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1 Introduction

In [Dr1], Drinfeld has introduced the analogues of Shimura varieties for GLd
over a global field F of positive characteristic. Following a suggestion of U.
Stuhler the corresponding varieties for an inner form of GLd, i.e. the group of
invertible elements A∗ of a central simple algebra A of dimension d2 over F ,
have been introduced by Laumon, Rapoport and Stuhler in [LRS]. For d = 2
these are the analogues of Shimura curves. In this paper we show that some of
these varieties (for different A) are twists of each other.
Let us recall the latter in the simplest case (i.e. over Q and by neglecting level
structure). Let D be an indefinite quaternion algebra over Q and D a maximal
order in D. The Shimura curve SD is the (coarse) moduli space corresponding
to the moduli problem

(S → SpecZ) 7→ abelian surfaces over S with D-action.
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By fixing an isomorphism D ⊗ R ∼= M2(R) the group of units D∗ acts on the
symmetric space H∞ : = P1

/R−P1(R) (the upper and lower half plane) through
linear transformations. The curve SD ⊗Q R admits the following concrete de-
scription

SD ⊗Q R = D∗\H∞. (1)

If p is a prime number which is ramified in D then there is a similar explicite
description over Qp. For that let D be the definite quaternion algebra over Q
given by the local data D⊗Qℓ ∼= D⊗Qℓ for all prime numbers ℓ different from
p and D⊗Qp ∼=M2(Qp). Let D denote a maximal Z[ 1p ]-order in D and denote

by Qnr
p the quotient field of the ring of Witt vectors of W (Fp). The Theorem

of Cherednik-Drinfeld asserts that

SD ⊗Q Qp = D
∗
\(Hp ⊗Qp

Qnr
p ). (2)

(see [Ce], [Dr2] or [BC]). Here D
∗
acts on Qnr

p via γ 7→ Frob− ordp(Nrd(γ))
p and on

the p-adic upper half plane Hp : = P1
/Qp

− P1(Qp) via linear transformations.

Now let F be a global field of positive characteristic, i.e. F is the function field
of a smooth proper curve X over a finite field Fq. The analogues of Shimura
curves over F are the moduli spaces of A-elliptic sheaves as introduced in [LRS].
In this paper we generalize this notion slightly by making systematically use
of hereditary orders. Let ∞ ∈ X be a fixed closed point. For simplicity
we assume in the introduction that deg(∞) = 1. Let A be a central simple
F -algebra of dimension d2 and let A be a locally principal hereditary OX -
order in A. The condition locally principal means that the radical Rad(Ax) of

Ax : = A ⊗OX
ÔX,x is a principal ideal for every closed point x ∈ X. There

exists a positive integer e = ex(A) such that Rad(Ax)
e is the ideal Ax̟x

generated by a uniformizer ̟x of X at x. The number ex(A) divides d for al l
x and is equal to 1 for almost all x. We assume in the following that e∞(A) = d.
If A is unramified at ∞ then this amounts to require that A∞ is isomorphic to
the subring of matrices in Md(ÔX,∞) which are upper triangular modulo ̟∞.
Roughly, an A-elliptic sheaf with pole ∞ is a locally free A-module of rank
1 together with a meromorphic A-linear Frobenius having a simple pole at ∞
and a simple zero. The precise definition is as follows.
An A-elliptic sheaf over an Fq-scheme S is a pair E = (E , t) consisting of a
locally free right A ⊠OS-module of rank 1 and an injective homomorphism of
A⊠OS-modules

t : (idX ×FrobS)
∗(E ⊗A A(−

1

d
∞)) −→ E

such that the cokernel of t is supported on the graph Γz ⊆ X ×Spec Fq
S of a

morphism z : S → X (called the zero) and is – when considered as a sheaf on
S ∼= Γz – a locally free OS-module of rank d.
Here A(− 1

d∞) denotes the two-sided ideal in A given by A(− 1
d∞)x = Ax for

all x 6= ∞ and A(− 1
d∞)∞ = Rad(A∞). This definition differs, but, as will be
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proved in the appendix, is equivalent to the one given in [LRS]1. Unlike in loc.
cit. we do not require the zero z to be disjoint from the pole ∞ nor from the
closed points which are ramified in A. Also we allow ∞ to be ramified in A. For
an arbitrary effective divisor I on X there is the notion of a level-I-structure
on E. We will show (Theorem 4.11) that the moduli stack of A-elliptic sheaves
with level-I-structure Eℓℓ∞A,I is a Deligne- Mumford stack which is locally of
finite type and of relative dime nsion d− 1 over X − I. If I 6= 0, it is a smooth
and quasiprojective scheme over X ′ − I where X ′ denotes the complement of
set of closed points x ∈ X with ex(A) > 1.
Let B be another central simple F -algebra of dimension d2 and assume that
there exists a closed point p ∈ X − {∞} such that the local invariants of B
are given by inv∞(B) = inv∞(A) + 1

d , invp(B) = invp(A) −
1
d and invx(B) =

invx(A) for all x 6= ∞, p. Let B be a locally principal hereditary OX -order in B
with ex(B) = ex(A) for all x. Our main result is that the moduli stack EℓℓpB,I
is a twist of Eℓℓ∞A,I . To state this more precisely we assume for simplicity that
deg(p) = 1 and I = 0 (see 4.24 and 4.25 for the general statement). We have

EℓℓpB
∼= (Eℓℓ∞A ⊗Fq

Fq)/ < wp ⊗ Frobq > . (3)

Here wp is a certain modular automorphism of Eℓℓ∞A (in the case d = 2 it is
the analogue of the Atkin-Lehner involution at p for a modular or a Shimura
curve).
We explain briefly our strategy for proving (3). We consider invertible A-B-
bimodules L together with a meromorphic Frobenius Φ having a simple zero
at ∞ and simple pole at p. More precisely, for an Fq-scheme S, we consider
pairs L = (L,Φ) where L is an invertible A ⊠ OS-B ⊠ OS-bimodule and Φ is
an isomorphism of bimodules

Φ : (idX ×FrobS)
∗(L ⊗A A(−

1

d
p)) −→ L⊗A A(−

1

d
∞).

These will be called invertible Frobenius bimodules of slope D = 1
d∞ − 1

dp

and their moduli space will be denoted by SEDA,B. We will show in section
4.4 that it is a torsor over SpecFq of the finite group of modular automor-

phisms of Eℓℓ∞A and compute it explicitely (it is instructive to view SEDA,B as
an analogue of the moduli space of supersingular elliptic curves with a fixed
ring of endomorphisms). In section 4.5 we construct a canonical tensor product
Eℓℓ∞A ×SEDA,B → EℓℓpB, (E,L) 7→ E⊗AL. The isomorphism (3) is then a simple
consequence.
From the global result (3) we deduce that the uniformization at ∞ and the
analogue of the Cherednik-Drinfeld uniformization for the moduli spaces Eℓℓ∞A,I
are equivalent. In fact an analogue of the uniformization result (1) for Eℓℓ∞A,I
has been proved by Blum and Stuhler in [BS] (in case where the level I is prime
to ∞). On the other hand Hausberger has shown in [Hau] (again under the

1In [LRS], the authors work with hereditary orders A with A∞
∼= Md(ÔX,∞) and

parabolic structures at ∞ on E instead.
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assumption that ∞ does not divide the level I) that there is also an analogue
of the Cherednik-Drinfeld theorem.
We describe briefly the contents of each section. In section 2 and 3 we discuss
hereditary orders in central simple algebras over local fields and global function
fields. We show in particular that any hereditary order is Morita equivalent
to a (locally) principal hereditary order. This is the reason why it suffices to
consider A-elliptic sheaves for locally principal A. In section 4 we introduce
A-elliptic sheaves and study their moduli spaces and sections 2.6 and 4.4 are
devoted to invertible Frobenius bimodules. In section 3.3 we introduce the
notion of a special A-module. If E = (E , t) is an A-elliptic sheaf then Coker(t)
is special. The stack CohA,sp of special A-modules plays a key role in the study
of the bad fibers of the characteristic morphism char : Eℓℓ∞A,I → X in section
4.3. In fact CohA,sp is an Artin stack and char admits a canonical factorization
Eℓℓ∞A,I → CohA,sp → X. We shall show that the first map is smooth and the
second semistable. In section 4.5 we construct the tensor product of an A-
elliptic sheaf (with level-I-structure) and an invertible Frobenius bimodules
(with level-I-structure) and prove our main result (Theorems 4.24 and 4.25).
Finally, in section 4.6 we discuss the application to uniformization of Eℓℓ∞A,I by
Drinfeld’s symmetric spaces and its coverings.
Acknowledgements. I thank E. Lau and T. Zink for helpful conversations. Part
of this work has been done during a stay at the Max-Planck-Institute in Bonn
in the Winter 2004/05, so I am grateful for the hospitality.

Notation As an orientation for the reader we collect here a few basic nota-
tions which are used in the entire work. However most notations listed below
will be introduced again somewhere in this work.
For a scheme S we let |S| be the set of closed points of S. The category of
S-schemes is denoted by Sch /S. If S = Spec k for a field k then we also write
Sch /k.
The algebraic closure of a field k is denote by k. If k is finite then kn ⊂ k
denotes the extension of degree n of k.
In chapters 3, 4 and in 5.2, X denotes a smooth proper curve over some base
field k. In chapter 3, k is an arbitrary perfect field of cohomological dimension
1, whereas in chapter 3 k is the finite field Fq. The function field of X is
denoted by F . For Y,Z ∈ Sch /k we write X × Y for their product over k.
For a closed point x ∈ X we denote by k(x) its residue field and by deg(x)
the degree [k(x) : k]. If S is a k(x)-scheme, then xS will denote the morphism
S → Spec k(x) →֒ X. If S = Spec k′ is a field then we also write xk′ instead of
xSpec k′ .
For a non-zero effective divisor I on X, we denote the corresponding closed
subscheme of X by I as well. If M is a sheaf of OX -modules then we use MI

for M⊗OX
OI .

In chapter 4, for S ∈ Sch /Fq we denote by FrobS its Frobenius endomorphism
(over Fq). In the case where S = Spec k′ for some algebraic extension field k′

of Fq we also sometimes write Frobq for FrobSpec k′ and Frobenius in the Galois
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group G(k′/Fq). If S ∈ Sch /Fq and E is a sheaf of OX×S-modules then τE
denotes the sheaf (idX ×FrobS)

∗(E).
We denote by A the Adele ring of F and for a finite set of closed points T of
X we let AT denote the Adele ring outside of T .
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2 Local theory of hereditary orders

2.1 Basic definitions

Let X be a scheme and A a quasi-coherent sheaf of OX -algebras. We denote
by ModA the category of sheaves of right A-modules. Let B be another quasi-
coherent OX -algebra. An A-B-bimodule I is an OX -module with a left A- and
right B-action which are compatible with the OX -action.
A and B are said to be (Morita) equivalent (notation: A ≃ B) if there exists
a quasi-coherent A-B-bimodule I and a quasi-coherent B-A-bimodule J such
that the following equivalent conditions hold:
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(i) There exists bimodule isomorphisms

I ⊗B J −→ A, J ⊗A I −→ B.

(ii) The functors

· ⊗A I : ModA −→ ModA, · ⊗B J : ModB −→ ModA

are equivalences of categories and mutually quasi-invers.
In this case I and J are called invertible bimodules and J is called the inverse
of I. The group of isomorphism classes of invertible A-A-bimodules will be
denoted by Pic(A).
Now assume that X is a Dedekind scheme that is a one-dimensional connected
regular noetherian scheme with function field K, i.e. SpecK → X is the generic
point. Let A be a central simple algebra over K. An OX-order in A is a sheaf
of OX -algebras A with generic fiber A which is coherent and locally free as an
OX -module. If B is an OX -order in another central simple K-algebra then it
is easy to see that an invertible A-B-bimodule is a coherent and locally free
OX -module.
The OX -order A in A is called maximal if for any open affine U = SpecR ⊆ X
the set of sections Γ(U,A) is a maximal R-order in A. A is called hereditary
if its sections Γ(U,A) over any open affine U = SpecR ⊆ X is a hereditary
R-order in A that is any left ideal in Γ(U,A) is projective (equivalently any
right ideal is projective; compare ([Re], (10.7)). Let E be a locally free OX -
module of finite rank which has a left or right A-action compatible with the
OX -action. Then the set of sections of E over any affine open U = SpecR ⊆ X
are a projective Γ(U,A)-module.
If X is affine, i.e. the spectrum of a Dedekind ring O we usually identify A
with its sections Γ(X,A). An O-lattice is a finitely generated torsionfree (hence
projective) O-module. A (left or right) A-lattice is a (left or right) A-module
which is an O-lattice. By ([Re], (10.7)) A is hereditary if and only if every (left
or right) A-lattice is projective.

2.2 Structure theory

Let O be a henselian discrete valuation ring with maximal ideal p and residue
field k = O/p. Let ̟ ∈ p be a fixed prime element. We will recall the structure
theory of hereditary O-orders in central simpleK-algebras (a reference for what
follows is [Re], section 39). Since we are only interested in applications to the
case where O is the henselisation or completion of a local ring in a global field
we will assume for simplicity that k is perfect and of cohomological dimension
≤ 1.
Let A be a hereditary O-order in a central simple K-algebra A of dimension
n2. Its Jacobson radical will be denoted by P = PA. By ([Re], 39.1 and
exercise 6 on p. 365) P is an invertible two-sided ideal and any other two-
sided invertible fractional ideal is an integral power of P. Let B be a central
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simple K-algebra equivalent to A and B be a maximal order in B. We denote
its radical by M = PB. Let I be an invertible A-B-bimodule. Its inverse is
J : = HomK(I,K). Let I be a A-B-stable lattice in I, i.e. aI, Ib⊆I for all
a ∈ A, b ∈ B. Such a lattice exists. In fact if L⊆I is any O-lattice then the
O-module generated by the set {axb | a ∈ A, x ∈ L, b ∈ B} is a A-B-stable
lattice. There exists a positive integer t – called the type of A – such that
PtI = IM (see [Re], 39.18 (i)). It is also equal to the number of isomorphism
classes of indecomposable left (or right) A-lattices. If M is an indecomposable
left A-lattice then {PiM| i = 0, 1, . . . , t − 1} is a full set of representatives of
the set of indecomposable left A-lattices. For i ∈ Z we set Ii : = P−iI and
Ji : = HomO(I−i,O). The sequences {Ii | i ∈ Z} and {Ji | i ∈ Z} satisfy the
following conditions:

(i) PIi = Ii−1, IiM = Ii−t, JiP = Ji−1, MJi = Ji−t for all i ∈ Z.

(ii) Let Ai : = {x ∈ A | xIi⊆Ii} = {x ∈ A | J−ix⊆J−i}. Then A1, . . . ,At

are the different maximal orders containing A and we have A = A1∩ . . .∩
At (note that Ai = Aj if i ≡ j mod t). The lattice Ii is an invertible
Ai-B-bimodule with inverse J−i. Note that Ai = Aj if i ≡ j mod t.

(iii) Let A : = A/P,B : = B/M and let

A
(i)

: = Im(A → EndB(Ii/Ii−1)) ∼= Im(A → EndB(J−i/J−i−1))

for i = 1, . . . , t. Then, considered as a A
(i)
-B-bimodule, Ii/Ii−1 is invert-

ible with inverse J−i/J−i−1. We have

A ∼= A
(1)

× . . .×A
(t)

and A
(i) ∼= Mni

(k′) for i = 1, . . . , t. Here k′ is the center of B and
ni = rankB(Ii/Ii−1). The numbers (n1, . . . , nt) are called the invariants
of A. They are well-defined up to cyclic permutation.

Definition 2.1. The positive integer e = e(A) with Pe = ̟A will be called
the index of A.

We will see below (Lemma 2.4) that e(A) does not change under finite étale
base change. If d is the order of [A] in Br(F ) (hence d = [k′ : k]) and t is the
type of A then e = dt.
Recall ([BF], p. 216) that A is said to be principal if every two-sided invertible
ideal of A is a principal ideal or equivalently if there exists Π ∈ P with AΠ =
ΠA = P. For example A is principal if it is a maximal O-order in A or if
e(A) = n. This is a consequence of the following characterization of principal
orders.

Lemma 2.2. Let A be a hereditary order in a central simple K-algebra A of
dimension n2. The following conditions are equivalent.
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(i) A is a principal order.
(ii) If (n1, . . . , nt) are the invariants of A then n1 = . . . = nt.
(iii) Let M1, . . . ,Mt be a full set of representatives of the isomorphism classes
of indecomposable right A-lattices. Then there exists an integer f ∈ N such
that

A ∼= (M1 ⊕ . . .⊕Mt)
f

as right A-modules. In this case we have f = n1 = . . . = nt and n = ef .

Proof. (i) ⇔ (ii) see ([BF], Theorem 1.3.2, p. 217).
(i) ⇔ (iii) Since A is principal if and only if A ∼= P as right A-modules this
follows from the fact that the map [M] 7→ [MP] is a cyclic permutation of the
set isomorphism classes of indecomposable right A-lattices ([Re], 39.23).
For the last assertion note that if A is principal then on the one hand

dimk(A/P) =

t∑

j=1

dimk(A
(j)

) =

t∑

j=1

dn2j = tdn2i = en2i

for i ∈ {1, . . . , t}. On the other hand since Mj/MjP is an irreducible A
(j)

-
module we have

dimk(A/P) = f

t∑

j=1

dimk(Mj/MjP) = ftdni = feni

Therefore we get f = ni. Finally because of

n2 = dimk(A/̟A) =

e−1∑

i=0

dimk(P
i/Pi+1) = edimk(A/P)

we obtain ef = n. �

Suppose that A is principal. We denote the subgroup of A∗ of elements x ∈ A∗

with xA = Ax by N(A). For x ∈ N(A) there exists a unique m ∈ Z with
xA = Pm and we set vA(x) =

m
e . We have a commuative diagram with exact

rows
1 −−−−→ O∗ −−−−→ K∗ vK−−−−→ Z −−−−→ 0

y
y

y

1 −−−−→ A∗ −−−−→ N(A)
vA−−−−→ 1

eZ −−−−→ 0

where vK denoted the normalized valuation of K and the vertical maps are the
natural inclusions.
Next we consider the special case where A = EndK(V ) for a finite-dimensional
K-vector space V (i.e. A is split). A lattice chain in V is a sequence of O-lattices
L⋆ = {Li | i ∈ Z} such that
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(i) Li ⊆ Li+1 for all i ∈ Z.

(ii) There exists a positive integer e, the period of L⋆, such that Li−e = ̟Li
for all i ∈ Z.

The ring
A = End(L⋆) : = {f ∈ A | f(Li)⊆Li ∀i ∈ Z} (4)

is a hereditary O-order in A of index (= type) e with invariants ni =
dimk(Li/Li−1). We have:

P−m
A = Endm(L⋆) : = {f ∈ A | f(Li)⊆Li+m ∀i ∈ Z}. (5)

Any hereditary O-order in A is of the form (4) for some lattice chain.

2.3 Étale base change

We keep the notation and assumption of the last section. Let A be a central
simple algebra and A an O-order in A with radical P.

Lemma 2.3. The following conditions are equivalent:
(i) A is hereditary.
(ii) There exists a two-sided invertible ideal M in A such that A/M is semisim-
ple and Me = ̟A for some e ≥ 1.
Moreover if M is as in (ii) then M = P.

Proof. (i) ⇒ (ii) follows from ([Re], (39.18) (iii) ) (for M = P).
(ii) ⇒ (i) In view of ([Re], (39.1)) it suffices to show that M = P. The
inclusion M⊇P is a consequence of the assumption that A/M is semisimple.
The converse inclusion follows from ([Re], exercise 1). �

Lemma 2.4. Let K ′/K be a finite unramified extension and O′ the integral
closure of O in K ′. Then A is hereditary (resp. principal) if only if A ⊗O O′

is hereditary (resp. principal). In this case P⊗O O′ is the radical of the latter.

Proof. We will prove only the statement for hereditary orders and leave the
case of principal orders to the reader. If A is hereditary then M : = P⊗O O′

satisfies the condition (ii) of Lemma 2.3. Hence A⊗O O′ is hereditary.
To prove the converse let P be a left A-lattice. We have to show that

HomA(P, ·) : ModA → ModO

is an exact functor or – since O′ is a faithfully flat O-algebra – that

HomA(P, ·)⊗O O′ ∼= HomA⊗OO′(P ⊗O O′, · ⊗O O′)

is exact. However the assumption implies that P⊗OO′ is a projective A⊗OO′-
module. �
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2.4 Morita equivalence

Let A be a central simple algebra and A a hereditary O-order in A with radical
P. If A′ is another O-order in A containing A then A′ is hereditary as well
and PA′⊆P.

