
Chapter 3

Connections via boundary triplets

To simplify the exposition, we begin by looking at a weighted metric graph .G ; �; �/

as a metric realization of one of its models, that is, we start with a given combina-
torial graph Gd D .V ; E/ equipped with edge lengths j � jWE ! .0;1/ and weights
�; �W E ! .0; 1/. Let also ˛W V ! R, that is, we are going to consider Laplac-
ians with ı-couplings (2.13) at vertices. The main results of this chapter (see The-
orem 3.1 and Theorem 3.22 below) relate basic spectral properties of the Laplacian
with ı-couplings H˛ with those of a certain Schrödinger-type operator on the cor-
responding combinatorial graph Gd . At the very end of this chapter, in Section 3.3,
we shall look at a weighted metric graph from the metric space perspective, which
allows to understand the whole family of graph Laplacians associated with the models
of a given weighted metric graph.

Let us stress once again that we always assume Hypothesis 2.1.

3.1 Spectral properties: Graph Laplacians vs. Kirchhoff Laplacians

To state the result, we first define the intrinsic edge length

�.e/ WD jej

s
�.e/

�.e/
; e 2 E; (3.1)

together with the quantity1

��.E/ WD sup
e2E

�.e/: (3.2)

Now introduce the edge weight r WE ! .0;1/ by distinguishing two cases:

• if the underlying model of a weighted metric graph satisfies ��.E/ < 1, then we
set

r.e/ D jej�.e/; e 2 E; (3.3)

• if ��.E/ D 1, we define the weight r by

r.e/ D

´
jej�.e/; �.e/ � 1;p

�.e/�.e/; �.e/ > 1:
(3.4)

1In Section 3.3, we shall call it the intrinsic size of a model and its meaning will be clarified
in Chapter 6 (see Remark 6.19).
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Next, with a given metric graph G and weights �; � we associate:

• the vertex weight mWV ! .0;1/,

m.v/ D
X
Ee2EEv

r.e/; v 2 V ; (3.5)

• the edge weight bWV � V ! Œ0;1/,

b.u; v/ D

8̂̂<̂
:̂

X
Ee2EEuWe2Ev

�.e/

jej
; u ¤ v;

0; u D v;

.u; v/ 2 V � V : (3.6)

It is straightforward to verify that b satisfies all properties (i)–(iv) of Section 2.2.
Since Gd is connected, so is the edge weight b. Moreover, the vertex weight m is
strictly positive on V and hence defines a measure of full support on V . Therefore,
following considerations in Section 2.2, with the discrete Schrödinger expression

.�f /.v/ WD
1

m.v/

�X
u2V

b.v; u/.f .v/ � f .u// C ˛.v/f .v/

�
; v 2 V ; (3.7)

we can associate in the weighted Hilbert space `2.V Im/ the minimal operator h0
˛ and

the maximal operator h˛ .
The main aim of this section is to prove the following result:

Theorem 3.1. Let H0
˛ be the minimal Laplacian on .G ; �; �/ equipped with the

ı-coupling conditions (2.13) at the vertices and let also h0
˛ be the corresponding

minimal discrete Schrödinger operator defined in `2.V Im/ by (3.7). Then:

(i) The deficiency indices of H0
˛ and h0

˛ are equal and

nC.H0
˛/ D n�.H0

˛/ D n˙.h0
˛/ � 1:

In particular, H˛ is self-adjoint if and only if h˛ is self-adjoint.

Assume in addition that H˛ (and hence also h˛) is self-adjoint. Then:

(ii) The operator H˛ is lower semibounded if and only if the operator h˛ is
lower semibounded.

(iii) The operator H˛ is non-negative if and only if h˛ is non-negative.

(iv) The total multiplicities of negative spectra of H˛ and h˛ coincide,

��.H˛/ D ��.h˛/:

(v) The spectrum of H˛ is purely discrete if and only if #¹e 2 E W �.e/ > "º is
finite for every " > 0 and the spectrum of h˛ is purely discrete.
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Assume also that ��.E/ D supe2E �.e/ < 1. Then:

(vi) The operator H˛ is positive definite if and only if h˛ is positive definite.

(vii) If, in addition, the operator h˛ is lower semibounded, then �ess
0 .H˛/ > 0

(�ess
0 .H˛/ D 0) exactly when �ess

0 .h˛/ > 0 (respectively, �ess
0 .h˛/ D 0).

(viii) Moreover, the equivalence

H�
˛ 2 Sp.L2/ ” h�

˛ 2 Sp.`2/

holds for all p 2 .0;1�. In particular, the negative spectrum of H˛ is dis-
crete if and only if so is the negative spectrum of h˛ .

Here and below for a self-adjoint operator T in a Hilbert space H, �0.T / and
�ess

0 .T / denote the bottoms of its spectrum, respectively, of its essential spectrum,

�0.T / D inf �.T /; �ess
0 .T / D inf �ess.T /:

Moreover,
T �

WD T 1.�1;0/.T /;

where 1.�1;0/.T / is the spectral projection on the negative subspace of T .
As an immediate corollary we obtain the following result for the Kirchhoff

Laplacian.

Corollary 3.2. Let H0 be the minimal Kirchhoff Laplacian on .G ; �; �/ and let also
h0 be the corresponding minimal weighted graph Laplacian defined in `2.V I m/

by (3.7) with ˛ � 0. Then:

(i) The deficiency indices of H0 and h0 are equal and

nC.H0/ D n�.H0/ D n˙.h0/ � 1:

In particular, H0 is self-adjoint if and only if h0 is self-adjoint.

Assume in addition that H0 is self-adjoint (and hence coincides with the maximal
Kirchhoff Laplacian H). Then:

(ii) The spectrum of H is purely discrete if and only if #¹e 2 E W �.e/ > "º is
finite for every " > 0 and the spectrum of the operator h is purely discrete.

