DOCUMENTA MATH. 445

SOME CONSEQUENCES OF

THE KARPENKO-MERKURJEV THEOREM

To ANDREI ALEXANDROVICH SUSLIN

ON THE OCCASION OF HIS 60TH BIRTHDAY
AUREL MEYER'!, ZINOVYREICHSTEIN?

Received: December 12, 2008
Revised: May 1, 2009

ABSTRACT. We use a recent theorem of N. A. Karpenko and A. S.
Merkurjev to settle several questions in the theory of essential dimen-
sion.

2010 Mathematics Subject Classification: 20D15, 20C15, 20G15
Keywords and Phrases: Essential dimension, linear representation,
p-group, algebraic torus

1. INTRODUCTION

Let k be a field, Fields, be the category of field extensions K/k, Sets be the
category of sets, and F': Fieldsy — Sets be a covariant functor. Given a tower
of field extensions k C K C L, we will denote the image of a € F(K) under the
natural map F(K) — F(L) by ar,. Conversely, if b € F(L) lies in the image of
this map, we will say that b descends to K.

Given a field extension K/k and b € F(L), the essential dimension edy(b) of
b is defined as the minimal transcendence degree trdeg, (K), as K ranges over
all intermediate subfields k¥ C K C L such that b descends to K. Informally
speaking, this is the minimal number of parameters one needs to define b. The
essential dimension edy(F') of the functor F is the maximal value of ed(b),
as L ranges over all field extensions of k and b ranges over F(L). Informally
speaking, this is the minimal number of parameters required to define any
object of F.

The essential dimension edy(b;p) at a prime p is defined as the minimum of
edy (br/), taken over all finite field extensions L'/L such that the degree [L : L]
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446 AUREL MEYER, ZINOVY REICHSTEIN

is prime to p. The essential dimension of edy(F';p) of F at a prime p is the
supremum of edy(b; p) taken over all b € F(L) and over all field extensions L/k.
An important example where the above notions lead to a rich theory is the
nonabelian cohomology functor Fg = H'(*,G), sending a field K/k to the
set H'(K,G) of isomorphism classes of G-torsors over Spec(K), in the fppf
topology. Here G is an algebraic group defined over k. The essential dimension
of this functor can be thought of as a numerical measure of complexity of
G-torsors over fields or, alternatively, as the minimal number of parameters
required to define a versal G-torsor. In the case where G is a finite (constant)
group defined over k, which will be the main focus of this paper, ed;(G) is the
minimal number of parameters required to describe all G-Galois extensions.
For details on the notion of essential dimension of a finite group we refer the
reader to [BuR], [Re] or [JLY, Chapter 8], on the notion of essential dimension
of a functor to [BF] or [BRV3] and on essential dimension at a prime p to [Me].
N. Karpenko and A. Merkurjev [KM] recently proved the following formula for
the essential dimension of a (finite) p-group.

THEOREM 1.1. Let G be a p-group and k be a field of characteristic # p con-
taining a primitive pth root of unity. Then

edi(G;p) = edy(G) = min dim(V),
where the minimum 1is taken over all faithful k-representations G — GL(V).

The purpose of this paper is to explore some of the consequences of this theo-
rem. The following notation will be used throughout.
We will fix a prime p and a base field k£ such that

(1) char(k) # p and k contains ¢,

where ( is a primitive pth root of unity if p > 3 and a primitive 4th root of
unity if p = 2.

For a finite group H, we will denote the intersection of the kernels of all multi-
plicative characters x: H — k* by H’. In particular, if k contains an eth root
of unity, where e is the exponent of H, then H' = [H, H] is the commutator
subgroup of H.

All p-groups in this paper will be assumed to be finite. Given a p-group G, we
set C(G) to be the center of G and

(2) C(G)p:={9€C(G)|g"=1}

to be the p-torsion subgroup of C(G). We will view C(G),, and its subgroups
as [F,-vector spaces, and write “dimp,” for their dimensions. We further set

(3) Ki:= (] H and Ci:=K,NC@G),.
[G:H]=p*

for every i > 0, K_1 := G and C_; := K_1 N C(G), = C(G),.
Our first main result is following theorem. Part (b) may be viewed as a variant
of Theorem 1.1.
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CONSEQUENCES OF THE KARPENKO-MERKURJEV THEOREM 447

THEOREM 1.2. Let G be a p-group, k be a base field satisfying (1) and p: G —
GL(V) be a faithful linear k-representation of G. Then

(a) p has minimal dimension among the faithful linear representations of G
defined over k if and only if for every i > 0 the irreducible decomposition of p
has exactly

dim]Fp Ci—l — dim]Fp Cl

irreducible components of dimension p, each with multiplicity 1.

