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Abstract. The results of the present article extend the results of
[Pa]. The main result of the article is Theorem 1.1 below. The proof
is based on a moving lemma from [LM], a recent improvement due
to O. Gabber of de Jong’s alteration theorem, and the main theorem
of [PR]. A purity theorem for quadratic spaces is proved as well in
the same generality as Theorem 1.1, provided that R is local. It
generalizes the main purity result from [OP] and it is used to prove
the main result in [ChP].

1 Introduction

Let A be a commutative ring and P be a finitely generated projective A-module.
An element v ∈ P is called unimodular if the A-submodule vA of P splits off
as a direct summand. If P = An and v = (a1, a2, . . . , an) then v is unimodular
if and only if a1A+ a2A+ · · ·+ anA = A.
Let 1

2
∈ A. A quadratic space over A is a pair (P, α) consisting of a finitely

generated projective A-module P and an A-isomorphism α : P → P ∗ satisfying
α = α∗, where P ∗ = HomR(P,R). Two spaces (P, α) and (Q, β) are isomorphic
if there exists an A-isomorphism ϕ : P → Q such that α = ϕ∗ ◦ β ◦ ϕ.
Let (P,ϕ) be a quadratic space over A. One says that it is isotropic over A, if
there exists a unimodular v ∈ P with ϕ(v) = 0.

Theorem 1.1. Let R be a semi-local regular integral domain containing a field.
Assume that all the residue fields of R are infinite and 1

2
∈ R. Let K be the

fraction field of R and (V, ϕ) a quadratic space over R. If (V, ϕ) ⊗R K is
isotropic over K, then (V, ϕ) is isotropic over R.

This Theorem is a consequence of the following result.
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Theorem 1.2. Let k be an infinite perfect field of characteristic different from
2, B a k-smooth algebra. Let p1, p2, . . . , pn be prime ideals of B, S = B−∪n

j=1
pj

and R := BS be the localization of B with respect to S (note that BS is a semi-
local ring). Let K be the ring of fractions of R with respect to all non-zero
divisors and (V, ϕ) be a quadratic space over R. If (V, ϕ) ⊗R K is isotropic
over K, then (V, ϕ) is isotropic over R.

For arbitrary discrete valuation rings, Theorem 1.1 holds trivially. It also
holds for arbitrary regular local two-dimensional rings in which 2 is invertible,
as proved by M. Ojanguren in [O].
To conclude the Introduction let us add a historical remark which might help
the general reader. Let R be a regular local ring, G/R a reductive group
scheme. The question whether a principal homogeneous space over R which
admits a rational section actually admits a section goes back to the founda-
tions of étale cohomology. It was raised by J.-P. Serre and A. Grothendieck
(séminaire Chevalley “Anneaux de Chow”). In the geometric case, this ques-
tion has essentially been solved, provided that G/R comes from a ground field
k. Namely, J.-L. Colliot-Thélène and M. Ojanguren in [CT-O] deal with the
case where the ground field k is infinite and perfect. There were later papers
[Ra1] and [Ra2] by M.S. Raghunathan, which handled the case k infinite but
not necessarily perfect. O. Gabber later announced a proof in the general case.
One may then raise the question whether a similar result holds for homogeneous
spaces. A specific instance is that of projective homogeneous spaces. An even
more specific instance is that of smooth projective quadrics (question raised
in [C-T], Montpellier 1977). This last case is handled in the present paper.
Remark 3.5 deals with the semi-local case.
The key point of the proof of Theorem 1.2 is the combination of the moving
lemma in [LM] and Gabber’s improvement of the alteration theorem due to
de Jong with the generalization of Springer’s result in [PR]. Theorem 1.1 is
deduced from Theorem 1.2 using D. Popescu’s theorem.

2 Auxiliary results

Let k be a field. To prove Theorem 1 we need auxiliary results. We start
recalling the notion of transversality as it is defined in [LM, Def.1.1.1].

Definition 2.1. Let f : X → Z, g : Y → Z be morphisms of k-smooth
schemes. We say that f and g are transverse if

1. TorOZ
q (OY ,OX) = 0 for all q > 0.

2. The fibre product X ×Z Y is a k-smooth scheme.

Lemma 2.2. Let f : X → Z and g : Y → Z be transverse, and prY : Y ×ZX →
Y and h : T → Y be transverse, then f and g ◦ h are transverse.