Assume also that supe2E �.e/ < 1. Then:

(iii) The operator H is positive definite, �0.H/ > 0 if and only if the operator h
is positive definite, �0.h/ > 0.

(iv) �ess
0 .H/ > 0 exactly when �ess

0 .h/ > 0.

Proof. The proof is a straightforward application of Theorem 3.1 to the case ˛ � 0.
One only needs to take into account that both the minimal Kirchhoff Laplacian H0

and the minimal graph Laplacian h0 are non-negative operators.
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Remark 3.3. A few remarks are in order.

(i) In the case ��.E/ D 1 the weight r can be chosen in many different ways
by changing the threshold 1 in (3.4) to any positive number.

(ii) In the following specific case

inf
e2E

�.e/ > 0;

the choice of r can be further simplified to

r.e/ WD
p

�.e/�.e/; e 2 E:

Notice that if � D � � 1, the assumption infe2E �.e/ > 0 is equivalent to
infe2E jej > 0, which is the most common restriction in the spectral the-
ory of quantum graphs [25, 182]. In this case r.e/ � 1 for all e 2 E and
hence the vertex weight m given by (3.5) is nothing but the combinatorial
degree (2.2).

(iii) In the papers [68, 143] it is assumed that � D � � 1 and supe2E �.e/ D

supe2E jej < 1. Usually, the latter is not a restriction since this condition
can always be achieved by adding inessential vertices, that is by choosing
an appropriate model of a metric graph since this choice does not have any
impact on spectral properties of the corresponding Kirchhoff Laplacian (see
Section 2.4.3). However, this changes the combinatorial structure of the
underlying graph Gd , which is important for our future purposes. This will
be discussed in greater details in Section 3.3.

(iv) Let us also mention that the list of equivalences in Theorem 3.1 is not com-
plete and we refer to, e.g., [68] for further details.

3.2 Graph Laplacians as boundary operators

This section is devoted to the proof of Theorem 3.1, which is based on the boundary
triplets approach (see Appendix A) and essentially follows the lines of [68].

3.2.1 Edge-based boundary triplet

We begin with constructing a suitable boundary triplet for the operator Hmax. First of
all, the following simple fact holds true (cf. [68, Lemma 2.1]).

Lemma 3.4. Let He;max, e 2 E be the maximal operator (2.16). The triplet

z…e D ¹C2; z�0;e; z�1;eº;
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where the mappings z�0;e , z�1;eWH
2.e/ ! C2 are defined by

z�0;eWf 7!

 
f .e{/

f .e� /

!
; z�1;eWf 7!

 
�.e/@f .e{/

�.e/@f .e� /

!
; (3.8)

is a boundary triplet for He;max. The corresponding Weyl function is

zMeW z 7!
p

�.e/�.e/z

 
� cot.�.e/

p
z/ csc.�.e/

p
z/

csc.�.e/
p

z/ � cot.�.e/
p

z/

!
; z 2 C n R:

Next we proceed as follows (see, e.g., [143, Section 4] and also [68, Section 2]):
set

Re WD r.e/ I2; Qe WD lim
z!0

zMe.z/ D
�.e/

jej

�
�1 1

1 �1

�
; (3.9)

where r WE ! .0;1/ is given by (3.3), (3.4). Define the mappings

�0;e WD R1=2
e

z�0;e; �1;e WD R�1=2
e .z�1;e � Qe

z�0;e/;

that is, �0;e , �1;eWH
2.e/ ! C2 are given by

�0;eWf 7!
p

r.e/

 
f .e{/

f .e� /

!
; �1;eWf 7!

�.e/p
r.e/

0@@f .e{/ �
f .e� /�f .e{/

jej

@f .e� / C f .e� /�f .e{/
jej

1A : (3.10)

Clearly, …e D ¹C2; �0;e; �1;eº is also a boundary triplet for He;max. In addition, the
following claim holds (cf. [143, Theorem 4.1] and [68, Theorem 2.2]).

Proposition 3.5. The direct sum of boundary triplets

…E D

M
e2E

…e D ¹HE ; �E
0 ; �E

1 º;

where
HE D

M
e2E

C2; �E
0 WD

M
e2E

�0;e; �E
1 WD

M
e2E

�1;e;

is a boundary triplet for the operator Hmax D
L

e2E He;max.

Proof. Since H�
e;max is a positive symmetric operator for every e 2 E , so is H�

max.
Therefore, we need to apply Theorem A.11 and to verify conditions (A.7). Notice
that for each e 2 E , the corresponding Weyl function is given by

Me.z/ D R�1=2
e . zMe.z/ � Qe/R�1=2

e D
1

r.e/
zMe.z/ �

1

r.e/
Qe:

(i) First of all, straightforward calculations yield that for all e 2 E ,

Me.�1/ D

p
�.e/�.e/

r.e/

 
1

�.e/
� coth �.e/ 1

sinh �.e/
�

1
�.e/

1
sinh �.e/

�
1

�.e/
1

�.e/
� coth �.e/

!
;
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and

M 0
e.�1/ D

p
�.e/�.e/

r.e/

0@ coth �.e/ � �.e/

sinh2 �.e/

�.e/ cosh �.e/

sinh2 �.e/
�

1
sinh �.e/

�.e/ cosh �.e/

sinh2 �.e/
�

1
sinh �.e/

coth �.e/ � �.e/

sinh2 �.e/

1A ;

where r.e/ is given by (3.4). Clearly, kMe.�1/kDmax.j�C.Me/j; j��.Me/j/, where
�C.Me/ and ��.Me/ are the eigenvalues of Me.�1/ given explicitly by

