
Chapter 4

Connections between parabolic properties

This chapter is dedicated to correspondences between Kirchhoff Laplacians and dis-
crete graph Laplacians on the level of Markovian extensions and parabolic properties
(e.g., recurrence, stochastic completeness, on-diagonal heat kernel estimates).

4.1 Markovian extensions

As in Section 3.3, let .G ; �; �/ be a weighted metric graph (as a metric space). The
discussion below is independent of the choice of a concrete model, however, one can,
of course, choose a model .V ;E; j � j;�;�/ and look then at .G ;�;�/ as its metric real-
ization. Let also H0 be the corresponding minimal Kirchhoff Laplacian in L2.G I�/.
We start by collecting some basic properties of Markovian extensions, that is, of self-
adjoint extensions whose quadratic form is a Dirichlet form (see Appendix B for
definitions and further facts). First of all, recall that H 1.G / is the weighted Sobolev
space defined by (2.20). When equipped with the graph norm (2.21), it turns into
a Hilbert space. It is clear that the energy form

QŒf � D

Z
G

jrf .x/j2�.dx/; (4.1)

when restricted to dom.QN /DH 1.G /, is a Dirichlet form on L2.G I�/ and hence the
corresponding Neumann Laplacian HN is a Markovian extension of H0. Moreover,
the quadratic form QD of the Friedrichs extension of H0, which coincides with the
Dirichlet Laplacian HD , is the restriction of Q to the subspace H 1

0 .G /. Recall that
H 1

0 .G / is defined as the closure of dom.H/ \ Cc.G / with respect to k � kH 1.G / and
hence QD is a regular Dirichlet form. It is well known that the Dirichlet and Neumann
Laplacians play a rather distinctive role among the Markovian extensions of H0.

Lemma 4.1. If zH is a Markovian extension of H0, then dom.zH/ � H 1.G / and

HN � zH � HD; (4.2)

where the inequalities are understood in the sense of forms.1 Moreover, the following

1We shall write A�B for two non-negative self-adjoint operators A and B if their quadratic
forms tA and tB satisfy dom.tB/ � dom.tA/ and tAŒf � � tB Œf � for every f 2 dom.tB/. The
latter is also equivalent to the fact that .A C I /�1 � .B C I /�1 is a positive operator.
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statements are equivalent:

(i) H0 admits a unique Markovian extension,

(ii) HD D HN ,

(iii) H 1
0 .G / D H 1.G /,

(iv) the Gaffney Laplacian HG is self-adjoint.

Proof. The proof of [99, Theorem 5.2] carries over to our setting (see also the proof
of [78, Theorem 3.3.1]).

An analogous result holds true for weighted graph Laplacians (see [99]). Namely,
fix a model .V ; E; j � j; �; �/ and let h0 be the graph Laplacian defined in `2.V Im/

by (3.7) with the coefficients (3.5) and (3.6) (notice that ˛ � 0). In most of this
chapter we are going to consider exactly this graph Laplacian, which is related to
the Kirchhoff Laplacian. We shall see in Chapter 6 that this is not at all a restriction.
Following the considerations in Section 2.2, we can introduce the Dirichlet hD and
the Neumann hN Laplacians. Namely, define the energy form by

qŒf� WD
1

2

X
u;v2V

b.u; v/jf.u/ � f.v/j2; (4.3)

with the edge weight

b.u; v/ D

8̂̂<̂
:̂

X
Ee2EEuWe2Ev

�.e/

jej
; u ¤ v;

0; u D v;

.u; v/ 2 V � V ; (4.4)

and denote by dom.qN / the space of all `2.V Im/-functions f such that qŒf� is finite.
Clearly, the restriction qN of q to dom.qN / is a Dirichlet form. The corresponding
self-adjoint operator hN is a Markovian extension of h0 and we refer to it as the Neu-
mann extension. Moreover, the Friedrichs extension hD is also a Markovian extension
of h0 and we call it the Dirichlet extension. Its quadratic form qD is obtained by
restricting qN to the domain dom.qD/, which is the closure of dom.h0/ with respect
to the graph norm

k � k
2
H 1.V/

WD qŒ � � C k � k
2
`2.V Im/

:

Let us also denote

H 1.V/ D H 1.V ; mI b/ WD dom.qN /;

H 1
0 .V/ D H 1

0 .V ; mI b/ WD dom.qD/:

The analog of Lemma 4.1 for the discrete operator h0 now reads (see [99, Theo-
rem 5.2]): If zh is a Markovian extension of h0, then dom.zh/ � H 1.V/ and

hN � zh � hD: (4.5)
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4.2 Brownian motion and random walks

The framework of Dirichlet forms relates the energy forms (4.1) and (4.3) with stoch-
astic processes (Brownian motions and, respectively, random walks) and we will
review certain connections known on this level. We will not need these stochastic
results in the sequel and hence restrict to a rather informal discussion. However, in
our opinion this viewpoint is conceptually important and gives a good motivation for
subsequent considerations.