This is just Lemma 1 from [Pa].
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Since this moment and till Remark 2.6 (including that Remark) let k be an
infinite perfect field of characteristic different from 2. Let U be a smooth
irreducible quasi-projective variety over k and let j : u → U be a closed point
of U . In particular, the field extension k(u)/k is finite. It is also separable
since k is perfect. Thus u = Spec(k(u)) is a k-smooth variety.

Lemma 2.3. Let U be as above. Let Y be a k-smooth irreducible variety of the
same dimension as U . Let v = {v1, v2, . . . , vs} ⊂ U be a finite set of closed
points. Let q : Y → U be a projective morphism such that q−1(v) 6= ∅. Assume
q : Y → U and jv : v →֒ U are transverse. Then q is finite étale over an affine
neighborhood of the set v ⊂ U .

Proof. There is a vi ∈ v such that q−1(vi) 6= ∅. By [Pa, Lemma 2] q is
finite étale over a neighborhood Vi of the point vi ∈ U . This implies that
Vi ⊂ q(Y ). It follows that q(Y ) = U , since q is projective and U is irreducible.
Whence for each i = 1, 2, . . . , s one has q−1(vi) 6= ∅. By [Pa, Lemma 2] for
each m = 1, 2, . . . , s the morphism q is finite étale over a neighborhood Vm of
the point vm ∈ U . Since U is quasi-projective, q is finite étale over an affine
neighborhood V of the set v ⊂ U .

Let U be as above. Let p : X → U be a smooth projective k-morphism. Let
X = p−1(u) be the fibre of p over u. Since p is smooth the k(u)-scheme X
is smooth. Since k(u)/k is separable X is smooth as a k-scheme. Thus for a
morphism f : Y → X of a k-smooth scheme Y it makes sense to say that f and
the embedding i : X →֒ X are transverse. So one can state the following

Lemma 2.4. Let p : X → U be as above, let jv : v →֒ U be as in Lemma
2.3 and let X = p−1(v) be as above. Let Y be a k-smooth irreducible variety
with dim(Y ) = dim(U). Let f : Y → X be a projective morphism such that
f−1(X) 6= ∅. Suppose that f and the closed embedding i : X →֒ X are trans-
verse. Then the morphism q = p ◦ f : Y → U is finite étale over an affine
neighborhood of the set v.

Proof. For each i = 1, 2, . . . , s the extension k(u)/k is finite. Since k is perfect,
the scheme v is k-smooth. The morphism p : X → U is smooth. Thus the
morphism jv and the morphism p are transverse. Morphisms jv and q = p ◦ f
are transverse by Lemma 2.2, since jv and f are transverse. One has q−1(v) =
f−1(X) 6= ∅. Now Lemma 2.3 completes the proof of the Lemma.

For a k-smooth variety W let CHd(W ) be the group of dimension d algebraic
cycles modulo rational equivalence onW (see [Fu]). The next lemma is a variant
of the proposition [LM, Prop. 3.3.1] for the Chow groups Chd := CHd/2CHd

of algebraic cycles modulo rational equivalence with Z/2Z-coefficients.

Lemma 2.5 (A moving lemma). Suppose that k is an infinite perfect field (the
characteristic of k is different from 2 as above). Let W be a k-smooth scheme
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and let i : X →֒W be a k-smooth closed subscheme. Then Cdd(W ) is generated
by the elements of the form f∗([Y ]) where Y is an irreducible k-smooth variety
of dimension d, [Y ] ∈ Cdd(Y ) is the fundamental class of Y , f : Y → W is
a projective morphism such that f and i are transverse and f∗ : Chd(Y ) →
Chd(W ) is the push-forward.