Lemma 2.5. Let A1, . . . ,As be a collection of O-orders in A containing A with
radicals P1, . . . ,Ps. If A1 ∩ . . . ∩ As = A then P1 + . . .+Ps = P.

Proof. Clearly P1+ . . .+Ps⊆P. By Lemma 2.4 to prove equality we may pass
to a finite unramified extension K ′/K. Hence we can assume A = EndK(V )
for some finite-dimensional K vector space V and that there exists a lattice
chain L⋆ = {Li | i ∈ Z} in V with period e = e(A) such that

A = {f ∈ A | f(Li)⊆Li ∀i ∈ Z}, P = {f ∈ A | f(Li)⊆Li−1 ∀i ∈ Z}.

Clearly it is enough to consider the case where s = e and Ai = {f ∈ A |
f(Li)⊆Li}, i = 1, . . . , e are the different maximal orders containing A. We
proceed by induction on e so we can assume that e > 1 and that the radical

P′ = {f ∈ A | f(Li)⊆Li−1 ∀ i 6≡ 0, 1mod e and f(Li)⊆Li−2 ∀ i ≡ 1mod e},

of B : = A1 ∩ . . . ∩ Ae−1 is = P1 + . . .+Pe−1.
Let f ∈ P. Consider the diagram of k-vector spaces

L1/L0
f //

� _

��

L0/L−1

Le/L0
g //❴❴❴ L0/L−e

OOOO

where the vertical maps are induced by L1 →֒ Le and id : L0 → L0 respectively
and the upper horizontal map by f . There exists a dotted arrow g making
the diagram commutative. Let g ∈ HomO(Le,L0) = Pe be a “lift” of g.
Then g(x) ≡ f(x) mod L−1 for every x ∈ L1. Therefore (f − g)(L1)⊆L−1

and (f − g)(Li)⊆f(Li) + g(Le)⊆Li−1 + L0 = Li−1 for i = 2, . . . , e − 1 and
consequently f − g ∈ P′. This proves P⊆P′ +Pe = P1 + . . .+Pe−1 +Pe.

�

Corollary 2.6. Let A be a hereditary O-order of type t with radical P in
the central simple K-algebra A and let A1, . . . ,At denote the different maximal
orders containing A. Then

A1 + . . .+At = P−t+1

is a two-sided invertible ideal.
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Proof. By ([Re], section 39, exercise 10) and Lemma 2.5 above we have

P = P1 + . . .+Pt = PtA1 + . . .+PtAt = Pt(A1 + . . .+At)

hence A1 + . . .+At = P−t+1. �

Let B be another central simple K-algebra which is equivalent to A and let B
a maximal order in B with radical M. Let I be an invertible A-B-bimodule,
J : = HomK(I,K) and let {Ii | i ∈ Z} and {Ji | i ∈ Z} be as in section 2.2.

Lemma 2.7. Consider Ii ⊗B Jj (resp. Ji ⊗A Ij) as a submodule of (Ii ⊗B

Jj)⊗O K = I ⊗B J (resp. J ⊗A I).
(a)

∑
i+j=−t+1 Ii ⊗B Jj ∼= A as an A-A-bimodule.

(b) Ji ⊗A Ij is an invertible bimodule. If i + j = 0 then Ji ⊗A Ij ∼= B (as
B-B-bimodule). We have

Ji+1 ⊗A Ij = Ji ⊗A Ij+1 =

{
M−1(Ji ⊗A Ij) if i+ j ≡ 0 mod r;
Ji ⊗A Ij if i+ j 6≡ 0 mod r

Proof. (a) Under the identification I ⊗B J = HomK(J,K)⊗B J = HomB(J, J)
the submodule Ii ⊗B Jj corresponds to HomB(J−i,Jj). Hence if we fix an
A-A-bimodule isomorphism I ⊗B J ∼= A so that HomB(J0,J0) is mapped to
A0 then for arbitrary i, j ∈ Z with i + j = 0 the module HomB(J−i,Jj) is
mapped to Ai. It follows

∑
i+j=0 Ii ⊗B Jj ∼= A1 + . . . + Ar hence together

with Lemma 2.5 the assertion.
(b) The proof of the first two statements is similar and will be left to the reader.
For the last statement note that

Coker(Ji ⊗A Ij → Ji+1 ⊗A Ij) ∼= Ji+1/Ji ⊗A Ij ∼= Ji+1/Ji ⊗A Ij/Ij−1

By (iii) above we have

Ji+1/Ji ⊗A Ij/Ij−1
∼= Ji+1/Ji ⊗A

(j) Ij/Ij−1
∼= B

if i+ j ≡ 0 mod t and Ji+1/Ji ⊗A Ij/Ij−1 = 0 if i+ j 6≡ 0 mod t. �

Corollary 2.8. The assignment

M 7→ {M⊗A Ii | i ∈ Z}

defines an equivalence between the category of right A-lattices and the category
of increasing chains {Mi | i ∈ Z} of right B-lattices such that MiM = Mi−t

for all i ∈ Z. A quasi-inverse is given by

{Mi | i ∈ Z} 7→
∑

i+j=−t+1

Mi ⊗B Jj .

Here the sum is taken inside of (
⋃
i∈Z Mi)⊗B J .
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Proposition 2.9. Let A1 and A2 be hereditary O-orders in central simple
K-algebras A1 and A2. The following conditions are equivalent:

(i) A1 and A2 are Morita equivalent.

(ii) A1 and A2 are equivalent and A1 and A2 have the same index.

Proof. We will show only that (ii) implies (i). The proof of the converse
is easier and will be left to the reader. Suppose that A1 and A2 have the
same period. Let D be a central division algebra over K equivalent to A1

and A2 and D be the maximal O-order in D. For ν = 1, 2 we fix increasing

sequences of Aν-D- and D-Aν-bimodules {I
(ν)
i | i ∈ Z} and {I

(ν)
i | i ∈ Z} as

in 2.2. Put I(ν) =
⋃
i∈Z I

(ν)
i and J (ν) =

⋃
i∈Z J

(ν)
i . The assumption implies

that X : =
∑
i+j=−t+1 I

(1)
i ⊗D J

(2)
j is an A1-A2-lattice (the summation takes

place in I(1) ⊗D J
(2)) and Y : =

∑
i+j=−t+1 I

(2)
i ⊗D J

(1)
j a A2-A1-lattice. By

Corollary 2.8 above the assignment M 7→ M⊗A1
cX defines an equivalence

between the category of right A1-lattices and the category of right A2-lattices.
A quasi-inverse is given by N 7→ N ⊗A2

Y. This implies that A1 and A2

are Morita equivalent. In fact using Lemma 2.7 it is easy to see that the
X ⊗A2

Y ∼= A1 and Y ⊗A1
X ∼= A2. �

Recall that a right A-lattice M is called stably free if there exists integers
r ≥ 1, s ≥ 0 such that Mr ∼= As.

Lemma 2.10. Let A is a principal O-order of index e in a central simple K-
algebra of dimension n2. Let M1, . . . ,Mt be representatives of isomorphism
classes of indecomposable right A-lattices. For a right A-lattice M 6= 0 the
following conditions are equivalent.

(i) M is stably free.

(ii) M ∼= (M1 ⊕ . . .⊕Mt)
r for some positive integer r.

(iii) D : = EndA(M) is a principal O-order of index e in a central simple
K-algebra D.

Moreover in this case A and D are Morita equivalent and M is an invertible
D-A-bimodule. If rankO M = rne then dimK(D) = (er)2.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 2.2.

(ii) ⇔ (iii) By Lemma 2.4 we may pass to a finite unramified extension K ′/K.
Therefore we can assume that A = EndK(V ) for an n-dimensional K-vector
space V and A = End(L⋆) for a lattice chain L⋆ with period e in V . There
exists r1, . . . , re ≥ 0 with

M ∼= Lr11 ⊕ . . .⊕ Lr1e
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Since HomA(Li,Lj) ∼= pµ with i− j ≤ µe < i− j + e we have

EndA(M) ∼=




Mr1,r1(O) Mr1,r2(O) . . . Mr1,re(O)
Mr2,r1(p) Mr2,r2(O) . . . Mr2,re(O)

...
...

. . .
...

Mre,r1(p) Mre,r2(p) . . . Mre,re(O)




By ([Re], 39.14) the order on the right is a hereditary order in Mm(K) where
m =

∑e
i=1 ri. Its index is = e if and only if ri ≥ 1 for all i ∈ {1, . . . , e} and in

this case the invariants are (r1, . . . , re). The equivalence of (ii) and (iii) follows.
The proof of the last assertion will be left to the reader. �

Corollary 2.11. Let A be as in 2.10 and let M be a stably free A-module.
We have:

(a) rankO M is a multiple of en.

(b) M is free if and only if rankO M is a multiple of n2. In particular if e = n
then M is free.

Proof. If A ∼= Mm(D) where D is the central division algebra equivalent to A
then rankO Mi = md2 with d2 = dimK(D). Hence if M ∼= (M1 ⊕ . . .⊕Mt)

r

for r ∈ N then rankO M = rtmd2 = ren. The second assertion is obvious.
�

Corollary 2.12. Let A and B be a principal orders in central simple K-
algebras A and B and assume that dimK(A) = dimK(B) = n2 and e(A) =
e(B) = e. Let I be an A-B-bimodule. The following conditions are equivalent:

(i) I is an invertible A-B-bimodule.

(ii) I is a free left A-module of rank 1.

(iii) I is a free right B-module of rank 1.

Proof. (i) ⇒ (iii) We show first that I is a lattice. Let J be an inverse of I
and B−torJ its B-torsion (A-)submodule. Since B−torJ ⊗A I →֒ J ⊗A I ∼= B
we have B−torJ ⊗A I = 0 and therefore B−torJ = B−torJ ⊗A I ⊗B J = 0. For
m ∈ J ,m 6= 0 we get Bm ∼= B as left B-module and therefore

I ∼= I ⊗B Bm →֒ I ⊗B J ∼= A.

Hence I is a lattice. Let D : = EndB(I) ⊇ A. Thus I is a D-B-bimodule and
so I ⊗B J ∼= A is a D-A-bimodule. But EndA(AA) = A and therefore D = A.
By 2.10 and 2.11, I is a free B-module of rank 1.

(iii) ⇒ (i) By 2.10, D is a principal order of index e in a central simple K-
algebra D of dimension d2 and I is an invertible D-B-bimodule. Since D ⊇ A
this implies D = A. �
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Corollary 2.13. Let A be a hereditary O-order in central simple K-algebra
A of index e. Then there exists a principal O-order D in a central simple K-
algebra which is Morita equivalent to A. In fact that D can be chosen such that
rankO(D) = e2.

Proof. Let A′ be a principal O-order of index e in A′ : = Me(A) (since e2

divides dimK(A′) and e is a multiple of the order of [A′] = [A] in Br(F ) such
an order clearly exists). By Proposition 2.9 A′ is Morita equivalent to A. The
second assertion follows immediately from 3.11. �

2.5 Maximal tori

Let A be a central simple K-algebra of dimension n2 and A a hereditary O-
order in A with radical P. In this section we consider commutative étale
O-subalgebras of A. Note that a commutative finite flat O-algebra T is étale
if and only if Rad(T ) = ̟T .

Lemma 2.14. Let T be a commutative étale O-subalgebra of A. Then we have
Rad(T ) = T ∩P.

Proof. Since T is a direct product of local O-algebras T =
∏

Ti and Rad(T ) =∏
Rad(Ti) it suffices to prove the assertion for each factor. Thus we may

assume that T is a local ring. Hence Rad(T ) is the maximal ideal of T which
implies T ∩ P ⊆ Rad(T ). On the other hand, by the assumption, we have
Rad(T ) = ̟T hence Rad(T ) ⊆ T ∩P. �

A commutative étale O-subalgebra T of A is called maximal torus if rankO T =
n. It follows immediately from the structure theory for hereditary O-orders in
central simple K-algebras ([Re], 39.14) that there exists a maximal torus in A.
We have the following characterization of maximal tori:

Lemma 2.15. Let T be a commutative étale O-subalgebra of A. The following
conditions are equivalent.
(i) T is a maximal torus.
(ii) T is a maximal commutative étale O-subalgebras of A.
(iii) T = ZA(T ) = {x ∈ A | xt = tx ∀t ∈ T }.
(iv) T /Rad(T ) is a maximal commutative separable k-subalgebra of A/P.

Proof. The simple proof of the equivalence of the first three conditions will be
left to the reader.
(iii) ⇔ (iv) By 2.14 above we have Rad(T ) = T ∩ P = ̟T . Thus it follows
from Lemma 5.1 of the appendix that (iv) holds if and only if rankO T =
dimk(T /̟T ) = n. �
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Lemma 2.16. (a) If k = Fq and A is a maximal order in A then A admits a
maximal torus isomorphic to On, the ring of integers of the unramified exten-
sion of degree n of K.
(b) Let O′ be a finite étale local O-algebra and T be a maximal torus in A.
Then T ⊗O O′ is a maximal torus in A⊗O O′.
(c) For any two maximal tori T , T ′ of A there exists a finite étale local O-
algebra O′ such that T ⊗O O′ and T ′ ⊗O O′ are conjugated (by some a ∈
(A⊗O O′)∗).

Proof. (a) and (b) are obvious.
To prove (c) we may pass to a finite unramified extension of K if necessary so
that A = EndK(V ) and A = End(L⋆) where V is a finite-dimensional K-vector
space and L⋆ is a lattice chain in V . We may also assume that T ∼= On ∼=
T ′ where n = dim(V ). Let e be the period of L⋆ and let Li : = Li/Li−1.
Consider the A : = A/P-module L : =

⊕e
i=1 Li. As a T : = T /Rad(T )- and

T
′
: = T ′/Rad(T ′)-module it is free of rank 1 (by Lemma 5.3 of the appendix).

Hence there exists an isomorphism Θ : T → T
′
such that Θ(t̄)x = t̄x for all

t̄ ∈ T , x ∈ L. We choose a lifting Θ of Θ i.e. an isomorphism of O-algebras
Θ : T → T ′ which reduces to Θ modulo ̟. Then for any i ∈ Z we h ave

Θ(t)x = tx for all t ∈ T , x ∈ Li (6)

Since L0 is a free T - and T ′-module of rank 1 there exists f ∈ AutO(L0) ⊆ A∗

such that f(tx) = Θ(t)f(x) for all t ∈ T , x ∈ L0. Hence Θ(t) = ftf−1 for all
t ∈ T and therefore T ′ = fT f−1. We claim that f ∈ A∗, i.e. f(Li) = Li for
all i ∈ Z. For that it is enough to see that f(Li) ⊆ Li for all i = 1, 2, . . . e and
in fact for i = 1 (by induction). Note that f(L1) ⊆ f(Le) = ̟−1f(L0) = Le.
Choose i ∈ {1, 2, . . . , e} minimal with f(L1) ⊆ Li and assume that i ≥ 2. Then
f induces a nontrivial T -linear homomorphism f̄ : L1 −→ Li such that

f̄(tx) = Θ(t)f̄(x) = tf̄(x) for all t ∈ T , x ∈ Li.

On the other hand since L is a free T -module of rank 1 we have HomT (L1,Li)
= 0, a contradiction. This proves f ∈ A∗. �

We need the following two simple Lemmas in section 3.3.

Lemma 2.17. Suppose that A is principal and let T be a maximal torus in A.
Let M be a A-lattice and put T : = T /Rad(T ). The following conditions are
equivalent.
(i) M is stably free.
(ii) M/PM is a free T -module.

The proof will be left to the reader.

Lemma 2.18. Assume that A is principal and let T be a maximal torus in
A. Let 0 → M′ → M → N → 0 be a short exact sequence of A-modules and
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assume that M is a stably free A-lattice and ̟N = 0. The following conditions
are equivalent.
(i) M′ is stably free.
(ii) N is a free T -module.

Proof. By using the exact sequence

0 −→ Ker(N ⊗A P → N ) → M′/PM′ −→ M/PM −→ N/PN −→ 0

we see that

[M′/PM′] = [M/PM] + [Ker(N ⊗A P → N )]− [N/PN ]

= [M/PM] + [N ⊗A P]− [N ]

in the Grothendieck group K0(T ). Note that [N ] = [N ⊗A P] if and only if
N is a free T -module. Hence (ii) is equivalent to the equality [M′/PM′] =
[M/PM] in K0(T ). The assertion follows from 2.17. �

2.6 Local theory of invertible Frobenius bimodules

Let O be a henselian discrete valuation ring with quotient field K, maximal
ideal (̟) = p and residue field k = O/p. We assume that k is finite of
characteristic p. Let vK be the normalized valuation of K. We denote by inv
the canonical isomorphism Br(K) → Q/Z of class field theory. Let O′ be a
finite étale local O-algebra with quotient field K ′. By σ ∈ G(K ′/K) we denote
Frobenius isomorphism (i.e. σ(x) ≡ x♯(k) mod p). For an O′-module M we
write σM for M ⊗O′,σ O′ (or equivalently σM = M with the new O′-action
x ·m = σ(x)m).
Let A be a central simple K-algebra of dimension d2 and A a principal O-order
in A with radical P and index e = e(A) (note that we have e inv(A) = 0). Let
M be a free right AO′-module of rank 1 together with an isomorphism of
AO′-modules

φ : σMPm −→ M

for some m ∈ Z. We set

B : = EndAO′ (M, φ) = {f ∈ EndAO′ (M) | φ ◦ f = σf ◦ φ}.

Lemma 2.19. The O-algebra B is a principal order of index e in the central
simple K-algebra B : = BK of dimension d2. We have

inv(B) = inv(A) +
m

e
mod Z (7)

Proof. Let φK′ : = φ ⊗O′ idK′ : σ(MK′) → MK′ . By Lemma 2.10
the O′-algebra B′ : = EndAO′ (M) is a principal O′-order of index e in
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B′ : = EndAK′ (MK′). Define a σ-linear isomorphism ψ : B′ → B′ by

ψ(f) : = φ−1
K′ ◦ f ◦ φK′ . We have

B = {b ∈ B′ | ψ(b) = b} and B′ ∼= BO′ .

Together with Lemma 2.4 this implies the first statement. The proof of the
second assertion will be left to the reader. �

Conversely suppose that we have given a second central simple K-algebra B
of dimension d2 and a principal O-order B in B of index e. We also assume
that [K ′ : K] is a multiple of the order of [B ⊗ Aopp] in Br(K). Let m be any
integer such that (7) holds.

Lemma 2.20. There exists an invertible BO′-AO′-bimodule M and an isomor-
phism of bimodules

φ : σMPm −→ M.

Proof. By Proposition 2.9 the principal orders BO′ and AO′ are Morita equiv-
alent. Let M be an invertible BO′ -AO′-bimodule. Then σM is invertible as
well. Hence there exists an isomorphism φ′ : σMPm′

→ M for some m′ ∈ Z.
By 2.19 we have

inv(B) = inv(A) +
m′

e
mod Z

and therefore m ≡ m′ mod e. Put φ : = ̟
m′

−m
e φ′. �

For the rest of this section we assume that O is an Fq-algebra (q = pr for
some r ∈ Z) and let k′ be an (possibly infinite) algebraic extension of k whose
degree (over k) is a multiple of e. Let O′ : = O⊗Fq

k′ and σ : = idO ⊗Frobq ∈
G(O′/O). For ρ ∈ HomFq

(k, k′) ∼= Homk′(k ⊗Fq
k′, k′) we denote the kernel of

O′ → k ⊗Fq
k′ → k′ by p′ρ and we set O′

ρ : = O′
p′
ρ
. Then O′

ρ is a (pro-)finite

(pro-)étale local O-algebra whose degree is a multiple of e and O′ ∼=
⊕

ρ O′
ρ.

Similarly

AO′ =
⊕

ρ

A′
ρ with A′

ρ = AO′
ρ

and PO′ = Rad(AO′) is equal to the product
∏
ρ P′

ρ where P′
ρ denotes the

maximal invertible two-sided ideal Ker(AO′ → A′
ρ/Rad(A

′
ρ)) of AO′ . For the

distinguished element ι : = incl : k →֒ k′ in HomFq
(k, k′) we put p′ = p′ρ and

P′ : = P′
ι. Let M be a free right AO′ -module of rank 1. For m ∈ Z the AO′-

module σ(M(P′)m) is also free of rank 1. Hence there exists an isomorphism

φ : σ(M(P′)m) −→ M.