We follow the setup in Section 4.1: .G ; �; �/ is a weighted metric graph and
QD is the corresponding (strongly local) Dirichlet form in L2.G /. Moreover, we fix
a model of .G ; �; �/ and consider the corresponding form qD in `2.V Im/ associated
with (4.3) and (4.4), where mW V ! .0; 1/ is the vertex weight (3.5). By defini-
tion, both QD and qD are regular Dirichlet forms and hence they correspond to two
stochastic processes .XG

t /t�0 and .XV
t /t�0 (see Remark B.3).

The stochastic process .XV
t /t�0 defined by qD is a continuous-time random walk

(see [12, Remark 5.7], [136, Sections 0.10 and 2.5] and [174] for details and further
information). Roughly speaking, a particle starting at some vertex v 2 V first waits
for a random waiting time, which is exponentially distributed with parameter

1

m.v/

X
u2V

b.u; v/ D Deg.v/; v 2 V (4.6)

(which is called the weighted degree in Section 2.2), and then jumps to a randomly
chosen vertex u 2 V . Here, the probability of jumping from v to u is given by

p.u; v/ D
b.u; v/P

u2V b.u; v/
; u; v 2 V : (4.7)

Repeating the same steps for the vertex u and continuing in this manner, we end up
with a continuous-time random walk. Notice that the expected waiting time of the
particle at the vertex v equals 1=Deg.v/. In particular, according to Lemma 2.9, the
boundedness of hD is equivalent to the existence of a uniform positive lower bound
for expected waiting times.

On the other hand, the stochastic process .XG
t /t�0 associated with QD is a

Brownian motion on a metric graph (see, e.g., [72, Section 2], [64, Section 2] and
[154, Section 2]). It admits the following informal description: assume that the parti-
cle starts at the vertex v 2 V . Let B D .Bt /t�0 denote the standard Brownian motion
on R started at the origin. For each excursion of B, we randomly pick an oriented
edge Ee 2 EEv with probability

P.v; Ee/ D
�.e/P

Ee2EEv
�.e/

; Ee 2 Ev:

The excursions are then performed successively in the corresponding edges e 2 Ev ,
starting from v (for a loop edge, the orientation of Ee needs to be taken into account),
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however with different speeds. Namely, if Ee1 is the first chosen edge, then in the first
excursion the particle is at position jB�.e1/t=�.e1/j instead of jBt j inside e1 and so
on. This is performed until we reach a new vertex u 2 V n ¹vº. Then we repeat the
construction with u as the starting vertex and continue in the same manner.

To make the connection between the two processes .XG
t /t�0 and .XV

t /t�0, we
briefly recall the results of [72]. Denote by T the first hitting time of the Brownian
motion, that is, the first time that the Brownian motion started at some vertex hits
a different vertex. Then the expected value of T , if the Brownian motion starts at
v 2 V , is given by (see [72, Theorem 2.2])

EvT D

P
Ee2EEv

jej�.e/P
w¤v

P
e2Ew\Ev

�.e/
jej

; v 2 V : (4.8)

Then the next natural question is which of the neighboring vertices gets hit at the
time T . By [72, Theorem 2.1], if the Brownian motion starts at v 2 V , then for each
u � v, u ¤ v, the probability of being this next vertex is precisely

P v.XG
T D u/ D

P
e2Eu\Ev

�.e/
jejP

w¤v

P
e2Ew\Ev

�.e/
jej

: (4.9)

Comparing (4.6) with (4.8) and (4.7) with (4.9), we see that if m is defined by
(3.5) with the weight r.e/ given by (3.3) and b by (3.6), they coincide. In fact, the
above discussion shows that to a certain extent the continuous-time random walk
associated with qD is a discretization of the Brownian motion defined by QD . This
can be taken as a first indication for connections between parabolic properties. How-
ever, we also stress that already the second moments of the hitting and waiting times
differ (see [72, Theorem 2.3]).