�˙.Me/ D

p
�.e/�.e/

r.e/

�
1

�.e/
� coth �.e/ ˙

�
1

sinh �.e/
�

1

�.e/

��
:

Since j�C.Me/j > j��.Me/j, we get

kMe.�1/k D j�C.Me/j D

p
�.e/�.e/

r.e/

cosh �.e/ � 1

sinh �.e/
D

p
�.e/�.e/

r.e/
tanh

�
�.e/

2

�
:

Similarly, one obtains that

kM 0
e.�1/k D �C.M 0

e/ D

p
�.e/�.e/

r.e/

.sinh �.e/ C �.e//.cosh �.e/ � 1/

2 sinh2 �.e/
;

k.M 0
e.�1//�1

k D
1

��.M 0
e/

D
r.e/p

�.e/�.e/

2 sinh2 �.e/

.sinh �.e/ � �.e//.cosh �.e/ C 1/
;

where �C.M 0
e/ and ��.M 0

e/ are the eigenvalues of M 0
e.�1/.

(ii) Assume first that ��.E/ < 1. Then r.e/ D �.e/jej, e 2 E and in particular,

kMe.�1/k � sup
0<s���.E/

1

s
tanh

�
s

2

�
D sup

0<s���.E/

f .s/:

Since the function f .s/ defined by the right-hand side admits an analytic continuation
at 0, we conclude that supe Me.�1/ < 1. Similar considerations imply that

sup
e

.kM 0
e.�1/k C k.M 0

e.�1//�1
k/ < 1

and hence (A.7) holds true in this case.
(iii) Suppose now that ��.E/ D 1. If e 2 E is an edge with �.e/ > 1, then we

get r.e/ D
p

�.e/�.e/ and hence

kMe.�1/k � sup
s>1

tanh
�

s

2

�
D 1

and

kM 0
e.�1/k � sup

s>1

.sinh s C s/.cosh s � 1/

2 sinh2 s
< 1;

k.M 0
e.�1//�1

k � sup
s>1

2 sinh2 s

.sinh s � s/.cosh s C 1/
< 1:
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On the other hand, if �.e/ � 1, then r.e/ D �.e/jej as in (ii), and the same steps as
there give uniform bounds on kMe.�1/k, kM 0

e.�1/k andk.M 0
e.�1//�1k. Altogether,

we conclude that the condition (A.7) holds true and this completes the proof.

Remark 3.6. It is easy to see that Proposition 3.5 holds true if instead of (3.4) the
weight r is defined as in Remark 3.3 (i).

Clearly, the Weyl function corresponding to the boundary triplet constructed in
Proposition 3.5 has a very transparent form and enjoys some important properties.

Lemma 3.7. The Weyl function corresponding to the boundary triplet …E is given
by

ME.z/ D
M
e2E

Me.z/; Me.z/ D R�1=2
e . zMe.z/ � Qe/R�1=2

e : (3.11)

Moreover:

(i) ME.0/ D OHE
, where

ME.0/ WD s � R � lim
x"0

ME.x/:

(ii) ME.x/ uniformly tends to �1 as x ! �1, that is, for every N > 0 there
is xN < 0 such that for all x < xN , ME satisfies

ME.x/ < �N � IH :

Proof. First of all, (3.11) is immediate from Proposition 3.5. To prove (i), it suffices
to mention that Me.0/ D O2 for all e 2 E .

(ii) Denote by �C
e .x/ and ��

e .x/ the eigenvalues of Me.�x2/. Straightforward
calculations yield

�˙
e .x/ D �x

p
�.e/�.e/

r.e/
�

cosh.�.e/x/ � 1

sinh.�.e/x/
C

�.e/

jejr.e/
.1 � 1/;

and noting that �C
e .x/ < ��

e .x/ < 0 for all x > 0, we get

Me.�x2/ � ��
e .x/I2

D I2 �

8̂̂<̂
:̂

2

�.e/2
�

x

�.e/
coth

�
�.e/x

2

�
if r.e/ D jej�.e/;

2

�.e/
� x coth

�
�.e/x

2

�
if r.e/ D

p
�.e/�.e/:

For an e 2 E with r.e/ D
p

�.e/�.e/, we have �.e/ > 1 and one easily verifies

Me.�x2/ � .2 � x/I2:

If r.e/ D jej�.e/, then �.e/ � C for all such edges e and some uniform constant
C > 0 (e.g., take C D ��.E/ if ��.E/ <1 and C D 1 otherwise). Let us now proceed
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as in the proof of [143, Proposition 4.10] and consider the function

F.s/ D
coth.s/

s
�

1

s2
; s > 0:

Clearly, F is strictly positive and continuous on .0;1/. Moreover, F.s/D 1
3
CO.s2/

as s ! 0 and F 0.s/ D �
1
s2 C O.s�3/ as s ! C1 and hence

inf
s2.0;a/

F.s/ D F.a/ D
1

a
coth.a/ �

1

a2

for all sufficiently large a > 1. It remains to notice that

��
e .x/ D �

x2

2
F

�
�.e/x

2

�
and hence

��
e .x/ � �

x2

2
inf

s2.0;Cx=2/
F.s/ D �

x2

2
F

�
Cx

2

�
D

2

C 2
�

x

C
coth

�
Cx

2

�
� �

x

2C

for all sufficiently large x > 1. Taking into account (3.11), we get

ME.�x2/ � IH inf
e2E

��
e .x/ � �

x

2 max¹1; C º
IH

for all sufficiently large x > 1.

