F a finitely generated separable field extension of k. Although this will
take us out of the categoryH(k), this will not be a problem: when we work with
a smooth scheme Y which is essentially of finite type over k, we will consider
Y as a pro-object in H(k), and we will be interested in functors on H(k) of
the form HomH(k)(Y,−), which will then be a well-defined filtered colimit of
co-representable functors.
Let (X0 : X1) be the standard homogeneous coordinates on P

1. We let s :=
X1/X0 be the standard parameter on P

1, and as usual, write 0 = (1 : 0),
∞ = (0 : 1), 1 = (1 : 1). We often write 0, 1,∞ for the subschemes 0X , 1X ,∞X

of P1
X .
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Let µ :Wx → P
1
S ×A

1 be the blow-up of P1
S ×A

1 along (x, 0) with exceptional
divisor E. Let sx, C0 be the proper transforms sx = µ−1[x × A

1], C0 =

µ−1[P1× 0]. Let t be the standard parameter on A
1 and let f̃ be a local lifting

of f to a section of mx; the rational function f̃/t restricts to a well-defined
rational parameter on E, independent of the choice of lifting, and thus defines
a globally defined isomorphism

f/t : E → P
1
x.

We identify E with P
1
x by sending sx ∩E to 0, C0 ∩E to 1 and the section on

E defined by f/t = 1 to ∞. Denote this isomorphism by

ϕf : P1
x → E;

we write (0, 1,∞) for (sx∩E,C0∩E, f/t = 1), when the context makes it clear
we are referring to subschemes of E.

We let W
(sx)
x , E(0), (P1

F )
(0) be following homotopy push-outs

W (sx)
x := (Wx,Wx \ sx),

E(0) := (E,E \ 0),

(P1
S)

(0) := (P1
S ,P

1
S \ 0).

Since (A1
x, 0)

∼= ∗ in H•(k), the respective identity maps induce isomorphisms

(E, 1)→ E(0),

(P1
S , 1)→ (P1

S)
(0).

Composing with the isomorphism ϕf : (P1
x, 1)→ (E, 1), the inclusion E →Wx

induces the map

i0,f : (P1
x, 1)→W (sx)

x .

The proof of the homotopy purity theorem of Morel-Voevodsky [15, theorem
2.23] yields as a special case that i0,f is an isomorphism in H•(k). This enables
us to define the “co-transfer map” as follows:

Definition 3.1. Let x ⊂ P
1
S \ 1S be a closed subscheme, smooth over k and

finite over S, and suppose that mx/m
2
x is a free Ox-module with generator f .

The map

co-trx,f : (P1
S , 1)→ (P1

x, 1)

in H•(k) is defined to be the composition

(P1
S , 1)

i1−→W (sx)
x

i−1
0,f
−−→ (P1

x, 1).

Let X ∈ H•(k) be a P
1-loop space, i.e., X ∼= Ω1

P
Y := Maps•(P

1,Y) for some
Y ∈ H•(k). For x ⊂ P

1
S and f as above, one has the transfer map

X (x)→ X (S)

in H• defined by pre-composing with the co-transfer map

co-trx,f : (P1
S , 1)→ (P1

x, 1).

Documenta Mathematica · Extra Volume Suslin (2010) 393–443



Slices and Transfers 403

We will find modification of this construction useful in the sequel, namely, in
the proof of lemma 5.9 and lemma 5.11. Let s1 := 1S × A

1 ⊂ P
1
S × A

1; as
Wx → P

1
S × A

1 is an isomorphism over a neighborhood of s1, we view s1 as a
closed subscheme of Wx. We write W for Wx, etc., when the context makes
the meaning clear.

Lemma 3.2. Let x ⊂ P
1
S \ 1S be a closed subscheme, smooth over k. Suppose

that x→ S is finite and étale. Then the identity on W induces an isomorphism

(W,C0 ∪ s1)→W (sx)

in H•(k).

Proof. As s1 ∼= A
1
S , with C0 ∩ s1 = 0S , the inclusion C0 → C0 ∪ s1 is an

isomorphism in H(k). Thus, we need to show that (W,C0) → W (sx) is an
isomorphism in H•(k). As W (sx) = (W,W \ sx), we need to show that C0 →
W \ sx is an isomorphism in H(k). To aid in the proof, we will prove a more
general result, namely, let U ⊂ P

1
S be a open subscheme containing x. We

consider W as a scheme over P1
S via the composition

W
µ
−→ P

1
S × A

1
S

p1
−→ P

1
S

and for a subscheme Z of W , let ZU denote the pull-back Z ×P1
S
U . Then we

will show that

C0U →WU \ sx

is an isomorphism in H(k).
We first reduce to the case in which x→ S is an isomorphism (in Sm/k). For
this, we have the étale map q : P1

x → P
1
S and the canonical x-point of P1

x, which
we write as x̃. Let U(x) ⊂ P

1
x be a Zariski open neighborhood of x̃ such that

q−1(x) ∩ U(x) = {x̃}. This gives us the elementary Nisnevich square

U(x) :=

U(x) \ x̃ //

��

U(x)

��

P
1
S \ x

// P
1
S ;

for each P
1
S-scheme Z → P

1
S we thus have the elementary Nisnevich square

U(x)×P1
S
Z, giving a Nisnevich cover of Z.

Let V ⊂ P
1
S be an open subscheme with x ∩ V = ∅. Then WV → V ×S A

1
S

is an isomorphism and WV ∩ sx = ∅. Similarly C0V → V is an isomorphism,
and thus C0V → WV is an isomorphism in H(k). Replacing S with x, and
considering the map of elementary Nisnevich squares

U(x)×P1
S
C0U → U(x)×P1

S
(WU \ sx)

induced by C0 → W \ sx, we achieve the desired reduction. A similar Mayer-
Vietoris argument allows us to replace S with a Zariski open cover of S, so,
changing notation, we may assume that x is the point 0 := (1 : 0) of P1

S .
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Using the open cover of P1
S by the affine open subsets U0 := P

1
S \1, U1 := P

1
S \0

and arguing as above, we may assume that U is a subset of U0, which we
identify with A

1
S by sending (0,∞) to (0, 1). We may also assume that 0S ⊂ U .

Using coordinates (t1, t2) for A
2, (t1, t2, t3) for A

3, the scheme WU0
\ s0 is

isomorphic to the closed subscheme of A3
S defined by t2 = t1t3, with µ being

the projection (t1, t2, t3) 7→ (t1, t2). C0U0
is the subscheme of WU0

\ s0 defined
by t3 = 0. The projection p13 :WU0

\s0 → A
2
S is thus an isomorphism, sending

C0 to A
1
S × 0.

Let y = U \ U0, so y is a closed subset disjoint from 0S . Then

p13(µ
−1(y × A

1)) = y × A
1 ⊂ A

2
S ,

hence p13 : WU \ s0 → A
2
S identifies WU \ s0 with U × A

1 and identifies C0U

with U × 0. Thus C0U → WU \ s0 is an isomorphism in H(k), completing the
proof. �

Lemma 3.3. With hypotheses as in lemma 3.2, the inclusion E → W and
isomorphism ϕf : P1 → E induces an isomorphism

ĩ0,f : (P1
x, 1)→ (Wx, C0 ∪ s1)

in H•(k).

Proof. We have the commutative diagram

(P1
x, 1)

ĩ0,f
//

i0,f
&&▼

▼▼
▼▼

▼▼
▼▼

▼
(W,C0 ∪ s1)

��

W (sx).

The diagonal arrow is an isomorphism in H•(k) by Morel-Voevodsky; the ver-
tical arrow is an isomorphism by lemma 3.2. �

Definition 3.4. Let x ⊂ P
1
S \ 1S be a closed subscheme, smooth over k and

finite and étale over S. Suppose thatmx/m
2
x is a freeOx-module with generator

f . The map

˜co-trx,f : (P1
S , 1)→ (P1

x, 1)

in H•(k) is defined to be the composition

(P1
S , 1)

i1−→ (W,C0 ∪ s1)
ĩ−1
0,f
−−→ (P1

x, 1).

Remark 3.5. Given S, x, f as in definition 3.4, we have

˜co-trx,f = co-trx,f .
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This follows directly from the commutative diagram

(P1
S , 1)

i1 // (W,C0 ∪ s1)

id

��

(P1
x, 1)

ĩ0,f
oo

(P1
S , 1) i1

// W (sx) (P1
x, 1).i0,f

oo

We examine some properties of co-trx,f . For any ordering (a, b, c) of {0, 1,∞},
we let τab,c denote the automorphism of P1 that fixes a and exchanges b and c.

For u ∈ k×, we let µ(u) be the automorphism of P1 that fixes 0 and ∞ and
sends 1 to u. We first prove the following elementary result

Lemma 3.6. The automorphism ρ := τ01,∞ ◦µ(−1)◦ τ
0
1,∞ ◦ τ

1
0,∞ of (P1, 1) is the

identity in H•(k).

Proof. τ01,∞ρτ
0
1,∞ is the automorphism of (P1,∞) given by the matrix

(
1 0
−1 1

)
∈ GL2(k).

Noting that elementary matrices of the form
(
1 0
λ 1

)

all fix ∞ and thus define automorphisms of (P1,∞) that are A
1-homotopic to

the identity, we see that τ01,∞ρτ
0
1,∞ = id on (P1,∞) in H•(k), and thus ρ = id

on (P1, 1) in H•(k). �

Lemma 3.7. 1. The map co-tr0,−s : (P
1, 1)→ (P1, 1) is the identity.

2. The map co-tr∞,−s−1 : (P1, 1) → (P1, 1) is the map in H•(k) induced
by the automorphism τ10,∞.

3. The map co-tr∞,s−1 : (P1, 1)→ (P1, 1) is the identity.

Proof. Since τ1∗0,∞(−s) = −s−1, (2) follows from (1) by applying τ10,∞. Next,
we show that (2) implies (3). It follows directly from the definition of co-tr∗,∗
that

co-tr∞,s−1 = τ01,∞ ◦ µ(−1) ◦ τ
0
1,∞ ◦ co-tr∞,−s−1 .

Thus, assuming (2), we have

co-tr∞,s−1 = τ01,∞ ◦ µ(−1) ◦ τ
0
1,∞ ◦ τ

1
0,∞

in H•(k); (3) then follows from lemma 3.6.
We now prove (1). Identify A

1 with P
1 \ {1} sending 0 to 0 and 1 to ∞. The

blow-up W := W0 is thus identified with an open subscheme of the blow-up
µ̄ : W̄ → P

1 × P
1 of P1 × P

1 at (0, 0).
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The curve C0 on W̄ has self-intersection -1, and can thus be blown down via a
morphism

ρ̄ : W̄ → W̄ ′.

Letting q : W̄ → P
1 be the composition

W̄
µ̄
−→ P

1 × P
1 p2
−→ P

1,

the fact that q(C0) = 0 implies that q descends to a morphism

q̄′ : W̄ ′ → P
1.

As the complement W̄∞ := W̄ \ W is disjoint from C0 and ρ̄ is proper, we
have the open subscheme W ′ := W̄ ′ \ ρ̄(W̄∞) of W̄ ′ and the proper birational
morphism

ρ :W →W ′,

with ρ(C0) ∼= Spec k and with the restriction W \C0 →W ′ \ ρ(C0) an isomor-
phism. In addition, q̄′ restricts to the proper morphism

q′ :W ′ → P
1 \ 1.

In addition, q′ is a smooth and projective morphism with geometric fibers
isomorphic to P

1. Finally, we have

q′−1(0) = ρ(E).

Let ∆ ⊂ P
1 × P

1 \ {1} be the restriction of the diagonal in P
1 × P

1, giving
us the proper transform µ−1[∆] on W and the image ∆′ = ρ(µ−1[∆]) on W ′.
Similarly, let s′0 = ρ(s0), s

′
1 = ρ(s1); note that ρ(C0) ⊂ s′1. It is easy to check

that s′0, ∆
′ and s′1 give disjoint sections of q′ : W ′ → P

1 \ 1, hence there is a
unique isomorphism (over P1 \ 1) of W ′ with P

1 × P
1 \ 1 sending (s′0, s

′
1,∆

′) to
(0, 1,∞)× P

1 \ 1. We have in addition the commutative diagram

(3.1) (P1, 1)
i0,−s

//

i′0 &&▼
▼▼

▼▼
▼▼

▼▼
▼

(W,W \ s0)

ρ

��

(P1, 1)
i1oo

i′1xxqq
qq
qq
qq
qq

(W ′,W ′ \ s′0)

where i′0 is the canonical identification of P1 with the fiber ofW ′ over 0, sending
(0, 1,∞) into (s′0, s

′
1,∆

′), and i′1 is defined similarly.
We claim that the isomorphism ρ : E → q′−1(0) is a pointed isomorphism

ρ : (E, 0, 1,∞)→ (q′−1(0), q′−1(0) ∩ s′0, q
′−1(0) ∩ s′1, q

′−1(0) ∩∆′).