If we set

B : = EndAO′ (M, φ) = {f ∈ EndAO′ (M) | φ ◦ f = ◦ φ}.

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



612 Michael Spieß

then one can deduce easily from Lemma 2.19 that B is a principal O-order of
index e in the central simple K-algebra B = BK and that equation (7) holds.
Conversely given such a principal O-order B of index e and m ∈ Z such that
(7) holds there exists a pair (M, φ) as above with B = EndAO′ (M, φ). To see
this let M be any invertible BO′-AO′ -bimodule. Since σM is invertible as well
we have

σ(M
∏

ρ

(P′
ρ)
mρ) ∼= M (8)

for certain mρ ∈ Z. Since σ(P′
ρ)

∼= P′
Frobq ◦ρ we may assume – after replacing

M by MA for a suitable invertible two-sided AO′-ideal A – that mρ = 0 for
all ρ ∈ HomFq

(k, k′) except ρ = ι. As in the proof of Lemma 2.20 we deduce

inv(B) = inv(A) +
mι

e
mod Z

hence mι
∼= m mod e and therefore (P′)mι ∼= (P′)m. Hence there also exists

an isomorphism σ(M(P′)m) ∼= M.

Definition 2.21. A pair (M, φ) consisting of an invertible BO′-AO′-bimodule
M and an isomorphism φ : σ(M(P′)m) → M is called an invertible φ-A-B-
bimodule of slope −m

e over O′.

We have seen that an invertible BO′ -AO′-bimodule of a given slope r ∈ Q exists
and only if r = inv(A) − inv(B) mod Z. It is also easy to see that any two
invertible BO′-AO′ -bimodules of the same slope differ (up to isomorphism) by
a fractional A-ideal. This implies that if k′′ is an algebraic extension of k′ and
O′′ = O ⊗Fq

k′′ then any φ-A-B-bimodule over O′′ is obtained by base change
from an φ-A-B-bimodule over O′.

Remark 2.22. Assume that [k′ : k] = e and let n = [k′ : Fq]. Let (M, φ)
be an invertible BO′-AO′-bimodule of slope −m

e . For r ∈ Z/nZ we put P′
r =

σr

P′. We have
∏
r∈Z/nZ P′

r = Pe
O′ = pAO′ . For each two-sided invertible

ideal A′ of AO′ and r ∈ Z/nZ, the map φ induces isomorphisms (σ
r

M)A′ →

(σ
r−1

M)A′P′
r
m

which will be also denoted by φ. Consider the map

φn : M = (σ
n

M)
φ

−→ (σ
n−1

M)P′
n
m φ

−→ . . . −→ M
∏

r∈Z/nZ

P′m
r = Mpm (9)

Since (9) is BO′ -AO′-bilinear and commutes with φ there exists an element
x ∈ K with vK(x) = m such that (9) is given by multiplication with x. This
fact will be used later when we discuss level structure at the pole of A-elliptic
sheaves.

3 Global theory of hereditary orders

In this section we study hereditary orders in a central simple algebras over a
function field of one variable (though most results hold also for number fields).

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 613

We shall show that two hereditary orders are Morita equivalent if their generic
fibers are equivalent and all their local indices are the same. Furthermore any
such hereditary order is Morita equivalent to a locally principal one. We will
then study the Picard group of a locally principal order A and introduce the
notion of A-degree of a locally free A-module of finite rank. In the final part
we will introduce the notion of a special A-module.
In this chapter k denotes a fixed perfect field of cohomological dimension ≤ 1
and X a smooth projective geometrically connected curve over k with function
field F . For x ∈ |X| we denote by Ox the completion of OX,x and by Fx the
quotient field of Ox. The maximal ideal of Ox will be denoted by px. If V is a
coherentOX -module then we set Vx = V⊗OX

Ox and if V is a finite-dimensional
F -vector space we put Vx = V ⊗F Fx.

3.1 Morita equivalence.

Let V be a finite-dimensional F -vector space. The set of locally free coherent
OX -modules V with generic fiber Vη = V is in one-to-one correspondence with
the set of Ox-lattices Vx in Vx for all x ∈ |X| such that there exists an F -basis
B of V with Vx =

∑
b∈B Oxb for almost all x. Consequently if U⊆X is an

open subscheme then there is a one-to-one correspondence between coherent
and locally free OX -modules V and coherent and locally free OU -module VU
and together with an Ox-lattice Vx in VU ⊗ Fx for all x ∈ X − U .
Let A be a central simple F -algebra and A a hereditary OX -order in A. We put
ex(A) : = e(Ax). There are only finitely many points x ∈ |X| with ex(A) > 1.
Define the divisor Disc(A) as Disc(A) : =

∑
x∈|X| (ex(A) − 1)x. If k is finite

and x ∈ |X| then invx(A) denotes the image of the class of Ax under the
canonical isomorphism of class field theory Br(Fv) → Q/Z.

Proposition 3.1. Let A1, A2 be central simple algebras over F and let A1 and
A2 be hereditary OX-orders in A1 and A2 respectively. The following conditions
are equivalent.
(i) A1 and A2 are equivalent.
(ii) A1 and A2 are equivalent and (A1)x and (A2)x are equivalent for all x ∈
|X|.
(iii) A1 and A2 are equivalent and Disc(A1) = Disc(A2).
Moreover if k is a finite field then the above conditions are also equivalent to:
(iv) invx(A1) = invx(A2) for all x ∈ |X| and Disc(A1) = Disc(A2).

Proof. (i) ⇒ (ii) is clear. (ii) ⇔ (iii) follows from Proposition 2.9 and (iii)
⇔ (iv) from the Theorem of Brauer–Hasse–Noether. It remains to show that
(ii) implies (i). Let U be an affine open subscheme of X contained in the
complement of Disc(A1) = Disc(A2) in X. By ([Re], 21.7) A1|U and A2|U are
Morita equivalent. Let IU be an invertible A1|U -A2|U -bimodule and let Ix be
an invertible (A1)x-(A2)x-bimodule for each x ∈ X − U . Since there is only
one invertible (A1)x-(A2)x-bimodule up to isomorphism we may assume that
Ix⊗Fx = IU ⊗Fx i.e. that Ix is a lattice in IU ⊗Fx. It is easy to see that the
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locally free OX -module I corresponding to IU and the Ix, x ∈ X − U is then
an invertible A1-A2-bimodule. �

A locally principal OX-order A is a hereditary OX -order in a central simple
F -algebra A such that Ax is principal for all x ∈ |X|. The rank of A is its rank
as an OX -module, hence = dimF (A). If A is a hereditary OX -order in A then
it is locally principal if for example Ax is either maximal or ex(A) = d for all
x ∈ |Disc(A)|.
Suppose that A is a locally principal OX -order of rank d2. We define two
positive integers e(A), δ(A) by

e(A) : = lcm{ex(A) | x ∈ |X|} (10)

δ(A) : = lcm{numerator of ex(A)
deg(x) | x ∈ |X|}

According to Lemma 2.2 we have δ(A) | e(A) | d. If A is locally principal then
one can easily see that

deg(A) = −
d2

2

∑

x∈|X|

(1−
1

ex(A)
) deg(x).

In particular if B is a second locally principal OX -order of rank d2 with
Disc(A) = Disc(B) then

deg(A) = deg(B). (11)

Corollary 3.2. Let A be a hereditary OX-order in a central simple F -algebra
A. Then there exists a locally principal OX-order D which is Morita equivalent
to A. In fact D can be chosen such that rankOX

(D) = e(A)2.

Proof. That A is equivalent to a locally principal OX -order follows easily from
the corresponding local statement 2.13. In fact if B : = Me(A) then for all
x ∈ |Disc(A)| we can pick a principal Ox-order Bx in Bx equivalent to Ax. If
U : = X − |Disc(A)| and BU is a maximal OU -order in B then there exists a
uniquely determined hereditary OX -order B in B with B ⊗OX

Ox = Bx for all
x ∈ |Disc(A)| and B|U = BU . The order B is locally principal and equivalent
to A by 3.1.
Thus to prove the second statement we may assume that A is locally prin-
cipal. Let I be a locally stably free A-module which is of rank de as an
OX -module. By Lemma 2.10 and 3.1 above it follows that D : = EndA(I) is
a locally principal OX -order in EndA(Iη). Moreover D is equivalent to A and
rankOX

(D) = e(A)2. �

3.2 Locally free A-modules

The Picard group of a locally principal order. In this section A
denotes a locally principal OX -order of rank d2. We are going to compute the
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Picard group of A. We define

Div(A) : = {
∑

x∈|X|

nxx ∈ Div(X)⊗Q | ex(A)nx ∈ Z ∀x ∈ |X|}.

Note that deg(Div(A)) = 1
δ(A)Z. For a divisor D =

∑
x∈|X| nxx ∈ Div(A)) we

denote by A(D) the invertible A-A-bimodule given by A(D)|X−|D| = A|X−|D|

and A(D)x = P
−nxex(A)
Ax

for all x ∈ |X|. If D ∈ Div(X) then A(D) = A⊗OX

OX(D).

Proposition 3.3. The sequence

0 −→ F ∗/k∗
div
−→ Div(A)

D 7→A(D)
−→ Pic(A) −→ 0

is exact.

Proof. This follows from ([Re], 40.9). �

We also need to consider the group of isomorphism classes of invertible A-A-
bimodules with level structure and give a description of it as an idele class
group. Let I =

∑
x nxx be an effective divisor on X. The corresponding

finite closed subscheme of X will be also denoted by I. A level-I-structure on
an invertible A-A-bimodule L is an isomorphism β : AI → LI of right AI -
modules. We denote by PicI(A) the set of isomorphism classes of invertible
A-A-bimodules with level-I-structure. If (L1, β1), (L2, β2) are invertible A-
A-bimodules with level-I-structures we define the level-I-structure β1β2 on
L1 ⊗A L2 as the composite

β1β2 : AI
β2

−−−−→ (L2)I = AI ⊗AI
(L2)I

β1⊗id
−−−−→ (L1 ⊗A L2)I (12)

thus defining a group structure on PicI(A). Note that unlike Pic(A), PicI(A)
is in general not abelian. In fact we have a short exact sequence

0 −→ Γ(I,AI)
∗/k∗ −→ PicI(A) −→ Pic(A) −→ 0 (13)

where the first map is given by a ∈ Γ(I,AI)
∗ 7→ (A, la : AI

a·
−→ AI) .

Let UI(A) : = Ker(
∏
x∈|X| A

∗
x →

∏
x∈|X| (Ax/p

nx
x Ax)

∗ = Γ(I,AI)
∗) and let

CI(A) : = (
∏′
x∈|X| N(Ax))/UI(A)F ∗

where
∏′
x∈|X| N(Ax)) denotes the restricted direct product of the groups

{N(Ax))}x∈|X| with respect to {A∗
x}x∈|X|. Given a = {ax}x ∈

∏′
x∈|X| N(Ax)

we put div(a) =
∑
x∈|X| vAx

(ax)x. Left multiplication by a induces a level-I-

structure βa : AI → A(div(a))I .

Corollary 3.4. The assignement a 7→ (A(div(a)), βa) induces an isomor-
phism CI(A) ∼= PicI(A).
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Relative divisors and invertible bimodules. Let S be a k-scheme and
let π : X × S → S be the projection. We need to define the bimodule A(D)
also for elements of a certain group of relative divisors Div(A ⊠OS). For the
latter we use the following ad hoc definition. Assume first that S is of finite
type over k. Let S be the collection of all connected components of x×S where
x runs through all closed points of X. Thus if S′ ∈ S there exists a unique
closed point x : = π(S′) with S′ ⊆ x× S. We set

Div(A⊠OS) : =
⊕

S′∈S

1

eπ(S′)(A)
Z.

Let R be the integral closure of k in Γ(S,OS). Note that for x ∈ |X| the set
of open and closed subschemes of x× S corresponds to the set of idempotents
in k(x) ⊗k Γ(S,OS). If f : S1 → S2 is a morphism of k-schemes there is an
obvious notion of a pull-back f∗ : Div(A ⊠ OS2

) → Div(A ⊠ OS1
). For an

arbitrary k-scheme we define Div(A⊠OS) as the direct limit of Div(A⊠OS′)
over the category of pairs (S′, g) consisting of a k-scheme S′ of finite type and
a morphism g : S → S′ in Sch /k.
Let S ∈ Sch /k. A k-morphism xS : S → X which factors as S → Spec k(x) →
X for some x ∈ |X| yields an element – denoted by xS as well – of the group
Div(A⊠OS). For that we can assume that S is of finite type. Since the graph
ΓxS

= (xS , idS) : S −→ X × S is an open and closed subscheme of x× S it is
a disjoint union of connected components and we define xS ∈ Div(A⊠OS) to
be the sum of these components.
There exists a unique homomorphism

Div(A⊠OS) → Pic(A⊠OS), D 7→ (A⊠OS)(D) (14)

compatible with pull-backs which agrees with the previously defined map in
case S = Spec k′ for a finite extension k′/k. It suffices to define (14) for

1
ex(A)D, where D is a connected component of x × S for some x ∈ |X|. It is

also enough to consider the case where S is connected and of finite type over
k. Let R be the integral closure of k in Γ(S,OS). Then SpecR is connected
and finite over Spec k, i.e. R is an artinian finite local k-algebra. Let k′ denotes
the residue field of R. Since k is perfect the canonical projection R → k′ has
a unique section. Therefore the structural morphism S → Spec k factors as
S → Spec k′ → Spec k. Thus by replacing k, X and A by k′ and Xk′ and
A⊠ k′ respectively we can assume that the residue field of R is k. However, in
this case, x× S is connected for all x ∈ |X|, hence D = x× S with x = π(D).
S o we are forced to define (A⊠OS)(

1
ex(A)D) : = π∗(A( 1

ex(A)x)).

A-rank and A-degree. Let f : S → X be a morphism. For E in f∗(A) Mod
and F in Modf∗(A) we put E ⊗A F : = E ⊗f∗(A) F . If D =

∑
x∈|X| nxx ∈

Div(A) we set E(D) : = E ⊗A f
∗(A(D)) and F(D) : = f∗(A(D)⊠OS)⊗A F .

Let S be a k-scheme. We denote by AVect(S) (resp. VectA(S)) the category co-
herent and locally free left (resp. right) A⊠OS-modules. For F in AVect(S) or
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VectA(S) let rankA F be the locally constant function s 7→ rankA⊠k(s)(F|X×s)

on S (hence rankA F can be viewed as an element of Zπ0(S)). For a posi-
tive integer r we denote by AVect

r(S) (resp. VectrA(S)) the subcategory of
F ∈ AVect(S) (resp. F ∈ VectA(S)) with rankA F = r.
Let F be a locally free A⊠OS-module of rank r. Define detA F as the image of
the isomorphism class of F (viewed as an element of H1(X ×S,GLr(A⊠OS))
under the map

H1
zar(X × S,GLr(A⊠OS) −→ H1

zar(X × S,O∗) = Pic(X × S)

induced by the reduced norm Nrd :Mr(A) → F . We obtain a locally constant
function

degA(F) : S →
1

d
Z, s 7→ deg((detA F)|X×s)

It is easy to see that

degA(F) =
1

d2
(deg(F)− rankA(F) deg(A)).

In particular since deg(A(D)) = deg(A) + d2 deg(D) we have

degA(A(D)) = deg(D)

for D ∈ Div(A).

Lemma 3.5. (a) Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
coherent and locally free A⊠OS-modules. Then

degA(F2) = degA(F1) + degA(F3).

(b) Let E be an object of VectrA(S) and F be an object of AVect
s(S). Then

1

d2
(deg(E ⊗A F)− rs deg(A)) = r degA(F) + s degA(E).

(c) Let B be a second locally principal OX-order of rank d2 equivalent to A.
Let E be an object of VectrA(S) and let I be an invertible A-B-bimodule. Then

degB(E ⊗A I) = degA(E) + r degA(I).

(d) Let E be an object of AVect
r(S) and D ∈ Div(A). Then

degA(E(D)) = degA(E) + r deg(D)

Proof. (a) is obvious, (c) follows from (b) and (11) and (d) is a special case of
(c). Note that by 2.12 the bimodule L in (c) is a locally-free left A- and right
B-module of rank 1.
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For (b) it is enough to consider the case when S is a connected k-scheme of
finite type and therefore – by chosing a fixed closed point s ∈ S and taking the
base change Spec k(s) → Spec k – to consider the case S = Spec k. If

E

E ′′

88qqqqq

&&▼▼
▼▼

▼

E ′

(15)

is a diagram of locally free A ⊠ OS-modules of the same rank r and injective
A⊠OS-linear homomorphisms then it is easy to see that (b) holds for E if and
only if it holds for E ′. Since E|U ∼= Ar|U for some non-empty open subscheme
U⊆X there exists a diagram (15) with E ′ = Ar. The assertion follows. �

It follows from 3.3 or 3.5 (b) that degA : Pic(A) → Q is a homomorphism.
We denote its kernel by Pic0(A). Also if I ∈ Div(X) we let PicI,0(A) be the
subgroup of (L, β) ∈ PicI(A) with degA(L) = 0. The image degA(Pic(A)) is
equal to 1

δ(A)Z.

Remark 3.6. Let A,B be locally principal OX -order of rank d2 and suppose
that A and B are equivalent. The set of isomorphism classes of invertible
A-B-bimodule has a simple transitive left Pic(A)-action. Hence for any two
invertible A-B-bimodule I,J the degrees degA(J ) and degA(I) differ by a
multiple of 1

δ(A) . Call A and B strongly Morita equivalent if there exists an

invertible A-B-bimodule I with degA(I) = 0. It is easy to see that a given
equivalence class of locally principal OX -orders of rank d2 decomposes into e

δ
strong equivalence classes (where e and δ are defined in (10)).

3.3 Special A-modules

Let A be a locally principal OX -order of rank d2. If g : U → X is an étale
morphism then a maximal torus in AU : = g∗(A) is a maximal commutative
étale OU -subalgebra of AU .

Definition 3.7. A right A ⊠ OS-module K is called special of rank r if the
following holds:

(i) K is coherent as an OX×S-module and the map Supp(K) →֒ X×S → S is
an isomorphism. Hence Supp(K) is the image of the graph of a morphism
N = N(K) : S → X and K is the direct image of a N∗(A)-module – also
denoted by K – by the graph ΓN = (N, idS) : S → X × S.

(ii) Consider K as a sheaf on S as in (i). For any étale morphism g : U → X
and maximal torus T of AU , (gS)

∗(K) is a locally free (NU )
∗(T )-module

of rank r. Here gS (resp. NU ) denote the base change of g (resp. N) with
respect to N (resp. g).
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We denote by CohrA,sp the stack over k such that for each S ∈ Sch /k,
CohrA,sp(S) is the groupoid of special A ⊠ OS-modules of rank r. The mor-
phism K 7→ N(K) will be denoted by N : CohrA,sp → X.

Remarks 3.8. (a) By Lemma 2.16 it suffices to check condition (ii) for a fixed
étale covering {Ui → U} and maximal tori Ti of AUi

.
(b) Let K be as in 3.7 satisfying (i) and assume that N(K) : S → X factors
through X−|Disc(A)|. Then K is special of rank r if and only if K is a locally
free of rank rd as an OS-module.
(c) Let A′ be another locally principal OX -order of rank d2 equivalent to A and
let I be an invertible A-A′-bimodule. Tensoring with I maps CohrA,sp isomor-
phically to CohrA′,sp. This follows easily from the fact that, locally on X, A and
A′ are isomorphic. More generally if A are equivalent on some open subscheme
U ⊆ X and I is a A-A′-bimodule which is invertible on U then tensoring with
I yields an isomorphism · ⊗A I : CohrA,sp ×XU → CohrA′,sp ×XU .