3.2.2 Vertex-based boundary triplet

It will be convenient for us to work with another boundary triplet for Hmax, which can
be obtained from the triplet …E by regrouping all its components with respect to the
vertices. Define

HV D

M
v2V

Cdeg.v/; �V
0 D

M
v2V

�0;v; �V
1 D

M
v2V

�1;v; (3.12)

where

�0;vf D
�p

r.e/fEe.v/
�
Ee2EEv

; (3.13)

�1;vf D

�
�.e/p
r.e/

�
@Eef .v/ � �v.Ee/

f .e� / � f .e{/

jej

��
Ee2EEv

; (3.14)

with �vW
EEv ! ¹�1; 1º denoting the orientation function

�v.Ee/ WD

´
1; Ee 2 EEC

v ;

�1; Ee 2 EE�
v :
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Corollary 3.8. The triplet …V D¹HV ;�V
0 ;�V

1 º given by (3.12)–(3.14) is a boundary
triplet for Hmax.

Proof. For fE D ..fe{
; fe�

//
e2EE

2 HE define the operator UG WHE ! HV by

UG WfE 7! ..fv;Ee/
Ee2EEv

/v2V ; fv;Ee WD

´
fe{

; Ee 2 EEC
v ;

fe�
; Ee 2 EE�

v ;
Ee 2 EEv; v 2 V : (3.15)

Clearly, UG is an isometric isomorphism. Moreover, it is straightforward to check that

�V
0 D UG �E

0 ; �V
1 D UG �E

1 ;

which completes the proof.

Let us also mention other important relations.

Corollary 3.9. The Weyl function MV corresponding to the boundary triplet (3.12)–
(3.14) is given by

MV .z/ D UG ME.z/U �1
G ; (3.16)

where ME is given by (3.11) and UG is the operator defined by (3.15). In particular,
s � R � limx"0 MV .x/ D OHV

and, moreover, MV .x/ uniformly tends to �1 as
x ! �1.

Proof. The proof is straightforward and the last claim is an immediate consequence
of Lemma 3.7 and equality (3.16).

Remark 3.10. Consider the mappings z�E
0 D

L
e2E

z�0;e and z�E
1 D

L
e2E

z�1;e given
by (3.8). If f 2 dom.Hmax/ \ Cc.G /, then

z�V
0 f WD UG

z�E
0 f; z�V

1 f WD UG
z�E

0 f; (3.17)

have the following form:

z�V
0 D

M
v2V

z�0;v and z�V
1 D

M
v2V

z�1;v;

where
z�0;vf D .fEe.v//

Ee2EEv
; z�1;vf D .�.e/@Eef .v//

Ee2EEv
: (3.18)

3.2.3 Boundary operators for Laplacians on metric graphs

Let ‚ be a linear relation in HV and define the following operator:

H‚ WD Hmax � dom.H‚/;

dom.H‚/ WD ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 ‚º;
(3.19)



Connections via boundary triplets 42

where the mappings �V
0 and �V

1 are defined by (3.12)–(3.14). Since …V is a boundary
triplet for Hmax, every proper extension of the operator Hmin has the form (3.19) (see
Theorem A.4) and hence so does H0

˛ . The next result provides the explicit form of
the linear relation parameterizing H0

˛ .

Proposition 3.11. Assume Hypotheses 2.1 and let …V be the boundary triplet (3.12)–
(3.14). Suppose ‚0

˛ is the boundary relation for the operator H0
˛ ,

dom.H0
˛/ D ¹f 2 dom.Hmax/ W .�V

0 f; �V
1 f / 2 ‚0

˛º: (3.20)

Then the operator part ‚
op
˛ of ‚0

˛ is unitarily equivalent to the operator h0
˛ D h0

˛

acting in `2.V Im/ and defined by (3.7) with (3.4), (3.5) and (3.6).

Proof. We divide its proof into several steps.
(i) For each vertex v 2 V , the boundary conditions (2.13) can be written as

zDv
z�1;vf D zCv

z�0;vf;

where we recall that (see (3.18))

z�0;vf D .fEe.v//
Ee2EEv

; z�1;vf D .�.e/@Eef .v//
Ee2EEv

;

and the matrices zCv , zDv 2 Cdeg.v/�deg.v/ are given by

zCv D

0BBBBB@
1 �1 0 : : : 0

0 1 �1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : �1

˛.v/ 0 0 : : : 0

1CCCCCA ; zDv D

0BBBBB@
0 0 0 : : : 0

0 0 0 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 0

1 1 1 : : : 1

1CCCCCA :

It is straightforward to verify the Rofe–Beketov conditions (A.3), that is,

zCv
zD�

v D zDv
zC �

v ; rank. zCvj zDv/ D deg.v/;

holds for all v 2 V , and hence

z‚v WD ¹.f; g/ 2 Cdeg.v/
� Cdeg.v/

W zCvf D zDvgº

is a self-adjoint linear relation in Cdeg.v/. Now set

zC WD

M
v2V

zCv; zD WD

M
v2V

zDv:

Both zC and zD are closed operators in HV . Clearly, f 2 dom.Hmax/\Cc.G / satisfies

zDz�V
1 f D zC z�V

0 f
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if and only if f 2 dom.H0
˛/ D dom.H˛/ \ Cc.G /. In view of (3.17), we get

�V
0 f D RV

z�V
0 f; �V

1 f D R�1
V .z�V

1 � QV
z�V

0 /f

for all f 2 dom.Hmax/ \ Cc.G /, where

RV D UG REU �1
G ; QV D UG QEU �1

G ;

RE D
L

e2E R1=2
e , QE D

L
e2E Qe are defined by (3.9) and UG is given by (3.15).