Indeed, by definition 0 = E ∩ s0 and 1 = E ∩ C0. Since ρ(s0) = s′0 and
ρ(C0) ⊂ s

′
1, we need only show that ρ(∞) ⊂ ∆′. To distinguish the two factors

of P1, we write
x1 = p∗1(s), x2 = p∗2(s)

where s is the standard parameter on P
1. Using this notation, ∞ is the sub-

scheme of E defined by the equation −x1/t = 1, where t is the standard
parameter on A

1
S = P

1
S \ 1S . As our identification of P1 \ 1S with A

1 sends
0 ∈ A

1 to 0 ∈ P
1, 1 ∈ A

1 to ∞ in P
1, the standard parameter t goes over to
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the rational function x2/(x2− 1) on P
1. As the image of x2/(x2− 1) in m0/m

2
0

is the same as the image of −x2 in m0/m
2
0, ∞ is defined by x1/x2 = 1 on E,

which is clearly the subscheme defined by E ∩∆. Via the isomorphism ρ, this
goes over to q′−1(0) ∩∆′, as desired.
It follows from the proof of [15, theorem 2.2.3] that all the morphisms in the
diagram (3.1) are isomorphisms in H•(k); as i

′−1
0 ◦ i′1 is clearly the identity, the

lemma is proved. �

The proof of the next result is easy and is left to the reader.

Lemma 3.8. Let S′ → S be a morphism of smooth finite type k-schemes. Let
x be a closed subscheme of P1

S \ {1}, finite over S. Let x′ = x ×S S
′ ⊂ P

1
S′ .

We suppose we have a generator f for mx/m
2
x, and let f ′ be the extension to

mx′/m2
x′ . If either S′ → S is smooth, or S → S′ is flat and x → S is étale,

then the diagram

(P1
S′ , 1)

co-trx′,f′
//

��

(P1
x′ , 1)

��

(P1
S , 1) co-trx,f

// (P1
x, 1)

is defined and commutes.

4. Co-group structure on P
1

In this section, k will be an arbitrary perfect field. Let Gm = A
1\{0}, which we

consider as a pointed scheme with base-point 1. We recall the Mayer-Vietoris
square for the standard cover of P1:

Gm
t∞ //

t0

��

A
1

j∞

��

A
1

j0
//
P
1.

Here j0, j∞, t0, t∞ are defined by j0(t) = (1 : t), j∞(t) = (t : 1), t0(t) = t and
t∞(t) = t−1. This gives us the isomorphism in H•(k) of P

1 with the homotopy
push-out in the diagram

(4.1) Gm
t∞ //

t0

��

A
1

A
1;

the contractibility of A1 gives us the canonical isomorphism

(4.2) α : S1 ∧Gm
∼
−→ (P1, 1).
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This, together with the standard co-group structure on S1, σ : S1 → S1 ∨ S1,
makes (P1, 1) a co-group object in H•(k); let

σP1 := σ ∧ idGm
: (P1, 1)→ (P1, 1) ∨ (P1, 1)

be the co-multiplication. In this section, we discuss a more algebraic description
of this structure.
Let f := (f0, f∞) be a pair of generators for m0/m

2
0, m∞/m

2
∞. giving us the

collapse map

co-tr{0,∞},f : (P1, 1)→ (P1, 1) ∨ (P1, 1).

Lemma 4.1. Let s be the standard parameter X1/X0 on P
1. For f = (−s, s−1),

we have σP1 = co-tr{0,∞},f in H•(k).

Proof. We first unwind the definition of σP1 in some detail. As above, we
identify P

1 with the push-out in the diagram (4.1) and thus (P1, 1) is isomorphic
to the push-out in the diagram

(Gm, 1) ∨ (Gm, 1)
(id,id)

//

(t0∨t∞)

��

(Gm, 1)

(A1, 1) ∨ (A1, 1).

Let I denote a simplicial model of the interval admitting a “mid-point” 1/2, for
example, we can take I = ∆1

1∨0 ∆
1. The isomorphism α : S1 ∧Gm → (P1, 1)

in H•(k) arises via a sequence of comparison maps between push-outs in the
following diagrams (we point P1, A1 and Gm with 1):

Gm ∨Gm

(id,id)
//

(t0∨t∞)

��

Gm

A
1 ∨ A

1

←

0+ ∧Gm ∨ 1+ ∧Gm
(ι0,ι1)

//

t0∨t∞

��

I+ ∧Gm

0+ ∧ A
1 ∨ 1+ ∧ A

1

↓(4.3)

0+ ∧Gm ∨ 1+ ∧Gm
(ι0,ι1)

//

��

I+ ∧Gm

∗

the first map is induced by the evident projections and the second by contract-
ing A

1 to ∗. Thus, the open immersion Gm → P
1, t 7→ (1 : t), goes over to the

map

{1/2}+ ∧Gm → I+ ∧Gm → S1 ∧Gm,

the second map given by the bottom diagram in (4.3). This gives us the
isomorphism

ρ : (P1,Gm)→ S1 ∧Gm ∨ S
1 ∧Gm
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in H•(k), yielding the commutative diagram

(P1, 1)
α
∼

//

π

��

S1 ∧Gm

σ∧id

��

(P1,Gm) ρ

∼ // S1 ∧Gm ∨ S
1 ∧Gm,

where π is the canonical quotient map and α is the isomorphism (4.2).
If we consider the middle diagram in (4.3), we find a similarly defined isomor-
phism (in H•(k))

ǫ : (P1,Gm)→ (A1,Gm)t0 ∨ (A1,Gm)t∞ ,

where the subscripts t0, t∞ refer to the morphism Gm → A
1 used.

The map from the middle diagram to the last diagram in (4.3) furnishes the
commutative diagram of isomorphisms in H•(k):

(A1,Gm)t0 ∨ (A1,Gm)t∞
β

//

ϑ
**❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯
S1 ∧Gm ∨ S

1 ∧Gm

α∨α

��

(P1, 1) ∨ (P1, 1).

Putting this all together gives us the commutative diagram in H•(k):

(4.4) (P1, 1) α

∼ //

γ

��

S1 ∧Gm

σ∧id

��

(P1,Gm) ρ

∼ //

∼ǫ

��

S1 ∧Gm ∨ S
1 ∧Gm

α∨α

��

(A1,Gm)t0 ∨ (A1,Gm)t∞

β

∼

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

ϑ

∼ // (P1, 1) ∨ (P1, 1).

Letting δ := ϑ ◦ ǫ, we thus need to show that the map δ ◦ γ : (P1, 1) →
(P1, 1) ∨ (P1, 1) is given by co-tr{0,1},f .

Write (A1,Gm) := (A1,Gm)t0 . Letting η be the inverse on Gm, η(t) = t−1,
we identify (A1,Gm) with (A1,Gm)t∞ via the isomorphism (id, η). The maps
j0 : A1 → P

1, j∞ : A1 → P
1 induce the isomorphisms in H•(k)

j̄0 : (A1,Gm)→ (P1, j∞(A1))

j̄∞ : (A1,Gm)→ (P1, j0(A
1))

giving together the isomorphism τ : (P1, 1) ∨ (P1, 1) → (A1,Gm) ∨ (A1,Gm),
defined as the composition:

(P1, 1)∨(P1, 1)
id∨id
−−−→ (P1, j∞(A1))∨(P1, j0(A

1))
j̄−1
0 ∨j̄−1

∞−−−−−−→ (A1,Gm)∨(A1,Gm).
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By comparing with the push-out diagrams in (4.3), we see that τ is the inverse
to ϑ. As τ10,∞ exchanges j0 and j∞, this gives the identity

(4.5) ϑ = ϑ0 ∨ τ
1
0,∞ ◦ ϑ0,

where ϑ0 is the composition

(A1,Gm)
j0

// (P1, j∞(A1)) (P1, 1).∼
idoo

Let W → P
1 × A

1 be the blow-up at ({0,∞}, 0) with exceptional divisor E.
Let g be the trivialization g := (−s,−s−1) of m0/m

2
0×m∞/m

2
∞. We have the

composition of isomorphisms in H•(k)

(4.6) (P1,Gm)
i1−→ (W,W \ s{0,∞})

i0←− (E,C0 ∩ E)
ϕg
←−− (P1, 1) ∨ (P1, 1).

The open cover (j0, j∞) : A1 ∐ A
1 → P

1 of P1 gives rise to an open cover of
W : Let µ′ :W ′ → A

1×A
1 be the blow-up at (0, 0), then we have the lifting of

(j0, j∞) to the open cover

(j′0, j
′
∞) :W ′ ∐W ′ →W.

The cover (j0, j∞) induces the excision isomorphism in H•(k)

(ĵ0, ĵ∞) : (A1,Gm) ∨ (A1,Gm)→ (P1,Gm);

it is easy to see that (ĵ0, ĵ∞) is inverse to the isomorphism ǫ in diagram (4.4).
Similarly, letting s′ ⊂ W ′ be the proper transform of 0 × A

1 to W ′, the cover
(j′0, j

′
∞) induces the excision isomorphism in H•(k)

(j̃′0, j̃
′
∞) : (W ′,W ′ \ s′) ∨ (W ′,W ′ \ s′)→ (W,W \ s{0,∞}).

This extends to a commutative diagram of isomorphisms in H•(k)

(4.7) (A1,Gm) ∨ (A1,Gm)

i1∨i1

��

(ĵ0,ĵ∞)
// (P1,Gm)

i1

��

(W ′,W ′ \ s′) ∨ (W ′,W ′ \ s′)
(j̃′0,j̃

′
∞)

// (W,W \ s{0,∞})

(E′, E′ ∩ C ′
0) ∨ (E′, E′ ∩ C ′

0)

i0∨i0

OO

(j̃′E0,j̃
′
E∞)

// (E,E ∩ C0)

i0

OO

(P1, 1) ∨ (P1, 1)

ϕ−s∨ϕ−s

OO

(P1, 1) ∨ (P1, 1).

ϕg

OO

Indeed, the commutativity is obvious, except on the bottom square. On the
first summand (P1, 1), the commutativity is also obvious, since both ϕ−s and ϕg

are defined on this factor using the generator −s for m0/m
2
0, and on the second

factor, the map j̃∞ sends −s to −s−1, which gives the desired commutativity.
Examining the push-out diagram (4.3), we see that the map

(ĵ0, ĵ∞) : (A1,Gm) ∨ (A1,Gm)→ (P1,Gm)
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is inverse to the map ǫ in diagram (4.4).
Let W0 → P

1 × A
1 be the blow-up along (0, 0), E0 the exceptional divisor,

C0
0 the proper transform of P

1 × 0. The inclusion j0 induces the excision
isomorphism in H•(k)

j : (A1,Gm)→ (P1, j∞(A1))

and gives us the commutative diagram

(P1, 1) ∨ (P1, 1)

��

(A1,Gm) ∨ (A1,Gm)

ϑ0∨ϑ0

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

i1∨i1

��

(j∨j)
// (P1, j∞(A1)) ∨ (P1, j∞(A1))

i1∨i1

��

(W ′,W ′ \ s′) ∨ (W ′,W ′ \ s′)
(j̃∨j̃)

// (W0,W0 \ s0) ∨ (W0,W0 \ s0)

(E′, E′ ∩ C ′
0) ∨ (E′, E′ ∩ C ′

0)

i0∨i0

OO

(j̃E′∨j̃E′ )
// (E0, E0 ∩ C0

0 ) ∨ (E0, E0 ∩ C0
0 )

i0∨i0

OO

(P1, 1) ∨ (P1, 1)

ϕ−s∨ϕ−s

OO

(P1, 1) ∨ (P1, 1).

ϕ−s∨ϕ−s

OO

By lemma 3.7 the composition along the right-hand side of this diagram is the
identity on (P1, 1)∨(P1, 1), and thus the composition along the left-hand side is
ϑ0∨ϑ0 : (A1,Gm)∨(A1,Gm)→ (P1, 1)∨(P1, 1). Referring to diagram (4.4), as

ǫ = (ĵ0, ĵ∞)−1, it follows from (4.5) that the composition along the right-hand
side of (4.7) is the map (id ∨ τ10,∞) ◦ δ. As the right-hand side of (4.7) is the
deformation diagram used to define co-tr{0,∞},g, we see that

co-tr{0,∞},g = (id ∨ τ10,∞) ◦ σP1 .

Noting that f and g differ only by the trivialization at ∞, changing s−1 to
−s−1, we thus have

co-tr{0,∞},f = (id ∨ τ01,∞ ◦ µ(−1) ◦ τ
0
1,∞) ◦ co-tr{0,∞},g.

By lemma 3.6, we have

co-tr{0,∞},f = (id ∨ τ10,∞) ◦ co-tr{0,∞},g = σP1 .

�

5. Slice localizations and co-transfer

In general, the co-transfer maps do not have the properties necessary to give
a loop-spectrum ΩP1E an action by correspondences. However, if we pass to
a certain localization of SHS1(k) defined by the slice filtration, the co-transfer
maps both extend to arbitrary correspondences and respect the composition
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of correspondences. This will lead to the action of correspondences on s0ΩP1E
we wish to construct. In this section, k will be an arbitrary perfect field.
We have the localizing subcategory Σn

P1SHS1(k), generated (as a localizing sub-
category) by objects of the form Σn

P1E, for E ∈ SHS1(k). We let SHS1(k)/fn
denote the localization of SHS1(k) with respect to Σn

P1SHS1(k):

SHS1(k)/fn = SHS1(k)/Σn
P1SHS1(k).

Remark 5.1. Pelaez [17, corollary 3.2.40] has shown that there is a model
structure on SptS1(k) with homotopy category equivalent to SHS1(k)/fn; in
particular, this localization of SHS1(k) does exist.