4.3 Correspondence between quadratic forms

A more straightforward approach to establish connections between weighted Kirch-
hoff Laplacians and weighted graph Laplacians is to compare their quadratic forms.
Fix a model .V ; E; j � j; �; �/ of .G ; �; �/ and consider the space of continuous edge-
wise affine functions on G ,

CA.G n V/ WD ¹f 2 C.G / W f je is affine for each edge e 2 Eº:

The importance of CA.G n V/ stems from the fact that it contains the kernel ker.H/

of the maximal Kirchhoff Laplacian H, as well as all harmonic functions on G , as
a subspace (see Section 6.5.2). Clearly, for each refinement of a given model the
corresponding space of edgewise affine functions is larger.
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Every function f 2CA.G nV/ can be identified with its values f jV D .f .v//v2V

at the vertices. Conversely, we can identify each f2C.V/ with a continuous edgewise
affine function f 2 CA.G n V/ such that f D f jV D .f .v//v2V . This suggests to
define the map

{V WC.G / ! C.V/;

f 7! f jV :
(4.10)

Notice that this map is linear. Moreover, it is bijective when restricted to CA.G n V/.
In the following we shall denote by {�1

V
the inverse of its restriction to CA.G n V/.

Clearly, when restricted to bounded edgewise affine functions, {V is a bijection onto
`1.V/. The situation is not so trivial when 1 � p < 1, as the next result shows.
Recall that (see Definition 3.16) a model of a weighted metric graph has finite intrinsic
size if

��.E/ D sup
e2E

�.e/ D sup
e2E

jej

s
�.e/

�.e/
< 1: (4.11)

Moreover, we define the vertex weight m by (3.5) with r given by (3.3) for models
having finite intrinsic size and by (3.4) otherwise.

Lemma 4.2. If f 2CA.G nV/\Lp.G I�/, 1�p <1, then fD {V .f /2 `p.V Im/,
where m is the vertex weight (3.5), (3.3)–(3.4). If additionally the underlying model
has finite intrinsic size, then the inclusion f 2 `p.V Im/ implies that the corresponding
continuous edgewise affine function f D {�1

V
.f/ belongs to Lp.G I�/ and, moreover,

kf k
p

Lp.G I�/
� kfkp

`p.V Im/
� 4p

kf k
p

Lp.G I�/
: (4.12)

Proof. Consider the case p D 1 first. Then

`

4
.jf .0/j C jf .`/j/ �

Z `

0

jf .x/j dx �
`

2
.jf .0/j C jf .`/j/; (4.13)

for each affine function on 	` D Œ0; `� and hence

kf kL1.G I�/ D

Z
G

jf .x/j�.dx/ D
X
e2E

Z
e

jf .x/j�.dx/

�
1

4

X
e2E

jej�.e/.jf .e{/j C jf .e� /j/;

whenever f 2 CA.G n V/. However, by (3.3)–(3.4),

r.e/ � jej�.e/ (4.14)

for all e 2 E , and hence (3.5) implies the estimate

kf kL1.G I�/ �
1

4
k{V .f /k`1.V Im/ D

1

4
kfk`1.V Im/:
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The case p > 1 easily follows from the above considerations. Indeed, applying
Hölder’s inequality to the left-hand side in (4.13) together with the simple inequality

.a C b/p
� ap

C bp; a; b;� 0; p � 1;

we get from (4.13) the following estimate for edgewise affine functions:

4p

Z
e

jf .x/jp�.dx/ � jej�.e/.jf .e{/j
p
C jf .e� /jp/; e 2 E:

Summing up over all edges and taking into account (4.14), we finally arrive at the
estimate

4p
kf k

p

Lp.G I�/
� k{V .f /k

p

`p.V Im/
D kfkp

`p.V Im/
:

This proves the first claim as well as the second inequality in (4.12).
Assume now that the model has finite intrinsic size. Then r is defined by (3.3)

and hence for f D {�1
V

.f/ 2 CA.G n V/ we get

kf k
p

Lp.G /
D

X
e2E

Z
e

jf .x/jp�.dx/

�

X
e2E

jej�.e/ max
x2e

jf .x/jp

�

X
e2E

jej�.e/.jf .e{/j
p
C jf .e� /jp/

�

X
v2V

jf.v/jpm.v/ D kfkp

`p.V Im/
:

This clearly implies the first estimate in (4.12) and finishes the proof.

Remark 4.3. A few remarks are in order.

(i) Considering CA.G n V/ \ Lp.G I �/ as a Banach space with the corre-
sponding Lp norm, the above result actually says that {V is a bounded
linear operator from CA.G nV/\Lp.G I�/ to `p.V Im/ for all 1� p <1

(however, for p D1 this claim is trivial) and this is true for each model of
a given weighted metric graph. However, this map has a bounded inverse
exactly when the model has finite intrinsic size.