Except in the appendix, we need to consider only the case r = 1. In the fol-
lowing we investigate the geometric properties of CohA,sp : = CohrA,sp. Recall
that a morphism f : Y → X is said to be semistable if its generic fiber is
smooth and for any y ∈ Y there exists an étale neighbourhood Y ′ of y, an
open affine neighbourhood SpecR of x = f(y) and a smooth X-morphism

Y ′ g
−→ SpecR[T1, . . . , Tr]/(T1 · · ·Tr − ̟) for some r ≥ 1, where ̟ is a local

parameter at x. Equivalently, Y is a smooth k-scheme, the generic fiber Yη
is smooth over F and the closed fiber Yx is a reduced divisor with normal
crossings for all x ∈ |X|. Therefore if f is semistable it is flat.
We have the following simple Lemma whose proof will be left to the reader:

Lemma 3.9. Let Y1
f

−→ Y2
g

−→ X be morphism of schemes such that f is
smooth and surjective. Then g is semistable if and only if g ◦ f is semistable.

Let Y be an algebraic stack over k. We will call a morphism f : Y → X
semistable if there exists a scheme Y and a presentation P : Y → Y (i.e. P is
smooth and surjective) such that f ◦ P : Y → X is semistable. It follows from
3.9 that if this holds then any presentation P ′ : Y ′ → Y (with Y ′ a scheme) has
this property. In particular if Y is a scheme the two notions of semistability
agree.
Our aim in this section is to prove the following result.

Proposition 3.10. CohA,sp is an algebraic stack over Fq. The morphism
N : CohA,sp → X is semistable of relative dimension −1. Its restriction to the
open subset X − Disc(A) is smooth. Consequently CohA,sp is locally of finite
type and smooth over Fq.

Proof. The last assertion follows from ([Lau], 3.2.1). Since the assertion is
étale local on X we may assume that X = SpecR is affine with R a principal
ideal domain, |Disc(A)| = {p} and the generic fiber of A is ∼= Md(F ). By
3.2 we may also assume that ep(A) = d. Let ̟ be a generator of p. Then
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Γ(SpecR,A) is isomorphic to the R-subalgebra of Md(R) of matrices which
are upper triangular modulo p. Hence Γ(SpecR,A) can be identified with the
R-algebra Rd{Π} defined by the relations

Π(x1, . . . , xd) = (x2, . . . , xd, x1)Π, Πd = ̟.

Let Coh�A,sp(S) denote the groupoid of pairs (K, α) where K ∈ CohA,sp(S)
and α : On

S → N∗(K) is an isomorphism. The action of Π on K yields – by
transport of structure via α – a map On

S → On
S of the form (x1, . . . , xd) 7→

(x2a1, . . . , xdad−1, x1ad) for some (a1, . . . , ad) ∈ Γ(S,OS) such that a1 · · · ad =
N∗(̟). Thus the assignement (K, α) 7→ (N, a1, . . . , ad) defines an isomorphism

Coh�A,sp
∼= SpecR[T1, . . . , Td]/(T1 · · ·Td −̟)

Finally the forgetful morphism Coh�A,sp → CohA,sp is a presentation. In fact

it induces an isomorphism Gdm\Coh�A,sp
∼= CohA,sp. Here the Gdm action on

Coh�A,sp is defined by the natural Gdm(S)-action on the set of isomorphisms
α : On

S → N∗(K). �

We finish this section with the following criterion for an A⊠OS-module E to
be a locally free.

Lemma 3.11. Let U ⊆ X be a non-empty open subscheme such that E|U×S is
a locally free AU ⊠OS-module. The following conditions are equivalent.
(i) E is a locally free A⊠OS-module of rank r.
(ii) For x ∈ |X − U | and any pair of k-morphism g : S′ → S and xS′ : S′ →
Spec k(x) → X the quotient g∗(E)/g∗(E)(− 1

ex(A)xS′) is a special A-module of

rank r.
(iii) For x ∈ |Disc(A)| − U and any pair of k-morphism g : S′ → S and
xS′ : S′ → Spec k(x) → X the quotient g∗(E)/g∗(E)(− 1

ex(A)xS′) is a special

A-module of rank r.

Proof. That (i) implies (ii) follows from Lemma 2.17 and the equivalence of
(ii) and (iii) from 3.8 (b) above.
(ii)⇒ (i) We may assume that S is affine, hence that S and of finite type over k.
For y ∈ |X ×S| we have to show that E ⊗O(X×S),y is a free (A⊗OX

O(X×S),y-
module. It follows from ([Laf], I.2, lemme 4) that we may even replace S by
the image s of y → X × S → S. It follows from ([Laf], I.2, lemme 4). Thus it
is enough to prove (i) if S = Spec k is the algebraic closure of k. However in
this case the assertion follows from 2.11 and 2.17. �

We have the following generalization of ([Lau], Lemma 1.2.6).

Lemma 3.12. Let 0 → E ′ → E → K → 0 be a short exact sequence of right
A ⊠ OS-modules. We assume K is coherent as an OX×S-module, the map
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Supp(K) →֒ X × S → S is an isomorphism and K is as an OS-module locally
free of rank rd. We also assume that E is a locally free A⊠OS-module of rank
r. Then the following conditions are equivalent.
(i) E ′ is a locally free A⊠OS-module of rank r.
(ii) K is special of rank r.

Proof. Again by using Lafforgues Lemma ([Laf], I.2.4) (applied to A and max-
imal tori in A) it suffices to consider the case where k is algebraically closed
and S = Spec k. The assertion follows then from Lemma 2.18. �

4 The moduli space of A-elliptic sheaves

4.1 A-elliptic sheaves

In this chapter X denotes a smooth projective geometrically connected curve
over the finite field Fq of characteristic p, F the function field of X. We also
fix a closed point ∞ ∈ |X|. Let A be a locally principal OX -order of rank d2

and let A be its generic fiber. We make the following

Assumption 4.1. e∞(A) = d.

Definition 4.2. Let S be an Fq-scheme. An A-elliptic sheaf over S with pole
∞ is a triple E = (E ,∞S , t), where E is a locally free right A⊠OS-module of
rank 1, where ∞S : S → X is an Fq-morphism with ∞S(S) = {∞} and where

t : τ (E(−
1

d
∞S)) −→ E

is an injective A⊠OS-linear homomorphism such that the following condition
holds:
(*) The map Supp(Coker(t)) →֒ X × S → S is an isomorphism. Considered
as a sheaf on S, K is a locally free OS-module of rank d.
Hence Supp(Coker(t)) is the image of the graph of a Fq-morphism ι0 : S → X
called the zero (or characteristic) of E.
We denote by Eℓℓ∞A the stack over Fq such that for each S ∈ Sch /k, Eℓℓ∞A (S) is
the category whose objects are A-elliptic sheaves over S and whose morphisms
are isomorphisms between A-elliptic sheaves.

For n ∈ 1
dZ we define Eℓℓ∞A,n to be the open and closed substack of A-elliptic

sheaves E = (E ,∞S , t) with fixed degree degA(E) = n. The functor which
maps an A-elliptic sheaf over E = (E ,∞S , t) over S to its zero ι0 : S → X
defines a morphism char : Eℓℓ∞A → X (called the characteristic morphism).
Similarly E = (E ,∞S , t) 7→ ∞S defines a morphism pole : Eℓℓ∞A → Spec k(∞).
By Lemma 3.12, Coker(t) is a special A-module of rank 1. This fact allows
us to compare the above condition (*) with the condition spéciale in ([Hau],
section 3) (see also 5.11 (b) below). It follows that the characteristic morphism
factors as

char : Eℓℓ∞A −→ CohA,sp
N
−→ X (16)
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We will see in the proof of Theorem 4.11 below that the first arrow is smooth.

Remarks 4.3. (a) The concept of an A-elliptic sheaf is due to Laumon,
Rapoport and Stuhler ([LRS], section 2). The definition given above is dif-
ferent but, as will be explained in the appendix, equivalent to the one given
in ([LRS], section 2). In fact our Definition 4.2 is slightly more general. Their
notion corresponds to an A-elliptic sheaf where (i) A is a division algebra which
is unramified at ∞, (ii) A|X−{∞} is a maximal order in A and (iii) the zero
ι0 is disjoint from |Disc(A)|, i.e. ι0 factors through X − |Disc(A)| →֒ X (the
latter condition was weakened in [BS] and [Hau] to require only that ι0 factors
through (X − |Disc(A)|) ∪ {∞} ∪ {x ∈ |X| | invx(A) =

1
d}).

(b) Let A be the subsheaf of Md(OX) of matrices which are upper triangular

modulo∞. In this case Eℓℓ∞A is isomorphic to the stack Eℓℓ
(d)
X of elliptic sheaves

of rank d (hence above X − {∞} it is isomorphic to the stack of Drinfeld
modules of rank d; compare ([BS], section 3)). In fact by Proposition 5.10 of
the appendix we have Eℓℓ∞A

∼= PEℓℓ∞Md(OX) and the latter is isomorphic to the

stack of Eℓℓ
(d)
X by Morita equivalence.

(c) If A is a division algebra then A-elliptic sheaves are special cases of right
A-shtukas of rank 1 ([Laf], 1.1). Recall that an A-shtuka of rank 1 is a diagram

E j

&&▼▼
▼▼

▼

E ′

τE

t 88qqqqq

where E , E ′ are locally free right A⊠OS-modules of rank 1 and where j and t
are injective A ⊠OS-linear homomorphism such that the cokernels of j and t
and of the dual morphisms j∨ and t∨ satisfy condition (*) above (actually, it
follows from Lemma 3.12 (compare also the proof of 4.14 (b) below) that it is
enough to require that the cokernels of j and t satisfies (*)). Hence we have
Coker(j),Coker(t) ∈ CohA,sp(S). In fact if E = (E ,∞S , t) ∈ Eℓℓ∞A (S) is an
A-elliptic sheaf with zero ι0 : S → X then the diagram

E(− 1
d∞S) j

))❙❙❙
❙❙

❙

E

τ (E(− 1
d∞S))

t
55❦❦❦❦❦❦

(17)

is an A-shtuka with pole ∞S and zero ι0. Therefore we have a 2-cartesian
square

Eℓℓ∞A −−−−→ Sht1Aypole

y

Spec k(∞) −−−−→ CohA,sp

(18)

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 623

Here the second vertical arrow is given by mapping an A-shtuka (E , E ′, j, t)
to Coker(j). The lower horizontal arrow is defined by A/A(− 1

d∞Spec k(∞)) ∈
CohA,sp(Spec k(∞)). It is easy to see that it is representable and a closed
immersion. Hence the morphism Eℓℓ∞A → Sht1A given by (17) is a closed im-
mersion.

(d) One could consider A-elliptic sheaves more generally for a hereditary OX -
order A. However since any hereditary OX -order is Morita equivalent to a
locally principal OX -order we do not obtain new moduli spaces in this way.

(e) If we consider Eℓℓ∞A as a k(∞)- rather than a Fq-stack we can (and will)
drop ∞S from the definition. More precisely for S ∈ Sch /k(∞) the objects of
Eℓℓ∞A (S) are just pairs E = (E , t) such that (E ,∞S , t) is an A-elliptic sheaf as
in 4.2 where ∞S is composite S → Spec k(∞) →֒ X.

(f) Define an automorphism of stacks θ : Eℓℓ∞A → Eℓℓ∞A by

θ(E ,∞S , t) = (E(
1

d
τ∞S),

τ∞S , t(
1

d
τ∞S)) (19)

where τ∞S = ∞S ◦ FrobS . We have θ(Eℓℓ∞A,n) = Eℓℓ∞A,n+ 1
d
for all n ∈ 1

dZ and

θdeg(∞)(E) = E ⊗A A( 1d∞) for all A-elliptic sheaves E.

(g) Let A′ be a locally principal OX -order which is Morita equivalent to A and
let L be an invertible A-A′-bimodule. Then

E = (E ,∞S , t) 7→ E ⊗A L : = (E ⊗A L,∞S , t⊗A idL)

defines an isomorphism between Eℓℓ∞A and Eℓℓ∞A′ . If m = degA(L) then it maps
the substack Eℓℓ∞A,n isomorphically onto the substack Eℓℓ∞A,m+n. In particular
E 7→ E ⊗A L defines an action of the abelian group Pic(A) on Eℓℓ∞A .

We define Pic(A)[θ] to be the group generated by its subgroup Pic(A) and the
element θ which satisfies the relations θdeg(∞) = A( 1d∞) and θL = Lθ for all
L ∈ Pic(A). Thus Pic(A)[θ] acts on Eℓℓ∞A . The group Pic(A)[θ] is an extension
of Z/deg(∞)Z ∼= G(k(∞)/Fq) by Pic(A). The map degA : Pic(A) → 1

dZ

extends to a homomorphism degA : Pic(A)[θ] → 1
dZ by defining degA(θ) =

1
d .

Definition 4.4. The group of modular automorphisms W(A,∞) is defined as
the kernel of degA : Pic(A)[θ] → 1

dZ.

W(A,∞) stabilizes the substack Eℓℓ∞A,n for all n ∈ 1
dZ. There exists a canonical

homomorphism

W(A,∞) → G(k(∞)/Fq) (20)

so that pole : Eℓℓ∞A → Spec k(∞) is W(A,∞)-equivariant. The kernel of (20)

is Pic0(A) and the image is of order δ(A) deg(∞)
d (thus (20) is surjective if and

only if degA : Pic(A) → 1
dZ is surjective).
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4.2 Level structure

We reformulate now the notion of a level structure on an A-elliptic sheaf given
in ([LRS], 2.7 and 8.4) in our framework. Let I =

∑
x nxx be an effective

divisor on X. We recall first from ([LRS], 2.7; see also [Dr3]) the notion of a
level-I-structure when ∞ does not divide I, i.e. n∞ = 0.

Definition 4.5. Suppose that ∞ 6∈ |I|. Let E = (E ,∞S , t) be an A-elliptic
sheaf over an Fq-scheme S with zero ι0 : S → X disjoint from I i.e. ι0(S)∩I =
∅. A level-I-structure on E is an AI ⊠OS-linear isomorphism

α : AI ⊠OS −→ E|I×S ⊗A A(
1

d
∞)

compatible with t, i.e. the diagram

τE|I×S
t|I×S //E|I×S

AI ⊠OS

τα

__

α

@@

commutes.

We denote by Eℓℓ∞A,I the stack of A-elliptic sheaves with level I-structure and

for n ∈ 1
dZ by Eℓℓ∞A,I,n the open and closed substack of A-elliptic sheaves

with level I-structure with fixed degree degA = n. Again we obtain morphisms
char : Eℓℓ∞A,I → X−I and pole : Eℓℓ∞A,I → Spec k(∞). The automorphism (19)
of Remark 4.3 (f) extends canonically to an automorphism θ : Eℓℓ∞A,I → Eℓℓ∞A,I .
The right action of Pic(A) on Eℓℓ∞A lifts to a right action of PicI(A) on Eℓℓ∞A,I
as follows. If (L, β) is an invertible A-A-bimodule with level-I-structure and
(E,α) an A-elliptic sheaf with level-I-structure (E,α) over S then we define
(E,α)⊗ (L, β) : = (E ⊗ L, α • β) with

α•β : AI⊠OS
β⊠id
−→ LI⊠OS = (AI⊠OS)⊗AL⊠OS

α⊠id
−→ (E ⊗AL)|I×S . (21)

As before we have θdeg(∞)(E,α) = (E,α)⊗ (A( 1d∞), id).
Suppose now that |I| = {∞}, i.e. I = n∞ with n > 0. Let k(∞)d be a fixed
extension of degree d of k(∞). According to section 2.6 there exists a pair
(M∞, φ∞) consisting of a free right A∞⊗Fq

k(∞)d-module M∞ of rank 1 and
an isomorphism

φ∞ : σ(M∞P) −→ M∞

where P denotes the maximal invertible two-sided ideal of A∞ ⊗Fq
k(∞)d cor-

responding to the inclusion k(∞) →֒ k(∞)d. Let MI denote the sheaf of
AI ⊗Fq

k(∞)d-modules associated to the M∞/M∞pn∞. The map φ∞ induces
an isomorphism

φI :
τ (MI(−

1

d
∞d)) −→ MI

where ∞d denotes the morphism ∞k(∞)d : Spec k(∞)d → Spec k(∞) →֒ X.
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Definition 4.6. Let E = (E ,∞S , t) be an A-elliptic sheaf over an Fq-scheme
S with zero ι0 : S → X disjoint from I.
(a) Suppose that I = n∞ with n > 0. Let E = (E ,∞S , t) be an A-elliptic
sheaf over an Fq-scheme S with zero ι0 : S → X disjoint from I. A level-
I-structure on E consist of a pair (λ, α) where λ : S → Spec k(∞)d is an
Fq-morphism of schemes which lifts the pole ∞S and where α is an AI∞ ⊠OS-
linear isomorphism

α : (idI ×λ)
∗(MI) −→ E|I×S

such that the diagram

(τ (E(− 1
d∞S))|I×S

t|I×S // E|I×S

(idI ×λ)
∗(τ (MI(−

1
d∞d)))

(idI ×λ)∗(φI) //

τ (α(− 1
d∞S))

OO

(idI ×λ)
∗(MI)

α

OO

commutes.
(b) Suppose that I is an arbitrary effective divisor on X with ∞ ∈ |I| and write
I = n∞ + I∞ = I∞ + I∞ with n > 0 such that ∞ does not divide I∞. A
level-I-structure on E is a triple (αf , λ, α∞) consisting of a level-I∞-structure
αf and a level-I∞-structure (λ, α∞).

Let I be an effective divisor on X with ∞ ∈ |I|. Again we define Eℓℓ∞A,I as the
stack of A-elliptic sheaves with level-I-structure (E , t, αf , λ, α∞) and denote
for n ∈ 1

dZ by Eℓℓ∞A,I,n the substack where degA(E) = n. There are canonical
morphisms

char : Eℓℓ∞A,I → X − I, pole : Eℓℓ∞A,I → Spec k(∞)d

(the latter is given by (E,αf , λ, α∞) 7→ λ; it lifts the morphism pole : Eℓℓ∞A →
Spec k(∞)).

Modular automorphisms. Next we are going to extend the definition of
the automorphisms (19) and define a natural right action of a certain idele
class group on Eℓℓ∞A,I (thus lifting the action of PicI(A) when ∞ 6∈ |I|). Define
θ : Eℓℓ∞A,I → Eℓℓ∞A,I by

θ(E ,∞S , t, αf , λ, α∞) = (E(
1

d
τ∞S),

τ∞S , t(
1

d
τ∞S), αf ,

τλ, α♯∞) (22)

where α♯∞ is the composite

(idI ×
τλ)∗(MI)

φI(
1
d
τ∞d)

−→ (idI ×λ)
∗(MI(

1

d
τ∞d))

α∞( 1
d
τ∞S)

−→ E(
1

d
τ∞S)|I×S .
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Write I = n∞ + I∞ = I∞ + I∞ with n > 0 and ∞ 6∈ |I∞|. Let D∞ be a
principal order in a central F -algebra D∞ of dimension d2 such that

e(D∞) = e(A∞) and inv(D∞) = inv(A∞) +
1

d
.

We have seen in section 2.6 that

D∞
∼= EndA∞⊗Fqk(∞)d(M∞, φ∞).

We choose an isomorphism (thus making (M∞, φ∞) into an invertible φ-D∞-
A∞-bimodule of slope − 1

d ). Let

UI(A
∞

×D∞) : = Ker(
∏

x∈|X|−{∞}

A
∗
x ×D

∗
∞ → Γ(I∞,AI∞)∗ × (D∞/pn∞D∞)∗)

and define

CI(A
∞ ×D∞) : = (

∏′
x∈|X|−{∞} N(Ax))×N(D∞)/UI(A

∞ ×D∞)F ∗

For a = (af , a∞) = ({ax}x 6=∞, a∞) ∈ (
∏′
x∈|X|−{∞} N(Ax)) × N(D∞) let

div(a) =
∑
x∈|X|−{∞} vAx

(ax)x + vD∞
(a∞)∞ ∈ Div(A). Let (E,αf , λ, α∞)

∈ Eℓℓ∞A,I . Left multiplication by af on
∏′
x∈|X|−{∞} N(Ax) induces a level-

I∞-structure αf · af on E(div(a)). Similarly left multiplication by a∞ on M∞

yields a level-I∞-structure α∞ · a∞ on E ⊗A(div(a)). One easily verifies that

(E,αf , λ, α∞) · a : = (E ⊗A(div(a)), αf · af , λ, α∞ · a∞)

yields a right (
∏′
x∈|X|−{∞} N(Ax)) × N(D∞)-action on Eℓℓ∞A,I and that it

factors through CI(A
∞ ×D∞).