Remark 5.2. In the proofs of some of the next few results we will use the
following fact, which relies on our ground field k being perfect: Let V ⊂ U
be a Zariski open subset of some U ∈ Sm/k. Then we can filter U by open
subschemes

V = UN+1 ⊂ UN ⊂ . . . ⊂ U0 = U

such that U i+1 = U i \ Ci, with Ci ⊂ U i smooth and having trivial normal
bundle in U i for i = 0, . . . , N . Indeed, let C = U \ V , with reduced scheme
structure. As k is perfect, there is a dense open subscheme Csm of C which is
smooth over k, and there is a non-empty open subscheme C1 ⊂ Csm such that
the restriction of IC/I

2
C to C1 is a free sheaf of rank equal to the codimension

of C1 in U . We let U1 = U \ C1, and then proceed by noetherian induction.

Lemma 5.3. Let V → U be a dense open immersion in Sm/k, n ≥ 1 an integer.
Then the induced map

Σn
P1V+ → Σn

P1U+

is an isomorphism in SHS1(k)/fn+1.

Proof. Filter U by open subschemes

V = UN+1 ⊂ UN ⊂ . . . ⊂ U0 = U

as in remark 5.2. Write U i+1 = U i \ Ci, with Ci having trivial normal bundle
in Ui, of rank say ri, for i = 0, . . . , N .
By the Morel-Voevodsky purity theorem [15, theorem 2.23], the cofiber of
U i+1 → U i is isomorphic in H•(k) to Σri

P1Ci+, and thus the cofiber of

Σn
P1U

i+1
+ → Σn

P1U i
+ is isomorphic to Σri+n

P1 Ci+. Since V is dense in U , we
have ri ≥ 1 for all i, proving the lemma. �

Take W ∈ Sm/k. By excision and homotopy invariance, we have a canonical
isomorphism

ψW,r : Ar
W /Ar

W \ 0W → Σr
P1W+

in H•(k). The action of the group-scheme GLr/k on A
r gives an action of the

group of sections GLr(W ) on A
r
W /Ar

W \ 0W , giving us for each g ∈ GLr(W )
the isomorphism

ψg
W,r :=: ψW,r ◦ g : Ar

W /Ar
W \ 0W → Σr

P1W+.

Lemma 5.4. For each g ∈ GLr(W ), we have ψg
W,r = ψW,r in SHS1/fr+1.
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Proof. The action GLr×A
r → A

r composed with ψW,r gives us the morphism
in H•(k)

ΨW : (W ×GLr)+ ∧ (Ar/Ar \ 0)→ Σr
P1W+;

for each section g ∈ GLr(W ), composing with the corresponding section sg :
W →W ×GLr gives the map

ΨW ◦ sg :W+ ∧ (Ar/Ar \ 0)→ Σr
P1W+

which is clearly equal to ψg
W,r.

The open immersion j :W ×GLr →W ×A
r2 is by lemma 5.3 an isomorphism

in SHS1(k)/f1; as (A
r/Ar \ 0) ∼= Σr

P1 Spec k+, we see that the induced map

j ∧ id : (W ×GLr)+ ∧ (Ar/Ar \ 0)→ (W × A
r2)+ ∧ (Ar/Ar \ 0)

is an isomorphism in SHS1(k)/fr+1, and thus the projection

(W ×GLr)+ ∧ (Ar/Ar \ 0)→W+ ∧ (Ar/Ar \ 0)

is also an isomorphism in SHS1(k)/fr+1. From this it follows that the maps

sg ∧ id, sid ∧ id :W+ ∧ (Ar/Ar \ 0)→ (W ×GLr)+ ∧ (Ar/Ar \ 0)

are equal in SHS1(k)/fr+1, hence ψ
g
W,r = ψW,r in SHS1/fr+1. �

As application we have the following result

Proposition 5.5. 1. Let S be in Sm/k. Let x ⊂ P
1
S\1S be a closed subscheme,

smooth over k and finite over S, such that the co-normal bundle mx/m
2
x is

trivial. Then the maps

co-trx,f : (P1
S , 1)→ (P1

x, 1)

in SHS1(k)/f2 are independent of the choice of generator f for mx/m
2
x. If

S = SpecOX,x for x a finite set of points on some X ∈ Sm/k, the analogous
independence holds, this time as morphisms in pro-SHS1(k)/f2.

2. Let g : P
1 → P

1 be a k-automorphism, with g(1) = 1. Then
g : (P1, 1)→ (P1, 1) is the identity in SHS1(k)/f2.

3. Take a, b ∈ P
1(k), with a 6= b and a, b 6= 1. The canonical iso-

morphism a ∐ b → Spec k ∐ Spec k gives the canonical identification
(P1

a,b, 1)
∼= (P1, 1)∨ (P1, 1). Then for each choice of generator f for ma,b/m

2
a,b,

the map
co-tra,b,f : (P1, 1)→ (P1

a,b, 1)
∼= (P1, 1) ∨ (P1, 1)

is equal in SHS1(k)/f2 to the co-multiplication σP1 .

Proof. (1) Suppose that we have generators f, f ′ for mx/m
2
x. There is thus a

unit a ∈ O∗
x with f ′ = af . Note that co-trx,f ′ = g ◦co-trx,f , where g : P1

x → P
1
x

is the automorphism τ01,∞µ(a)τ
1
1,∞. By lemma 5.4, the map

µ(a) = ψa
Spec k,1 ◦ ψ

−1
Spec k,1 : (P1,∞)→ (P1,∞)

is the identity in SHS1(k)/f2, whence (1).
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For (2), we may replace 1 with ∞. The affine group of isomorphisms g : P1 →
P
1 with g(∞) =∞ is generated by the matrices of the form

(
u 0
0 1

)
,

(
1 0
λ 1

)
,

with u ∈ k× and λ ∈ k. Clearly the automorphisms of the second type act as
the identity on (P1,∞) in H•(k); the automorphisms of the first type act by
the identity on (P1,∞) in SHS1(k)/f2 by lemma 5.4.
(3). Let g : P1 → P

1 be the automorphism sending (0, 1,∞) to (a, 1, b). Choose
a generator f for ma,b/m

2
a,b, then g

∗f gives a generator for m0,∞/m
2
0,∞. The

automorphism g extends to an isomorphism g̃ : W0,∞ → Wa,b, giving us a
commutative diagram

(P1, 1)
i1 //

g

��

(W0,∞,W0,∞ \ s0,∞)

g̃

��

(P1
0,∞, 1)

i0,g∗f
oo

β

��

(P1, 1)
i1

// (Wa,b,Wa,b \ sa,b) (P1
a,b, 1)i0,f

oo

where β : P1
0,∞ → P

1
a,b is canonical isomorphism over (0,∞) → (a, b). This

gives us the identity in H•(k):

co-tra,b,f ◦ g = β ◦ co-tr0,∞,g∗f .

By (1), the maps co-tra,b,g∗f and co-tr0,∞,f are independent (in SHS1(k)/f2)
of the choice of f and by (2), g is the identity in SHS1(k)/f2. For suitable f ,
lemma 4.1 tells us co-tr0,∞,f = σP1 , completing the proof of (3). �

As the map

co-trx,f : (P1
S , 1)→ (P1

x, 1)

in SHS1(k)/f2 is independent of the choice of generator f ∈ mx/m
2
x; we denote

this map by co-trx.
We have one additional application of lemma 5.4.

Lemma 5.6. Let W ⊂ U be a codimension ≥ r closed subscheme of U ∈ Sm/k,
let w1, . . . , wm be the generic points of W of codimension = r in U . Then there
is a canonical isomorphism of pro-objects in in SHS1/fr+1

(U,U \W ) ∼= ⊕m
i=1Σ

r
P1wi+.

Specifically, letting mi ⊂ OU,wi
be the maximal ideal, this isomorphism is in-

dependent of any choice of isomorphism mi/m
2
i
∼= k(wi)

r.

Proof. Let w = {w1, . . . .wm} and let OU,w denote the semi-local ring of w in
U . Consider the projective system V := {Vα} consisting of open subschemes
of U of the form Vα = U \Cα, where Cα is a closed subset of W containing no
generic point wi of W .
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Take Vα ∈ V. By applying remark 5.2, and noting that U \Vα has codimension
≥ r + 1 in U , the argument used in the proof of lemma 5.3 shows that the
cofiber of

(Vα, Vα \W )→ (U,U \W )

is in Σr+1
P1 SHS1(k). On the other hand, the collection of Vα ∈ V such that

Vα ∩ W is smooth and has on each connected component a trivial normal
bundle in Vα forms a cofinal subsystem V ′ in V. For each Vα ∈ V

′, we have
Vα ∩W = ∐m

i=1W
α
i , with wi the unique generic point of Wα

i , and we have the
isomorphism

(Vα, Vα \W ) ∼=

m∨

i=1

Σr
P1Wα

i+

in H•(k). Since wi is equal to the projective limit of the Wα
i , we have the

desired isomorphism of pro-objects in SHS1(k)/fr+1.
We need only verify that the resulting isomorphism (U,U \W ) ∼= ⊕m

r=1Σ
r
P1wi+

is independent of any choices. Let V = SpecOU,W , and let O denote the
henselization of w in V . We have the canonical excision isomorphism (of pro-
objects in H•(k))

(V, V \ V ∩W ) ∼= (SpecO, SpecO \ w).

A choice of isomorphism mw/m
2
w
∼= k(w)r gives the isomorphism in pro-H•(k)

Σr
P1w+

∼= (SpecO, SpecO \ w);

this choice of isomorphism is thus the only choice involved in constructing our
isomorphism (U,U \W ) ∼= ⊕m

i=1Σ
r
P1wi+. Explicitly, the choice of isomorphism

mw/m
2
w
∼= k(w)r is reflected in the isomorphism (SpecO, SpecO\w) ∼= Σr

P1w+

through the identification of the exceptional divisor of the blow-up of V × A
1

along w×0 with P
r
w. The desired independence now follows from lemma 5.4. �

The computation which is crucial for enabling us to introduce transfers on the
higher slices of S1-spectra is the following:

Lemma 5.7. Let µn : (P1,∞) → (P1,∞) be the map µn(t0 : t1) = (tn0 : tn1 ).
Assume the characteristic of k is prime to n!. Then in SHS1(k)/f2, µn is
multiplication by n.

Proof. The proof goes by induction on n, starting with n = 1, 2. The case
n = 1 is trivial. For n = 2, lemma 5.6 gives us the canonical isomorphisms in
SHS1(k)/f2

(P1,P1 \ {±1})
α±1
−−→ (P1,∞) ∨ (P1,∞); (P1,P1 \ {1})

α1−→ (P1,∞).

In addition, we have the commutative diagram

(P1,∞) //

µ2

��

(P1,P1 \ {±1})

µ2

��

(P1,∞) // (P1,P1 \ {1})
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The bottom horizontal arrow is an isomorphism in H•(k). We claim the dia-
gram

(P1,P1 \ {±1})

µ2

��

α±1
// (P1,∞) ∨ (P1,∞)

(id,id)

��

(P1,P1 \ {1}) α1

// (P1,∞)

commutes in SHS1(k)/f2. Indeed, the isomorphism α±1 arises from the Morel-
Voevodsky homotopy purity isomorphism identifying (P1,P1\{±1}) canonically
with the Thom space of the tangent space T (P1)±1 of P1 at ±1, followed by
the isomorphism

Th(T (P1)±1) ∼= ΣP1(±1+) = (P1,∞) ∨ (P1,∞)

induced by a choice of basis for T (P1)±1 (which plays no role in SHS1(k)/f2).
Similarly the map α1 arises from a canonical isomorphism of (P1,P1 \{1}) with
Th(T (P1)1) followed by the isomorphism

Th(T (P1)1)→ (P1,∞)

induced by a choice of basis. As the map µ2 is étale over 1, the differential

dµ2 : T (P1)±1 → T (P1)1

is isomorphic to the sum map

A
1 ⊕ A

1 → A
1.

As this sum map induces (id, id) on the Thom spaces, we have verified our
claim.
Using proposition 5.5 and we see that this diagram together with the isomor-
phisms α±1 and α1 gives us the factorization of µ2 (in SHS1(k)/f2) as

(P1,∞)
σ
−→ (P1,∞) ∨ (P1,∞)

(id,id)
−−−−→ (P1,∞).

Here σ is the co-multiplication (using ∞ instead of 1 as base-point). Since
(id, id) ◦ σ is multiplication by 2, this takes care of the case n = 2.
In general, we consider the map ρn : (P1,∞) → (P1,∞) sending (t0 : t1) to
(w0 : w1) := (tn0 : tn1 − t0t

n−1
1 + tn0 ). We may form the family of morphisms

ρn(s) : (P
1 × A

1,∞× A
1)→ (P1 × A

1,∞× A
1)

sending (t0 : t1, s) to (tn0 : tn1 − st0t
n−1
1 + stn0 ). By homotopy invariance, we

have ρn(0) = ρn(1), and thus ρn = µn in H•(k).
As above, we localize around w := w1/w0 = 1. Note that ρ−1

n (1) = {0, 1}. We
replace the target P1 with the henselization O at w = 1, and see that P1×ρn

O
breaks up into two components via the factorization w − 1 = t(tn−1 − 1),
t = t1/t0. On the component containing 1, the map ρn is isomorphic to a
hensel local version of µn−1, and on the component containing 0, the map ρn
is isomorphic to the identity.
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Using Nisnevich excision and proposition 5.5(1), we thus have the following
commutative diagram (in SHS1(k)/f2)

(P1,∞) //

ρn

��

(P1,P1 \ {0, 1})

ρn

��

∼ // (P1,∞) ∨ (P1,∞)

µn−1∨id

��

(P1,∞) // (P1,P1 \ {1}) ∼
// (P1,∞)

By proposition 5.5(2), the upper row is the co-multiplication (in SHS1(k)/f2),
and thus

ρn = µn−1 + id

in SHS1(k)/f2. As ρn = µn inH•(k), our induction hypothesis gives µn = n·id,
and the induction goes through. �

While we are on the subject, we might as well note that

Remark 5.8. The co-group ((P1, 1), σP1) in SHS1(k)/f2 is co-commutative.