(ii) The estimate in (4.12) is not optimal. In particular, in the case p D 2 the
arguments from [68, Remark 3.8] (see also [149, Section 2.5]) show that

2kf k
2
L2.G I�/

� kfk2
`2.V Im/

� 6kf k
2
L2.G I�/

;

for any model of finite intrinsic size (for models of infinite intrinsic size,
only the second inequality is valid).
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(iii) Let us also mention that if f 2 CA.G nV/ is non-negative, f � 0, then the
second inequality in (4.13) turns into equality. Therefore, if the underlying
model has finite intrinsic size, we end up with the equality

kf kL1.G I�/ D
1

2
k{V .f /k`1.V Im/ D

1

2
kfk`1.V Im/ (4.15)

for all 0 � f 2 CA.G n V/ \ L1.G I�/.

The crucial fact for our further considerations is the observation that the above
results can be extended to the H 1 setting:

Corollary 4.4. If f 2 CA.G n V/ \ H 1.G /, then f D {V .f / belongs to H 1.V/ and

QŒf � D qŒf�: (4.16)

Conversely, if f 2 H 1.V/ and the underlying model has finite intrinsic size, then
f D {�1

V
.f/ 2 H 1.G /.

Proof. Taking into account the relationship established in Lemma 4.2, we only need
to mention that for f 2 CA.G n V/ the energy forms (4.1) and (4.3) coincide upon
identification (4.10):

QŒf � D

Z
G

jrf .x/j2�.dx/

D

X
e2E

Z
e

jrf .x/j2�.dx/

D

X
e2E

�.e/

jej
jf .e{/ � f .e� /j2

D
1

2

X
u;v2V

b.v; u/jf.v/ � f.u/j2 D qŒf�:

Every continuous function f on G can be uniquely decomposed as

f D flin C f0; (4.17)

where both flin and f0 are continuous functions on G , however, flin is edgewise affine
on G , flin 2 CA.G n V/ and f0 vanishes at all vertices, that is,

flinjV D f jV ; f0jV D 0:

Notice also the following identity flin D .{�1
V

ı {V /.f / in terms of (4.10). Now we
are in a position to state the key technical result connecting the energy forms (4.1)
and (4.3). For convenience matters, let us introduce the following notation:

H 1
0 .G n V/ D ¹f 2 H 1.G / W f jV D 0º:
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Lemma 4.5. Let f 2 H 1.G / and consider its decomposition (4.17). If (4.11) is sat-
isfied, then f0 2 H 1

0 .G n V/, flin 2 H 1.G / and

QŒf � D QŒflin� C QŒf0�: (4.18)

Moreover, f D {V .f / belongs to H 1.V/ and

QŒflin� D qŒf�:

Proof. A straightforward edgewise integration by parts gives

QŒf � D
X
e2E

Z
e

jrf .x/j2�.dx/

D

X
e2E

Z
e

jrflin.x/j2 C jrf0.x/j2 �.dx/

D

Z
G

jrflin.x/j2�.dx/ C

Z
G

jrf0.x/j2�.dx/ D QŒflin� C QŒf0�:

The latter implies that if f is continuous and has finite energy (i.e., it is edgewise
in H 1 and QŒf � < 1), then both summands on the right-hand side in (4.17) have
finite energy. In particular, (4.18) holds for all continuous edgewise H 1 functions
on G .

Taking into account the trivial estimateZ jej

0

jf .x/j2 dx �
jej2

�2

Z jej

0

jf 0.x/j2 dx;

which holds for any f 2 H 1
0 .Œ0; jej�/, we get

kf0kL2.G I�/ �
��.E/

�
krf0kL2.G I�/: (4.19)

Therefore, f0 2 L2.G I�/ whenever (4.11) holds true and f0 has finite energy. This
immediately implies that flin 2 H 1.G / if so is f and (4.11) holds. It remains to apply
Corollary 4.4.

Remark 4.6. The constant in (4.19) is optimal since so are the corresponding con-
stants in one-dimensional inequalities for H 1

0 functions (see also (3.33)).

To emphasize the role of the map (4.10), let us provide another way to write down
the correspondence between self-adjoint extensions of the minimal Kirchhoff Laplac-
ian H0 and the corresponding minimal graph Laplacian h0established in Lemma 3.20.
For a self-adjoint extension zH 2 ExtS .H0/ of H0 define the operator zh in `2.V Im/

by setting

zh WD h � dom.zh/; dom.zh/ D ¹{V .f / W f 2 dom.zH/º; (4.20)

where h D .h0/� is the maximal graph Laplacian.
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Lemma 4.7. Let H0 be the minimal Kirchhoff Laplacian with possibly non-trivial
deficiency indices, n˙.H0/ � 0. If zH 2 ExtS .H0/, then the operator zh defined by
(4.20) is a self-adjoint extension of h0. Moreover, the induced map