Hence f 2 dom.H0
˛/ if and only if f 2 dom.Hmax/ \ Cc.G / satisfies

D�V
1 f D C �V

0 f;

where
D D zDRV ; C D . zC � zDQV /R�1

V :

The operators D and C are well defined on HV ;c , which consists of vectors of HV

having only finitely many non-zero coordinates.
(ii) Define the linear relation

‚0
˛ D ¹.f; g/ 2 HV ;c � HV ;c W Cf D Dgº (3.21)

and let H‚0
˛

be the corresponding restriction given by (3.19). By construction, ‚0
˛ is

symmetric and hence so is H‚0
˛

(see Theorem A.4 (i)). Moreover, H0
˛ � H‚0

˛
and it

is straightforward to check that H‚0
˛
� H0

˛ . Then, by Theorem A.4 (i), ‚0
˛ WD ‚0

˛ is
the boundary relation parameterizing (via (3.19)) the minimal operator H0

˛ .
(iii) To proceed further, let f D .fv/v2V 2 HV , where fv D .fv;Ee/

Ee2EEv
. For each

v 2 V , let us denote by Pv the orthogonal projection in HV onto Hv , the subspace
consisting of elements f D .fu/u2V 2 HV with all entries equal zero except fv ,
that is,

.Pvf /u D .ıvufu;Ee/
Ee2EEu

; ıvu D

´
1; u D v;

0; u ¤ v:

By construction, the operators zC , zD, RV (and hence D) commute with Pv . In partic-
ular,

RV D

M
v2V

Rv; Rv D diag
�p

r.e/
�
Ee2EEv

;

and
D D

M
v2V

Dv; Dv D zDvRv D zDv � diag
�p

r.e/
�
Ee2EEv

:

However, the form of QV (and hence of C ) is a bit more complicated:

QV D zQ0
�

M
v2V

Qv; Qv D diag
�

�.e/

jej

�
Ee2EEv

;
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where

.zQ0f /v;Ee D
�.e/

jej
fu;�Ee;

and u 2 V and �Ee 2 EEu are given by

u WD

´
e� ; Ee 2 EEC

v ;

e{ ; Ee 2 EE�
v ;

� Ee WD

´
.�; e/; Ee 2 EEC

v ;

.C; e/; Ee 2 EE�
v :

The operators PvC and PvD are finite rank and hence admit a bounded extension
onto HV . By abusing the notation, we shall denote these extensions by PvC and PvD

as well. It is straightforward to verify that f 2 dom.Hmax/ satisfies (2.13) exactly
when

PvD�V
1 f D PvC �V

0 f:

Therefore, combining the definition of H˛ (see (2.18)) with (A.4), we conclude that
the boundary relation ‚˛ parameterizing H˛ in the sense of (3.19) is explicitly given
by

‚˛ D ¹.f; g/ 2 HV � HV W PvCf D PvDg for all v 2 Vº: (3.22)

In particular, by Theorem A.4 (i), ‚˛ D .‚0
˛/� D .‚0

˛/�.
(iv) By (3.21), mul.‚0

˛/ D ker.D/ (notice that we consider D as the operator
defined only on HV ;c and hence ker.D/ is not closed). On the other hand, (3.22)
implies that

mul.‚˛/ D ¹f 2 HV W PvDf D 0 for all v 2 Vº; (3.23)
and hence

mul.‚˛/ D mul.‚0
˛/ D mul.‚0

˛/:

Therefore, ‚0
˛ is densely defined on H

op
V

WD mul.‚˛/? and hence admits the decom-
position (A.1), that is,

‚0
˛ D ‚0

op ˚ ‚mul; ‚mul D ¹0º � mul.‚˛/; (3.24)

where ‚0
op is the graph of a densely defined closed symmetric operator acting in H

op
V

.
Next observe that

H
op
V

D mul.‚˛/? D ker.D/? D ran.D�/ D span¹fv
ºv2V ;

where fv D .fv
u/u2V 2 Hv is given by

fv
u D .fv

u;Ee
/
Ee2EEu

; fv
u;Ee

D

´p
r.e/; u D v;

0; u ¤ v:
(3.25)

By construction, fv ? fu whenever v ¤ u and

kfv
k

2
D

X
Ee2EEv

r.e/ D m.v/ (3.26)

for all v 2 V .
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Let us now show that fv 2 dom.‚0
˛/ for every v 2 V . It is straightforward to

calculate that

.PuC fv/u D .Pu. zC � zDQV /R�1
V fv/u

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�
0; 0; : : : ; 0; ˛.v/ C

X
w2V

b.v; w/„ ƒ‚ …
deg.v/

�
; u D v;

�
0; 0; : : : ; 0;�b.u; v/„ ƒ‚ …

deg.u/

�
; u ¤ v; u � v;

0; u ¤ v; u 6� v;

where bWV � V ! Œ0;1/ is the weight function given by (3.6). For g 2 HV ;c we
have

.PuDg/u D .Pu
zDRVg/u D

�
0; 0; : : : ; 0;

X
Ee2EEu

p
r.e/ gu;Ee

„ ƒ‚ …
deg.u/

�
:

Therefore, define gv D .gv
u/u2V 2 H

op
V

by

gv
u D .

p
r.e//

Ee2EEu
�

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1

m.v/

�
˛.v/ C

X
w�v

b.v; w/

�
; u D v;

�
b.u; v/

m.u/
; u ¤ v; u � v;

0; u ¤ v; u 6� v:

(3.27)

Clearly, this implies the equality

C fv
D Dgv;

and hence fv 2 dom.‚0
˛/ � dom.‚0

˛/. Moreover, (3.27) immediately implies that

gv
D

1

m.v/

�
˛.v/ C

X
u�v

b.u; v/

�
fv

�

X
u�v

b.u; v/

m.u/
fu

DW ‚0
opfv:

Noting that by construction the family .fv/v2V is an orthogonal basis in H
op
V

and
taking into account (3.26), the above equality implies that the operator part ‚0

op of
‚0

˛ is unitarily equivalent to the minimal operator zh0
˛ defined in `2.V/ by

.z�f /.v/ D
1p

m.v/

�X
u2V

b.v; u/

�
f .v/p
m.v/

�
f .u/p
m.u/

�
C

˛.v/p
m.v/

f .v/

�
(3.28)
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for each vertex v 2 V . More specifically, as usual we define the operator zh0
˛ in `2.V/

as the closure in `2.V/ of the pre-minimal operator

zh0
˛W dom.zh0

˛/ ! `2.V/;

f 7! z�f;

where dom.h0
˛/ WD Cc.V/. It remains to notice that the operators zh0

˛ and h0
˛ are uni-

tarily equivalent. Indeed, it is easy to verify that h0
˛ D U�1zh0

˛U, where

UW `2.V Im/ ! `2.V/;

f 7!
p

mf;
(3.29)

is an isometric isomorphism.

Remark 3.12. In fact, one can write down explicitly the isometric isomorphism
ˆW `2.V I m/ ! H

op
V

relating ‚
op
˛ and h0

˛ . Indeed, we proved that the collection of
vectors .fv/v2V given by (3.25) forms an orthogonal basis in H

op
V

. Moreover, their
norms are given by (3.26), which immediately implies that the map

ˆW `2.V Im/ ! H
op
V

;

a 7!

X
v2V

avfv; (3.30)

is an isometric isomorphism. In particular, this implies the following representation:

‚op
˛ D ¹. f̂; ˆh0

˛f / W f 2 dom.h0
˛/º: (3.31)

3.2.4 Proof of Theorem 3.1

Now we have all the ingredients to finish the proof of the main result of this section.
It is analogous to the proof of [68, Theorem 2.9] and we provide the details for the
sake of completeness.

Proof of Theorem 3.1. Consider the vertex-based boundary triplet …V . Using Propo-
sition 3.11, item (i) follows from Theorem A.4 (iii).

Next, observe that
He;max � ker.�0;e/ DW HF

e

is the Friedrichs extension of He;min D .He;max/�, and hence we conclude that

Hmax � ker.�0/ D
M
e2E

HF
e (3.32)

is the Friedrichs extension of Hmin D .Hmax/�. Moreover,

�.HF
e / D

²
�2n2

�.e/2
W n 2 Z�1

³
; (3.33)
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and hence

inf �.HF / D inf
e2E

inf �.HF
e / D inf

e2E

�2

�.e/2
D

�2

.supe2E �.e//2
: (3.34)

Now item (ii) follows from Theorem A.9 and Corollary 3.9; items (iii)–(iv) as
well as items (vi) and (viii) follow from Theorem A.7 by taking into account Corol-
lary 3.9; item (vii) follows from Theorem A.10.

Finally, (3.32) and (3.33) imply that the spectrum of HF is purely discrete if and
only if #¹e 2 E W �.e/ > "º is finite for every " > 0. Moreover, HF can be written
in the form (3.19) with ‚mul D ¹0º � HV . By Theorem A.4 (iv), the difference of
resolvents satisfies

.H˛ � i/�1
� .HF

� i/�1
2 S1

exactly when .‚˛ � i/�1 � .‚mul � i/�1 is a compact operator. It remains to notice
that .‚mul � i/�1 D OHV

.

We finish this section with the following remark.

Remark 3.13. Notice that (3.19) establishes a bijective correspondence between the
set Ext.Hmin/ of proper extensions of Hmin and the set of all linear relations in HV . In
fact, Theorem 3.1 extends to all operators H‚ and it relates basic spectral properties
of the self-adjoint extension H‚ and the corresponding boundary relation ‚ (see, e.g.,
[68, Theorem 2.9]). In particular, this would be helpful in the treatment of the case
when H0 has non-trivial deficiency indices (cf. Theorem 3.1 (ii)–(viii)) and this will
be done in the next section.

Remark 3.14. Remark 3.13 indicates that the machinery developed in this section
enables us to consider all possible (self-adjoint) vertex conditions (for instance, two
other important families are ı0-couplings and symmetrized ı0-couplings). Moreover,
one may include more general differential expressions including magnetic Schrö-
dinger operators. However, the main difficulty is the search for a suitable boundary
operator, which usually requires separate considerations, and then the study of its
properties (cf., e.g., [143, Section 5-6]). Let us mention that there are strong indi-
cations that one may connect spectral properties (in the sense of Theorem 3.1) of
magnetic Schrödinger operators on metric graphs with those of weighted magnetic
Schrödinger operators on graphs (see [35, Section 3.5]). Moreover, it seems to us that
one may also establish similar connections between Laplacians with ı0-couplings and
symmetrized ı0-couplings and “weighted” Hodge Laplacians on graphs, respectively,
signless Laplacians on graphs (cf. [181]). However, all these require separate consid-
erations and will be done elsewhere.
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3.3 Spectral properties: Metric graphs and models

We restrict ourselves to the case ˛ � 0, that is, in this section we shall consider
Kirchhoff Laplacians only. Our main aim now is to look at Corollary 3.2 from the
continuous-to-discrete perspective. Let .G ; �; �/ be a given weighted metric graph,
that is, G is a locally finite metric graph (as a metric space) and �, � are two edge
weights on G . With each model .V ; E; j � j; �; �/ of .G ; �; �/ we can associate
a weighted graph Laplacian

.�f /.v/ D
1

m.v/

X
u2V

b.v; u/.f .v/ � f .u//; v 2 V ; (3.35)

where m and b are defined by (3.5) and (3.6), respectively. Thus we have the min-
imal Kirchhoff Laplacian H0 on G and the family of minimal graph Laplacians h0

associated with the models of .G ;�;�/. In this situation Corollary 3.2 (i) immediately
implies the following results.