As pointed out by the referee, every object in SHS1(k)/f2 is a co-commutative
co-group, since SHS1(k)/f2 is a triangulated category and hence each object
is a double suspension. In addition, the co-group structure ((P1, 1), σP1) is
isomorphic in H•(k) to the co-group structure on S1 ∧ Gm induced by the
co-group structure on S1, so the “triangulated” co-group structure on P

1

agrees with the one we have given.
One should, however, be able to reproduce our entire theory “modulo Σ2

P1” in
the unstable category. We have not done this here, as we do not at present have
available a theory of the motivic Postnikov tower in the H•(k). We expect that,
given such a theory, the results of this section would hold in the unstable setting
and in particular, that the co-group ((P1, 1), σP1) would be co-commutative
“modulo Σ2

P1”.

We now return to our study of properties of the co-transfer map in SHS1(k)/f2.
We will find it convenient to work in the setting of smooth schemes essentially
of finite type over k; as mentioned at the beginning of §3, we consider schemes
Y essentially of finite type over k as pro-objects in H(k), SHS1(k), etc. In the
end, we use scheme essentially of finite type over k only as a tool to construct
maps in pro-SHS1(k)/fn+1 between objects of SHS1(k)/fn+1; this will in the
end give us morphisms in SHS1(k)/fn+1, as the functor SHS1(k)/fn+1 →
pro-SHS1(k)/fn+1 is fully faithful,
Suppose we have a semi-local smooth k-algebra A, essentially of finite type,
and a finite extension A→ B, with B smooth over k. Suppose further that B
is generated as an A-algebra by a single element x ∈ B:

B = A[x].

We say in this case that B is a simply generated A-algebra.
Let f̃ ∈ A[T ] be the monic minimal polynomial of x, giving us the point x′ of

A
1
A = SpecA[T ] with ideal (f̃). We identify A

1
A with P

1
A \ {1} as usual, giving
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us the subscheme x of P1
A \ {1}, smooth over k and finite over SpecA, in fact,

canonically isomorphic to SpecB over SpecA via the choice of generator x. Let

ϕx : x→ SpecB

be this isomorphism. We let f be the generator of mx/m
2
x determined by f̃ .

Via the composition

(P1
A, 1)

co-trx,f
−−−−−→ (P1

x, 1)
ϕx×id
−−−−→ (P1

B , 1)

we have the morphism

co-trx : (P1
A, 1)→ (P1

B , 1)

in pro-H•(k).

Lemma 5.9. Suppose that SpecB → SpecA is étale over each generic point
of SpecA. Then the map co-trx : (P1

A, 1) → (P1
B , 1) in pro-SHS1(k)/f2 is

independent of the choice of generator x for B over A.

Via this result, we may write co-trB/A for co-trx.

Proof. We use a deformation argument; we first localize to reduce to the case
of an étale extension A→ B. For this, let a ∈ A be a non-zero divisor, and let
x be a generator for B as an A-algebra. Then x is a generator for B[a−1] as
an A[a−1]-algebra and by lemma 3.8 we have the commutative diagram

P
1
A[a−1]

//

co-trx

��

P
1
A

co-trx

��

P
1
B[a−1]

// P
1
B ,

with horizontal arrows isomorphisms in pro-SHS1(k)/f2. Thus, we may assume
that A→ B is étale.
Suppose we have generators x 6= x′ for B over A; let d = [B : A]. Let s be
an indeterminate, let x(s) = sx+ (1− s)x′ ∈ B[s], and consider the extension

B̃s := A[s][x(s)] of A[s], considered as a subalgebra of B[s]. Clearly B̃s is finite
over A[s].
Let mA ⊂ A be the Jacobson radical, and let A(s) be the localization of A[s]
at the ideal (mAA[s] + s(s− 1)). In other words, A(s) is the semi-local ring of
the set of closed points {(0, a), (1, a)} in A

1× SpecA, as a runs over the closed

points of SpecA. Define B(s) := B⊗AA(s) and Bs := B̃s⊗AA(s) ⊂ B(s). Let
y = (1, a) be a closed point of A(s), with maximal ideal my, and let xy be the
image of x in B(s)/myB(s). Clearly xy is in the image of Bs → B(s)/myB(s),
hence Bs → B(s)/myB(s) is surjective. Similarly, Bs → B(s)/myB(s) is
surjective for all y of the form (0, a); by Nakayama’s lemma Bs = B(s). Also,
B(s) and A(s) are regular and B(s) is finite over A(s), hence B(s) is flat over
A(s) and thus B(s) is a free A(s)-module of rank d. Finally, B(s) is clearly
unramified over A(s), hence A(s)→ B(s) is étale.
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Using Nakayama’s lemma again, we see that B(s) is generated as an A(s)
module by 1, x(s), x(s)2, . . . , x(s)d−1. It follows that x(s) satisfies a monic
polynomial equation of degree d over A(s), thus x(s) admits a monic minimal
polynomial fs of degree d over A(s). Sending T to x(s) defines an isomorphism

ϕs : A(s)[T ]/(fs)→ B(s).

We let xs ⊂ A
1
A(s) = P

1
A(s)\{1} be the closed subscheme of P1

A(s) corresponding

to fs; the isomorphism ϕs gives us the isomorphism

ϕs : xs → SpecB(s).

Thus, we may define the map

co-trx(s) : (P
1
A(s), 1)→ (P1

B(s), 1)

giving us the commutative diagram

(P1
A, 1)

co-trx′

��

i0 // (P1
A(s), 1)

co-trx(s)

��

(P1
A, 1)

co-trx

��

i1oo

(P1
B , 1) i0

// (P1
B(s), 1) (P1

B , 1)i1
oo

By lemma 5.3, the map (P1
A(s), 1) → (P1

A[s], 1) is an isomorphism in

pro-SHS1(k)/f2. By homotopy invariance, it follows that the maps i0, i1 are
isomorphisms in pro-SHS1(k)/f2, inverse to the map (P1

A(s), 1) → (P1
A, 1) in-

duced by the projection SpecA(s) → SpecA. Therefore co-trx′ = co-trx, as
desired. �

Lemma 5.10. co-trA/A = id(P1
A,1).

Proof. We may choose 0 as the generator for A over A, which gives us the point
x = 0 ∈ P

1
A. The result now follows from lemma 3.7. �

Lemma 5.11. Let A→ C be a finite simply generated extension and A ⊂ B ⊂ C
a sub-extension, with B also simply generated over A. We suppose that A, B
and C are smooth over k, that A→ B and A→ C are étale over each generic
point of SpecA, and B → C is étale over each generic point of SpecB. Then

co-trC/A = co-trC/B ◦ co-trB/A.

Proof. This is another deformation argument. As in the proof of lemma 5.9,
we may assume that A → B, B → C and A → C are étale extensions; we
retain the notation from the proof of lemma 5.9. Let y be a generator for C
over A, x a generator for B over A. These generators give us corresponding
closed subschemes y, x ⊂ P

1
A and yB ⊂ P

1
B . Let y(s) = sy + (1 − s)x, giving

y(s) ⊂ P
1
A(s). Note that y(1) = y, y(0)red = x

As in the proof of lemma 5.9, the element y(s) of C(s) is a generator over A(s)
after localizing at the points of SpecA(s) lying over s = 1. The subscheme y(s)
in a neighborhood of s = 0 is not in general regular, hence y(s) is not a generator
of C(s) over A(s). However, let µ :W :=Wx → P

1 ×A
1 be the blow-up along
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{(x, 0)}, and let ỹ ⊂WA(s) be the proper transform µ−1[y]. An elementary local
computation shows that this blow-up resolves the singularities of y(s), and that
ỹ is étale over A(s); the argument used in the proof of lemma 5.9 goes through
to show that A(s)(ỹ) ∼= C(s). In addition, let C0 be the proper transform
to WA(s) of P1 × 0 and E the exceptional divisor, then ỹ(0) is disjoint from

C0. Finally, after identifying E with P
1
A[x] = P

1
B (using the monic minimal

polynomial of x as a generator for mx), we may consider ỹ(0) as a closed
subscheme of P1

B ; the isomorphism A(s)(ỹ) ∼= C(s) leads us to conclude that
A(ỹ(1)) = B(ỹ(0)) = C. By lemma 5.9, we may use ỹ(0) to define co-trC/B .
The map co-trC/A in pro-SHS1(k)/f2 is defined via the diagram

(P1
A, 1)→ (P1

A,P
1
A \ y)

∼= (P1
C , 1)

where the various choices involved lead to equal maps. By lemma 5.3,
WA(s) → WA[s] is an isomorphism in pro-SHS1(k)/f2; by homotopy invari-
ance, the projection WA(s) →W is also an isomorphism pro-SHS1(k)/f2.

The inclusions i1 : P1
A → WA(s), i0 : P1

A[x] → WA(s) induce isomorphisms (in

pro-SHS1(k)/f2)

(P1
A,P

1
A \ y) = (P1

A,P
1
A \ y(1))

∼= (WA(s),WA(s) \ ỹ(s)) ∼= (P1
A[x],P

1
A[x] \ ỹ(0)).

As in the proof of lemma 5.9, we can use homotopy invariance to see that
co-trC/A is also equal to the composition

(P1
A, 1)→ (P1

A,P
1
A \ y)

i1−→ (WA(s),WA(s) \ ỹ(s))

i−1
0−−→ (P1

A[x],P
1
A[x] \ ỹ(0))

∼= (P1
C , 1).

Now let s1A(s) be the transform to WA(s) of the 1-section. By lemma 3.3, the

inclusion i0 : (P1
A[x], 1)→ (WA(s), C0 ∪ s1A(s)) is an isomorphism in pro-H•(k).

The above factorization of co-trC/A shows that co-trC/A is also equal to the
composition

(P1
A, 1)

i1−→ (WA(s), C0 ∪ s1A(s))
i−1
0−−→ (P1

A[x], 1)→ (P1
A[x] \ ỹ(0))

∼= (P1
C , 1).

Using remark 3.5, this latter composition is co-trC/B ◦ (co-trB/A), as desired.
�

Remark 5.12. 1. Suppose we have simply generated finite generically étale
extensions A1 → B1, A2 → B2, with Ai smooth, semi-local and essentially of
finite type over k. Then

co-trB1×B2/A1×A2
= co-trB1/A1

∨ co-trB2/A2

where we make the evident identification (P1
B1×B2

, 1) = (P1
B1
, 1)∨ (P1

B2
, 1) and

similarly for A1, A2.

2. Let B1, B2 be simply generated finite generically étale A algebras and
let B = B1 ×B2. As a special case of lemma 5.11, we have

co-trB/A = (co-trB1/A ∨ co-trB2/A) ◦ σP1
A
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Indeed, we may factor the extension A → B as A
δ
−→ A × A → B1 × B2 = B.

We then use (1) and note that σP1
A
= co-trA×A/A by lemma 4.1.

Next, we make a local calculation. Let (A,m) be a local ring of essentially finite
type and smooth over k. Let s ∈ m be a parameter, let B = A[T ]/Tn−s and let
t ∈ B be the image of T . Set Y = SpecB, X = SpecA, Z = SpecA/(s), W =

SpecB/(t); the extension A → B induces an isomorphism α : W
∼
−→ Z. We

write co-trY/X for co-trB/A, etc. This gives us the diagram in pro-SHS1(k)/f2

P
1
Z

iZ // P
1
X

co-trY/X

��

P
1
W iW

//

α

OO

P
1
Y .

Lemma 5.13. Suppose that n! is prime to char k. In pro-SHS1(k)/f2 we have

co-trY/X ◦ iZ ◦ α = n× iW .

Proof. First, suppose we have a Nisnevich neighborhood f : X ′ → X of Z in
X, giving us the Nisnevich neighborhood g : Y ′ := Y ×X X ′ → Y of W in Y .
As

co-trY/X ◦ f = g ◦ co-trY ′/X′

we may replace X with X ′, Y with Y ′. Similarly, we reduce to the case of A
a hensel DVR, i.e., the henselization of 0 ∈ A

1
F for some field F , Z = W = 0,

with s the image in A of the canonical coordinate on A
1
F .

The map co-trY/X is defined by the closed immersion

Y
iY−→ A

1
X = P

1
X \ 1X ⊂ P

1
X

where iY is the closed subscheme of A1 = SpecA[T ] defined by Tn−s, together
with the isomorphism

(P1
X ,P

1
X \ Y ) ∼= P

1
Y

furnished by the blow-up µ : WY → A
1
X × A

1 of A1
X × A

1 along (Y, 0). The
composition co-trY/X ◦ iZ ◦ α is given by the composition

(P1
W , 1) ∼= (P1

W ,P1
W \ 0W )

α
−→ (P1

Z ,P
1
Z \ 0Z)

iZ−→ (P1
X ,P

1
X \ 0X)

id
←− (P1

X , 1)→ (P1
X ,P

1
X \ Y ) ∼= (P1

Y , 1).