ExtS .H0/ ! ExtS .h0/;

zH 7! zh
(4.21)

is a bijection. The inverse image of a self-adjoint extension zh of h0 is the extension

zH WD H � dom.zH/; dom.zH/ D ¹f 2 dom.H/ W {V .f / 2 dom.zh/º: (4.22)

Proof. First of all, let us show that the map is well defined, that is, zh is indeed a self-
adjoint restriction of h. Recall that zH admits the representation (3.38) and, moreover,
by Lemma 3.20, there is a self-adjoint extension yh 2 ExtS .h0/ such that

z‚ D ‚mul ˚ ¹. f̂; ˆyhf / W f 2 dom.yh/º:

The Kirchhoff conditions at vertices imply that (see (3.13) and (3.25), (3.30))

�V
0 f D

X
v2V

f .v/fv
D ˆ.{V .f // (4.23)

for all f 2 dom.H/. Therefore, by (3.38),

dom.yh/ D ˆ�1.dom.z‚// D dom.zh/:

Thus, by (4.20), we have zh D yh 2 ExtS .h0/. Moreover, this also implies that the map
(4.21) coincides with the inverse of the map (3.37) and hence (4.21) is a bijection by
Lemma 3.20.

It remains to prove the last claim. However, by definition, we have

dom.zH/ � ¹f 2 dom.H/ W {V .f / 2 dom.zh/º

D ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 ‚; {V .f / 2 dom.zh/º:

Taking into account the decomposition

‚ D ‚mul ˚ ¹.ˆf; ˆ hf/ W f 2 dom.h/º;

as well as (4.23), it is clear that (4.22) coincides with (3.37), which proves the claim.

Remark 4.8. Since the map (4.20)–(4.21) coincides with the inverse of the map
(3.37), Theorem 3.22 (see also Remark 3.23) implies that (4.20) remains to be a bijec-
tion when it is further restricted to certain subclasses of self-adjoint extensions (e.g.,
semibounded, non-negative, etc.).

It turns out that the simple correspondence in Lemma 4.7 also prevails on the
level of quadratic forms.
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Corollary 4.9. Suppose that zH 2 ExtS .H0/ is a self-adjoint extension of H0 and let
zh 2 ExtS .h0/ be the self-adjoint extension of h0 defined by (4.20). Then

hzHf; f iL2.G I�/ D hzh f; fi`2.V Im/ C

Z
G

jrf0.x/j2 �.dx/ (4.24)

for all f 2 dom.zH/, where f D {V .f / and f0 is the function defined by (4.17). In
particular, f0 has finite energy, QŒf0� D krf0k

2
L2.G I�/

< 1 for every f 2 dom.zH/.

Proof. Take f 2 dom.zH/ and consider f D {V .f /, which belongs to dom.zh/ by def-
inition. Using the same notation as in the proof of Lemma 3.20 and Lemma 4.7, we
conclude from (4.23) that

hzh f; fi`2.V Im/ D hzhˆ�1�V
0 f; ˆ�1�V

0 f i`2.V Im/

D h�V
1 f; �V

0 f iHV

D h�E
1 f; �E

0 f iHE
:

Here, …E and …V denote the edge-based and vertex-based boundary triplets intro-
duced in Theorem 3.5 and Corollary 3.8 in Section 3.2.2. Decompose f 2 dom.zH/

as f D f0 C flin (see (4.17)). A straightforward edgewise integration by parts gives
(see (3.10))

hzHf; f iL2.G / D

X
e2E

�h�f; f iL2.eI�/

D

X
e2E

h�1;ef; �0;ef iC2 C hrf0;rf iL2.eI�/

D

X
e2E

h�1;ef; �0;ef iC2 C

X
e2E

hrf0;rf iL2.eI�/

D h�E
1 f; �E

0 f iHE
C

X
e2E

hrf0;rf iL2.eI�/:

Notice that we can rearrange sums. Indeed, both .�0;ef /e2E and .�1;ef /e2E belong
to HE by Theorem 3.5 and hence the first sum is absolutely convergent. Taking into
account that f0 vanishes on V , we get

hrf0;rf iL2.eI�/ D hrf0;rf0iL2.eI�/ � 0

for all e 2 E , which implies that the second series is also absolutely convergent and
equals the energy QŒf0� of f0. This finishes the proof of equality (4.24).

Remark 4.10. Notice that Theorem 3.1 (i) states that the sets of self-adjoint exten-
sions of H0 and h0 are in one-to-one correspondence and the concept of boundary
triplets provides the explicit correspondence which, however, requires a construction
of a suitable boundary triplet. From this perspective, Lemma 4.7 and Corollary 4.9
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connect self-adjoint extensions via quadratic forms and this approach has its roots in
the pioneering works of M. G. Krein, M. I. Vishik and M. S. Birman in the 1950s on
boundary value problems for elliptic PDEs (see, e.g., [56] for more details). However,
let us emphasize that the decomposition (4.24) is usually established under the addi-
tional assumption that the corresponding symmetric operator is uniformly positive,
see [158, f-la (25)] (in our setting this would mean that the Dirichlet Laplacian HD

has positive spectral gap).