(b) ed(G; p) = edi(G) = Yoy (dimp, C;—1 — dimp, C;)p'.

Note that K; = C; = {1} for large i (say, if p* > |G]), so only finitely many
terms in the above infinite sum are non-zero. We also remark that the minimal
number of irreducible components in a faithful representations of a finite group
(but not necessarily a p-group) was studied in [Ta, Na], see also [Lo, Section
4].

We will prove Theorem 1.2 in section 2; the rest of the paper will be devoted
to its applications. The main results we will obtain are summarized below.

CLASSIFICATION OF Pp-GROUPS OF ESSENTIAL DIMENSION < p.

THEOREM 1.3. Let p be a prime, k be as in (1) and G be a p-group such that
G’ # {1}. Then the following conditions are equivalent.

(a) edi(G) < p,

(b) edp(G) = p,

(c) The center C(G) is cyclic and G has a subgroup H of index p such that
H' ={1}.

Note that the assumption that G’ # {1} is harmless. Indeed, if G’ = {1} then
by Theorem 1.2(b) edi(G) = rank (G); cf. also [BuR, Theorem 6.1] or [BF,
section 3.

ESSENTIAL DIMENSION OF p-GROUPS OF NILPOTENCY CLASS 2.

THEOREM 1.4. Let G be a p-group of exponent e and k be a field of charac-
teristic # p containing a primitive e-th root of unity. Suppose the commutator
subgroup |G, G] is central in G. Then

(a) edp(G;p) = edi(G) < rank C(G) + rank [G, G](p™/2 — 1), where p™ is
the order of G/C(G).

(b) Moreover, if |G, G] is cyclic then |G/C(G)| is a complete square and equality
holds in (a). That is, in this case

edi(G;p) = edi(G) = V/|G/C(G)| +rank C(G) —1.
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448 AUREL MEYER, ZINOVY REICHSTEIN

ESSENTIAL DIMENSION OF A QUOTIENT GROUP. C. U. Jensen, A. Ledet and N.
Yui asked if edy(G) > edy(G/N) for every finite group G and normal subgroup
N < Gj see [JLY, p. 204]. The following theorem shows that this inequality is
false in general.

THEOREM 1.5. Let p be a prime and k be a field of characteristic # p containing
a primitive pth root of unity. For every real number \ > 0 there exists a p-group
G and a central subgroup H of G such that edi(G/H) > Aedi(G).

ESSENTIAL DIMENSION OF SL,(Z). G. Favi and M. Florence [FF] showed that
ed;(GL,(Z)) = n for every n > 1 and ed;(SL,(Z)) = n — 1 for every odd
n. For details, including the definitions of edy(GL,(Z)) and edy(SL,,(Z)), see
Section 5. For even n Favi and Florence showed that edy(SL,(Z)) =n — 1 or
n and left the exact value of edy(SL,(Z)) as an open question. In this paper
we will answer this question as follows.

THEOREM 1.6. Suppose k is a field of characteristic # 2. Then
{n — 1, if n is odd,

ed;(SL,(Z);2) = edi(SL,(Z)) = n. if n is cven

for any n > 3.

ACKNOWLEDGEMENT. Theorems 1.4(b) and 1.5 first appeared in the unpub-
lished preprint [BRV;] by P. Brosnan, the second author and A. Vistoli. We
thank P. Brosnan and A. Vistoli for allowing us to include them in this pa-
per. Theorem 1.4(b) was, in fact, a precursor to Theorem 1.1; the techniques
used in [BRV;] were subsequently strengthened and refined by Karpenko and
Merkurjev [KM] to prove Theorem 1.1. The proof of Theorem 1.4(b) in Sec-
tion 4 may thus be viewed as a result of reverse engineering. We include it
here because it naturally fits into the framework of this paper, because Theo-
rem 1.4(b) is used in a crucial way in [BRV3], and because a proof of this result
has not previously appeared in print.