In both cases, the isomorphisms (in pro-SHS1(k)/f2) are independent of a
choice of trivialization of the various normal bundles. Let U → P

1
X be the

hensel local neighborhood of 0Z in P
1
X , SpecOh

P1
X ,0Z

. Let p : U → X be the

map induced by the projection pX : P
1
X → X and let UZ = p−1(Z), with

inclusion iZ : UZ → U . We may use excision to rewrite the above description
of co-trY/X ◦ iZ ◦ α as a composition as

(P1
W , 1) ∼= (P1

Z , 1)
∼= (UZ , UZ \ 0Z)

iZ−→ (U,U \ Y ) ∼= (P1
Y , 1).
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Similarly, letting i0 : X → X × P
1 be the 0-section, the map iW may be given

by the composition

(P1
W , 1) ∼= (X,X \ Z)

i0−→ (U,U \ Y ) ∼= (P1
Y , 1);

again, the isomorphisms in pro-SHS1(k)/f2 are independent of choice of trivi-
alizations of the various normal bundles.
We write (s, t) for the parameters on U induced by the functions s, T on A

1
X .

We change coordinates in U by the isomorphism (s, t) 7→ (s − tn, t). This
transforms Y to the subscheme s = 0, is the identity on the 0-section, and
transforms s = 0 to tn + s = 0. Replacing s with −s, we have just switched
the roles of Y and UZ . Let

ϕ : UZ → U

be the map ϕ(t) = (tn, t). After making our change of coordinates, the map
co-trY/X ◦ iZ ◦ α is identified with

(P1
W , 1) ∼= (UZ , UZ \ 0Z)

ϕ
−→ (U,U \ UZ) ∼= (P1

Y , 1)

while the description of iW becomes

(P1
W , 1) ∼= (X,X \ Z)

i0−→ (U,U \ UZ) ∼= (P1
Y , 1);

here we are using lemma 5.4 to conclude that the automorphism (x0 : x1) 7→
(−x0 : x1) of P

1
W induces the identity on (P1

W ,∞) in pro-SHS1(k)/f2.
We now construct an A

1-family of maps (UZ , UZ \ 0Z)→ (U,U \ UZ). Let

Φ : UZ × A
1 → U

be the map Φ(t, v) = (tn, vt). Note that Φ defines a map of pairs

Φ : (UZ , UZ \ 0Z)× A
1 → (U,U \ UZ).

Clearly Φ(−, 1) = ϕ while Φ(−, 0) factors as

UZ
µn
−−→ UZ

β
−→ X

i0−→ U

where µn is the map t 7→ tn and β is the isomorphism β(t) = s. Thus, we can
rewrite co-trY/X ◦ iZ ◦ α as

(P1
W , 1) ∼= (X,X \ Z)

µn
−−→ (X,X \ Z)

i0−→ (U,U \ UZ) ∼= (P1
Y , 1)

We identify X with the hensel neighborhood of 0Z in P
1
Z . Using excision again,

we have the commutative diagram in pro-H•(k)

(X,X \ Z)
µn

//

��

(X,X \ Z)

��

(P1
Z ,P

1
Z \ 0Z)

µn
// (P1

Z ,P
1
Z \ 0Z)

(P1
Z ,∞)

µZ
n //

OO

(P1
Z ,∞)

OO
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where the vertical arrows are all isomorphisms. By lemma 5.7 the bottom map
is multiplication by n, which completes the proof. �

Lemma 5.14. Let A → B be a finite simple étale extension, A as above. Let
X = SpecA, Y = SpecB, let ix : x → X be the closed point of X and
iy : y → Y the inclusion of y := x×X Y . Then

co-trY/X ◦ ix = iy ◦ co-try/x.

Proof. Take an embedding of Y in A
1
X = P

1
X \ 1X ⊂ P

1
X ; the fiber of Y → A

1
X

over x→ X is thus an embedding y → A
1
x = P

1
x \ 1x ⊂ P

1
x. The result follows

easily from the commutativity of the diagram

P
1
x \ y

//

��

P
1
x

��

P
1
X \ Y

// P
1
X

�

Proposition 5.15. Let A → B be a finite generically étale extension, with A
a DVR and B a semi-local principal ideal ring. Let X = SpecA, Y = SpecB,
let ix : x → X be the closed point of X and iy : y → Y the inclusion of
y := x ×X Y . Write y = {y1, . . . , yr}, with each yi irreducible. Let ni denote
the ramification index of yi; suppose that ni! is prime to char k for each i. Then

co-trY/X ◦ ix =

r∑

i=1

ni · iyi
◦ co-tryi/x.

Proof. We note that every such extension is simple. By passing to the henseliza-
tion A→ Ah, we may assume A is hensel. By remark 5.12(2), we may assume
that r = 1. Let A → B0 ⊂ B be the maximal unramified subextension. As
co-trB/A = co-trB/B0

◦ co-trB0/B , we reduce to the two cases A = B0, B = B0.
We note that a finite separable extension of hensel DVRs A → B with trivial
residue field extension degree and ramification index prime to the characteristic
is isomorphic to an extension of the form tn = s for some s ∈ mA \m

2
A. Thus,

the first case is lemma 5.13, the second is lemma 5.14. �

Consider the functor

(P1
?, 1) : Sm/k → SHS1(k)/f2

sendingX to (P1
X , 1) ∈ SHS1(k)/f2, which we consider as a SHS1(k)/f2-valued

presheaf on Sm/kop (we could also write this functor as X 7→ Σ∞
P1X+). We

proceed to extend (P1
?, 1) to a presheaf on SmCor(k)op; we will assume that

char k = 0, so we do not need to worry about inseparability.
We first define the action on the generators of HomSmCor(X,Y ), i.e., on irre-
ducible W ⊂ X × Y such that W → X is finite and surjective over some com-
ponent of X. As SHS1(k)/f2 is an additive category, it suffices to consider the
case of irreducible X. Let U ⊂ X be a dense open subscheme. Then the map
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(P1
U , 1) → (P1

X , 1) induced by the inclusion is an isomorphism in SHS1(k)/f2.
We may therefore define the morphism

(P1
?, 1)(W ) : (P1

X , 1)→ (P1
Y , 1)

in SHS1(k)/f2 as the composition (in pro-SHS1(k)/f2)

(P1
X , 1)

∼= (P1
k(X), 1)

co-trk(W )/k(X)
−−−−−−−−−→ (P1

k(W ), 1)
p2
−→ (P1

Y , 1).

We extend linearly to define (P1
?, 1) on HomSmCor(X,Y ).

Suppose that Γf ⊂ X × Y is the graph of a morphism f : X → Y . It follows
from lemma 5.10 that co-trk(Γf )/k(X) is the inverse to the isomorphism p1 :

(P1
k(Γf )

, 1)→ (P1
k(X), 1). Thus, the composition

(P1
k(X), 1)

co-trk(Γf )/k(X)

−−−−−−−−−−→ (P1
k(Γf )

, 1)
p2
−→ (P1

Y , 1)

is the map induced by the restriction of f to Spec k(X). Since (P1
k(X), 1) →

(P1
X , 1) is an isomorphism in pro-SHS1(k)/f2, it follows that (P1

?, 1)(Γf ) = f ,
i.e., our definition of (P1

?, 1) on HomSmCor(X,Y ) really is an extension of its
definition on HomSm/k(X,Y ).
The main point is to check functoriality.

Lemma 5.16. Suppose char k = 0. For α ∈ HomSmCor(X,Y ), β ∈
HomSmCor(Y,Z), we have

(P1
?, 1)(β ◦ α) = (P1

?, 1)(β) ◦ (P
1
?, 1)(α)

Proof. It suffices to consider the case of irreducible finite correspondencesW ⊂
X × Y , W ′ ⊂ Y × Z. If W is the graph of a flat morphism, the result follows
from lemma 3.8.
As the action of correspondences is defined at the generic point, we may re-
place X with η := Spec k(X). Then W becomes a closed point of Yη and the
correspondence Wη : η → Y factors as p2 ◦ iWη

◦ pt1, where p1 : Wη → η and
p2 : Yη → Y are the projections.
Let W ′

η ⊂ Yη × Z be the pull-back of W ′. As we have already established
naturality with respect to pull-back by flat maps, we reduce to showing

(P1
?, 1)(W

′
η ◦ iWη

) = (P1
?, 1)(W

′
η) ◦ (P

1
?, 1)(iWη

).

Since Y is quasi-projective, we can find a sequence of closed subschemes of Yη

Wη =W0 ⊂W1 ⊂ . . . ⊂Wd−1 ⊂Wd = Yη

such thatWi is smooth of codimension d−i on Yη. Using again the fact the co-tr
is defined at the generic point, and that we have already proven functoriality
with respect to composition of morphisms, we reduce to the case of Y = SpecO
for some DVR O, and iη the inclusion of the closed point η of Y .
Let W ′′ →W ′ be the normalization of W ′. Using functoriality with respect to
morphisms in Sm/k once more, we may replace Z with W ′′ and W ′ with the
transpose of the graph of the projection W ′′ → Y . Changing notation, we may
assume that W ′ is the transpose of the graph of a finite morphism Z → Y .
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This reduces us to the case considered in proposition 5.15; this latter result
completes the proof. �

We will collect the results of this section, generalized to higher loops, in theo-
rem 6.1 of the next section.

6. Higher loops

The results of these last sections carry over immediately to statements about
the n-fold smash product (P1, 1)∧n for n ≥ 1. For clarity and completeness, we
list these explicitly in an omnibus theorem.
Let R be a semi-local k-algebra, smooth and essentially of finite type over k,
and let x ⊂ P

1
R and f be as in section 3. For n ≥ 1, define

co-trnx,f : Σn
P1 SpecR+ → Σn

P1x+

to be the map Σn−1
P1 (co-trx,f ) (in pro-H•(k)).

Similarly, let A be a semi-local k-algebra, smooth and essentially of finite type
over k. Let B = A[x] be a simply generated finite generically étale A-algebra.
For n ≥ 1, define

co-trnx : Σn
P1 SpecA+ → Σn

P1 SpecB+

to be the map Σn−1
P1 (co-trx) (in pro-SHS1(k)/fn+1).

Theorem 6.1. 1. co-trn0,−s = id.

2. Let R → R′ be a flat extension of smooth semi-local k-algebras, es-
sentially of finite type over k. Let x be a smooth closed subscheme of P1

R \ {1},
finite and generically étale over R. Let x′ = x ×R R′ ⊂ P

1
R′ . Let f be a

generator for mx/m
2
x, and let f ′ be the extension to mx′/m2

x′ . Suppose that
either R→ R′ is smooth or that x→ SpecR is étale. Then the diagram

Σn
P1 SpecR′

+

co-trn
x′,f′

//

��

Σn
P1x′+

��

Σn
P1 SpecR+

co-trnx,f

// Σn
P1x+

is well-defined and commutes.

3. The co-group structure Σn−1
P1 (σP1) on (P1, 1)∧n is given by the map

co-trn{0,∞},(−s,s−1) : (P
1, 1)∧n → (P1, 1)∧n ∨ (P1, 1)∧n.

4. The co-group ((P1, 1)∧n,Σn−1
P1 (σP1)) in SHS1(k)/fn+1 is co-commutative.

5. For an extension A → B as above, the map co-trnx : Σn
P1 SpecA+ →

Σn
P1 SpecB+ is independent of the choice of x, and is denoted co-trnB/A.
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6. Suppose that char k = 0. The SHS1(k)/fn+1-valued presheaf on Sm/kop

Σn
P1?+ : Sm/k → SHS1(k)/fn+1

extends to an SHS1(k)/fn+1-valued presheaf on SmCor(k)op, by sending a
generator W ⊂ X × Y of HomSmCor(X,Y ) to the morphism Σn

P1X+ → Σn
P1Y+

in SHS1(k)/fn+1 determined by the diagram

Σn
P1 Spec k(X)+

∼ //

co-trnk(W )/k(X)

��

Σn
P1X+

Σn
P1 Spec k(W )+

p2

��

Σn
P1Y+

in pro-SHS1(k)/fn+1. The assertion that

Σn
P1 Spec k(X)+ → Σn

P1X+

is an isomorphism in pro-SHS1(k)/fn+1 is part of the statement. We write the
map in SHS1(k)/fn+1 associated to α ∈ HomSmCor(X,Y ) as

co-trn(α) : Σn
P1X+ → Σn

P1Y+.

7. Supports and co-transfers

In this section, we assume that char k = 0. We consider the following situation.
Let i : Y → X be a codimension one closed immersion in Sm/k, and let Z ⊂ X
be a pure codimension n closed subset of X such that i−1(Z) ⊂ Y also has
pure codimension n. We let T = i−1(Z), X(Z) = (X,X \Z), Y (T ) = (Y, Y \T ),
so that i induces the map of pointed spaces

i : Y (T ) → X(Z).

Let z be the set of generic points of Z, OX,z the semi-local ring of z in X,

Xz = SpecOX,z and X
(z)
z = (Xz, Xz \ z). We let t be the set of generic points

of T , and let OX,t be the semi-local ring of t in X, Xt = SpecOX,t. Set

Yt := Xt ×X Y and let Y
(t)
t = (Yt, Yt \ t).

Lemma 7.1. There are canonical isomorphisms in pro-SHS1(k)/fn+1

X(Z) ∼= X(z)
z
∼= Σn

P1z+; Y (T ) ∼= Y
(t)
t
∼= Σn

P1t+.