4.4 Correspondence between Markovian extensions

According to (4.2) and (4.5), the sets ExtM .H0/ and ExtM .h0/ of Markovian exten-
sions are nonempty. Lemma 3.20 as well as Lemma 4.7 show that first of all, the
sets of self-adjoint extensions ExtS .H0/ and ExtS .h0/ are in bijection, and, what is
more important, each self-adjoint extension of h0 can be seen as a boundary operator
parameterizing the corresponding self-adjoint extension of H0. The further corre-
spondence between their spectral properties indicates that one can hope that (4.20)
and (4.21) induce a bijection between the sets ExtM .H0/ and ExtM .h0/ and we shall
see that this is indeed the case.

It turns out that the correspondence between Markovian extensions can be con-
veniently explained using the notion of extended Dirichlet spaces (see Appendix B.3
for details) and we need to introduce the following function spaces. Let .G ; �; �/

be a weighted metric graph together with a fixed model. Recall that the energy of
a continuous, edgewise H 1-function f WG ! C is given by

QŒf � WD krf k
2
L2.G I�/

D

Z
G

jrf .x/j2 �.dx/: (4.25)

The space of functions of finite energy is defined as

PH 1.G / WD ¹f 2 C.G / W f je 2 H 1.e/ for all e 2 E; QŒf � < 1º;

and its subspace of functions vanishing on the vertex set is denoted by PH 1
0 .G n V/,

PH 1
0 .G n V/ WD ¹f 2 PH 1.G / W {V .f / � 0º:

Let us stress at this point that in contrast to the Sobolev space H 1.G / we do not
require f to belong to L2.G I�/ (for example, 1 always belongs to PH 1.G /, however,
1 2 H 1.G / exactly when �.G / < 1).

Since PH 1.G / � C.G /, each f 2 PH 1.G / can be decomposed into f D flin C f0

as in (4.17) and, moreover, we easily get (see the proof of Lemma 4.5)

QŒf � D QŒflin� C QŒf0�; (4.26)
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which implies that flin 2 PH 1.G / and f0 2 PH 1
0 .G n V/ whenever f 2 PH 1.G /. More-

over, the calculations in the proof of Corollary 4.4 imply that

QŒflin� D qŒf� D
1

2

X
u;v2V

b.v; u/jf.v/ � f.u/j2;

where f D {V .f / D {V .flin/. In particular, this means that a function f 2 C.V/ has
finite energy, qŒf� < 1 exactly when the corresponding edgewise affine function
flin D {�1

V
.f/ 2 CA.G n V/ has finite energy. In contrast to the usual Sobolev space

H 1.G /, the above decomposition holds for all models of a given metric graph (see
Lemma 4.5) and exactly this fact makes the use of extended Dirichlet spaces very
convenient. In particular, a similar decomposition holds for all Markovian extensions
and the corresponding extended Dirichlet spaces.

Lemma 4.11. Let zH be a Markovian extension of the minimal Kirchhoff Laplacian
H0 and zQeWdom. zQe/ ! Œ0;C1/ the corresponding extended Dirichlet form. Then:

(i) dom. zQe/ � PH 1.G /.

(ii) PH 1
0 .G n V/ � dom. zQe/ and for each f0 2 PH 1

0 .G n V/

zQeŒf0� D QŒf0�:

(iii) Each f 2 dom. zQe/ has an approximating sequence .fn/n � dom.zH/.

(iv) If f D flin C f0 2 dom. zQe/, then flin 2 dom. zQe/, f0 2 PH 1
0 .G n V/ and

zQeŒf � D zQeŒflin� C QŒf0�:

Proof. (i) By Lemma 4.1, HN � zH. Moreover, it is easy to observe that the extended
Dirichlet space for QN is contained in PH 1.G /, which implies the desired inclusion.

(ii) For each f0 2 PH 1
0 .G n V/ there exists a sequence .fn/n � dom.H/ \ Cc.G /

such that each fn vanishes in a neighborhood of all vertices and

lim
n!1

QŒf0 � fn� D 0:

The claim now follows easily from Corollary 4.9.
(iii) This is an immediate consequence of the fact that dom.zH/ is a core of

dom. zQ/ and convergence in the graph norm of zQ implies uniform convergence on
compact subsets of G .