The canonical projection CI(A
∞ × D∞) → CI∞(A) (given on the ∞-factor

by N(D∞)
vD∞−→ 1

dZ
∼= N(A∞)/A∗

∞) followed by the isomorphism CI∞(A) →
PicI∞(A) from 3.4 yields also a CI(A

∞×D∞)-action on Eℓℓ∞A,I∞ and one checks
that the forgetful morphism of stacks Eℓℓ∞A,I −→ Eℓℓ∞A,I∞ commutes with the
CI(A

∞ ×D∞)-actions.
By Remark 2.22, there exists a prime element ̟∞ ∈ O∞ such that the class
ξ ∈ CI(A

∞ ×D∞) of the idele ({1}x 6=∞, ̟∞) satisfies θd deg(∞)(E) = E · ξ for
all E ∈ Eℓℓ∞A,I(S).
If ∞ does not divide the level I we define the group PicI(A)[θ] similar to
Pic(A)[θ] in the last section. PicI(A)[θ] contains PicI(A) as a subgroup and
the element θ lies in the center and satisfies the relation θdeg(∞) = (A( 1d∞), id).
Let degA : PicI(A)[θ] → 1

dZ be given by (L, β) 7→ degA(L) on PicI(A) and
degA(θ) =

1
d .

Assume that ∞ divides I and write I = n∞+ I∞ = I∞+ I∞ as above. Define
CI(A∞×D∞)[θ] as the group generated by CI(A∞×D∞) and a central element
θ satisfying the relation θd deg(∞) = ξ. The homomorphism CI(A

∞ × D∞) →

CI∞(A) ∼= PicI∞(A)
degA
−→ 1

dZ extends to a homomorphism degA : CI(A
∞ ×

D∞)[θ] → 1
dZ by setting degA(θ) =

1
dZ.
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Definition 4.7. Let I be an effective divisor on X. The group of modular
automorphisms W(A, I,∞) of Eℓℓ∞A,I is defined as follows:

W(A, I,∞) : =

{
Ker(degA : PicI(A)[θ] → 1

dZ) if ∞ 6∈ |I|,
Ker(degA : CI(A

∞ ×D∞)[θ] → 1
dZ) if ∞ ∈ |I|.

Remarks 4.8. (a) If ∞ 6∈ |I| (resp. ∞ ∈ |I|) there exists a canonical ho-
momorphism W(A, I,∞) → G(k(∞)/Fq) (resp. W(A, I,∞) → G(k(∞)d/Fq))
with kernel PicI,0(A) (resp. CI(A∞ × D∞)0) such that Eℓℓ∞A,I → Spec k(∞)
(resp. Eℓℓ∞A,I → Spec k(∞)d) is W(A, I,∞)-equivariant.
(b) Let I < J be effective divisors on X there exists a canonical projection
W(A, J,∞) → W(A, I,∞) such that the forgetful morphism Eℓℓ∞A,J −→ Eℓℓ∞A,I
is W(A, J,∞)-equivariant.
(c) The map x 7→ xθ−d degA(x) induces an isomorphism

CI(A
∞ ×D∞)/ξZ∞

∼= W(A, I,∞).

This fact will be used in section 4.6.

We have (compare ([LRS], 8.10) and ([Laf], I.3.5))

Lemma 4.9. Let I < J be effective divisors on X. Over X − J the forgetful
morphism

Eℓℓ∞A,J −→ Eℓℓ∞A,I

is representable and is a finite, étale Galois covering. Its Galois group is ∼=
Ker(W(A, J,∞) → W(A, I,∞)). If ∞ 6∈ |J | − |I| it is ∼= Ker(A∗

J → A∗
I).

Corollary 4.10. Let A′ be a locally principal OX-suborder of A with the same
generic fiber A and denote by ι : Y →֒ X the reduced closed subscheme with
|Y | = {x ∈ |X| | ex(A′) > ex(A′)}. Note that ∞ 6∈ Y . Let I be an effective
divisors disjoint from Y and put J : = I + Y . Then over X − J the forgetful
morphism factors canonically as

Eℓℓ∞A,J −→ Eℓℓ∞A′,I −→ Eℓℓ∞A,I . (23)

Both maps are representable and finite and étale. Moreover the first arrow is
Galois.

Proof. Let P : = Im(A′|Y → A|Y ). Then the diagram

A′ −−−−→ ι∗(P)
y

y

A −−−−→ ι∗(AY )

is cartesian. Here we view J as a closed subscheme of X and denote by ι :
J → X the inclusion. For E = (E , t,∞S , α) in Eℓℓ∞A,J(S) we decompose α into
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a level-I-structure αI and a level-Y -structure αY . Define E ′ by the cartesian
square

E ′ //

��

ι∗(P)

��
E // ι∗(E|Y×S)

αY
−1

// ι∗(AY )

Then E ′ is a locally free A′
⊠OS-module of rank 1. The first morphism in (23)

is induced by E 7→ E ′ whereas the second by E ′ 7→ E ′ ⊗A′ A. The proof of the
remaining assertions is left to the reader. �

4.3 The coarse moduli scheme

Our aim now is to prove the following theorem.

Theorem 4.11. (a) Eℓℓ∞A,I is a Deligne-Mumford stack over Fq. It is locally
of finite type over X. The morphism char : Eℓℓ∞A,I → X − I is semistable of
relative dimension d− 1.
(b) The open and closed substack Eℓℓ∞A,I,0 of Eℓℓ∞A,I is of finite type over X ′ : =
X − (Disc(A) ∪ I). It admits a coarse moduli scheme which will be denote by
Ell∞A,I . The structural map Eℓℓ∞A,I,0|X′ → Ell∞A,I is an isomorphism if I 6= 0.
(c) The morphism char : Ell∞A,I → X ′ is quasiprojective and smooth of relative
dimension d− 1. In particular Ell∞A,I is a smooth, quasiprojective Fq-scheme.

Remark 4.12. This is known if A is a division algebra or A = Md(F ) and if
we restrict Eℓℓ∞A,I to the open subset X ′ ([LRS], Theorem 4.1 and [Dr1]). In
fact if we assume that A is a division algebra and let S denote the subset of
Disc(A) consisting of all points p ∈ Disc(A)− {∞} with invpA = 1 and of ∞
if inv∞A = 0 then Eℓℓ∞A,I,0 admits a coarse moduli scheme Ell∞A,I over X ∪ S
which is projective and semistable of relative dimension d − 1 (at the pole ∞
this is proved in [BS]; at p ∈ S−{∞} it is proved in certain cases by [Hau] and
can be deduce in general from the first case using the main result of section
4.5).

The proof of 4.11 consists essentially of two parts. In the first part one shows
that Eℓℓ∞A → X is a Deligne-Mumford stack and semistable. In the second
part one proves that for I 6= 0, Eℓℓ∞A,I,n is a quasiprojective scheme over X ′ by

showing that for a large m the map Eℓℓ∞,stab
A,mI,n → Eℓℓ∞A,I,n is surjective. Here

Eℓℓ∞,stab
A,I denotes the substack of A-elliptic sheaves whose underlying vector

bundle is I-stable. It is a consequence of a theorem of Seshadri that Eℓℓ∞,stab
A,I

is a quasiprojective scheme. For the surjectivity one can follow the arguments
in ([LRS], section 5) so we will omit the proof.
The proof of the first part is also mainly a reproduction of the corresponding
arguments in ([LRS], section 4; compare also ([Laf] Chapitre I), [La] and ([Lau],
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1.3 and 1.4)) so we will be rather brief and elaborate only on those steps were
essential modification have to be made. We follow ([Lau], 1.2) and work with
the factorization (16), i.e. we consider Eℓℓ∞A,I mostly over CohA,sp rather than
over X. Let InjA,sp be the stack over k(∞) such that for each S ∈ Sch /k(∞),
InjA,sp(S) is the groupoid of injective morphisms j : E ′ → E locally free right
A⊠OS-modules of rank 1 with Coker(j) ∈ CohA,sp(S).

Lemma 4.13. (a) The two morphism

InjA,sp −→ Vect1A,0 ×CohA,sp

given by (j : E ′ → E) 7→ (E ,Coker(j)) and (j : E ′ → E) 7→ (E ′,Coker(j)) are
representable and quasiaffine of finite type and smooth of relative dimension d.
Consequently InjA,sp is algebraic, smooth and of finite type over Fq.
(b) The two morphism

InjA,sp −→ Vectd
2

X

given by E and E ′ are representable and quasiprojective and in particular of
finite type.

The proof of (a) for the first morphism is literally the same as ([Lau], 1.3.2).
The statement for second morphism can be deduce from that for the first as
in ([Lau], 1.3.2). We need to remark only that for a short exact sequence
0 → E ′ → E → K → 0 of right A ⊗ OS-modules with E ′, E ∈ Vect1A(S) and
K ∈ CohA,sp(S) the third term of the dual sequence of Aopp⊗OS-modules 0 →
E∨ → E ′∨ → Ext1A⊗OS

(K,A⊠OS) → 0 lies, by Lemma 3.12, in CohAopp,sp(S).
(b) follows from ([Laf], I.2.2 and I.2.8). �

Consider now the following obvious diagram of stacks

Eℓℓ∞A −−−−→ Vect1A ⊗Fq
k(∞)

y
y

InjA,sp −−−−→ (Vect1A ×Vect1A)⊗Fq
k(∞)

y

CohA,sp

(24)

where the right vertical arrow in the (2-cartesian) square is the graph of the
endomorphism Frob ◦θ−1 : Vect1A ⊗Fq

k(∞) → Vect1A ⊗Fq
k(∞) (for the defini-

tion of θ−1 compare 4.3 (f); if deg(∞) = 1 it is given by E 7→ E(− 1
d∞)). By

([Laf], I.2.5) the stack Vect1A is algebraic, locally of finite type and smooth over
Fq. Together with Proposition 3.10, Lemma 4.9 and Lemma 4.13 above the
same argument as in ([LRS], section 4; see also ([Laf], I.2.5) and ([Lau], I.3.5))
imply part (a) of
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Lemma 4.14. (a) Let I be an effective divisor on X. The morphism Eℓℓ∞A,I
→ CohA,sp is algebraic, locally of finite type and smooth of relative dimension
d. The morphism char : Eℓℓ∞A,I → X is semistable of relative dimension d− 1.
(b) Eℓℓ∞A is a Deligne-Mumford stack, locally of finite type and smooth over Fq.
Moreover if I 6= 0 then Eℓℓ∞A,I |X′ is isomorphic to an algebraic space.

Proof of (b). Everything is clear if we replace “Deligne-Mumford” by “alge-
braic”. To prove that Eℓℓ∞A is indeed a Deligne-Mumford stack we use ([LM],
8.1). If we replace the lower vertical map in (24) by InjA,sp → Spec k(∞)
then, by Lemma 4.13 and ([La], Lemma on p. 60), the diagonal morphism
Eℓℓ∞A → Eℓℓ∞A ×Fq

Eℓℓ∞A is unramified. Note that for E ∈ Eℓℓ∞A,I(S) with zero
S → X ′ we have Aut(E) = Fq

∗ if I = 0 or Aut(E) = 1 otherwise. Hence the
last assertion follows from ([LM], 8.1.1). �

Remarks 4.15. (a) Note that by 4.3 (f) we could have defined Ell∞A also as the
coarse moduli scheme of the quotient Eℓℓ∞A /θ

Z or of Eℓℓ∞A,n for any n ∈ 1
dZ.

(b) Let I →֒ X be a reduced closed subscheme with ∞ 6∈ I and let A be the
subsheaf of M2(OX) of matrices which are upper triangular modulo I. Then
by using 4.10 and 4.3 (b) it is easy to see that the Ell∞A is isomorphic to the
(open) Drinfeld modular curve Y0(I) = Y∞

0 (I).
(c) If A is a central division algebra which is unramified at ∞ and A|X−{∞}

is a maximal order in A then char : Ell∞A → X is proper (see [LRS], Theorem
6.1 and [Hau], 6.4). In the general case this is not true anymore even if A is a
division algebra. In fact if d = 2 and A is ramified only at ∞ and at p ∈ |X|
and if A is a maximal OX -order in A then we will show in section 4.5 that EllpA
is a twist of the affine curve Y∞

0 (p) → X.

4.4 Invertible Frobenius bimodules

We consider now two locally principal OX -orders A and B, both of rank d2 with
Disc(A) = Disc(B) and assume that e(A) = d = e(B). We denote by A and B
the generic fibers of A and B respectively. Let D =

∑
x∈|X| mxx ∈ Div(A) be

a divisor such that
∑
x∈|X| mx = 0. We consider the following moduli problem

associated to A,B, D.

Definition 4.16. Let S be an Fq-scheme. An invertible Frobenius A-B-
bimodule (or Φ-A-B-bimodule for short) over S of slope D is a tuple L =
(L, (xS)x∈|D|,Φ) where L is an invertible A ⊠ OS-B ⊠ OS-bimodule which is
locally free of rank 1 as a left A ⊠ OS- and right B ⊠ OS-module, where for
x ∈ |D|, xS : S → X is a morphism in Sch /Fq which factors through x → X
and where Φ is a bimodule isomorphism

Φ : τ (L(DS)) −→ L.

with DS : =
∑
x∈|D| mxxS. The morphisms xS are called the poles of L.
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Note we have degA(L) = degB(L). Note also that (A ⊠ OS)(DS) ⊗A L =
L ⊗B (B ⊠OS)(DS). Thus the notion L(DS) is unambiguous.
Obviously the concept of invertible Φ-A-B-bimodules of slope D defines a
stack which we denote by SEDA,B. It is equipped with canonical morphisms

SEDA,B → Spec k(x) for all x ∈ |D|. For n ∈ 1
dZ let SEDA,B,n be the substack

of (L, (xS)x∈T ,Φ) ∈ SEDA,B(S) with degA(L) = n. There is a canonical left

Pic(A)- and right Pic(B)-action on SEDA,B compatible with degA (in fact the
left and right action are the same if we identify the two groups under the
canonical isomorphism Pic(A) ∼= Div(A) /F ∗ ∼= Pic(B)).
For x ∈ |D| we define an automorphism θx : SEDA,B → SEDA,B by

θx(L, (x
′
S)x′∈|D|,Φ) = (L(−mx

τxS),
τxS , (x

′
S)x′∈|D|,x′ 6=x,Φ(−mx

τx)). (25)

The automorphisms θx for different x ∈ |D| commute with each other and with
the Pic(A)- and Pic(B)-action. We have θx(SE

D
A,B,n) = SEDA,B,n−mx

for all

n ∈ 1
dZ and θ

deg(x)
x (L) = A(−mxx)⊗L = L⊗B(−mxx) for all L ∈ SEDA,B(S).

Moreover if |D| = {x1, . . . , xm} and if we put ΘD : = θx1
◦ . . . ◦ θxm

then
ΘD(L) = Frob∗S(L) for all S ∈ Sch /Fq and L ∈ SEDA,B(S). Hence ΘD =
FrobSED

A,B
.

Level structure. Let L = (L, (xS)x∈|D|,Φ) ∈ SEDA,B(S). We view L as a
right B-module only and proceed as in section 4.2. Let I be an effective divisor
on X. Assume first that |I| ∩ |D| = ∅. Then a level-I-structure on L is an
isomorphism of right BI ⊠ OS-modules β : BI ⊠ OS −→ L|I×S such that the
diagram

τL|I×S
Φ|I×S //L|I×S

AI ⊠OS

τβ

__

α

@@

commutes.
Next assume that I = nx with n > 0 for some x ∈ |D|. Put e = ex(A),m = mx

and let k(x)e be an extension of degree e of k(x). If m > 0 we denote by M =
(Mx, φx) a fixed invertible φ-Ax-Bx-bimodule of slope −m over Ox ⊗Fq

k(x)e.
In case m < 0, M = (Mx, φx) denotes a φ-Bx-Ax-bimodule of slope m over
Ox ⊗Fq

k(x)e. Thus if m > 0 (resp. m < 0) then φx is an isomorphism

φx : σ(MxP
me) −→ Mx (resp. φx : σ(P−meMx) −→ Mx)

where P denotes the maximal ideal of Bx ⊗Fq
k(x)e corresponding to the in-

clusion k(x) →֒ k(x)e. As in 4.2 the pair (Mx, φx) induces a pair (MI , φI)
consisting of AI ⊗Fq

k(x)e-BI ⊗Fq
k(x)e-bimodule and an isomorphism φI :

τ (MI(mxe)) −→ MI where xe is the map Spec k(x)e → x →֒ X. A level-
I-structure on L consists of a pair (µ, β) where µ : S → Spec k(x)e is an
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Fq-morphism which lifts xS and an isomorphism of right BI ⊠OS-modules β.
If m < 0, then β is a map

β : (idI ×µ)
∗(MI) −→ L|I×S (26)

such that
τ (L(D))|I×S //L|I×S

(idI ×µ)∗(τ (MI(mxe))

OO

//(idI ×µ)∗(MI)

OO

commutes. If m > 0 then

β : BI ⊠OS −→ (idI ×µ)
∗(MI)⊗A L|I×S (27)

and

τ ((idI ×µ)∗(MI)⊗A L|I×S)
φI⊗Φ|I×S //(idI ×µ)∗(MI)⊗A L|I×S

BI ⊠OS

τβ

ff

β

88

should commute.
For an arbitrary effective divisor I on X we write I = I0 +

∑
x∈|I|∩|D| nxx

= I0 +
∑
x∈|I|∩|D| Ix with |I0| ∩ |D| = ∅ and nx > 0 for x ∈ |I| ∩ |D|. Then a

level-I-structure on L is a tuple (β0, (µx, βx)x∈|I|∩|D|) consisting of a level-I0-
structure β0 and level-Ix-structures (µx, βx) for all x ∈ |I| ∩ |D|. This yields
stacks SEDA,B,I ,SE

D
A,B,I,n equipped with forgetful morphisms

SEDA,B,I → SEDA,B, SEDA,B,I → Spec k(x)ex(A) for all x ∈ |I| ∩ |D|

(the latter lifts the morphism SEDA,B → Spec k(x)).

Modular automorphisms. Let T : = {x ∈ |D| | mx > 0}. If |I| ∩ T = ∅
then there is a canonical left PicI(A)-action on SEDA,B,I lifting the Pic(A)-

action on SEDA,B. We want to extend this to a natural left action of an idele

class group CI(A
T×BT ) on SEDA,B,I for arbitrary I (similarly to the right action

of CI(A∞ × D∞)-action on Eℓℓ∞A,I∞ defined in 4.2). Write I = IT + IT with

|IT | ∩ T = ∅ and |IT | ⊆ T . Put

UI(A
T × BT ) : = Ker(

∏

x∈|X|−T

A∗
x ×

∏

x∈T

B∗
x → Γ(IT ,AIT )

∗ × Γ(IT ,BIT )
∗)

and define

CI(A
T × BT ) : =

∏′
x∈|X|−T N(Ax)×

∏
x∈T N(Bx)/UI(A

T × BT )F
∗.
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There is a canonical epimorphism CI(AT × BT ) −→ Pic(A) given on the
class [g] represented by g = ({ax}x∈|X|−T , {bx}x∈T ) ∈

∏′
x∈|X|−T N(Ax)) ×∏

x∈T N(Bx) by A(div(g)) where

div(g) =
∑

x∈|X|−T

vAx
(ax)x +

∑

x∈T

vBx
(ax)x

The kernel of the composition CI(A
T × BT ) → Pic(A)

degA
−→ Q will be denoted

by CI(A
T × BT )0.

Let g = (aT , bT ) = ({ax}x 6∈T , {bx}x∈T ) ∈
∏′
x∈|X|−T N(Ax)) ×

∏
x∈T N(Bx)

and L = (L, β0, (µx, βx)x∈|I|∩|D|) ∈ SEDA,B,I(S). Left multiplication by aT on

the target of β0 and βx for x ∈ |IT | (respectively by bT on the target of βx
for x ∈ |IT |) yields a level-I-structure on A(div(g)) ⊗ L. This defines a left
action of

∏′
x∈|X|−T N(Ax))×

∏
x∈T N(Bx) on SEDA,B,I which factors through

CI(A
T × BT ).

4.17. Similar to (22), for x ∈ |D| there exists a canonical lift of (25) to an
automorphism θx : SEDA,B,I → SEDA,B,I having the following properties:

(i) The following diagram commutes

SEDA,B,I
θx−−−−→ SEDA,B,Iy

y

Spec k(x)∗
Frobq
−−−−→ Spec k(x)∗

where ∗ = 1 or ∗ = ex(A) depending on whether x 6∈ |I| or x ∈ |I|.