Proof. This follows from lemma 5.6. �

Thus, the map i : Y (T ) → X(Z) gives us the map in pro-SHS1(k)/fn+1:

(7.1) i : Σn
P1t+ → Σn

P1z+.

On the other hand, we can define a map

(7.2) ico-tr : Σn
P1t+ → Σn

P1z+
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as follows: Let Zt = Z ∩ Xt ⊂ Xt. Since Y has codimension one in X and
intersects Z properly, t is a collection of codimension one points of Z, and thus
Zt is a semi-local reduced scheme of dimension one. Let p : Z̃t → Zt be the
normalization, and let t̃ ⊂ Z̃t be the set of points lying over t ⊂ Zt. Write t̃ as
a union of closed points, t̃ = ∐j t̃j . For each j, we let nj denote the multiplicity

at t̃j of the pull-back Cartier divisor Yt ×Xt
Z̃t, and let tj = p(t̃j). This gives

us the commutative diagram

∐j t̃j t̃
ĩ //

p

��

Z̃t

p

��

z
j

oo

���
�
�
�
�
�
�
�

t
i

// Z.

Note that j is an isomorphism in pro-SHS1(k)/f1. We define ico-tr to be the
composition

Σn
P1t+

∏
j njco-tr

n
t̃j/t

−−−−−−−−−→ ⊕jΣ
n
P1 t̃j+ = Σn

P1 t̃+
Σn

P1
ĩ

−−−→ Σn
P1Z̃+

Σn
P1

j−1

−−−−−→ Σn
P1z+

in pro-SHS1(k)/fn+1.

Lemma 7.2. The morphisms (7.1) and (7.2)are equal in pro-SHS1(k)/fn+1.

Proof. Using Nisnevich excision, we may replace X with the henselization of
X along t; we may also assume that t is a single point. Via a limit argument,
we may then replace X with a smooth affine scheme of dimension n + 1 over
k(t); Z is thus a reduced closed subscheme of X of pure dimension one over
k(t). We may also assume that Y is the fiber over 0 of a morphism X → A

1
k(t)

for which the restriction to Z is finite.
As we are working in pro-SHS1(k)/fn+1, we may replace (X,Z) with (X ′, Z ′)
if there is a morphism f : X → X ′ over A

1
k(t) which makes (X, t) a hensel

neighborhood of (X ′, f(t)) and such that the restriction of f to fZ : Z → Z ′ is
birational. Using Gabber’s presentation lemma [6, lemma 3.1], we may assume
that X = A

n+1
k(t) , that t is the origin 0 and that Y is the coordinate hyperplane

Xn+1 = 0. We write F for k(t) and write simply 0 for t.
After a suitable linear change of coordinates in A

n+1
F , we may assume that each

coordinate projection

q : An+1
F → A

r
F

q(x1, . . . , xn+1) = (xi1 , . . . , xir ),

r = 1, . . . , n, restricts to a finite morphism on Z, and that Z → q(Z) is bira-
tional if r ≥ 2.
We now reduce to the case in which Z is contained in the coordinate subspace
X ′ = A

2
F defined by X1 = . . . = Xn−1 = 0. For this, consider the map

m : A1 × A
n+1
F → A

1 × A
n+1
F

m(t, x1, . . . , xn+1) = (t, tx1, . . . , txn−1, xn, xn+1)
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Let Z = m(A1 × Z) ⊂ A
1 × A

n+1
F . By our finiteness assumptions, Z is a

(reduced) closed subscheme of A1 × A
n+1
F , and each fiber Zt ⊂ t × A

n+1
F is

birationally isomorphic to Z ×F F (t). Consider the inclusion map

(A1 × Y )(A
1×0) → (A1 ×X)(Z)

The maps

i0, i1 : Y (0) → (A1 × Y )(A
1×0)

are clearly isomorphisms in pro-H•(k), and the maps

i1 : X(Z) → (A1 ×X)(Z)

i0 : X(Z0) → (A1 ×X)(Z)

are easily seen to be isomorphisms in pro-SHS1(k)/fn+1. Combining this with
the commutative diagram

Y (0) //

i1
��

X(Z)

i1

��

(A1 × Y )(A
1×0) // X(Z)

Y (0) //

i0

OO

X(Z0)

i0

OO

shows that we can replace Z with Z0 ⊂ X
′.

Having done this, we see that the map Y (0) → X(Z) is just the n − 1-fold P
1

suspension of the map

(Y ∩X ′)(0) → (X ′)(Z)

This reduces us to the case n = 1.
Since p2 : Z → A

1
F is finite, we may take X = P

1 × A
1
F instead of A1 × A

1
F .

Then the map Y (0) → X(Z) is isomorphic to (P1 × 0,∞ × 0) → X(Z). We
extend this to the isomorphic map

(P1 × A
1
F ,∞× A

1
F )→ X(Z) = (P1 × A

1
F ,P

1 × A
1
F \ Z).

Let s be the generic point of A1
F , Zs the fiber of p2 over s. Then the inclusions

(P1 × 0,∞× 0)
j0
−→(P1 × A

1
F ,∞× A

1
F )

js
←− (P1 × s,∞× s)

(P1 × A
1
F ,P

1 × A
1
F \ Z)

js
←− (P1 × s,P1

s \ Zs)

are isomorphisms in pro-SHS1(k)/f2, and thus the map

i0 : Y (0) ∼= (P1 × 0,∞× 0)→ X(Z) = (P1 × A
1
F ,P

1 × A
1
F \ Z)

is isomorphic in pro-SHS1(k)/f2 to the collapse map

(P1 × s,∞× s)→ (P1 × s,P1
s \ Zs).

Therefore, the map

i : ΣP10+ → ΣP1z+
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we need to consider is equal to the co-transfer map

co-trZs/s : ΣP1s+ → ΣP1zs+

composed with the (canonical) isomorphisms

ΣP10+
i0−→ ΣP1A

1
+
∼= ΣP1s+, ΣP1zs+ ∼= ΣP1z+;

the latter isomorphism arising by noting that zs is a generic point of Z over F .
The result now follows directly from proposition 5.15. �

Definition 7.3. 1. Take X,X ′ ∈ Sm/k, and let Z ⊂ X, Z ′ ⊂ X ′ be pure
codimension n closed subsets. Take a generator A ∈ HomSmCor(X,X

′), A ⊂
X×X ′. Let q : AN → A be the normalization of A. Let z be the set of generic
points of Z, let a be the set of generic points of A∩X×Z ′ and let a′ = q−1(a).
Suppose that

(1) AN → X is étale on a neighborhood of a′

(2) pX(a) is contained in Z.

Let OAN ,a be the semi-local ring of a′ in AN , and let AN
a′ = SpecOAN ,a′ ; define

Xz similarly. Define

co-trn(W ) : X(Z) → X ′(Z′)

to be the map in SHS1(k)/fn+1 given by the following composition:

X(Z) ∼= X(z)
z
∼= Σn

P1z+
co-trn

a′/z
−−−−−−→ Σn

P1a′+
∼= A

N(a′)
a′

pX′
−−→ X ′(Z′).

2. Let HomSmCor(X,X
′)Z,Z′ ⊂ HomSmCor(X,X

′) be the subgroup generated
by A satisfying (a) and (b). We extend the definition of the morphism co-trn(A)
to HomSmCor(X,X

′)Z,Z′ by linearity.

Note that we implicitly invoke lemma 7.1 to ensure that the isomorphisms used
in the definition of co-trn(A) exist and are canonical; condition (1) implies in
particular that AN is smooth in a neighborhood of a′, so we may use lemma 7.1

for the isomorphism Σn
P1a′+

∼= A
N(a′)
a′ .

Lemma 7.4. Take X,X ′, X ′′ ∈ Sm/k, and let Z ⊂ X, Z ′ ⊂ X ′ and Z ′′ ⊂ X ′′

be pure codimension n closed subsets. Take α ∈ HomSmCor(X,X
′)Z,Z′ ,

α′ ∈ HomSmCor(X
′, X ′′)Z′,Z′′ . Then

1. α′ ◦ α is in HomSmCor(X,X
′′)Z,Z′′

2. co-trn(α′) ◦ co-trn(α) = co-trn(α′ ◦ α).

Proof. For (1), we may assume that α and α′ are generators A and A′. We
may replace X,X ′ and X ′′ with the respective strict henselizations along z, z′

and z′′. Write z = {z1, . . . , zr}, z
′ = {z′1, . . . , z

′
s}, z

′′ = {z′′1 , . . . , z
′′
t }. Then the

normalizations AN and A′N break up as a disjoint union of graphs of morphisms

fjk : Xzk → X ′
z′
j
; gij : X

′
z′
j
→ X ′′

z′′
i
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and A′◦A is thus the sum of the graphs of the compositions gij ◦fjk. Therefore,
each irreducible component of the normalization of the support of A′◦A is étale
over X. This verifies condition (1) of definition 7.3; the condition (2) is easy
and is left to the reader.
(2) follows directly from theorem 6.1(6). �

Proposition 7.5. Let i : ∆1 → ∆ be a closed immersion of quasi-projective
schemes in Sm/k, take X,X ′ ∈ Sm/k and α ∈ HomSmCor(X,X

′). Let Z ⊂
X ×∆, Z ′ ⊂ X ′ ×∆ be closed codimension n subsets. Suppose that

(1) Z1 := Z ∩ X × ∆1 and Z ′
1 := Z ′ ∩ X ′ × ∆1 have codimension n in

X ×∆1, X
′ ×∆1, respectively.

(2) α× id∆ is in HomSmCor(X ×∆, X ′ ×∆)Z,Z′

(3) α× id∆1
is in HomSmCor(X ×∆1, X

′ ×∆1)Z1,Z′
1

Then the diagram in SHS1(k)/fn+1

(X ×∆1)
(Z1)

id×i

��

co-trn(α×id)
// (X ′ ×∆1)

(Z′
1)

id×i

��

(X ×∆)(Z)
co-trn(α×id)

// (X ′ ×∆)(Z
′)

commutes.

Proof. Since ∆ is by assumption quasi-projective, we may factor ∆1 → ∆ as a
sequence of closed codimension 1 immersions

∆1 = ∆d → ∆d−1 → . . .→ ∆1 → ∆0 = ∆

such that each closed immersion ∆i → ∆ satisfies the conditions of the propo-
sition. This reduces us to the case of a codimension one closed immersion.
We may replace X ×∆, X ′ ×∆, etc., with the respective semi-local schemes
about the generic points of Z1 and Z ′

1. As ∆1 has codimension one on ∆,
it follows that the normalizations ZN , Z ′N of Z and Z ′ are smooth over k.
Let ĩ : z̃ → ZN , ĩ′ : z̃′ → Z ′N be the points of ZN , Z ′N lying over Z1, Z

′
1,

respectively, which we write as a disjoint union of closed points

z̃ = ∐j z̃j ; z̃′ = ∐j z̃
′
j .
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By lemma 7.1 and lemma 7.2, we may rewrite the diagram in the statement of
the proposition as

Σn
P1Z1+

∑
j mjco-tr

n
z̃j/Z1

��

co-trn(α×id
ZN
1

)
// Σn

P1Z ′
1+

∑
j m′

jco-tr
n
z̃′
j
/Z′

1

��

Σn
P1 z̃+

ĩ
��

Σn
P1 z̃′+

ĩ′

��

Σn
P1ZN

co-trn(α×idZN )
// Σn

P1Z ′N

where α × idZN , α × idZ1
denote the correspondences induced by α × id∆

and α× id∆1
, and the mj ,m

′
j are the relevant intersection multiplicities. The

commutativity of this diagram follows from theorem 6.1(6). �

8. Slices of loop spectra

Take E ∈ SHS1(k). Following Voevodsky’s remarks in [22], Neeman’s version
of Brown representability [16] gives us the motivic Postnikov tower

. . .→ fn+1E → fnE → . . .→ f0E = E,

where fnE → E is universal for morphisms from an object of Σn
P1SHS1(k)

to E. The layer snE is the nth slice of E, and is characterized up to unique
isomorphism by the distinguished triangle

(8.1) fn+1E → fnE → snE → Σsfn+1E.

The fact that this distinguished triangle determines snE up to unique isomor-
phism rather than just up to isomorphism follows from

(8.2) HomSHS1 (k)(Σ
n+1
P1 SHS1(k), snE) = 0

To see this, just use the universal property of fn+1E → E and the long exact
sequence of Homs associated to the distinguished triangle (8.1). In particular,
using the description of HomSHS1 (k)/fn+1

(−,−) via right fractions we have

Lemma 8.1. For all F,E ∈ SHS1(k) and n ≥ 0, the natural map

HomSHS1 (k)(F, snE)→ HomSHS1 (k)/fn+1
(F, snE)

is an isomorphism.

See also [21, proposition 5-3]
We recall the de-looping formula [11, theorem 7.4.2]

sn(ΩP1E) ∼= ΩP1(sn+1E)

for n ≥ 0.
Take F ∈ Spc•(k). For E ∈ SptS1(k), we have Homint(F,E) ∈ SH, which for
F = X+ is just E(X), and in general is formed as the homotopy limit associated
to the description of F as a homotopy colimit of representable objects.
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This gives us the “internal Hom” functor

HomSHS1 (k)(F,−) : SHS1(k)→ SHS1(k)

and more generally

HomSHS1 (k)/fn+1
(F,−) : SHS1(k)/fn+1 → SHS1(k),

with natural transformation

HomSHS1 (k)(F,−)→ HomSHS1 (k)/fn+1
(F,−).