(iv) Take f D flin C f0 2 dom. zQe/. By (i), f0 2 PH 1
0 .G n V/ and hence (ii) im-

plies that flin 2 dom. zQe/. By (iii), pick an approximating sequence .fn/n � dom.zH/

for f with fn D fn;0 C fn;lin for each n. By the proof of (ii), there exists an approxi-
mating sequence .gn/n � dom.H/ \ Cc.G / for f0 such that gnjV � 0. Corollary 4.9
implies that .fn;0/n and .gn/n are Q-Cauchy sequences. Moreover, it is straightfor-
ward to show that

lim
n!1

QŒf0 � fn;0� D lim
n!1

QŒf0 � gn� D 0:
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Since .fn � gn/n is an approximating sequence for flin, by Corollary 4.9 we get

zQŒflin� D lim
n!1

hzh fn; fni C QŒfn;0 � gn�

D lim
n!1

hzh fn; fni C QŒfn;0� � QŒfn;0�

D zQŒf � � QŒf0�:

This completes the proof of Lemma 4.11.

Now we are in a position to state the main result of this section.

Theorem 4.12. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Then the map defined by (4.20) induces a bijection

ExtM .H0/ ! ExtM .h0/;

zH 7! zh:

Proof. By Lemma 4.7, the map (4.20) is a bijection between ExtS .H0/ and ExtS .h0/

and hence we only need to show that zH 2 ExtS .H0/ is Markovian exactly when so is
the corresponding zh 2 ExtS .h0/. We divide the proof into several steps.

(i) First suppose that zH 2 ExtM .H0/ and zh 2 ExtS .h0/ is defined by (4.20) with
the corresponding quadratic form zq in `2.V Im/. Let us show that zh is also Markovian.
Define the quadratic form

yqeŒf� WD zQeŒ{�1
V .f/�; f 2 dom.yqe/ WD ¹f 2 C.V/ W {�1

V .f / 2 dom. zQe/º; (4.27)

and also its `2.V Im/ restriction (compare with (B.3))

yq WD yqe � dom.yq/; dom.yq/ D dom.yqe/ \ `2.V Im/: (4.28)

Here zQe is the extended Dirichlet form of zQ. It is straightforward to prove that
yq is closed, which basically follows from the fact that zQe is closed under taking
a.e. pointwise limits of zQe-Cauchy sequences. Moreover, yq inherits the Markovian
property from zQe . Indeed, take f 2 dom.yq/ and pick a normal contraction 'WC ! C.
Then f D {�1

V
.f/ 2 dom. zQe/ and hence ' ı f D {V .' ı f / belongs to dom.yq/ since

zQe is Markovian (see Appendix B.3). Moreover, Lemma 4.11 implies

yqŒ' ı f� D yqeŒ' ı f� D zQeŒ{�1
V .' ı f/�

� zQeŒ' ı f � � zQeŒf � D zQeŒ{�1
V .f/� D yqŒf�:

Thus, yq is a Dirichlet form in `2.V Im/ and the corresponding self-adjoint operator yh
is Markovian. Hence to prove the claim it suffices to show that yh D zh (or equivalently
that yq D zq).

First of all, (4.20) implies that dom.zh/ � dom.yq/ and zq D yq on dom.zh/ by Corol-
lary 4.9. Therefore, zh � yh.
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To prove the converse, observe that yh 2 ExtS .h0/. Indeed, take f 2 dom.h0/ and
g 2 dom.yq/ and then pick an f 2 dom.H0/ with {V .f / D f and an approximat-
ing sequence .gn/n � dom.zH/ for g WD {�1

V
.g/ 2 dom. zQe/ \ CA.G n V/. Then by

Lemma 4.11 (iv),

yqŒf; g� D zQeŒ{�1
V .f /; {�1

V .g/� D zQeŒf; {�1
V .g/�

D lim
n!1

zQŒf; gn� D lim
n!1

hH0f; gniL2 :

Since zH � HN (see Lemma 4.1), it follows that gn converges to g uniformly on
compact subsets of G . Using integration by parts and (4.26),

yqŒf; g� D hH0f; giL2 D QŒf; g� D qŒf; g� D hh0f; gi`2 ;

which shows that h0 � yh and hence yh 2 ExtS .h0/.
Let yH be the non-negative self-adjoint extension of H0 corresponding to yh via

(4.20). Again, we infer from Lemma 4.7, Lemma 4.11 (iv) and Corollary 4.9 that (see
also (B.3))

dom.yH/ � dom. zQe/ \ L2.G I�/ D dom. zQ/

and that yQ D zQ on dom.yH/. This implies that yH � zH. However, the map between
non-negative extensions of H0 and h0 is monotonic (this can easily be deduced from
Krein’s resolvent formula (A.5)), that is, zH1 � zH2 exactly when zh1 � zh2. Hence we
conclude that yh D zh.