(ii) For n ∈ 1
dZ we have θx(SE

D
A,B,I,n) = SEDA,B,I,n−mx

.

(iii) The automorphisms θx for different x ∈ |D| commute with each other
and with the CI(A

T × BT )-action.

(iv) For x ∈ |D| there exists ξx ∈ CI(A
T × BT ) such that θ

deg(x)
x (L) = ξxL

(resp. θ
ex(A) deg(x)
x (L) = ξxL) for all L ∈ SEDA,B,I(S).

(v) If |D| = {x1, . . . , xm} put ΘD : = θx1
◦. . .◦θxm

. Then ΘD = FrobSED
A,B,I

.

Let G be the group of automorphism of SEDA,B,I generated by CI(A
T × BT )

and the set {θx | x ∈ |D|}. For g ∈ G the degree m ∈ 1
dZ of g is defined by

gSEDA,B,I,n = SEDA,B,I,n+m for all n ∈ 1
dZ. Let G0 be the subgroup of elements

of degree 0. Since the degree of θx, x ∈ |D| is −mx we have ΘD ∈ G0.

Definition 4.18. Suppose that SEDA,B,I,0 6= ∅. We define W(A,B, I,D) to be

the group of automorphisms of SEDA,B,I,0 of the form g|SED
A,B,I,0

for g ∈ G0.
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Remark 4.19. Assume that SEDA,B,I,0 6= ∅. For all x ∈ |D| there exists canon-
ical homomorphisms W(A,B, I,D) → G(k(x)∗/Fq) where ∗ = ∅ or ∗ = ex(A)
depending on whether x 6∈ |I| or x ∈ |I|. It is surjective since ΘD is mapped
to Frobk(x)∗ by property (v) above. The kernel of the homomorphism

W(A,B, I,D) −→
∏

x∈|D|−|I|

G(k(x)/Fq)×
∏

x∈|D|∩|I|

G(k(x)ex(A))/Fq) (28)

is CI(A
T × BT )0.

It is easy to see that (28) is surjective provided that δ(A) = d (i.e. degA :
Pic(A) → 1

dZ is surjective). Under this condition W(A,B, I,D) can be defined
in a similar way as 4.7, i.e. as the subgroup of degA = 0 elements in the abstract
group CI(AT ×BT )[θx, x ∈ |D|] generated by CI(AT ×BT ) and a set of central
element {θx | x ∈ |D|} with degA(θx) = −mx and such that the relations (iv)
above hold.

Tensor product and Inverse. There is also a notion of a tensor product
of invertible Frobenius bimodules and of an inverse. These constructions are
needed in the proof of Proposition 4.20 below. Let C be a third locally principal

OX -order of rank d2 with Disc(C) = Disc(A). Let D1 =
∑
x∈|X| m

(1)
x x,D2 =

∑
x∈|X| m

(2)
x x ∈ Div(A) with

∑
x∈|X| m

(i)
x = 0 for i = 1, 2. Let Y = SpecFq

if |D1| ∩ |D2| = ∅ or Y = Spec(
⊗

x∈|D1|∩|D2|
k(x)) otherwise. We view SED1

A,B

and SED2

B,C as stacks over Y . Let S ∈ Sch /Y and let L = (L, (xS)x∈|D|,Φ) ∈

SED1

A,B(S), M = (M, (xS)x∈|D2|,Ψ) ∈ SED2

B,C(S) (hence for x ∈ |D1| ∩ |D2|, the
morphisms xS for L and M agree and are equal to the canonical morphism
S → Spec k(x) → X). Define

L⊗M = (L ⊗M, (xS)x∈|D1+D2|,Φ⊗B Ψ) ∈ SED1+D2

A,C (S).

Thus we get a morphism of stacks

⊗ : SED1

A,B ×Y SED2

B,C −→ SED1+D2

A,C (29)

which is compatible with degrees.
The inverse L−1 of L = (L, (xS)x∈|D|,Φ) ∈ SEDA,B(S) is defined as

L−1 = (L∨, (xS)x∈|D|, (Φ
∨)−1) ∈ SE−D

B,A(S). (30)

We leave it to the reader to extend the Definition (29) and (30) to invertible
Frobenius bimodules with level-I-structure (see also the next section where the
tensor product of an A-elliptic sheaf with level-I-structure with a Frobenius
bimodule with level-I-structure is defined).

Moduli spaces. Let D =
∑
x∈|X| mxx ∈ Div(A), D 6= 0 be such that∑

x∈|X| mx = 0 and let I ∈ Div(X) with I ≥ 0. Our aim is to prove the
following result.

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 635

Proposition 4.20. (a) SEDA,B,I 6= ∅ if and only if

∑

x∈|X|

invx(B)x = (
∑

x∈|X|

invx(A)x) +D mod Div(X). (31)

(b) SEDA,B,I is a Deligne-Mumford stack which is étale over Fq. The open and

closed substack SEDA,B,I,n is finite over Fq for all n ∈ 1
dZ.

(c) SEDA,B,I,0 admits a coarse moduli space SEDA,B,I . The structural morphism

SEDA,B,I,0 → SEDA,B,I is an isomorphims if I 6= 0.

(d) Suppose that SEDA,B,I,0 6= ∅. Then SEDA,B,I → SpecFq is a W(A,B, I,D)-

torsor. In particular SEDA,B,I is a finite, étale Fq-scheme.

We begin with the proof of (a). Since SEDA,B,I is locally of finite presentation it

suffices to show that SEDA,B,I(SpecFq) 6= ∅ if and only if (32) holds. We write

X, A etc. for X ⊗Fq
Fq, A ⊗ Fq etc. Let σ : = idX ⊗Frobq : X → X and

let π : X → X be the projection. Define div(π) : Div(X) ⊗ Q → Div(X) ⊗ Q

by div(π)(
∑
i nix̄i) =

∑
i niπ(x̄i) (Note that deg(div(π)(D)) 6= deg(D) in

general). Part (a) of Proposition 4.20 follows from the following slighty more
general result.

Lemma 4.21. Let D ∈ Div0(A). The following conditions are equivalent:
(i) There exists an invertible A-B-bimodule L such that τ (L(D)) ∼= L.
(ii) We have

∑

x∈|X|

invx(B)x = (
∑

x∈|X|

invx(A)x) + div(π)(D) mod Div(X). (32)

Proof. That (i) implies (ii) can be easily deduced from the corresponding local
result. To show the converse we consider first the special case div(π)(D) ∈
Div(X), i.e. A ≃ B. Then D can be written as a sum of divisors of the form
π∗(D1), D1 ∈ Div0(X) and of the form 1

ex(A) (x− σ(x)) for x ∈ |X|. Hence we

can assume that either D = 1
ex(A) (x− σ(x)) or D = pr∗(D1). In the first case

the assertion is obvious. In the second case it follows from the fact that the
homomorphism of abelian varieties

id−Frob : JacX → JacX

is an isogeny hence faithfully flat.
Returning to the general case note that by 3.1 at least A and B are Morita
equivalent. Let L be an arbitrary invertible A-B-bimodule. Then τL is also

invertible hence τ (L(D
′
)) ∼= L for some D

′
∈ Div0(A). It follows that the

congruence (32) holds with D
′
instead of D as well and therefore div(π)(D −

D
′
) ∈ Div(X). Hence by what we have shown above we may alter L by some

element of Pic(A) so that τ (L(D)) ∼= L. �
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To prove the other assertions of 4.20 we first note that for a connected S ∈
Sch /Fq and L ∈ SEDA,B,I,n(S) the group of automorphisms Aut(L) of L is

= Fq
∗ if I = 0 or = 1 otherwise. Hence for I > 0 the presheaf SEDA,B,I defined

by
SEDA,B,I,n(S) : = isomorphism classes of objects of SEDA,B,I,0(S)

is a fppf sheaf and the canonical morphism SEDA,B,I,n −→ SEDA,B,I,n is an iso-

morphism. We put SEDA,B,I = SEDA,B,I,0. For I > 0, 4.20 (c), (d) follows
from:

Lemma 4.22. Suppose that I 6= 0 and SEDA,B,I,0 6= ∅. Then SEDA,B,I is a
W(A,B, I,D)-torsor.

Proof. Assume first that D = 0, A = B. It follows from ([Laf], I.3, Théorème
2) that the map

(f : S → SpecFq) 7→ f∗ : PicI(A) → SE0
A,A,I(S)

yields an isomorphism between SE0
A,A,I and the trivial PicI(A)-torsor over Fq.

In particular SE0
A,A,I is isomorphic to the trivial PicI,0(A)-torsor.

Now let D 6= 0. To simplify the notation we assume |D| ∩ |I| = ∅ so that
CI(AT × BT )0 ∼= PicI,0(A) (the proof in the general case is analogous). Let

S ∈ Sch /Fq be connected and let L1, L2 ∈ SEDA,B,I(S). If L1 and L2 have

the same poles then ξ = L2 ⊗ L−1
1 ∈ SE0

A,A,I(S)
∼= PicI,0(A) by the remark

above, hence ξL1 = L2. In general there exists suitable rx ∈ Z such that L2

and (
∏
x∈|D| θ

rx
x )(L1) have the same poles, hence ξ(

∏
x∈|D| θ

rx
x )(L1) = L2 for

some ξ ∈ PicI(A). Thus wL1 = L2 for w = ξ(
∏
x∈|D| θ

rx
x ) ∈ G0.

Let w ∈ W(A,B, I,D), L ∈ SEDA,B,I(S) such that wL = L. Write w =
ξ
∏
x∈|D| θ

rx
x with ξ ∈ PicI(A) and rx ∈ Z. By 4.17 (ii), for x ∈ |D| and

the pole xS of wL = L we have xS ◦ FrobrxS = xS , hence deg(x) | rx. By
4.17 (iv) it follows that w ∈ PicI,0(A). However wL = L implies that w
corresponds to (wL) ⊗ L−1 = L ⊗ L−1 ∈ SE0

A,A,I,0(S) under the canonical

bijection PicI(A) ∼= SE0
A,A,I,0(S), i.e. w = 1. This proves that for a con-

nected S ∈ Sch /Fq, SE
D
A,B,I(S) is either empty or W(A,B, I,D) acts simply

transitively on it.
To finish the proof we have to show that SEDA,B,I,0 6= ∅ implies that

SEDA,B,I(SpecFq) 6= ∅. This is a consequence of the fact that SEDA,B,I,0 is
locally of finite presentation. �

Similarly one shows that SEDA,B,I,n is a Im(G0 → Aut(SEDA,B,I,n))-torsor for all

n ∈ 1
dZ. In particular each SEDA,B,I,n is a finite étale Fq-scheme. This proves

(b) for I 6= 0.
It remains to consider the case I = 0. Choose an auxiliary level J ∈ Div(X)
with J > 0 and |D| ∩ |J | = ∅. A similar argument as in 4.3 shows that

SEDA,B,n
∼= Γ(J,AJ )

∗\SEDA,B,J,n
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Hence SEDA,B is a Deligne-Mumford stack. Moreover as in 4.3 one shows that

the quotient SEDA,B : = (Γ(J,AJ )
∗/Fq

∗)\SEDA,B,J is a coarse moduli scheme

of SEDA,B,0 and that SEDA,B,0
∼= Fq

∗\SEDA,B. Finally since W(A,B, D) ∼=

W(A,B, J,D)/(Γ(J,AJ )
∗/Fq

∗) it follows from Lemma 4.22 that SEDA,B is a
W(A,B, D)-torsor over Fq. This completes the proof of 4.20.

Remarks 4.23. (a) Let D =
∑
x∈|X| mxx ∈ Div(A), D 6= 0 be such that∑

x∈|X| mx = 0. Condition (31) is not sufficient for SEDA,B,I,0 6= ∅ (compare

Remark 3.6). However if additionally we have
∑
x∈|X| Zmx = 1

dZ then by
taking suitable products of θx’s we obtain elements g in the center of G of
arbitrary degree m ∈ 1

dZ. Thus SE
D
A,B,I,m 6= ∅ implies SEDA,B,I,0 6= ∅. We also

see that an automorphism g ∈ G of degree zero is uniquely determined by its
restriction to SEDA,B,I,0, i.e. we have W(A,B, I,D) = G0.

(b) Suppose that SEDA,B,I,0 6= ∅. One can describe the W(A,B, I,D)-torsor

SEDA,B,I /Fq explicitely as follows. For L ∈ SEDA,B,I,0(Fq) let

ψL : W(A,B, I,D)× SpecFq =
∐

w∈W(A,B,I,D)

SpecFq → SEDA,B,I

be given on the w-component by the morphism corresponding to wL. By 4.17
(v) the diagram

W(A,B, I,D)× SpecFq
ψL×id
−−−−→ SEDA,B,I × SpecFqyΘ−1

D ×Frobq

yid×Frobq

W(A,B, I,D)× SpecFq
ψL×id
−−−−→ SEDA,B,I × SpecFq

commutes. Thus ψL induces an isomorphism

SEDA,B,I
∼= (W(A,B, I,D)× SpecFq)/ < Θ−1

D × Frobq >

4.5 Twists of moduli spaces of A-elliptic sheaves

In this section A denotes a locally principal OX -order of rank d2 with generic
fiber A such that e∞(A) = d. We also assume that there is a second closed
point p 6= ∞ such that ep(A) = d and we put D : = 1

d∞ − 1
dp. Let B be a

locally principal OX -order of rank d2 with Disc(B) = Disc(A) and such that
for the generic fiber B of B we have

∑

x∈|X|

invx(B)x = (
∑

x∈|X|

invx(A)x) +D mod Div(X).

In order to show that the moduli spaces Ell∞A,I and EllpB,I are twists of each other

we are going to define a canonical tensor product Eℓℓ∞A,I × SEDA,B,I → EℓℓpB,I .
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We introduce more notation. Recall that the notion of level structure at ∞
for objects of Eℓℓ∞A,I and SEDA,B,I and at p for objects of EℓℓpB,I and SEDA,B,I
depend on the choice of certain local Frobenius bimodules. In order to define
the tensor product (33) below these choices have to be compatibly matched.
For ∞ let M = (M∞, φ∞) be an invertible φ-B∞-A∞-bimodule of slope − 1

d .
For p we choose an invertible φ-Ap-Bp-bimodule N = (Np, φp) also of slope
− 1
d . We use M to define level structure at ∞ and N to define level structure

at p. By Remark 2.22 there exists prime elements ̟∞ ∈ O∞ and ̟p ∈ Op

such that
φd deg(∞)
∞ = ̟∞, φ

d deg(p)
p = ̟p.

Now fix a level I ∈ Div(X), I ≥ 0. We put

k(∞)⋆ =

{
k(∞) if ∞ 6∈ |I|,
k(∞)d if ∞ ∈ |I|,

k(p)♯ =

{
k(p) if p 6∈ |I|,
k(p)d if p ∈ |I|.

There exists a canonical map W(A, I,∞) → W(A,B, I,D) induced by
CI(A∞×B∞)[θ] → CI(A∞×B∞)[θ∞, θp] given by θ 7→ θ−1

∞ . Using the diagram
with exact rows

0 // CI(A∞ × B∞)0 //

��

W(A, I,∞) //

��

G(k(∞)⋆/Fq)

��
0 // CI(A∞ × B∞)0 // W(A,B, I,D) // G(k(∞)⋆/Fq)×G(k(p)♯/Fq)

it is easy to see that W(A, I,∞) → W(A,B, I,D) is injective and is equal to
the kernel of the canonical projection W(A,B, I,D) → G(k(p)♯/Fq) (compare
4.19). Recall that CI(A∞ × B∞)0 ∼= PicI,0(A) if ∞ does not divide I. In the
following we will consider W(A, I,∞) as a subgroup of W(A,B, I,D). From
Proposition 4.20 we deduce that SEDA,B,I is aW(A, I,∞)-torsor over Spec k(p)♯.
By 4.17 (iv) there exist ξ∞, ξp ∈ CI(A∞ × B∞)0 such that

θ[k(∞)⋆:Fq]
∞ = ξ∞, θ

[k(p)♯:Fq]
p = ξp

ξ∞ and ξp are given as follows. Let Π∞ ∈ B∞ (resp. Πp ∈ Ap) be a generator
of the radical of B∞ (resp. of Ap). If ∞ 6∈ |I| (resp. ∞ ∈ |I|) then ξ∞ denotes
the class in CI(A

∞ × B∞) of the idele ({1}x 6=∞,Π
−1
∞ ) (resp. ({1}x 6=∞, ̟

−1
∞ ))

in CI(A
∞ × B∞). If p 6∈ |I| (resp. p ∈ |I|) then ξp denotes the class in

CI(A∞ ×B∞) of the idele ({1}x 6=p,Πp) (resp. ({1}x 6=p, ̟p)) in CI(A∞ ×B∞).
The tensor product

⊗ : Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I −→ EℓℓpB,I , (E,L) 7→ E ⊗ L (33)

is a morphism of Spec k(p)⋆-stacks having the following properties:

(i) The morphism (33) is compatible with degA and degB, i.e. for m,n ∈ 1
dZ

it induces a morphism

Eℓℓ∞A,I,m ⊗k(∞)⋆ SEDA,B,I,n −→ EℓℓpB,I,m+n.

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 639

(ii) The morphism of stacks

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I −→ EℓℓpB,I ⊗k(p)♯ SE
D
A,B,I , (E,L) 7→ (E ⊗ L,L)

is an isomorphism with quasi-inverse

EℓℓpB,I ⊗k(p)♯ SE
D
A,B,I −→ Eℓℓ∞A,I ⊗k(∞)⋆ SE

D
A,B,I , (E,L) 7→ (E ⊗L−1, L).

(iii) The following diagram commutes

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

θ⊗θ∞

��

⊗

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

Eℓℓ∞B,I

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

⊗

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(iv) For ξ ∈ CI(A∞ × B∞) the following diagram commutes

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

ξ⊗ξ−1

��

⊗

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

Eℓℓ∞B,I

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

⊗

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

.

To define (33) let S ∈ Sch /Fq and let ∞S : S → X, pS : S → X be morphisms
in Sch /Fq which factor through ∞ → X and p → X respectively. Let E =
(E ,∞S , t) be an A-elliptic sheaf over S with zero z : S → X and let L = (L,Φ)
be an invertible A-B-bimodule of slope 1

d (∞S − pS). Define

E ⊗ L : = (E ⊗A L, pS , t⊗A Φ).

Note that E ⊗A L(− 1
dpS) = E(− 1

d∞S) ⊗A L( 1d (∞S − pS)). One easily checks
that t⊗AΦ is an injective B⊠OS-linear homomorphism with Coker(t⊗AΦ) ∼=
Coker(t)⊗AL. It follows from 3.8 (c) that E⊗L is a B-elliptic sheaf with pole
p and zero z. Thus we have defined (33) if I = 0.
When considering additionally level-I-structure, it is enough to treat separately
the three cases ∞, p 6∈ |I|, |I| = {∞} and |I| = {p}. In the first case if E
carries a level-I-structure α and L a level-I-structure β then one defines a
level-I-structure α • β on E ⊗ L as in (21).
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Suppose now I = n∞, n > 0 and let E = (E ,∞S , t), L = (L,Φ,∞S , pS) be
as above. Let (α, λ), (µ, β) be level-I-structures on E and L respectively such
that λ = µ : S → Spec k(∞)d lifts ∞S . Thus

α : (idI ×λ)
∗(MI)

∼=
−→ E|I×S , β : BI ⊠OS

∼=
−→ (idI ×µ)

∗(MI)⊗A L|I×S .

Let α • β be the composition

α • β : BI ⊠OS
β

−→ (idI ×µ)
∗(MI)⊗A L|I×S

α⊗id
−→ (E ⊗A L)|I×S

Finally let I = np, n > 0 and let α and (µ, β) be level-I-structures on E and
L. In this case level-I-structures on E and L are given by

α : AI ⊠OS −→ E|I×S , β : (idI ×µ)
∗(NI) −→ L|I×S

where µ : S → Spec k(p)d is a lift of pS . We set

α • β : (idI ×µ)
∗(NI)

β
−→ L|I×S = AI ⊗A L|I×S

α⊗id
−→ (E ⊗A L)|I×S .