We are also grateful to R. Lotscher for pointing out and helping us correct an
inaccuracy in the proof of Lemma 2.1.

2. PROOF OF THEOREM 1.2

Throughout this section we assume k to be as in (1). An important role in the
proof will be played by the p-torsion subgroup C(G), of the center of G and
by the descending sequences

K71:GDK()DK13KQD... and
C_lzc(G)pDO()DClDCQD...

of characteristic subgroups of G defined in (3). To simplify the notation, we
will write C' for C_; = C(G), for the rest of this section. We will repeatedly
use the well-known fact that

(4) A normal subgroup N of G is trivial if and only if N N C is trivial.
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We begin with three elementary lemmas.

LEMMA 2.1. Ki = (\gim(p)<p Ker(p), where the intersection is taken over all
irreducible representations p of G of dimension < p'.

Proof. Let j < 4. Recall that every irreducible representation p of G' of dimen-
sion p’ is induced from a 1-dimensional representation x of a subgroup H C G
of index p’; see [LG-P, (IL.4)] for p > 3 (cf. also [Vo]) and [LG-P, (IV.2)] for
p = 2. (Note that our assumption (1) on the base field & is crucial here. In the
case where k = C a more direct proof can be found in [Se, Section 8.5]).

Thus ker(p) = ker(ind x) = ﬂgeggker(x)g_l, and since each gker(x)g
contains (gHg™')’, we see that ker(p) D K; D K;. The opposite inclusion is
proved in a similar manner. O

-1

LEMMA 2.2. Let p: G — GL(V) an irreducible representation of a p-group G.
Then

(a) p(C) consists of scalar matrices. In other words, the restriction of p to C
decomposes as x ® ... D x (dim(V) times), for some multiplicative character
x: C — G,,. We will refer to x as the character associated to p.

(b)) C; = ﬂdim(w)gpi ker(xy), where the intersection is taken over all irreducible

G-representations v of dimension < p* and x: C — G, denotes the character
associated to 1. In particular, if dim(p) < p* then X, vanishes on Cj.

Proof. (a) follows from Schur’s lemma. (b) By Lemma 2.1
Ci=Cn (] ke(@@)= [ (Cnke®)= [) ker(xy).

dim(y)<p’ dim(¢)<p? dim(¢) <p*
]

LEMMA 2.3. Let G be a p-group and p = p1 D ... D pm, be the direct sum of the
irreducible representations p;: G — GL(V;). Let x; == Xx,,: C — Gy, be the
character associated to p;.

(a) p is faithful if and only if x1,...,Xm span C* as an F,-vector space.

(b) Moreover, if p is of minimal dimension among the faithful representations
of G then x1,...,Xm form an IFp-basis of C*.

Proof. (a) By (4), Ker(p) is trivial if and only if Ker(p) N C = N, Ker(x;)
is trivial. On the other hand, NI*; Ker(x;) is trivial if and only if x1,...,Xm
span C*.

(b) Assume the contrary, say Y., is a linear combination of x1, ..., X;m—1. Then
part (a) tells us that p; & ... ® p,,—1 is a faithful representation of G, contra-
dicting the minimality of dim(p). O

We are now ready to proceed with the proof of Theorem 1.2. Part (b) is an
immediate consequence of part (a) and Theorem 1.1. We will thus focus on
proving part (a). In the sequel for each i > 0 we will set

514 = dim]y‘p Ci—l — dim]y‘p Ci
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and

Ai :60+61++5z :dime O*dim]}‘p CZ
where the last equality follows from C_; = C.
Our proof will proceed in two steps. In Step 1 we will construct a faithful rep-
resentation p of G such that for every i > 0 exactly d; irreducible components
of p have dimension p’. In Step 2 we will show that dim(p) > dim(u) for any
other faithful representation p of G, and moreover equality holds if and only if
p has exactly §; irreducible components of dimension p?, for every i > 0.

STEP 1: We begin by constructing u. By definition,
C:C_lDC():)ClD...,

where the inclusions are not necessarily strict. Dualizing this flag of IF,-vector
spaces, we obtain a flag

(0)=(C" )1 C(C)C(ChC...
of Fp-subspaces of C*, where
(C*); :=={x € C*| x is trivial on C;} ~ (C/C;)*.