Corollary 3.15. Let .G ; �; �/ be a weighted metric graph and let H0 be the corre-
sponding minimal Kirchhoff Laplacian. Then:

(i) For each model of .G ; �; �/, the deficiency indices of H0 and h0 are equal,

n˙.H0/ D n˙.h0/: (3.36)

(ii) If H0 is self-adjoint, then h0 is self-adjoint for each model. And conversely,
H0 is self-adjoint exactly when h0 is self-adjoint for one (and hence for all)
models of .G ; �; �/.

In order to preserve the equivalences further, the next results require a careful
choice of a model, which motivates the following definition.

Definition 3.16. For a given model .V ; E; j � j; �; �/ of .G ; �; �/, the quantity ��.E/

defined by (3.2) is called the intrinsic size of the model. A model has finite intrinsic
size if ��.E/ < 1. Otherwise, .V ; E; j � j; �; �/ is called a model of infinite intrinsic
size.

A weighted metric graph .G ; �; �/ has finite intrinsic size if all its models are of
finite intrinsic size. Otherwise, .G ; �; �/ has infinite intrinsic size.

We define the essential intrinsic size of a given model with edge set E by

��
ess.E/ WD inf

zE

sup
e2EnzE

�.e/;

where the infimum is taken over all finite subsets zE of E .

Remark 3.17. A few remarks are in order.

(i) The above definition becomes transparent when � D �. Indeed, in this case
�.e/ D jej for all e 2 E and the intrinsic size of a model is simply the length
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of its “longest” edge, that is, ��.E/ D `�.E/, where

`�.E/ D sup
e2E

jej:

In particular, such a model has infinite intrinsic size exactly when there is
an arbitrarily long edge. Similarly,

��
ess.E/ D `�ess.E/ WD inf

zE

sup
e2EnzE

jej;

where the infimum is taken over all finite subsets zE of E .

(ii) The function r in (3.5) is given by (3.3) if the model has finite size and by
(3.4) if it has infinite size.

(iii) The definition of essential intrinsic size can be understood as follows. For
any compact subgraph zG � G and every " > 0, one can always find an edge
in E n zE whose intrinsic length is at least ��

ess.E/ � ". Moreover, for any
" > 0, there is a compact subgraph zG such that the intrinsic length of every
edge e 2 E n zE is smaller than ��

ess.E/C ". In particular, ��
ess.E/ D 0 means

that for any " > 0 there is a compact subgraph zG such that all edges in E n zE

have intrinsic length less than ".

Corollary 3.18. Let .G ; �; �/ be a weighted metric graph such that the correspond-
ing minimal Kirchhoff Laplacian H0 is self-adjoint, H0 D H. Then:

(i) The operator H is positive definite, �0.H/ > 0, if and only if there is a model
of finite intrinsic size such that the corresponding operator h is positive
definite, �0.h/ > 0.

(ii) We have �ess
0 .H/ > 0 exactly when there is a model of finite intrinsic size

such that �ess
0 .h/ > 0.

(iii) If .G ;�; �/ has infinite intrinsic size, then �0.H/ D �ess
0 .H/ D 0 and, more-

over, �0.h/ D �ess
0 .h/ D 0 for all models with finite intrinsic size.

(iv) The spectrum of H is purely discrete if and only if there is a model with zero
essential intrinsic size, ��

ess.E/ D 0 and the spectrum of the corresponding
graph Laplacian h is purely discrete.

(v) If there is a model with ��
ess.E/ > 0, then the essential spectrum of H is not

empty and, moreover, so is the essential spectrum of h for each model with
��

ess.
zE/ D 0.

Proof. By Corollary 3.15, h is self-adjoint, hD h0 for each model of a given weighted
metric graph. Moreover, the operators H and h are both non-negative. Then (i) and (ii)
follow immediately from Corollary 3.2 (iii)–(iv) since one can always find a model
with finite intrinsic size. The same argument together with Theorem 3.1 (v) proves
(iv)–(v).



Connections via boundary triplets 50

Thus it remains to show (iii). In fact, we only need to prove the first claim that

�0.H/ D �ess
0 .H/ D 0

if there is a model of infinite size. However, the Friedrichs extension HF has zero
spectral gap, see (3.34), and hence so does every non-negative self-adjoint restriction
of Hmax.2

Remark 3.19. Notice that one can always find a model with ��
ess.E/ D 0 by refining

(even if .G ; �; �/ has infinite intrinsic size). Indeed, for each model the edge set E is
countable and hence one can obtain a new model satisfying ��

ess.
zE/ D 0 by “cutting”

an edge into equally short pieces; then the next edge into shorter ones, and so on.

Let us stress the following fact. The above results demonstrate that a Kirchhoff
Laplacian shares some properties with the corresponding graph Laplacians for each
model (e.g., self-adjointness), however, for some properties the class of models must
be sufficiently good in a certain sense. For instance, strict positivity of spectra/essen-
tial spectra requires models having finite intrinsic size, ��.E/ < 1. Discreteness (that
is, compactness of resolvents) requires even a more refined choice (essential intrinsic
size must be zero, ��

ess.E/ D 0). On the other hand, Corollary 3.18 demonstrates that
if the set of models is in a certain sense too wide (for instance, there are models
having infinite size), then the corresponding Kirchhoff Laplacian cannot have the
required property (e.g., positive spectral gap). However, in the latter case the absence
of a required property is shared with all graph Laplacians arising from all reasonable
models.

We would like to finish with a result which sheds light on the situation when
the deficiency indices of H0 are non-trivial. However, first we need the following
useful fact.