These have value on E ∈ SptS1(k) defined by taking a fibrant model Ẽ of E
(in SHS1(k) or SHS1(k)/fn+1, as the case may be) and forming the presheaf
on Sm/k

X 7→ Homint(F ∧X+, Ẽ).

Putting the de-looping formula together with lemma 8.1 gives us

Proposition 8.2. For E ∈ SHS1(k) we have natural isomorphisms

s0(Ω
n
P1E) ∼= Ωn

P1snE ∼= HomSHS1 (k)/fn+1
((P1, 1)∧n, snE)

Proof. Indeed, the first isomorphism is just the de-looping isomorphism re-
peated n times. For the second, we have

Ωn
P1snE ∼= HomSHS1 (k)((P

1, 1)∧n, snE)

∼= HomSHS1 (k)/fn+1
((P1, 1)∧n, snE)

the second isomorphism following from lemma 8.1. �

Definition 8.3. Suppose that char k = 0. Take E ∈ SHS1(k), take α ∈
HomSmCor(X,Y ) and let n ≥ 1 be an integer. The transfer

TrY/X(α) : (Ωn
P1snE)(Y )→ (Ωn

P1snE)(X)

is the map in SH defined as follows:

(Ωn
P1snE)(Y ) = HomSHS1 (k)(Y+,Ω

n
P1snE)

∼= HomSHS1 (k)(Σ
n
P1Y+, snE)

∼= HomSHS1 (k)/fn+1
(Σn

P1Y+, snE)

co-trn(α)∗

−−−−−−−→ HomSHS1 (k)/fn+1
(Σn

P1X+, snE)

∼= HomSHS1 (k)(X+,Ω
n
P1snE)

∼= (Ωn
P1snE)(X).

Theorem 8.4. Suppose that char k = 0. For E ∈ SHS1(k), the maps Tr(α)
extend the presheaf

Ωn
P1snE : Sm/kop → SH

to an SH-valued presheaf with transfers

Ωn
P1snE : SmCor(k)op → SH
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Proof. This follows from the definition of the maps Tr(α) and theorem 6.1,
the main point being that the maps Tr(α) factor through the internal Hom in
SHS1(k)/fn+1. �

Corollary 8.5. Suppose that char k = 0. For E ∈ SHS1(k), there is an
extension of the presheaf

s0ΩP1E : Sm/kop → SH

to an SH-valued presheaf with transfers

s0ΩP1E : SmCor(k)op → SH.

Proof. This is just the case n = 1 of theorem 8.4, together with the de-looping
isomorphism

s0ΩP1E ∼= ΩP1s1E.

�

Remark 8.6. The corollary is actually the main result, in that one can deduce
theorem 8.4 from corollary 8.5 (applied to Ωn−1

P1 E) and the de-looping formula

Ωn
P1snE ∼= s0Ω

n
P1E = s0ΩP1(Ωn−1

P1 E).

As the maps co-trn(α) are defined by smashing co-tr1(α) with an identity map,
this procedure does indeed give back the maps

Tr(α) : Ωn
P1snE(Y )→ Ωn

P1snE(X)

as defined above.

proof of theorem 3. The weak transfers defined above give rise to homotopy
invariant sheaves with transfers in the usual sense by taking the sheaves of
homotopy groups of the motivic spectrum in question. �

For instance, corollary 8.5 gives the sheaf πm(s0ΩP1E) the structure of a homo-
topy invariant sheaf with transfers, in particular, an effective motive. In fact,
these are birational motives in the sense of Kahn-Huber-Sujatha [7, 10], as s0F
is a birational S1-spectrum for each S1-spectrum F . The classical Postnikov
tower thus gives us a spectral sequence

E2
p,q := H−p(XNis, πq(s0ΩP1E)) =⇒ πp+q(s0ΩP1E(X))

with E2 term a “generalized motivic cohomology” of X. As the sheaves
πq(s0ΩP1E) are motives, we may replace Nisnevich cohomology with Zariski
cohomology; as the sheaves πq(s0ΩP1E) are birational, i.e., Zariski locally con-
stant, the higher Zariski cohomology vanishes, giving us

πn(s0ΩP1E(X)) ∼= H0(XZar, πn(s0ΩP1E)) = πn(s0ΩP1E(k(X)).

In short, we have shown that the 0th slice of a P
1-loop spectrum has transfers

in the weak sense. We have already seen in section 2 that this does not hold for
an arbitrary object of SHS1(k); in the next section we will see that the higher
slices of an arbitrary S1-spectrum do have transfers, albeit in an even weaker
sense than the one used above.
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9. Transfers on the generalized cycle complex

We begin by recalling from [11, theorem 7.1.1] models for fnE(X) and snE(X)
that are reminiscent of Bloch’s higher cycle complex [1]. To simplify the nota-
tion, we will always assume that we have taken a model E ∈ SptS1(k) which is
quasi-fibrant. For W a closed subset of some Y ∈ Sm/k, E(W )(Y ) will denote
the homotopy fiber of the restriction map E(Y )→ E(Y \W ).
We make use of the cosimplicial scheme n 7→ ∆n := Spec k[t0, . . . , tn]/

∑
i ti−1.

A face F of ∆n is a subscheme defined by ti1 = . . . = tir = 0.

For a scheme X of finite type and locally equi-dimensional over k, let S
(n)
X (m)

be the set of closed subsets W of X ×∆m of codimension ≥ n, such that, for
each face F of ∆n, W ∩X × F has codimension ≥ n on X × F (or is empty).

We order S
(n)
X (m) by inclusion.

For X ∈ Sm/k, we let

E(n)(X,m) := lim
−→

W∈S
(n)
X (m)

E(W )(X ×∆m).

Similarly, for 0 ≤ n ≤ n′, we define

E(n/n′)(X,m) := lim
−→

W∈S
(n)
X (m),W ′∈S

(n′)
X (m)

E(W\W ′)(X ×∆m \W ′)

The conditions on the intersections of W with X × F for faces F means that

m 7→ S
(n)
X (m) form a cosimplicial set, denoted S

(n)
X , for each n and that S

(n′)
X

is a cosimplicial subset of S
(n)
X for n ≤ n′. Thus the restriction maps for E

make m 7→ E(n)(X,m) and m 7→ E(n/n′)(X,m) simplicial spectra, denoted

E(n)(X,−) and E(n/n′)(X,−). We denote the associated total spectra by

|E(n)(X,−)| and |E(n/n′)(X,−)|.

The inclusion S
(n′)
X (m)→ S

(n)
X (m) for n ≤ n′ and the evident restriction maps

give the sequence

|E(n′)(X,−)| → |E(n)(X,−)| → |E(n/n′)(X,−)|

which is easily seen to be a weak homotopy fiber sequence.
We note that |E(0)(X,−)| = E(X × ∆∗); as E is homotopy invariant, the
canonical map

E(X)→ |E(0)(X,−)|

is thus a weak equivalence. We therefore have the tower in SH

(9.1) . . .→ |E(n+1)(X,−)| → |E(n)(X,−)| → . . .→ |E(0)(X,−)| ∼= E(X)

with nth layer isomorphic to |E(n/n+1)(X,−)|. We call this tower the homotopy
coniveau tower for E(X). In this regard, one of the main results from [11] states

Theorem 9.1 ([11, theorem 7.1.1]). There is a canonical isomorphism of the
tower (9.1) with the motivic Postnikov tower evaluated at X:

. . .→ fn+1E(X)→ fnE(X)→ . . .→ f0E(X) = E(X),
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giving a canonical isomorphism

snE(X) ∼= |E(n/n+1)(X,−)|.

We can further modify this description of snE(X) as follows: Since sn is an
idempotent functor, we have

snE(X) ∼= sn(snE)(X) ∼= |(snE)(n/n+1)(X,−)|.

Note that |(snE)(n/n+1)(X,−)| fits into a weak homotopy fiber sequence

|(snE)(n+1)(X,−)| → |(snE)(n)(X,−)| → |(snE)(n/n+1)(X,−)|.

Using theorem 9.1 in reverse, we have the isomorphism in SH

|(snE)(n+1)(X,−)| ∼= fn+1(snE)(X).

But as fn+1 ◦ fn ∼= fn+1, we see that fn+1(snE) ∼= 0 in SHS1(k) and thus

|(snE)(n)(X,−)| ∼= |(snE)(n/n+1)(X,−)| ∼= snE(X).

We may therefore use the simplicial model |(snE)(n)(X,−)| for snE(X).
We will need a refinement of this construction, which takes into account the
interaction of the support conditions with a given correspondence.

Definition 9.2. Let A ⊂ Y ×X be a generator in HomSmCor(Y,X); for each
m, we let A(m) ∈ HomSmCor(Y × ∆m, X × ∆m) denote the correspondence

A × id∆m . Let S
(n)
X,A(m) be the subset of S

(n)
X (m) consisting of those W ′ ∈

S
(n)
X (m) such that

(1) W := pY×∆m(A×∆m ∩ Y ×W ′) is in S
(n)
Y (m).

(2) A(m) is in HomSmCor(Y ×∆m, X ×∆m)W,W ′ .

For an arbitrary α ∈ HomSmCor(Y,X), write

α =
r∑

i=1

niAi

with the Ai generators and the ni non-zero integers and define

S
(n)
X,α(m) := ∩ri=1S

(n)
X,Ai

(m).

If we have in addition to α a finite correspondence β ∈ HomSmCor(Z, Y ), we let

S
(n)
X,α,β(m) ⊂ S

(n)
X,α(m) be the set of W ⊂ X ×∆m such that W is in S

(n)
X,α(m)

and pY×X×∆m

Y×∆m (Y ×W ∩ |α| ×∆m) is in S
(n)
Y,β(m).

For f : Y → X a flat morphism, one has

S
(n)
X,Γf

(m) = S
(n)
X (m)

and for g : Z → Y a flat morphism, and α ∈ HomSmCor(Y,X), one has

S
(n)
X,α,Γg

(m) = S
(n)
X,α(m)
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Note that m 7→ S
(n)
X,α(m) and m 7→ S

(n)
X,α,β(m) define cosimplicial subsets of

m 7→ S
(n)
X (m). We define the simplicial spectra E(n)(X,−)α and E(n)(X,−)α,β

using the support conditions S
(n)
X,α(m) and S

(n)
X,α,β(m) instead of S

(n)
X (m):

E(n)(X,m)α := lim
−→

W∈S
(n)
X,α(m)

E(W )(X ×∆m)

E(n)(X,m)α,β := lim
−→

W∈S
(n)
X,α,β(m)

E(W )(X ×∆m),

giving us the sequence of simplicial spectra

E(n)(X,−)α,β → E(n)(X,−)α → E(n)(X,−).

The main “moving lemma” [12, theorem 2.6.2(2)] yields

Proposition 9.3. For X ∈ Sm/k affine, and E ∈ SptS1(k) quasi-fibrant, the
maps

|E(n)(X,−)α,β | → |E
(n)(X,−)α| → |E

(n)(X,−)|

are weak equivalences.

We proceed to the main construction of this section. Consider the simplicial
model |(snE)(n)(X,−)| for snE(X). For each m, we may consider the classical
Postnikov tower (or rather, its dual version) for the spectrum (snE)(n)(X,m),
which we write as

. . .→ τ≥p+1(snE)(n)(X,m)→ τ≥p(snE)(n)(X,m)→ . . .→ (snE)(n)(X,m),

where

τ≥p+1(snE)(n)(X,m)→ (snE)(n)(X,m)

is the p-connected cover of (snE)(n)(X,m). The pth layer in this tower
is of course the pth suspension of the Eilenberg-Maclane spectrum on
πp((snE)(n)(X,m)). Taking a functorial model for the p-connected cover, we
have for each p the simplicial spectrum

m 7→ τ≥p+1(snE)(n)(X,m)

giving us the tower of total spectra
(9.2)

. . . → |τ≥p+1(snE)(n)(X,−)| → |τ≥p(snE)(n)(X,−)| → . . . → |(snE)(n)(X,−)|.

The pth layer in this tower are then (up to suspension) the Eilenberg-Maclane
spectrum on the chain complex πp(snE)(n)(X, ∗), with differential as usual the
alternating sum of the face maps.
The chain complexes πp(snE)(n)(X, ∗) are evidently functorial for smooth maps

and inherit the homotopy invariance property from (snE)(n)(X, ∗) (see [12,
theorem 3.3.5]). Somewhat more surprising is

Lemma 9.4. The complexes πp(snE)(n)(X, ∗) satisfy Nisnevich excision.
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Proof. Let W ⊂ X ×∆m be a closed subset in S
(n)
X (m), and let w be the set

of generic points of W having codimension exactly n on X ×∆m. Then

snE
(W )(X ×∆m) ∼= snE(Σn

P1w+) ∼= Ωn
P1(snE)(w) ∼= s0(Ω

n
P1E)(w).

This gives us the following description of πp((snE)(n)(X,m)):

πp((snE)(n)(X,m)) ∼= ⊕wπp(s0(Ω
n
P1E)(w))

where the direct sum is over the set T
(n)
X (m) of generic points of the irreducible

W ∈ S
(n)
X (m) having codimension exactly n in X ×∆m.