Let Ass(C) C C* be the set of characters of C' associated to irreducible repre-
sentations of G, and let Ass;(C') be the set of characters associated to irreducible
representations of dimension p*. Lemma 2.2(b) tells us that

Assg(C)U Assi (C)U -+ - U Ass; (C) spans (C*);

for every ¢ > 0. Hence, we can choose a basis x1,...,xa, of (C*)o from
Assy(C), then complete it to a basis x1,...,xa, of (C*)1 by choosing the last
Ay — Ay characters from Ass;(C), then complete this basis of (C*); to a basis
of (C*)y by choosing As — A additional characters from Assy(C), etc. We
stop when C; = (0), i.e., A; = dimp, C.

By the definition of Ass;(C), each yx; is the associated character of some irre-
ducible representation p; of G. By our construction

p=p1 D D Udime, (C)

has the desired properties. Indeed, since xi, ... s Xdimg, (C) form a basis of C*,
Lemma 2.3 tells us that p is faithful. On the other hand, by our construction
exactly

0; — ;-1 = dimp, Cf —dimp, C; | = dimg, C;_1 — dimg, C;
of the characters x1, ..., Xx. come from Ass;(C). Equivalently, exactly
dimp, C;—1 — dimp, C
of the irreducible representations j1,. .., . are of dimension p'.

STEP 2: Let p: G — GL(V) be a faithful linear representation of G of the
smallest possible dimension,

pP=p1®...0pc

DOCUMENTA MATHEMATICA - EXTRA VOLUME SUSLIN (2010) 445-457



CONSEQUENCES OF THE KARPENKO-MERKURJEV THEOREM 451

be its irreducible decomposition, and y;: C' = G, be the character associated
to p;. By Lemma 2.3(b), x1,...,x. form a basis of C*. In particular, ¢ =
dim]Fp C and at most dimFP C —dim]Fp C; of the characters x1, . . ., X can vanish
on C;. On the other hand, by Lemma 2.2(b) every representation of dimension
< p' vanishes on C;. Thus if exactly d; of the irreducible representations
p1,...,pe have dimension p’ then

d0+d1+d2++d1§dlmﬁp C*dlm]pp Cz

for every ¢ > 0. For ¢ > 0, set D; := dy + - - - + d; = number of representations
of dimension < p’ among p1, ..., p.. We can now write the above inequality as

(5) D; <A, for every i > 0.
Our goal is to show that dim(p) > dim(u) and that equality holds if and only

if exactly 9; of the irreducible representations p1, ..., Pdims, (C) have dimension
p*. The last condition translates into d; = §; for every i > 0, which is, in turn
equivalent to D; = A; for every i > 0.
Indeed, setting D_; := 0 and A_; := 0, we have,

(o] o0 o0

dim(p) — dim(p) =Y (di = 6:)p’ = > (Di = Ai)p' = > (Dio1 — Ay 1)p!

=0 1=0 1=0
0 . .
=Y (D=2 —pt) >0,
=0

where the last inequality follows from (5). Moreover, equality holds if and only
if D; = A, for every i > 0, as claimed. This completes the proof of Step 2 and
thus of Theorem 1.2. |

3. PROOF OF THEOREM 1.3

Since Ky = G’ is a non-trivial normal subgroup of G, we see that Ky N C(G)
and thus Cy = Ko N C(G), is non-trivial. This means that in the summation
formula of Theorem 1.2(b) at least one of the terms

(dim]Fp 01;1 — dim]Fp Ci>pi
with ¢ > 1 will be non-zero. Hence, edy(G) > p; this shows that (a) and (b)
are equivalent. Moreover, equality holds if and only if (i) dimp, C_1 = 1, (ii)
dimp, Cp = 1 and (iii) C; is trivial. Since we are assuming Ko = G' # {1}
and hence, Cy = Ko N C(G), # {1} by (4), (ii) follows from (i) and thus can
be dropped.
It now suffices to prove that (i) and (iii) are equivalent to condition (c) of the

theorem. Since C_1 = C(G),, (i) is equivalent to C(G) being cyclic. On the
other hand, (iii) means that

(©) Ki= () H

(G:H]=p
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452 AUREL MEYER, ZINOVY REICHSTEIN

intersects C(G),, trivially. Since K is a normal subgroup of G, (4) tells us that
(iii) holds if and only if K; = {1}.