Proof. The group Chd(W ) is generated by cycles of the form [Z], where Z ⊂
W is a closed irreducible subvariety of dimension d. Since k is perfect of
characteristic different from 2, applying a recent result due to Gabber [I, Thm.
1.3], one can find a k-smooth irreducible quasi-projective variety Z ′ and a
proper morphism π : Z ′ → Z with k-smooth quasi-projective variety Z ′ and
such that the degree [k(Z ′) : k(Z)] is odd. The morphism p is necessary
projective, since the k-variety Z ′ is quasi-projective and p is a proper morphism
(see [Ha, Ch.II, Cor.4.8.e]). Write π′ for the composition Z ′ → Z →֒ W .
Clearly, π′

∗([Z
′]) = [Z] ∈ Cdd(W ). The lemma is not proved yet, since π′ and

i are not transverse.
However to complete the proof it remains to repeat literally the proof of propo-
sition [LM, Prop. 3.3.1]. The proof of that proposition does not use the reso-
lution of singularities. Whence the lemma.

Remark 2.6. Note that at the end of the previous proof we actually used a
Chow version of [LM, Prop. 3.3.1] instead of Prop. 3.3.1 itself.

The following theorem proved in [PR] is a generalization of a theorem of
Springer. See [La, Chap.VII, Thm.2.3] for the original theorem by Springer.

Theorem 2.7. Let R be a local Noetherian domain which has an infinite residue
field of characteristic different from 2. Let R ⊂ S be a finite R-algebra which
is étale over R. Let (V, ϕ) be a quadratic space over R such that the space
(V, ϕ) ⊗R S contains an isotropic unimodular vector. If the degree [S : R] is
odd then the space (V, ϕ) already contains a unimodular isotropic vector.

Remark 2.8. Theorem 2.7 is equivalent to the main result of [PR], since the
R-algebra S from Theorem 2.7 one always has the form R[T ]/(F (T )), where
F (T ) is a separable polynomial of degree [S : R] (see [AK, Chap.VI, Defn.6.11,
Thm.6.12]).

Repeating verbatim the proof of Theorem 2.7 given in [PR] we get the following
result.

Theorem 2.9. Let R be a semi-local Noetherian integral domain SUCH THAT
ALL ITS residue fields ARE INFINITE of characteristic different from 2. Let
R ⊂ S be a finite R-algebra which is étale over R. Let (V, ϕ) be a quadratic
space over R such that the space (V, ϕ)⊗R S contains an isotropic unimodular
vector. If the degree [S : R] is odd then the space (V, ϕ) already contains a
unimodular isotropic vector.
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3 Proofs of Theorems 1.2 and 1.1

Proof of Theorem 1.2. Let k be an infinite perfect field of characteristic dif-
ferent from 2. Let p1, p2, . . . , pn be prime ideals of B, S = B − ∪n

j=1
pj and

R = BS be the localization of B with respect to S.

Clearly, it is sufficient to prove the theorem in the case when B is an integral
domain. So, in the rest of the proof we will assume that B is an integral domain.
We first reduce the proof to the localization at a set of maximal ideals. To do
that we follow the arguments from [CT-O, page 101]. Clearly, there exist f ∈ S
and a quadratic space (W,ψ) over Bf such that (W,ψ) ⊗Bf

BS = (V, ϕ). For
each index j let mj be a maximal ideal of B containing pj and such that
f /∈ mj . Let T = B − ∪n

j=1
mj . Now BT is a localization of Bf and one has

Bf ⊂ BT ⊂ BS = R. Replace R by BT .

From now on and until the end of the proof of Theorem 1.2 we assume that
R = OU,{u1,u2,...,un} is the semi-local ring of a finite set of closed points u =
{u1, u2, . . . , un} on a k- smooth d-dimensional irreducible affine variety U .

Let X ⊂ PR(V ) be a projective quadric given by the equation ϕ = 0 in the
projective space PR(V ) = Proj(S∗(V ∨)). Let X = p−1(u) be the scheme-
theoretic pre-image of u under the projection p : X → Spec(R). Shrinking U
we may assume that u is still in U and the quadratic space (V, ϕ) is defined over
U . We still write X for the projective quadric in PU (V ) given by the equation
ϕ = 0 and still write p : X → U for the projection. Let η : Spec(K) → U be
the generic point of U and let Xη be the generic fibre of p : X → U . Since the
equation ϕ = 0 has a solution over K there exists a K-rational point y of Xη.
Let Y ⊂ X be its closure in X and let [Y ] ∈ Chd(X) be the class of Y in the
Chow groups with Z/2Z-coefficients.