Now let i : Z → X be a closed subset with open complement j : U → X. For
each m, we thus have the exact sequence

0→ ⊕
w∈Z×∆m∩T

(n)
X (m)

πp(s0(Ω
n
P1E)(w))→ ⊕

w∈T
(n)
X (m)

πp(s0(Ω
n
P1E)(w))

→ ⊕
w∈T

(n)
X (m)∩U×∆mπp(s0(Ω

n
P1E)(w))→ 0

Define the subcomplex πp(snE)(n)(X, ∗)Z of πp(snE)(n)(X, ∗) and quotient

complex πp(snE)(n)(UX , ∗) of πp(snE)(n)(X, ∗) by taking supports in

{W ∈ S
(n)
X (m) | W ⊂ Z ×∆m}, resp. {W ∩ U ×∆m | W ∈ S

(n)
X (m)}.

We thus have the term-wise exact sequence of complexes

0→ πp(snE)(n)(X, ∗)Z → πp(snE)(n)(X, ∗)→ πp(snE)(n)(UX , ∗)→ 0

Claim. The inclusion

πp(snE)(n)(UX , ∗)
ι
−→ πp(snE)(n)(U, ∗)

is a quasi-isomorphism.

Proof of the claim. This follows using the localization technique [13, theorem
8.10] (for details, see [11, theorem 3.2.1]). In a few words, one takes an integer

N and a W ∈ S
(n)
U (N). We assume that (idU × ∆(σ))(W ) = W for each

permutation σ of the vertices of ∆N , where ∆(σ) : ∆N → ∆N is the affine-

linear extension of σ. For m ≤ N , let T
(n)
X (m)W ⊂ T

(n)
X (m) be the set of points

w such that w ∈ (idU ×∆(g))∗(W ) for some injective g : [m]→ [N ], and set

πp(snE)(n)(U,m)W := ⊕
w∈T

(n)
X (m)W

πp(snE)(n)(U,m) ⊂ πp(snE)(n)(U,m).

For m > N set πp(snE)(n)(U,m)W = 0. This gives us the subcomplex

πp(snE)(n)(U, ∗)W ⊂ πp(snE)(n)(U, ∗);

clearly πp(snE)(n)(U, ∗) is the colimit of the subcomplexes πp(snE)(n)(U, ∗)W .

Similarly, we have the subcomplex πp(snE)(n)(UX , ∗)W of πp(snE)(n)(UX , ∗)
and the inclusion

ιW : πp(snE)(n)(UX , ∗)W → πp(snE)(n)(U, ∗)W ,

with πp(snE)(n)(UX , ∗) the colimit of the πp(snE)(n)(UX , ∗)W .
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In [11, theorem 3.2.1], we have the formal sums of maps of simplices

ψW (m) =
∑

i

niψW (m)i; ψW (m)i : ∆
m → ∆m

ΨW (m) =
∑

i

miΨW (m)i; ΨW (m)i : ∆
m+1 → ∆m

for m = 0, . . . , N , such that the pull-back by the maps ψW (m) define a map of
complexes

ψ∗
W : πp(snE)(n)(U, ∗)W → πp(snE)(n)(UX , ∗).

Additionally, the pull-back by the ΨW (m) define homotopies of the map ι ◦
ψW with the inclusion πp(snE)(n)(U, ∗)W → πp(snE)(n)(U, ∗) and similarly of

ψW ◦ ιW with the inclusion πp(snE)(n)(UX , ∗)W → πp(snE)(n)(UX , ∗). The
claim follows easily from this. �

We therefore have the quasi-isomorphism
(9.3)

πp(snE)(n)(X, ∗)Z → cone
(
πp(snE)(n)(X, ∗)

j∗

−→ πp(snE)(n)(U, ∗)
)
[−1].

Now let

U ′ //

��

X ′

p

��

U // X

be an elementary Nisnevich square, i.e., the square is cartesian, p is étale and
induces an isomorphism p : Z ′ := X ′ \ U ′ → Z. Clearly p induces an isomor-
phism

p∗ : πp(snE)(n)(X, ∗)Z → πp(snE)(n)(X ′, ∗)Z′ ;

using the localization quasi-isomorphism (9.3), it follows that p∗ induces a
quasi-isomorphism

cone
(
πp(snE)(n)(X, ∗)

j∗

−→ πp(snE)(n)(U, ∗)
)
[−1]

p∗

−→ cone
(
πp(snE)(n)(X ′, ∗)

j∗

−→ πp(snE)(n)(U ′, ∗)
)
[−1],

proving the lemma. �

We will use the results of section 7 to give X 7→ πp(snE)(n)(X, ∗) the structure
of a complex of homotopy invariant presheaves with transfer on Sm/k, i.e. a
motive.
For this, we consider the complexes πp(snE)(n)(X, ∗)α, πp(snE)(n)(X, ∗)α,β
constructed above. The refined support condition are constructed so that, for

each W ∈ S
(n)
X,α(m), α× id∆m is in HomSmCor(Y ×∆m, X ×∆m)W ′,W , where

W ′ = pY×∆m(Y ×∆m ×W ∩ |α× id∆m |).
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We may therefore use the morphism co-trn(α× id∆m) to define the map

TrY/X(α)(m) : πp((snE)(n)(X,m))α → πp(snE)(n)(Y,m).

By proposition 7.5, the maps TrY/X(m) define a map of complexes

TrY/X(α) : πp(snE)(n)(X, ∗)α → πp(snE)(n)(Y, ∗).

Similarly, given β ∈ HomSmCor(Z, Y ), we have the map of complexes

TrY/X(α)β : πp(snE)(n)(X, ∗)α,β → πp(snE)(n)(Y, ∗)β .

Note that, due to possible cancellations occurring when one takes the compo-
sition α ◦ β, we have only an inclusion

S
(n)
X,α,β(m) ⊂ S

(n)
X,α◦β(m)

giving us a natural comparison map

ια,β : πp(snE)(n)(X, ∗)α,β →: πp(snE)(n)(X, ∗)α◦β .

Using our moving lemma again, we see that ια,β is a quasi-isomorphism in case
X is affine.

Lemma 9.5. Suppose char k = 0. For

α ∈ HomSmCor(Z, Y ), β ∈ HomSmCor(Z, Y ),

we have
TrZ/Y (β) ◦ TrY/X(α)β = TrZ/X(α ◦ β) ◦ ια,β .

Proof. This follows from lemma 7.4. �

We have already noted that complexes πp(snE)(n)(X, ∗) are functorial in X
for flat morphisms in Sm/k, in particular for smooth morphisms in Sm/k.

Let S̃m/k denote the subcategory of Sm/k with the same objects and with
morphisms the smooth morphisms. The transfer maps we have defined on
the refined complexes, together with the moving lemma 7.4 yield the following
result:

Theorem 9.6. Suppose char k = 0. Consider the presheaf

πp(snE)(n)(−, ∗)) : S̃m/kop → C−(Ab)

on S̃m/kop. Let

ι : S̃m/k → SmCor(k)

be the evident inclusion and let

Q : C−(Ab)→ D−(Ab)

be the evident additive functor. There is a complex of presheaves with transfers

π̂p((snE)(n))∗ : SmCor(k)op → C−(Ab)

and an isomorphism of functors from S̃m/kop to D−(Ab)

Q ◦ πp(snE)(n)(−, ∗)) ∼= Q ◦ π̂p((snE)(n))∗ ◦ ι.
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Proof. We give a rough sketch of the construction here; for details we refer the
reader to [9, proposition 2.2.3], which in turn is an elaboration of [12, theorem
7.4.1]. The construction of π̂p((snE)(n))∗ is accomplished by first taking a ho-

motopy limit over the complexes πp(snE)(n)(X, ∗)α. These are then functorial
on SmCor(k)op, up to homotopy equivalences arising from the replacement
of the index category for the homotopy limit with a certain cofinal subcate-
gory. One then forms a regularizing homotopy colimit that is strictly functorial
on SmCor(k)op, and finally, one replaces this presheaf with a fibrant model.
The moving lemma for affine schemes (proposition 9.3) implies that the homo-
topy limit construction yields for each affine X ∈ Sm/k a complex canonically
quasi-isomorphic to πp(snE)(n)(X, ∗); this property is inherited by the regular-

izing homotopy colimit. As the complexes πp(snE)(n)(X, ∗) satisfy Nisnevich
excision (lemma 9.4) and are homotopy invariant for all X, this implies that
π̂p((snE)(n))∗(X) is canonically isomorphic to πp(snE)(n)(X, ∗) in D−(Ab) for
all X ∈ Sm/k. By construction, this isomorphism is natural with respect to
smooth morphisms in Sm/k. �

Corollary 9.7. Suppose char k = 0. π̂p((snE)(n))∗ is a homotopy invariant
complex of presheaves with transfer.

Proof. By theorem 9.6, we have the isomorphism in D−(Ab)

π̂p((snE)(n))∗(X) ∼= πp(snE)(n)(X, ∗).

for all X ∈ Sm/k, natural with respect to smooth morphisms. As the presheaf
πp(snE)(n)(−, ∗) is homotopy invariant, so is π̂p((snE)(n))∗. �

proof of theorem 2. As in the proof of theorem 9.6, the method of [12, theorem
7.4.1], shows that the tower (9.2) extends to a tower

(9.4) . . .→ ρ≥p+1snE → ρ≥psnE → . . .→ snE

in SHS1(k) with value (9.2) atX ∈ Sm/k, and with the cofiber of ρ≥p+1snE →

ρ≥psnE naturally isomorphic to EMeff
A1 (π̂p((snE)(n))∗). By lemma 9.4 and

corollary 9.7, the presheaves π̂p((snE)(n))∗ define objects in DMeff
− (k). Thus,

we have shown that the layers in the tower (9.4) have a motivic structure,
proving theorem 2. �

10. The Friedlander-Suslin tower

As the reader has surely noticed, the lack of functoriality for the simplicial
spectra E(n)(X,−) creates annoying technical problems when we wish to extend
the construction of the homotopy coniveau tower to a tower in SHS1(k). In
their work on the spectral sequence from motivic cohomology to K-theory,
Friedlander and Suslin [4] have constructed a completely functorial version of
the homotopy coniveau tower, using “quasi-finite supports”. Unfortunately, the
comparison between the Friedlander-Suslin version and E(n)(X,−) is proven in
[4] only for K-theory and motivic cohomology. In this last section, we recall the
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Friedlander-Suslin construction and form the conjecture that the Friedlander-
Suslin tower is naturally isomorphic to the homotopy coniveau tower.

Let Q
(n)
X (m) be the set of closed subsets W of An×X×∆m such that, for each

irreducible component W ′ of W , the projection W ′ → X ×∆m is quasi-finite.
For E ∈ SptS1(k), we let

E
(n)
FS (X,m) := lim

−→
W∈Q

(n)
X (m)

E(W )(An ×X ×∆m)

As the condition defining Q
(n)
X (m) are preserved under maps

idAn × f × g : An ×X ′ ×∆m′

→ A
n ×X ×∆m,

where f : X ′ → X is an arbitrary map in Sm/k, and g : ∆m′

→ ∆m is

a structure map in ∆∗, the spectra E
(n)
FS (X,m) define a simplicial spectrum

E
(n)
FS (X,−) and these simplicial spectra, for X ∈ Sm/k, extend to a presheaf

of simplicial spectra on Sm/k:

E
(n)
FS (?,−) : Sm/kop → ∆opSpt.

Similarly, if we take the linear embedding in : An → A
n+1 = A

n × A
1, x 7→

(x, 0), the pull-back by in× id preserves the support conditions, and thus gives
a well-defined map of simplicial spectra

i∗n : E
(n+1)
FS (X,−)→ E

(n)
FS (X,−),

forming the tower of presheaves on Sm/k

(10.1) . . .→ E
(n+1)
FS (?,−)→ E

(n)
FS (?,−)→ . . . .

We may compare E
(n)
FS (X,−) and E

(n)(X,−) using the method of [4] as follows:

The simplicial spectra E(n)(X,−) are functorial for flat maps in Sm/k, in the
evident manner. They satisfy homotopy invariance, in that the pull-back map

p∗ : E(n)(X,−)→ E(n)(A1 ×X,−)

induces a weak equivalence on the total spectra. We have the evident inclusion
of simplicial sets

Q
(n)
X (−) →֒ S

(n)
An×X(−)

inducing the map

ϕX,n : E
(n)
FS (X,−)→ E(n)(An ×X,−).

Together with the weak equivalence p∗ : |E(n)(X,−)| → |E(n)(An×X,−)|, the
maps ϕX,n induce a map of towers of total spectra in SH

(10.2) ϕX,∗ : |E
(∗)
FS(X,−)| → |E

(∗)(X,−)|.

Conjecture 10.1. For each X ∈ Sm/k and each quasi-fibrant E ∈ SptS1(k),
the map (10.2) induces an isomorphism in SH of the towers of total spectra.
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Combined with the weak equivalence given by homotopy invariance and the
results of [11], this would give us an isomorphism in SHS1(k):

fnE ∼= |E
(n)
FS (?,−)|.

As transfers in some form or other are used in the arguments relating the
Friedlander-Suslin complex to the Bloch-type complexes in the known cases, a
weaker form of the conjecture might be more reasonable:

Conjecture 10.2. For each X ∈ Sm/k and each quasi-fibrant E ∈ SptS1(k)
with s0E ∼= 0 in SHS1(k), the map (10.2) induces an isomorphism in SH of
the towers of total spectra.
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