In both cases one easily checks that α • β defines a level-I-structure on E ⊗L.
Thus we have defined (33). The straight forward but tedious verification of the
properties (i)–(iv) will be left to the reader.
Recall that Ell∞A,I , EllpB,I and SEDA,B,I denote the coarse moduli spaces of

Eℓℓ∞A,I,0, EℓℓpB,I,0 and SEDA,B,I,0 respectively (these are fine moduli spaces if
I 6= 0). By (i)–(iv), (33) induces an W(A, I,∞)-equivariant isomorphism of
Fq-schemes

Ell∞A,I ⊗k(∞)⋆ SE
D
A,B,I −→ EllpB,I ⊗k(p)♯ SE

D
A,B,I . (34)

Here the (free) action of the finite group W(A, I,∞) on the right is given by
id⊗ξ, ξ ∈ W(A, I,∞) →֒ W(A,B, I,D) whereas on the left it is given by
ξ−1 ⊗ ξ. Consequently by passing to quotients under the action and using the
fact that SEDA,B,I /k(p)♯ is a W(A, I,∞)-torsor we obtain:

Theorem 4.24. The isomorphism (34) induces an isomorphism of k(p)♯-
schemes

(Ell∞A,I ⊗k(∞)⋆ SE
D
A,B,I)/W(A, I,∞) ∼= EllpB,I

We shall give now another formulation of this result. Note that

Θ
[k(p)♯:Fq]
D = θ

[k(p)♯:Fq]
∞ ξp = FrobSED

A,B,I /k(p)♯

In particular Θ
−[k(p)♯:Fq]
D lies inW(A, I,∞) and is equal to = θ[k(p)♯:Fq]ξ−1

p . The

fact that (34) is in particular Θ
[k(p)♯:Fq]
D -equivariant implies that the following

diagram commutes

Ell∞A,I ⊗k(∞)⋆ SE
D
A,B,I

(34) //

θ[k(p)♯:Fq ]ξ−1
p

⊗FrobSE /k(p)♯

��

EllpB,I ⊗k(p)♯ SE
D
A,B,I

id⊗FrobSE /k(p)♯

��
Ell∞A,I ⊗k(∞)⋆ SE

D
A,B,I

(34) // EllpB,I ⊗k(p)♯ SE
D
A,B,I
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Fix L ∈ SEDA,B,I(Fq). Its poles correspond to Fq-embeddings λ : k(∞)⋆ → Fq,

µ : k(p)♯ → Fq. By taking base change of the above diagram with respect to

the morphism SpecFq → SEDA,B,I corresponding to L we obtain:

Theorem 4.25. Let m = [k(p)♯ : Fq]. Thus m = deg(p) if p 6∈ |I| and
m = d deg(p) otherwise. The isomorphism · ⊗ L : Ell∞A,I ⊗k(∞)⋆,λFq →

EllpB,I ⊗k(p)♯,µFq induces an isomorphism of k(p)♯-schemes

(Ell∞A,I ⊗k(∞)⋆,λFq)/ < θmξ−1
p ⊗ Frobmq > ∼= EllpB,I .

Remark 4.26. A pair (λ, µ) ∈ HomFq
(k(∞)⋆,Fq) × HomFq

(k(p)♯,Fq) will be

called admissible for (A,B, I) if there exists L ∈ SEDA,B,I(Fq) with poles λ
and µ. The surjectivity of the homomorphism W(A,B, I,D) → G(k(∞)⋆/Fq)
implies that for all λ there exists a µ such that (λ, µ) is admissible.

4.6 Application to uniformization

Let A be locally principal OX -order of rank d2 with generic fiber A such that
e∞(A) = d. Let I ∈ Div(X) denote an effective divisor. For a closed point

x ∈ |X| − |I| we denote by Êll
∞

A,I/Spf(Ox) the formal completion of Ell∞A,I
along the fiber at x of the characteristic morphism Ell∞A,I → X−I. Also for an
arbitrary x ∈ |X| we let Ell∞,an

A,I /Fx denote the rigid analytic space associated
to Ell∞A,I ×X SpecFx. There exists two types of uniformization of Ell∞A,I , i.e.

explicite descriptions of Êll
∞

A,I/Spf(O∞) and Ell∞,an
A,I /Fx as (finite unions of)

certain quotients of Drinfeld’s symmetric spaces and its coverings. These are
called uniformization at the pole and Cherednik-Drinfeld uniformization. The
first concerns the point x = ∞ (under the assumption inv∞A = 0) whereas
the second the points p ∈ |X| − {∞} with invpA = 1

d . By using Theorem 4.25
we show that the two types of uniformization are equivalent (see Proposition
4.28 below).
In order to introduce the quotients of symmetric spaces appearing in the uni-
formization results below we have to introduce more notation. Fix a closed
point x ∈ X. We denote by Ônr

x the completion of the strict henselisation

of Ox and by F̂ nr
x its function field. For each positive integer m we denote by

Fx,m the unramified extension of degree m of Fx in F̂ nr
x and let Ox,m be its ring

of integers. Note that the projection Ox,m → k(x)m has a canonical section,

i.e. k(x)m ⊆ Fx,m. Similarly k(x) ⊂ Ônr
x . Denote by Dx the central division

algebra over Fx with invariant 1
d and let Dx be the maximal order in Dx. We

also fix a uniformizer ̟x ∈ Ox and an element Πx ∈ Dx with Πdx = ̟x. Let

σ denote the automorphism on Ox,m and Ônr
x which induces the Frobq on the

residue fields.
Let Ωdx be Drinfeld’s (d − 1)-dimensional symmetric space over Fx and

Ω̂dx/Spf(Ox) its canonical formal model (see e.g. [Ge]). The rigid analytic vari-

ety Ωdx parametrizes certain formal groups. The formal scheme Ω̂dx is equipped
with a canonical GLd(Fx)-action.
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We define an action of GLd(Fx) on Ω̂dx⊗̂Ox
Ox,m = Ω̂dx ⊗k(x) k(x)m and

Ω̂dx⊗̂Ox
Ônr
x = Ω̂dx ⊗k(x) k(x) by letting g ∈ GLd(Fx) act canonically on

Ω̂dx and by σ−vx(det(g)) on Ox,m and Ox respectively. There exists a tower
. . .Σdn+1,x → Σdn,x → . . . → Σd1,x → Σd0,x = Ωdx ⊗Fx

Fx,d of finite étale Galois

coverings ([Ge], IV.1). Each Σdn,x carries a GLd(Fx)/̟
Z
x- and D∗

x/̟
Z
x-action

and the covering maps Σdn+1,x → Σdn,x are equivariant. Finally for n ≥ 0

we equip Σdn,x ⊗Fx,d
F̂ nr
x = Σdn,x ⊗k(x)d k(x) with a GLd(Fx)- and Dx-action

by letting g ∈ GLd(Fx) (or inDx) act canonically on the first factor and by
σ−vx(Nrd(g) on the second factor.

Rigid analytic Drinfeld-Stuhler varieties. Suppose that inv∞A = 0
and fix an isomorphism A∞

∼=Md(F∞). We write I = n∞+I∞ with∞ 6∈ |I∞|.
Assume first that n = 0. We define

Ŝh
∞

A,I : = A∗\
(
A∗(A∞)/UI(A

∞)× Ω̂d∞

)
.

This is formal scheme over Spf(O∞).

Next assume ∞ ∈ |I| and write I = n∞+ I∞ with ∞ 6∈ |I∞|. Then we define

Sh∞A,I : = A∗\
(
A∗(A∞)/UI∞(A∞)× Σdn,∞

)
.

This is rigid analytic space over F∞.

There exists a canonical right action of the group CI(A
∞ × D∞) on

Ŝh
∞

A,I and Sh∞A,I which is defined as follows. Let a = ({ax}x 6=∞, d∞) ∈

(
∏′
x∈|X|−{∞} N(Ax))×N(D∞) and assume first n = 0. Then the right action

of the class [a] ∈ CI(A
∞ × D∞) of a on Ŝh

∞

A,I is given by right multiplication
by {ax}x 6=∞ on A∗(A∞)/UI(A

∞). Now assume that n > 0. Then [a] acts on
Sh∞A,I by right multiplication of {ax}x 6=∞ on A∗(A∞)/UI∞(A∞) and letting

d−1
∞ act on Σdn,∞.

There are canonical morphism

pole : Ŝh
∞

A,I → Spec k(∞) if n = 0, (35)

pole : Sh∞A,I → Spec k(∞)d if n > 0. (36)

which we are going to defined now. Denote by l = l∞ : A∗(A∞) → Z the
composite

l∞ : A∗(A∞)
Nrd
−→ F ∗(A∞)

div
−→

⊕

x 6=∞

Zx
deg
−→ Z.

Note that for a ∈ A∗ ⊂ A∗(A∞) we have l∞(a) = − deg(∞)v∞(Nrd(a)). First
assume n = 0. Let

A∗(A∞)/UI(A
∞)× Ω̂d∞ −→ Spec k(∞) (37)

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 643

be given on the component ηUI(A∞)× Ω̂d∞ by

Ω̂d∞ −−−−→ Spec k(∞)
Frob−l(η)

q
−−−−−−→ Spec k(∞). (38)

Clearly, (38) factors through Ŝh
∞

A,I , hence it induces (35).

Now suppose n > 0. Since k(∞)d ⊆ F∞,d, we get a map Σdn,∞ → SpecF∞,d →
Spec k(∞)d. Note that for g ∈ GLd(F∞) the diagram

Σdn,∞
g·

−−−−→ Σdn,∞y
y

Spec k(∞)d
Frob−v∞(det(g))

q
−−−−−−−−−−→ Spec k(∞)d

(39)

commutes. We define

A∗(A∞)/UI(A
∞)× Σdn,∞ → Spec k(∞)d (40)

on the component corresponding to ηUI(A
∞) ∈ A∗(A∞)/UI(A

∞) by

Σdn,∞ −−−−→ Spec k(∞)d
Frob−l(η)

q
−−−−−−→ Spec k(∞)d.

The commutativity of (39) implies that (40) factors through Sh∞A,I , i.e. it yields
the map (36).

Cherednik-Drinfeld varieties. Let ξ̃ = {ξ̃x}x 6=∞ ∈ (
∏′
x∈|X|−{∞}N(Ax))

and let ξ ∈ CI(A
∞ × D∞) be the idele class represented by ({ξ̃x}x 6=∞, 1) ∈

(
∏′
x∈|X|−{∞} N(Ax)) × N(D∞). We assume that ξ is a central element in

CI(A∞ ×D∞) and that m = −d degA(ξ) = −l∞(ξ̃) 6= 0. We define

Ŝh
ξ

A,I,∞ : = A∗\
(
A∗(A∞)/UI(A

∞)ξ̃Z × Ω̂d∞ ⊗k(∞) k(∞)
)

if n = 0,

ShξA,I,∞ : = A∗\
(
A∗(A∞)/UI∞(A∞)ξ̃Z × Σdn,∞ ⊗k(∞)d k(∞)

)
if n > 0.

As above one defines a right action of CI(A
∞ ×D∞) on Ŝh

ξ

A,I,∞ and Sh ξA,I,∞
by letting a = ({ax}x 6=∞, d∞) ∈ (

∏′
x∈|X|−{∞} N(Ax))×N(D∞) act by right

multiplication by {ax}x 6=∞ on A∗(A∞)/UI(A∞) and letting d−1
∞ act on

Ω̂d∞⊗̂O∞
Ônr

∞ (if n = 0) and Σdn,∞ ⊗F∞,d
F̂ nr
∞ (if n > 0). Note that ξ acts

trivially.
Let k(ξ) denote the fixed field of Frobmq in k(∞). There are canonical mor-
phisms

Ŝh
ξ

A,I,∞ → Spec k(ξ) if n = 0, (41)

ShξA,I,∞ → Spec k(ξ) if n > 0. (42)
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Their definition is similar to the definition of (35) and (35). For example (41)
is induced by the maps

η(UI(A∞)ξ̃Z)× Ω̂d∞ ⊗k(∞) k(∞) −−−−→ Spec k(ξ)
Frob−l(η)

q
−−−−−−→ Spec k(ξ).

The rigid analytic varieties Sh∞A,I and ShξA,I,∞ are twists of each other. More
precisely we have the following result.

Lemma 4.27. (a) There exists a canonical isomorphism of formal schemes over
Spf(O∞) (resp. rigid analytic varieties over F∞)

Ŝh
∞

A,I ⊗k(∞)k(∞)/ < ξ ⊗ Frobmq > ∼= Ŝh
ξ

A,I,∞ for n = 0, resp. (43)

Sh∞A,I ⊗k(∞)dk(∞)/ < ξ ⊗ Frobmq > ∼= ShξA,I,∞ for n > 0. (44)

Here Ŝh
∞

A,I ⊗k(∞)k(∞) (resp. Sh∞A,I ⊗k(∞)dk(∞)d) denotes the base change to

k(∞) of the morphism (35) (resp. (36)).

(b) Let ξ∞ ∈ CI(A
∞ ×D∞) be the class of the idele ({1}x 6=∞,Π

−1
∞ ) (if n = 0)

resp. of ({1}x 6=∞, ̟
−1
∞ ) (if n > 0). Then we have

Ŝh
ξ

A,I,∞ ⊗k(ξ)k(ξ)/ < ξ∞ ⊗ Frobdeg(∞)
q >∼= Ŝh

∞

A,I for n = 0, resp. (45)

ShξA,I,∞ ⊗k(ξ)k(ξ)/ < ξ∞ ⊗ Frobd deg(∞)
q >∼= Sh∞A,I for n > 0. (46)

Proof. We prove only the existence of (43). The other cases are similar and
will be left to the reader. For ηUI(A

∞) ∈ A∗(A∞)/UI(A
∞) we denote the base

change of the map (38) to k(∞) by (ηUI(A
∞)× Ω̂d∞)⊗k(∞) k(∞). Let

(ηUI(A
∞)× Ω̂d∞)⊗k(∞) k(∞)

id⊗Frobl(η)
q

−−−−−−−−→ Ω̂d∞ ⊗k(∞) k(∞) (47)

and let
(
A∗(A∞)/UI(A

∞)× Ω̂d∞

)
⊗k(∞)k(∞) → A∗(A∞)/UI(A

∞)×(Ω̂d∞⊗k(∞)k(∞))

(48)
be made up of all the morphisms (45). One easily checks that it is A∗-
equivariant and that the following diagram commutes:

(A∗(A∞)/UI(A
∞)× Ω̂d∞)⊗ k(∞)

(48)
−−−−→ A∗(A∞)/UI(A

∞)× (Ω̂d∞ ⊗ k(∞))
y·ξ⊗Frobm

q

y·ξ̃⊗id

(A∗(A∞)/UI(A
∞)× Ω̂d∞)⊗ k(∞)

(48)
−−−−→ A∗(A∞)/UI(A

∞)× (Ω̂d∞ ⊗ k(∞))

Hence (48) induces the isomorphism (43). �
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Note that, since ξ∞ acts trivially on Ŝh
∞

A,I (resp. Sh∞A,I), the CI(A
∞ × D∞)-

action on Ŝh
∞

A,I (resp. Sh∞A,I) induces a right W(A, I,∞)-action (by Remark
4.8 (c)). In terms of the latter, Lemma 4.27 (a) can be reformulated as follows:

Ŝh
∞

A,I ⊗k(∞)k(∞)/ < ξθm ⊗ Frobmq > ∼= Ŝh
ξ

A,I,∞ for n = 0, resp. (49)

Sh∞A,I ⊗k(∞)dk(∞)/ < ξθm ⊗ Frobmq > ∼= ShξA,I,∞ for n > 0. (50)

Uniformisation at the pole. Suppose that inv∞A = 0 and assume first
that ∞ does not divide the level I. Then there exists an isomorphism of formal
schemes over Spf(O∞)

Êll
∞

A,I/Spf(O∞) ∼= Ŝh
∞

A,I (51)

which is compatible with the W(A, I,∞)-action and the morphisms pole.
Now assume ∞ ∈ |I|. Then it is expected

Ell∞,an
A,I /SpecF∞

∼= Sh∞A,I . (52)

Again, (52) should be compatible with the W(A, I,∞)-action and the mor-
phisms pole.
We say that Ell∞A,I admits uniformization at the pole if (51) (resp. (52)) holds.
Suppose that ∞ 6∈ |I|. (51) has been proved in ([BS], 4.4) if A is a division
algebra or A = Md(F ). As in loc. cit. the general case can be easily deduced
from ([St], Corollary, p. 531 and Theorem 1, p. 538) or ([Ge], III.3.1.1). If
∞ ∈ |I| then (52) in known in the case of Drinfeld modular varieties (i.e.
A =Md(F )) the uniformization (52) is proved in [Dr4].

Cherednik-Drinfeld uniformization: Let p ∈ |X| − {∞} and assume
that invpA = 1

d . Let B be a locally principal OX -order of rank d2 with
Disc(B) = Disc(A) and such that the local invariants of the generic fiber B of
B are given by inv∞(B) = inv∞(A) + 1

d , invp(B) = 0 and invx(B) = invx(A)
for all x ∈ |X| − {∞, p}. We fix an isomorphism Bp

∼= Md(Fp) and isomor-
phisms Bx ∼= Ax for all x ∈ |X| − {∞, p}. Using the latter we can identify

the groups CI(A
∞ × B∞) and CI(B

p ×Ap). Since ξ∞ acts trivially on Ŝh
ξ∞

B,I,p

(resp. Shξ∞B,I,p) we obtain a right W(A, I,∞) ∼= CI(B
p × Ap)/ξ

Z
∞-action on

Ŝh
ξ∞

B,I,p (resp. Shξ∞B,I,p). We also fix an isomorphism k(∞)⋆ ∼= k(ξ∞) ⊂ k(p)

such that the pair (k(∞)⋆ ∼= k(ξ∞) →֒ k(p), k(p)♯ →֒ k(p)) is admissible in the
sense of Remark 4.26 (k(∞)⋆ and k(p)♯ are defined as in the last section) and
define

pole : Ŝh
ξ∞

A,I,∞

(41)
−→ Spec k(ξ∞) ∼= Spec k(∞)⋆ if n = 0,

pole : Shξ∞A,I,∞
(42)
−→ Spec k(ξ∞) ∼= Spec k(∞)⋆ if n > 0.
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Assume that p 6∈ |I| (resp. p ∈ |I|). Then we expect that there is a canonical
isomorphism of formal schemes over Spf(Op) (resp. of rigid analytic spaces over
Fp)

Êll
∞

A,I/Spf(Op) ∼= Ŝh
ξ∞

B,I,p if p 6∈ |I|, (53)

Ell∞,an
A,I /Fp

∼= Shξ∞B,I,∞ if p ∈ |I| (54)

compatible with W(A, I,∞)-action and the morphisms pole.
We say that Ell∞A,I admits Cherednik-Drinfeld uniformization if (53) (resp.
(54)) holds. Both (53) and (54) are proved in ([Hau], 8.1 and 8.3) in the
case deg(∞) = 1, inv∞A = 0 and ∞ 6∈ |I|. Under these assumptions the

formal scheme Ŝh
ξ∞

B,I,p and the rigid analytic variety Shξ∞B,I,∞ have the following
simpler description

Ŝh
ξ∞

B,I,p = B∗\
(
B∗(Ap,∞)/UI(B

∞,p)× Ω̂dp ⊗k(p) k(p)
)

if n = 0,

Shξ∞B,I,p = B∗\
(
B∗(Ap,∞)/UI(B

∞,p)× Σdn,p ⊗k(p)d k(p)
)

if n > 0,

where n denotes now the exact multiple of p occuring in I.
By combining Theorem 4.25, (49), (50) and Lemma 4.27 (b) we obtain:

Proposition 4.28. Let p ∈ |X| − {∞} and let A and B be locally principal
OX-orders of rank d2 with Disc(B) = Disc(A) such that the local invariants of
the generic fibers A and B are given by inv∞(A) = 0, inv∞(B) = 1

d , invp(A) =
1
d , invp(B) = 0 and invx(B) = invx(A) for all x ∈ |X| − {∞, p}. The following
conditions are equivalent:
(i) Ell∞A,I admits uniformization at the pole.

(ii) EllpB,I admits Cherednik-Drinfeld uniformization.

By applying 4.28 to the results of [BS] and [Hau] we obtain further cases where
Ell∞A,I admits uniformization at the pole or Cherednik-Drinfeld uniformization.
For example if inv∞(A) = 0, ∞ ∈ |I| and if there exists a point p ∈ |X| − {∞}
such that invp(A) =

1
d and deg(p) = 1

d then Ell∞A,I admits uniformization at the
pole. Conversely Cherednik-Drinfeld uniformization for Ell∞A,I holds whenever
if p does not divide the level.