Since p is smooth the scheme X is k(u)-smooth. Since k(u)/k is a finite étale
algebra X is smooth as a k-scheme. By Lemma 2.5 there exist a finite family of
integers nr ∈ Z and a finite family of projective morphisms fr : Yr → X (with
k-smooth irreducible Yr’s of dimension dim(U)) which are transverse to the
closed embedding i : X →֒ X and such that

∑
nrfr,∗([Yr]) = [Y ] in Chd(X).

Shrinking U we may assume that for each index r one has f−1

r (X) 6= ∅. By
Lemma 2.4 for any index r the morphism qr = p ◦ fr : Yr → U is finite étale
over an affine neighborhood U ′ of the set u. Shrinking U we may assume that
U ′ = U . Let deg : Ch0(Xη) → Z/2Z be the degree map. Since deg(y) = 1 and∑
nrfr,∗[Yr] = [Y ] ∈ Chd(X) there exists an index r such that the degree of the

finite étale morphism qr : Yr → U is odd. Without loss of generality we may
assume that the degree of q1 is odd. The existence of the Y1-point f1 : Y1 → X

of X shows that we are under the hypotheses of Theorem 2.9. Hence shrinking
U once more we see that there exists a section s : U → X of the projection
X → U . Theorem 1.2 is proven.

Proof of Theorem 1.1. LetR be a regular semi-local integral domain containing
a field. Let k be the prime field of R. By Popescu’s theorem R = lim

−→
Bα, where
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the Bα’s are smooth k-algebras (see [P] or [Sw]). Let canα : Bα → R be the
canonical k-algebra homomorphism. We first observe that we may replace the
direct system of theBα’s by a system of essentially smooth semi-local k-algebras
which are integral domains. In fact, if mj is a maximal ideal of R, we can take
pα,j := can−1

α (mj), Sα := Bα−∪n
j=1

pα,j and replace each Bα by (Bα)Sα
, Note

that in this case the canonical morphisms canα : Bα → R take maximal ideals
to maximal ones and every Bα is a regular semi-local k-algebra.
We claim that Bα is an integral domain. In fact, since Bα is a regular semi-
local k-algebra it is a product

∏s
i=1

Bα,i of regular semi-local integral domains
Bα,i. The ideal qα := can−1

α (0) ⊂ Bα is prime and is contained in each of the
maximal ideals can−1

α (mj) of the ring Bα. The latter ideal runs over all the
maximal ideals of Bα. Thus the prime ideal qα is contained in all maximal
ideals of Bα =

∏s
i=1

Bα,i. Since qα is prime after reordering the indices it must
be of the form q1 ×

∏s
i=2

Bα,i. If s ≥ 2 then the latter ideal is not contained

in a maximal ideal of the form
∏s−1

i=1
Bα,i ×m for a maximal ideal m of Bα,s.

Whence s = 1 and Bα is indeed an integral domain.
There exists an index α and a quadratic space ϕα over Bα such that ϕα⊗Bα

R ∼=
ϕ. For each index β ≥ α we will write ϕβ for the Bβ-space ϕα⊗Bα

Bβ . Clearly,
ϕβ ⊗Bβ

R ∼= ϕ. The space ϕK is isotropic. Thus there exists an element f ∈ R
such that the space (Vf , ϕf ) is isotropic. There exists an index β ≥ α and a
non-zero element fβ ∈ Bβ such that canβ(fβ) = f and the space ϕβ localized
at fβ is isotropic over the ring (Bβ)fβ .
If char(k) = 0 or if char(k) = p > 0 and the field k is infinite perfect, then by
Theorem 1.2 the space ϕβ is isotropic. Whence the space ϕ is isotropic too.
If char(k) = p > 0 and the field k is finite, then choose a prime number l
different from 2 and from p and take the field kl which is the composite of all
l-primary finite extensions k′ of k in a fixed algebraic closure k̄ of k. Note that
for each field k′′ which is between k and kl and is finite over k the degree [k′′ : k]
is a power of l. In particular, it is odd. Note as well that kl is a perfect infinite
field. Take the kl-algebra kl ⊗k Bβ . It is a semi-local essentially kl-smooth
algebra, which is not an integral domain in general. The element 1⊗ fβ is not
a zero divisor. In fact, kl is a flat k-algebra and the element f is not a zero
divisor in Bβ .
The quadratic space kl⊗kϕβ localized at 1⊗fβ is isotropic over (kl⊗kBβ)1⊗fβ =
kl ⊗k (Bβ)fβ and 1⊗ fβ is not a zero divisor in kl ⊗k Bβ . By Theorem 1.2 the
space kl⊗kϕβ is isotropic over kl⊗kBβ . Whence there exists a finite extension
k ⊂ k′ ⊂ kl of k such that the space k′ ⊗k ϕβ is isotropic over k′ ⊗k Bβ . Thus
the space k′⊗kϕ is isotropic over k′⊗kR. Now k′⊗kR is a finite étale extension
of R of odd degree. All residue fields of R are infinite. By Theorem 2.9 the
space ϕ is isotropic over R.