It remains to show that Ky = {1} if and only if H" = {1} for some subgroup
H of G of index p. One direction is obvious: if H' = {1} for some H of index p
then the intersection (6) is trivial. To prove the converse, assume the contrary:
the intersection (6) is trivial but H' # {1} for every subgroup H of index p.
Since every such H is normal in G (and so is H'), (4) tells us that that H" # {1}
if and only if H' N C(G) # {1}. Since C(G) is cyclic, the latter condition is
equivalent to C(G), C H'. Thus

C@Gp,cKi= ()| H,
[G:H]=p
contradicting our assumption that K7 = {1}.
To sum up, we have shown that (c) is equivalent to conditions (i) and (iii)
above, and that these conditions are in turn, equivalent to (a) (or to (b)). This
completes the proof of Theorem 1.3.

REMARK 3.1. p-groups that have a faithful representation of degree p over a
field k, satisfying (1) are described in [LG-P, I1.4, II1.4, IV.2]; see also [Vo.
Combining this description with Theorem 1.1 yields the following variant of
Theorem 1.3.

Let k be a field satisfying (1) and G be a p-group such that G’ # {1}. Then
the following conditions are equivalent:

(a) edi(G) < p,

(b) edi(G) = p,

(c) G is isomorphic to a subgroup of Z/p* 1 Z]/p = (Z/p“)P x Z/p, for some
a > 1 such that k contains a primitive root of unity of degree p*. O

4. PROOF OF THEOREMS 1.4 AND 1.5

Proof of Theorem 1.4. Since the commutator Ko = [G,G] is central, Cy =
Ky N C(G), is of dimension rank [G,G] and the p' term in the formula of
Theorem 1.2 is (rank C(G) — rank [G, G]).
Let @ = G/C(G) which is abelian by assumption. Let hy, ..., hs be generators
of [G, G], where s = rank [G, G], so that

[G,G]=Z/p"*h1 @ BZ/p* hy,
written additively. For g1, ge € G the commutator can then be expressed as

[91,92] = Bi(g1,92)h1 + ... + Bs(g1,92)hs .
Note that each 8;(g1, g2) depends on g1, g2 only modulo the center C'(G). Thus
each (; descends to a skew-symmetric bilinear form
QxQ—Z/p”
which, by a slight abuse of notation, we will continue to denote by 3;. Let p™

be the order of Q). For each form (; there is an isotropic subgroup @Q; of @ of
order at least pl(m*+1)/2] (or equivalently, of index at most pl™/?! in Q); see [AT,
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Corollary 3]. Pulling these isotropic subgroups back to G, we obtain subgroups
G1,...,G, of G of index < pl™/2 with the property that G’ = [G;, G, lies
in the subgroup of C(G) generated by hq,...,hi—1,hiy1,...,hs. In particular,
GiNn---NG, ={1}. Thus, all K; (and hence, all C;) in (3) are trivial for
i > |m/2], and Theorem 1.2 tells us that

lm/2]
edi(G) = dimg, C_y —dimg, Co+ Y (dimg, C;_y — dimg, C;)p’ <
j=1
Lm/2]
dimg, C_y — dimg, Co+ Y (dimg, Cj_y — dimg, C;) - pt™/? =
j=1

rank C(G) 4+ rank [G, G}(plm/ﬂ ~1).

(b) In general, the skew-symmetric bilinear forms 3; may be degenerate. How-
ever, if [G, @] is cyclic, i.e., s = 1, then we have only one form, /31, which is
easily seen to be non-degenerate. For notational simplicity, we will write £
instead of 1. To see that 8 is non-degenerate, suppose g := ¢ (modulo C(G))
lies in the kernel of 8 for some g € G. Then by definition

Blg,q1) = 9919 'grt =1

for every g1 € G. Hence, g is central in G, i.e., g = 1 in Q = G/C(G), as
claimed.