5 Appendix

5.1 Commutative subalgebras in semisimple algebras

Let k be a perfect field and A a finite-dimensional semisimple k-algebra. We
collect a few facts about maximal separable and commutative subalgebras of
A for which we could not find any references.
Let Z denote the center of A. By Wedderburns Theorem we have Z ∼= k1×. . .×
kr for some finite separable extensions ki/k. For a finite Z-moduleM , rankZM
denotes the (not necessarily constant) rank of the corresponding locally free
OSpecZ-module.
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Lemma 5.1. Let T be a commutative separable k-subalgebra of A. The following
conditions are equivalent.
(i) T = ZA(T ) = {x ∈ A | tx = xt ∀t ∈ T}.
(ii) T is a maximal commutative separable k-subalgebra of A.
(iii) T ⊇ Z and (rankZ T )

2 = rankZ A.
Moreover if A = Endk1(V1) × . . . × Endkr (Vr) where Vi a finite-dimensional
ki-vector space for i = 1, . . . , r, then (i) – (iii) are equivalent to
(iv) V1 ⊕ . . .⊕ Vr is a free T -module of rank 1.

A commutative separable k-subalgebra T of A satisfying the equivalent condi-
tions (i) – (iii) above will be called a maximal torus of A.

Lemma 5.2. Let T1, T2 be two maximal tori of A. Then there exists a finite
extension k′/k such that T1 ⊗k k

′ and T2 ⊗k k
′ are conjugated in A⊗k k

′.

A finite A-module M is called a generator of ModA if the functor

HomA(M, ·) : ModA −→ Modk

is faithfull. M is called a minimal generator if dimk(M) is minimal. Assume
now that A is split, i.e. A = Endk1(V1) × . . . × Endkr (Vr) as in condition (iv)
of Lemma 5.1 and let T be a maximal torus in A. We have

Lemma 5.3. Let M be a finite A-module. The following conditions are equiv-
alent.
(i) M is a minimal generator.
(ii) M ∼= V1 ⊕ . . .⊕ Vr
(iii) M is a free T -module of rank 1.

5.2 A-elliptic sheaves according to Laumon-Rapoport-Stuhler

The aim of this section is to show that under suitable assumptions on A the
moduli stack Eℓℓ∞A defined in section 4.1 is isomorphic to the stack defined in
([LRS], 2.4).
Firstly, we establish an equivalence between certain parabolic vector bundles
and locally free modules of a hereditary algebra. We use the following notations
and assumptions. Let k be a perfect field of cohomological dimension ≤ 1 and
let X be a smooth connected curve over k and F is the function field of X.
We also fix a closed point ∞ ∈ X. To simplify the notation we assume that
deg(∞) = 1 (see Remark 5.11 below for the case deg(∞) > 1).
Let A′ be a locally principal OX -order of rank d2 with generic fiber A′. We
assume that e∞(A′) = 1, i.e. A′

∞
∼=Md(O∞). To begin with we introduce the

notion of a parabolic A′-modules and parabolic vector bundles with A′-action
(compare [Yo]). A filtered object in a category C is a functor C⋆ : Z → C.
Morphisms of filtered objects are natural transformations. Here we regard the
ordered set Z as a category in the usual way. The set of objects is Z and for
i, j ∈ Z we have

♯(Mor(i, j)) =

{
1 if i ≤ j
0 otherwise.
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For i ∈ Z the morphism Ci → Ci+1 will be denoted by ji = jCi . For a filtered
object C⋆ in C and n ∈ Z the shifted filtered object C[n]⋆ is defined as the

composite Z
+n
−→ Z → C. A morphism φ : C⋆ → D⋆ of filtered objects induces

a morphism φ[n] : C[n]⋆ → D[n]⋆.
Recall that for S ∈ Sch /k we have set A′ Mod(S) : = A′⊠OS

Mod (resp.
ModA′(S) : = ModA′⊠OS

).

Definition 5.4. Let S be a k-scheme.
(a) For e ∈ Z with e ≥ 1 let PModA′,e(S) denote the category of pairs (F⋆, ψ⋆)
consisting of a filtered ModA′(S)-object F⋆ and an isomorphism ψ⋆ : F [e]⋆ →
F⋆(∞) : = F⋆ ⊗OX×S

(OX(∞) ⊠ OS) such that the restriction of ji : F →
Fi+1 to X − {∞} × S is an isomorphism and such that the following diagram
commutes

Fi+e

ψi

��

Fi

ji+e−1◦...◦ji
77♦♦♦♦♦♦♦♦♦♦♦

id⊗ι ''❖❖
❖❖

❖❖
❖❖

❖❖

Fi(∞)

(55)

where ι : OX×S →֒ OX(∞)⊠OS is the inclusion. Morphisms in PModA′,e(S)
are morphisms of filtered objects compatible with the isomorphisms ψ.
(b) Let PCohrA′,sp,e(S) denote the groupoid of (K⋆, ψ⋆) in PModA′,e(S) such
that Ki ∈ CohrA′,sp(S) and N(K⋆) : = N(Ki) = N(Ki+1) for all i ∈ Z.
(c) For e, r ∈ Z with e, r ≥ 1 and e | rd. We denote by PVectrA′,e(S) the full
subcategory of (F⋆, ψF⋆

) in PModA′,e(S) such that Fi ∈ VectrA′(S) for all i ∈ Z

and such that Coker(j⋆ : F⋆ → F [1]⋆) ∈ PCohsA′,sp,e(S) with s =
rd
e .

Similarly one defines A′ PMode(S) and A′ PVectre(S) using left A′
⊠ OS-

modules.

Note that for (F⋆, ψ⋆) in PModA′,e(S) with Fi ∈ VectrA′(S) for all i ∈ Z, the
commutativity of diagram (55) implies that ji : Fi → Fi+1 is injective and
Coker(ji) is a sheaf on ∞×S. For A′ = OX we write ModX , PModX,e, VectX
etc. for ModOX

, PModOX ,e(S), VectOX
etc.

Let E⋆ ∈ PModA′,e(S) and F⋆ ∈ A′ PMode(S). We are going to define now a
tensor product (E⋆ ⊗A′ F⋆)⋆. For i ∈ Z we set

Ti(E⋆,F⋆) : =
⊕

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ.

For i ∈ Z with we define homomorphisms

αi : Ti(E⋆,F⋆) −→ Ti+1(E⋆,F⋆), βi : Ti(E⋆,F⋆) −→ Ti+1(E⋆,F⋆)

as the direct sums of the inclusions jλ ⊗ id : Eλ ⊗A′ Fµ → Eλ+1 ⊗A′ Fµ (resp.
id⊗jµ : Eλ ⊗A′ Fµ → Eλ ⊗A′ Fµ+1). Also let

γi : Ti(E⋆,F⋆) −→ Ti(E⋆,F⋆)
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be the isomorphism given on the summand Eλ ⊗A′ Fµ by

Eλ ⊗A′ Fµ ∼= Eλ(∞)⊗A′ Fµ(−∞)
ψ−1⊗ψ−1

−→ Eλ+e ⊗A′ Fµ−e.

Finally let
δi : Ti−1(E⋆,F⋆)⊕ Ti(E⋆,F⋆) −→ Ti(E⋆,F⋆)

be given on the summand Ti−1(E⋆,F⋆) by αi−1 − βi−1 and by id − γi on
Ti(E⋆,F⋆). We define

∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ = Coker(δi) (56)

There are canonical morphisms

∑

λ+µ=i−1,λ,µ∈Z

Eλ ⊗A′ Fµ −→
∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ. (57)

The isomorphisms

Eλ+d ⊗A′ Fµ
ψ⊗id
−→ (Eλ ⊗A′ Fµ)(∞), Eλ ⊗A′ Fµ+d

id⊗ψ
−→ (Eλ ⊗A′ Fµ)(∞)

induces an isomorphism

∑

λ+µ=i+d,λ,µ∈Z

Eλ ⊗A′ Fµ −→ (
∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ)(∞). (58)

Definition 5.5. The tensor product (E⋆⊗A′ F⋆)⋆ ∈ PModX,e(S) is defined as
the collection of OX×S-modules

(E⋆ ⊗A′ F⋆)i =
∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ

(for i ∈ Z) together with the maps (57) and (58).

Lemma 5.6. Let E⋆ ∈ PVectrA′,e(S) and F⋆ ∈ A′ PVectre(S). Then (E⋆⊗A′ F⋆)⋆

lies in PVectrd
2

X,e(S). In particular
∑
λ+µ=i,λ,µ∈Z Eλ ⊗A′ Fµ is a locally free

OX×S-module of rank rd2 for all i ∈ Z.

Proof. For A′ = OX this follows immediately from the fact that a parabolic
OX×S-module is a parabolic vector bundle if and only if it is parabolically
flat ([Yo], Proposition 3.1). The general case can be deduce from this special
case by Morita equivalence. More precisely since the question is local we can
replace X by an étale neighbourhood of ∞ and therefore can assume that
A′ ∼= Md(OX). Let I be an invertible A′-OX -bimodule and J its inverse.
Since (E⋆ ⊗A′ F⋆)⋆ = ((E⋆ ⊗A′ I)⊗OX

(J ⊗A′ F⋆))⋆ the assertion follows from
the case A′ = OX . �
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Let A be another locally principal OX -order of rank d2 and assume that
e∞(A) = d and A|U and A′|U are Morita equivalent where U = X − {∞}.
There exists an increasing families of A-A′-bimodules {Ii | i ∈ Z} and
of A′-A-bimodules {Ji | i ∈ Z} such that (Ii)|U = (Ii+1)U =: IU and
(Ji)|U = (Ji+1)U =: JU for all i ∈ Z, IU is an invertible AU -A

′
U -bimodule

with inverse JU and such that {(Ii)∞ | i ∈ Z} and {(Ji)∞ | i ∈ Z} are as in
2.2. It follows from Corollary 2.12 that Ii and Jj are locally free A′-modules
of rank 1. Also we have

A(
1

d
∞)⊗A Ii = Ii+1, Ji ⊗A A(

1

d
∞) = Ji+1

for all i ∈ Z.

Proposition 5.7. Put VectA = Vect1A and PVectA′ = PVect1A′,d. The mor-
phisms

· ⊗A I⋆ : VectA −→ PVectA′ , (· ⊗A′ J⋆)d−1 : PVectA′ −→ VectA (59)

given by E 7→ E ⊗A I⋆ : = {F ⊗A Ii | i ∈ Z} and E⋆ 7→
∑
λ+µ=d−1 Eλ ⊗A′ Jµ

are mutually inverse isomorphisms of stacks. Define θ : VectA → VectA and
θ′ : PVectA′ → PVectA′ by θ(E) = E( 1d∞) and θ′(E⋆, ψ⋆) = (E [1]⋆, ψ[1]⋆).
Then the diagrams

VectA
⊗AI⋆−−−−→ PVectA′ PVectA′

(·⊗A′J⋆)d−1
−−−−−−−−→ VectAyθ

yθ′
yθ′

yθ

VectA
⊗AI⋆−−−−→ PVectA′ PVectA′

(·⊗A′J⋆)d−1
−−−−−−−−→ VectA

(60)

are 2-commutative.

Proof. In view of 5.6 we only have to show that the second morphism is well-
defined. By 5.6 and 3.11 we have to prove that for E⋆ ∈ PVectA′(S) the
quotient

(
∑

λ+µ=0,λ,µ∈Z

Eλ ⊗A′ Jµ)/(
∑

λ+µ=−1,λ,µ∈Z

Eλ ⊗A′ Jµ) ∼=
∑

λ+µ=0,λ,µ∈Z

Eλ ⊗A′ Jµ

is a special A-module on S ∼= ∞ × S where E⋆ : = Coker(E⋆[−1] →֒ E⋆) ∈A′

PModd(S). However this follows from:

Lemma 5.8. The assignement K⋆ 7→
∑
λ+µ=d−1 Kλ⊗A′Jµ defines a morphism

(· ⊗A′ J⋆)d−1 : PCoh1A′,sp,d −→ Coh1A,sp .

Proof. By Lafforgue’s Lemma ([Laf], I.2.4) (applied to a maximal tori in A) it
suffices to consider the case where S = Spec k and k is an algebraically closed
field. If N(K⋆) 6= ∞ then the assertion follows from Remarks 3.8 (b), (c). Now
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assume N(K⋆) = ∞. Let O = O∞, K = F∞. Since the question is local with
respect to the étale topology we can replace X by SpecO where O = O∞.
Then A′ ∼= Md(O) and A ∼= End(L⋆) for a lattice chain L⋆ of period d in
Kd. Morita equivalence allows us to replace A′ by O, i.e. we can assume that
A′ = O. Then Mi : = Γ(SpecO,Ki) is a onedimensional k-vector space for all
i ∈ Z and we have to show that

∑

i+j=0

Mi ⊗O Jj (61)

is a free T = T ⊗ k-module of rank 1 where T ∼= Od is any maximal torus in
A. If 1 = e1 + . . .+ ed is a decomposition of 1 ∈ T into primitive idempotents
we obtain a corresponding decompositon of (61) into

∑

i+j=0

Mi ⊗O J
(ν)
j , ν = 1, . . . , d

where J
(ν)
j : = Jjeν . Since Jj is free of rank 1 as a T -module, J⋆

(ν) is a
shifted parabolic line bundle (compare [Yo]) for each ν ∈ {1, . . . , d}. Therefore

(M⋆ ⊗O J⋆
(ν))⋆ ∼= M⋆[m] for some m ∈ Z. Consequently

∑

i+j=0

Mi ⊗O J
(ν)
j

∼= Mm

is a onedimensional k-vector space. It follows that (61) is a free T ⊗OR-module
of rank 1. �

Now assume that k = Fq and that A′ is a maximal OX -order in a central
division algebra A′ of dimension d2 with A′

∞
∼= Md(F∞). Let us recall the

definition of an A′-elliptic sheaf given in ([LRS], 2.2) and ([BS], 4.4.1) (here we
do not require deg(∞) = 1).

Definition 5.9. Let S ∈ Sch /Fq. An A′-elliptic sheaf E′ = (Ei, ji, ti)i∈Z with
pole ∞ in the sense of [LRS] consists of a commutative diagram

. . . −−−−→ Ei−1
ji−1

−−−−→ Ei
ji

−−−−→ Ei+1 −−−−→ . . .
xti−2

xti−1

xti

. . . −−−−→ τE i−2
ji−1

−−−−→ τE i−1
ji−1

−−−−→ τE i −−−−→ . . .

where Ei are locally free OX×S-modules of rank d2 additionally equipped with
a right action of A′ compatible with the OX-action. The maps are injective
A′

⊠OS-linear homomorphisms.
Furthermore the following conditions should hold:
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(i) (Periodicity) Ei+e deg(∞) = Ei(∞) : = Ei ⊗OX×S
(O(∞) ⊠ OS) where the

canonical embedding of Ei on the right side corresponds on the left to the com-

postion Ei
j
→֒ . . .

j
→֒ Ei+d′deg(∞).

(ii) The quotient sheaf Ei/ji−1(Ei−1) is a locally free sheaf of rank d on the
graph of a morphism ι∞,i : S → X.
(iii) There exists a morphism z : S → X − |Disc(A′)| – called the zero or
characteristic of E′ – such that for all i ∈ Z, Coker(ti) is supported on the
graph of a morphism z and is a direct image of a locally free OS-module of
rank d by Γz = (z, idS) : S −→ X × S.

We first remark that condition (iii) implies that Ei is actually a locally free
A′

⊠OS-module. This follows from ([Laf], I.4, proposition 7) or can be deduced
from Lemma 3.11 together with ([LRS], 2.6). Secondly condition (i) implies
that ι∞,i(S) = {∞} and we have

ι∞,i ◦ FrobS = ι∞,i+1

for all i ∈ Z. For that consider the two filtrations of Ei+1/ti−1(
τE i−1)

0⊆Ei/ti−1(
τE i−1)⊆Ei+1/ti−1(

τE i−1),

0⊆ti(
τE i)/ti−1(

τE i−1)⊆Ei+1/ti−1(
τE i−1).

The first shows that the support of Ei+1/ti−1(
τE i−1) is Γz + Γι∞,i+1

and the
second that it is Γz + Γι∞,i◦FrobS

.
Suppose again that deg(∞) = 1. Hence the stack PEℓℓ∞A′(S) of A′-elliptic
sheaves as defined in 5.9 is isomorphic to the stack of triples E′ = (E⋆, t⋆)
where E⋆ = (E⋆, ψ⋆) ∈ PVectA′(S) and t⋆ : τE [−1]⋆ → E⋆ is a morphism in
PVectA′(S) such that (iii) above holds for Coker(t⋆).
We show that the isomorphisms (59) yield isomorphisms between PEℓℓ∞A′ and
Eℓℓ∞A |X−|Disc(A′)| = Eℓℓ∞A ×X (X − |Disc(A′)|). Define

· ⊗A I⋆ : Eℓℓ
∞
A |X−|Disc(A′)|(S) −→ PEℓℓ∞A′(S)

by (E , t) 7→ (E ⊗A I⋆, t ⊗A I⋆). The commutativity of the first diagram (60)
shows that t⊗A I⋆ is a map τE ⊗A I⋆[−1] → E ⊗A I⋆. That E′ has property
(iii) above follows from Remark 3.8 (c). Conversely, we define

(· ⊗A′ J⋆)d−1 : PEℓℓ∞A′(S) −→ Eℓℓ∞A |X−|Disc(A′)|(S)

by (E⋆, t⋆) 7→ ((E⋆ ⊗A′ J⋆)d−1, (t⋆ ⊗A′ J⋆)d−1). Again the commutativity
of the second diagram of (60) implies that (t⋆ ⊗A′ J⋆)d−1 is a morphism
τ (E(− 1

d∞S)) → E where E = (E⋆⊗A′J⋆)d−1. Finally condition (*) of Definition
4.2 follows Lemma 5.8. We deduce from 5.7:

Proposition 5.10. Let S be a k-scheme. The morphisms

· ⊗AI⋆ : Eℓℓ
∞
A |X−|Disc(A′)| −→ PEℓℓ∞A′ , (62)

(· ⊗A′ J⋆)d−1 : PEℓℓ∞A′ −→ Eℓℓ∞A |X−|Disc(A′)| (63)

are mutually inverse isomorphisms.
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Remarks 5.11. (a) In order to extend 5.10 to the case deg(∞) > 1 we have to
modify Definition 5.4 (b) as follows. For S ∈ Sch /k let PVectA′(S) denote the
category of triples (F⋆, ψF⋆

,∞S) where ∞S : S → X is a k-morphism which
factors through ∞ → X and (F⋆, ψF⋆

) is an element of PModA′,d deg(∞)(S)

such that Fi ∈ Vect1A′(S) for all i ∈ Z and such that the sheaf Coker(ji)
is a locally free sheaf of rank d on the graph of ∞S ◦ FrobiS : S → X. To
define isomorphisms similar to (59) we consider increasing families of A⊠k(∞)-
A′

⊠ k(∞)-bimodules {Ii | i ∈ Z} and A′
⊠ k(∞)-A ⊠ k(∞)-bimodules {Ji |

i ∈ Z} with the following properties:

(i) A( 1d∞i) ⊗A Ii = Ii+1, Ji ⊗A A( 1d∞i) = Ji+1 for all i ∈ Z. Here ∞0

denotes the canonical morphism Spec k(∞) → X and ∞i : = ∞0◦Frob
i :

Spec k(∞) → X.

(i) IU = (Ii)|U×Fqk(∞) is an invertible AU⊠k(∞)-A′
U⊠k(∞)-bimodule with

inverse JU = (Ji)|U×Fqk(∞).

(iii) For all i ∈ Z, Ii and Jj are locally free A′
⊠ k(∞)-modules of rank 1.

As in 5.7 one defines isomorphisms

· ⊗AI⋆ : VectA ×Fq
k(∞) −→ PVectA′ ,

(· ⊗A′ J⋆)d−1 : PVectA′ −→ VectA ×Fq
k(∞)

which then yield the isomorphisms (62), (63) above.
(b) Let p be a closed point of X such that invp(A

′) = 1
d . In [Hau], Hausberger

constructed a flat proper model of Eℓℓ∞A′ over (X−|Disc(A′)|)∪{p} by extend-
ing the definition of the moduli problem 5.9 of Laumon-Rapoport-Stuhler to
characteristic p. By using ([Hau], 2.16) it is easy to see using that his condition
spéciale ([Hau], section 3) corresponds to our condition (*).
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