To state the first corollary of Theorem 1.1 we need to recall the notion of
unramified spaces. Let R be a Noetherian integral domain andK be its fraction
field. Recall that a quadratic space (W,ψ) over K is unramified if for every

Documenta Mathematica · Extra Volume Suslin (2010) 515–523



Rationally Isotropic Quadratic Spaces . . . 521

height one prime ideal ℘ of R there exists a quadratic space (Vp, ϕ℘) over R℘

such that the spaces (V℘, ϕ℘)⊗R℘
K and (W,ψ) are isomorphic.

Corollary 3.1 (A purity theorem). Let R be a regular local ring containing
a field of characteristic different from 2 and such that the residue field of R is
infinite. Let K be the field of fractions of R. Let (W,ψ) be a quadratic space
over K which is unramified over R. Then there exists a quadratic space (V, ϕ)
over R extending the space (W,ψ), that is the spaces (V, ϕ) ⊗R K and (W,ψ)
are isomorphic.

Proof. By the purity theorem [OP, Theorem A] there exists a quadratic space
(V, ϕ) over R and an integer n ≥ 0 such that (V, ϕ)⊗RK ∼= (W,ψ) ⊥ H

n
K , where

HK is a hyperbolic plane. If n > 0 then the space (V, ϕ)⊗RK is isotropic. By
Theorem 1.1 the space (V, ϕ) is isotropic too. Thus (V, ϕ) ∼= (V ′, ϕ′) ⊥ HR for
a quadratic space (V ′, ϕ′) over R. Now Witt’s Cancellation theorem over a field
[La, Chap.I, Thm.4.2] shows that (V ′, ϕ′)⊗R K ∼= (W,ψ) ⊥ H

n−1

K . Repeating
this procedure several times we may assume that n = 0, which means that
(V, ϕ)⊗R K ∼= (W,ψ).

Remark 3.2. Corollary 3.1 is used in the proof of the main result in [ChP]. The
main result in [ChP] holds now in the case of a local regular ring R containing
a field provided that the residue field of R is infinite and 1

2
∈ R.

Corollary 3.3. Let R be a semi-local regular integral domain containing a
field. Assume that all the residue fields of R are infinite and 1

2
∈ R. Let K be

the fraction field of R. Let (V, ϕ) be a quadratic space over R and let u ∈ R×

be a unit. Suppose the equation ϕ = u has a solution over K then it has a
solution over R, that is there exists a vector v ∈ V with ϕ(v) = u (clearly the
vector v is unimodular).

Proof. It is very standard. However for the completeness of the exposition let
us recall the arguments from [C-T, Proof of Prop.1.2]. Let (R,−u) be the
rank one quadratic space over R corresponding to the unit −u. The space
(V, ϕ)K ⊥ (K,−u) is isotropic thus the space (V, ϕ) ⊥ (R,−u) is isotropic by
Theorem 1.1. By the lemma below there exists a vector v ∈ V with ϕ(v) = u.
Clearly v is unimodular.

Lemma 3.4. Let (V, ϕ) be as above. Let (W,ψ) = (V, ϕ) ⊥ (R,−u). The space
(W,ψ) is isotropic if and only if there exists a vector v ∈ V with ϕ(v) = u.

Proof. It is standard. See [C-T, the proof of Proposition 1.2.].

Remark 3.5. It would be nice to extend the result of Corollary 3.1 to the semi-
local case. The difficulty is to extend the purity theorem [OP, Theorem A] to
that semi-local case.
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