Lemma 3.20. Let .G ; �; �/ be a weighted metric graph together with the minimal
Kirchhoff Laplacian H0. If n˙.H0/ > 0, then for each model the map

zh 7! zH D Hz‚ WD Hmax � ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 z‚º;

z‚ WD ‚mul ˚ ¹. f̂; ˆzhf / W f 2 dom.zh/º
(3.37)

is a bijection between the sets ExtS .h0/ and ExtS .H0/ of self-adjoint extensions
of h0 and H0. Here ¹HV ; �V

0 ; �V
1 º is the vertex-based boundary triplet defined in

Section 3.2.2, the map ˆ and the multivalued part ‚mul are given by (3.30) and,
respectively, (3.23).

Proof. The existence of a bijection is a trivial consequence of von Neumann’s formu-
las in view of (3.36), however, we would like to give another proof based on the use

2In fact, following line by line the argument of M. Solomyak in [196, Theorem 5.1], one
can show in this case that the whole semi-axis Œ0;1/ belongs to the spectrum of H.
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of the boundary triplets approach, which enables us to connect self-adjoint extensions
of H0 and h0 in a rather transparent way.

Take a self-adjoint extension zH 2 Ext.H0/ of H0. Then for a chosen model it
admits the representation (3.19), that is, there exists a self-adjoint linear relation z‚

in HV such that3

dom.zH/ D ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 z‚º: (3.38)

By Theorem A.4 (i), z‚ is a self-adjoint extension of the linear relation ‚0 param-
eterizing H0 via (3.20). As it was mentioned in the proof of Proposition 3.11, ‚0

admits the representation (3.24). Similarly, z‚ admits an analogous decomposition.
Moreover, the multivalued parts of ‚0 and z‚ coincides, that is, ‚mul D z‚mul, since
both ‚mul and z‚mul are self-adjoint relations (or since mul.‚0/ D mul.‚/). There-
fore, z‚op is a self-adjoint extension of ‚0

op in H
op
V

. Taking into account (3.31), every
self-adjoint extension of ‚0 has the form

z‚ D ‚mul ˚ ¹. f̂; ˆzhf / W f 2 dom.zh/º;

where zh is a self-adjoint extension of h0.

Remark 3.21. In fact, one can rewrite the map (3.37) in a more convenient form and
this will be done in Chapter 4 (see Lemma 4.7 below).

Lemma 3.20 provides us with a map establishing a one-to-one correspondence
between self-adjoint extensions of H0 and h0. It turns out that their spectral properties
are closely connected as well:

Theorem 3.22. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Suppose

n˙.H0/ > 0;

and zH 2 ExtS .H0/. If zh 2 ExtS .h0/ is the self-adjoint extension corresponding to zH
via (3.37). Then:

(i) zH is lower semibounded if and only if zh is lower semibounded.

(ii) zH is non-negative if and only if zh is non-negative.

(iii) The total multiplicities of negative spectra of zH and zh coincide,

��.zH/ D ��.zh/:

(iv) The spectrum of zH is purely discrete if and only if the model satisfies
��

ess.E/ D 0 and the spectrum of zh is purely discrete.

If additionally the corresponding model has finite intrinsic size, ��.E/ < 1, then:

(v) zH is positive definite if and only if zh is positive definite.

3Taking into account Theorem A.4, in fact z‚ is given by z‚D¹.�V
0

f;�V
1

f / W f 2dom.zH/º.
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(vi) If, in addition, the extension zH is lower semibounded, then �ess
0 .zH/ > 0

(�ess
0 .zH/ D 0) exactly when �ess

0 .zh/ > 0 (respectively, �ess
0 .zh/ D 0).

(vii) Moreover, the equivalence

zH�
2 Sp.L2/ ” zh�

2 Sp.`2/

holds for all p 2 .0; 1�. In particular, negative spectra of zH and zh are
discrete simultaneously.

The proof is an immediate corollary of Lemma 3.20 and Remark 3.13 and we
leave it to the reader.

Remark 3.23. In fact, Theorem 3.22 specifies the properties of the map (3.37) when
it is further restricted to certain subclasses of self-adjoint extensions. Namely, items
(i)–(iii) say that the map (3.37) is a bijection between the sets of semibounded/non-
negative/self-adjoint extensions. According to items (v) and (vi), (3.37) is a bijection
between self-adjoint extensions having a positive spectral gap/positive essential spec-
tral gap, however, only if the corresponding model of a weighted metric graph has
finite intrinsic size.

Remark 3.24 (Laplacians with ı-couplings). It is not difficult to notice that Lem-
ma 3.20 extends to the operator H0

˛ with ˛ 6� 0 in an obvious way. Taking into
account that the representation (3.37) is the key to prove Theorem 3.22, it is then
straightforward to see that the analog of Theorem 3.22 holds true for the operator H˛

with non-trivial ˛.

3.3.1 Historical remarks

The fact that the boundary triplets machinery is a convenient tool to investigate finite
and infinite metric graphs was realized in the 2000s (the literature is enormous and
we only refer to [35, 67, 182], which also contain further references). However, in
all these studies it was assumed that edge lengths admit a uniform positive lower
bound (infe2E �.e/ > 0 in our notation). Notice that in contrast to the finite intrinsic
size assumption (which can always be achieved by subdividing edges), this “uniform
positive lower bound” assumption, which is rather common in the quantum graph lit-
erature [25,182], is indeed a restriction. The main obstacle on this way is to construct
a boundary triplet for the maximal operator Hmax. A convenient approach to con-
struct such a triplet was proposed by M.M. Malamud and H. Neidhardt in [156] (see
Theorem A.11). This technique was applied in [143] to investigate one-dimensional
Schrödinger operators with local point interactions on discrete sets and then in [68]
to Laplacians on unweighted metric graphs (� D � � 1).