We conclude that the order of Q@ = G/C(G) is a perfect square, say p*, and
Q contains a maximal isotropic subgroup I C Q of order p* = \/|G/C(G)|; see
[AT, Corollary 4]. The preimage of I in G is a maximal abelian subgroup of
index p’. Consequently, Koy = [G,G], K1,...,K;_1 are all of rank 1 and K; is
trivial, where p* = \/|G/C(G)|. Moreover, since all of these groups lie in [G, G]
and hence, are central, we have C; = (K;), and thus

dimg, (Cp) = dimg, (C1) = ... = dimg, (C;—1) = 1 and dimg,(C;) = 0.

Specializing the formula of Theorem 1.4 to this situation, we obtain part (b).
O

Proof of Theorem 1.5. Let T' be the non-abelian group of order p? given by
generators x,y,z and relations zP = y? = 2P = [r,z] = [y,2z] = 1,
[x,y] = z. Choose a multiplicative character x: H — k* of the subgroup
A = (x,z) ~ (Z/pZ)? which is non-trivial on the center (z) of I" and consider
the p-dimensional induced representation IndY (x). Since the center (z) of T
does not lie in the kernel of Ind’; (x), we conclude that Ind"; (x) is faithful. Thus
we have constructed a faithful p-dimensional representation of I' defined over
k. Consequently

(7) edk(F) S p.
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454 AUREL MEYER, ZINOVY REICHSTEIN

Taking the direct sum of n copies of this representation, we obtain a faithful
representation of I'™ of dimension np. Thus for any n > 1 we have
(8) ed, I'™ < np.

(We remark that both (7) and (8) are in fact equalities. Indeed, if (2 is a
primitive root of unity of degree p? then

ed(T') > edy(c ) (T) = VP2 +1—1=p,

where the middle equality follows from Theorem 1.4(b). Hence, we have
edi(I") = p. Moreover, by [KM, Theorem 5.1], ed;, I'™ = n - edi(I') = np.
However, we will only need the upper bound (8) in the sequel.)

The center of T is (z); denote it by C. The center of I'™ is then isomorphic
to C™. Let H,, be the subgroup of C™ consisting of n-tuples (ci,...,¢,) such
that ¢ - -+ ¢, = 1. The center C(I'"/H,,) of I'"/H,, is clearly cyclic of order p
(it is generated by the class of the element (z,1,...,1) modulo H,), and the
commutator [['™"/H,,T'"™/H,] is central. Hence,

(9) edp(I"/Hn) > edy(e2y(T"/Hn) = V/p*" +1-1=p" ,

where the middle equality follows from Theorem 1.4(b). Setting G = I'"
and H = H,, and comparing (8) with (9), we see that the desired inequal-
ity edi(G/H) > Aedi(G) holds for suitably large n. O

5. PROOF OF THEOREM 1.6

Recall that the essential dimension of the group GL,(Z) over a field k, or
ed;(GL,(Z)) for short, is defined as the essential dimension of this functor

H'(*,GL,(Z)): K — {K-isomorphism classes of n-dimensional K-tori},
where K/k is a field extension. Similarly edy(SL,(Z)) is defined as the essential
dimension of the functor

H(%,SL,(Z)): K — {K-isomorphism classes of n-dimensional K-tori

with ¢ C SL,(Z) },

where ¢7: Gal(K) — GL,(Z) is the natural representation of the Galois group
of K on the character lattice of T'. The essential dimensions edy(GL,(Z); p) and
edi(SLy(Z);p) are respectively the essential dimensions of the above functors
at a prime p.
G. Favi and M. Florence [FF] showed that for I' = GL,(Z) or SL,(Z),
(10) edy(T") = max{ed (F)|F finite subgroup of T'}.
From this they deduced that

n —1, if n is odd,
n — 1 or n, if n is even.

edy(GL,(Z)) =n, and edy(SL,(Z)) = {

For details, see [FF, Theorem 5.4].
Favi and Florence also proved that ed;(SLa(Z)) = 1 if k contains a primitive
12th root of unity and asked whether edy(SL,(Z)) = n — 1 or n in the case
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where n > 4 is even; see [FF, Remark 5.5]. In this section we will prove
Theorem 1.6 which shows that the answer is always n.

A minor modification of the arguments in [FF] shows that (10) holds also for
essential dimension at a prime p:

(11) ed;(T; p) = max{ed;(F;p)|F a finite subgroup of '},

where I' = GL,,(Z) or SL,,(Z). The finite groups F' that Florence and Favi used
to find the essential dimension of GL,,(Z) and SL,,(Z) (n odd) are (Z/2Z)™ and
(Z)2Z)"~1 respectively. Thus edy(GL,(Z);2) = edx(GL,(Z)) = n for every
n > 1 and edy(SL,(Z);2) = edy(SL,,(Z)) = n — 1 if n is odd.

Our proof of Theorem 1.6 will rely on part (b) of the following easy corollary
of Theorem 1.2.

COROLLARY 5.1. Let G be a p-group, and k be as in (1).

(a) If C(G), C K; then edy(G) is divisible by p'™?.

(b) If C(G), C G’ then edy(Q) is divisible by p.

(¢) If C(G), € GO, where GW denotes the ith derived subgroup of G, then
edy(G) is divisible by p*.

Proof. (a) C(G), C K; implies C_1 = Cy = --- = C;. Hence, in the formula
of Theorem 1.2(b) the p°,p!,...,p’ terms appear with coefficient 0. All other
terms are divisible by p'*1, and part (a) follows.

(b) is an immediate consequence of (a), since Ky = G'.

(c) By [H, Theorem V.18.6] G is contained in the kernel of every p'~!-
dimensional representation of G. Lemma 2.1 now tells us that G ¢ K,_;
and part (c) follows from part (a). O

Proof of Theorem 1.6. We assume that n = 2d > 4 is even. To prove The-
orem 1.6 it suffices to find a 2-subgroup F of SL,(Z) of essential dimension
n.

Diagonal matrices and permutation matrices generate a subgroup of GL,(Z)
isomorphic to p %' S,. The determinant function restricts to a homomorphism

det: py X Sy, — fio

sending ((€1,...,€,),7)) € 4 xSy, to the product €€z - - - €y, - sign(r). Let P,
be a Sylow 2-subgroup of S,, and F,, be the kernel of det: uy x P,, = pe. By
construction F, is a finite 2-group contained in SL, (Z). Theorem 1.6 is now a
consequence of the following proposition.

PROPOSITION 5.2. If char(k) # 2 then edy(Faq) = 2d for any d > 2.
To prove the proposition, let
D2d = {diag(el, ey Egd) | each €; = +1 and €1€2 €24 = 1}

be the subgroup of “diagonal” matrices contained in Fb.
Since Doy =~ Mgd_l has essential dimension 2d — 1, we see that edy(Faq) >
edx(D2q) = 2d — 1. On the other hand the inclusion Foy C SLog(Z) gives rise
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to a 2d-dimensional representation of Fby, which remains faithful over any field
k of characteristic # 2. Hence, edy(Fbq) < 2d. We thus conclude that

(12) edg(Foq) = 2d — 1 or 2d.
Using elementary group theory, one easily checks that
(13) C(ng) C [ng,ng] C F2/d .

Thus, if ¥ D k is a field as in (1), edg (Faq) is even by Corollary 5.1; since
ed(Foq) > edp(Foq), (12) now tells us that edy(Fay) = 2d. This completes
the proof of Proposition 5.2 and thus of Theorem 1.6. ]

REMARK 5.3. The assumption that d > 2 is essential in the proof of the
inclusion (13). In fact, Fy ~ Z/4Z, so (13) fails for d = 1.

REMARK 5.4. Note that for any integers m,n > 2, F,,;, contains the direct
product F,,, x F,,. Thus

edk(Fern) > edk(Fm X Fn) = edk(Fm) + edk(Fn) R

where the last equality follows from [KM, Theorem 5.1]. Thus Proposition 5.2
only needs to be proved for d = 2 and 3 (or equivalently, n = 4 and 6); all
other cases are easily deduced from these by applying the above inequality
recursively, with m = 4. In particular, the group-theoretic inclusion (13) only
needs to be checked for d = 2 and 3. Somewhat to our surprise, this reduction
does not appear to simplify the proof of Proposition 5.2 presented above to any
significant degree.

REMARK 5.5. It is interesting to note that while the value of edj(SL2(Z))
depends on the base field &k (see [FF, Remark 5.5]), for n > 3, the value of
edr(SLy,(Z)) does not (as long as char(k) # 2).
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