(ii) It remains to show that zH is a Markovian extension of H0 if zh is a Markovian
extension of h0. The proof essentially consists in reversing the construction of the
previous step. More precisely, we define the quadratic form

yQeŒf � WD zqeŒ{V .f /� C QŒf0�;

f 2 dom. yQe/ WD ¹g 2 PH 1.G / W {V .g/ 2 dom.zqe/º;
(4.29)

and consider its restriction

yQ WD yQe � dom. yQ/; dom. yQ/ D dom. yQe/ \ L2.G I�/: (4.30)

Similar to the previous step, it turns out that yQ is a Dirichlet form in L2.G I�/ and
the associated operator coincides with zH, that is, yH D zH. Let us only prove that
yQ verifies the Markovian property (B.1) since the other claimed properties can be
verified without difficulty analogous to the previous step and we omit the details.

Take f 2 yQ and pick a normal contraction 'WC ! C. By [133, Theorem 3.12]
(see also (4.5)), the difference zqe � q satisfies the Markovian condition (B.1) on
dom.zqe/. Setting f WD {V .f /, we see that

{V .' ı f / D ' ı f
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and in particular ' ı f 2 dom.zq/. Moreover, it follows from (4.26) that

yQŒf � D zqeŒf� C QŒf0� D zqeŒf� C QŒf � � QŒ{�1
V .f/� D zqeŒf� � qŒf� C QŒf �

� .zqe � q/Œ' ı f� C QŒ' ı f � D yQŒ' ı f �;

which shows that yQ is Markovian.

The proof of Theorem 4.12 in fact contains the following transparent correspon-
dence between the extended Dirichlet forms (see (4.27)–(4.28) and (4.29)–(4.30)).

Corollary 4.13. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
Let also zH be a Markovian extension of H0 and consider the associated Markov-
ian extension zh of h0 defined by (4.20). The domains of the corresponding extended
Dirichlet forms zQe and zqe are related by

dom.zqe/ D ¹{V .f / W f 2 dom. zQe/º;

dom. zQe/ D ¹f 2 PH 1.G / W {V .f / 2 dom.zqe/º:

Moreover, for every function f 2 dom. zQe/,

zQeŒf � D zqeŒ{V .f /� C QŒf0�:

However, the above correspondence cannot be extended to the Dirichlet forms
(and form domains) without further restrictions on the underlying model.

Corollary 4.14. Let .G ;�; �/ be a weighted metric graph together with a fixed model
having finite intrinsic size. Let zH 2 ExtM .H0/ and zh 2 ExtM .h0/ be given by (4.20).
Then the corresponding Dirichlet forms zQ and zq are connected by

zqŒf� D zQŒ{�1
V .f/�; f 2 dom.zq/ D ¹{V .f / W f 2 dom. zQ/º;

and
dom. zQ/ D ¹{�1

V .f/ C f0 W f 2 dom.zq/; f0 2 H 1
0 .G n V/º;

zQŒf � D zqŒf� C QŒf0�; f D {�1
V .f/ C f0 2 dom. zQ/:

Proof. Taking into account (B.3), the proof is a straightforward combination of
Corollary 4.13, Lemma 4.11 and Lemma 4.5.

Remark 4.15. It is easy to show that under the finite intrinsic size assumption (4.11),
Corollary 4.14 holds true for non-negative extensions zH2ExtCS .H0/ and zh2ExtCS .h0/

as well. However, we restrict to the special case of Markovian extensions for the sake
of a streamlined exposition.

Remark 4.16. The results of the present section remain valid for Laplacians with
ı-couplings H0

˛ (see Section 2.4.3) and their associated discrete Laplacians h0
˛ (see

(3.7) and Theorem 3.1), of course under the additional assumption that all strengths
are non-negative, that is, ˛WV ! Œ0;1/.
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4.5 Recurrence/transience

As it was explained in Section 4.2, the connection between a Brownian motion on
a metric graph and a continuous time random walk on a graph indicates a connection
between the corresponding heat semigroups. The main tool to confirm this intuition
is the close relationship between the energy forms established in the previous sec-
tions. We begin with the study of recurrence and transience (see Appendix B.2 for
definitions and further references).

Theorem 4.17. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Let also zH be a Markovian extension of H0 and zh the corresponding Markovian
extension of h0 (see Theorem 4.12). Then the heat semigroup .e�

zHt /t>0 is recurrent
(respectively, transient) if and only if the semigroup .e�

zht /t>0 is recurrent (respec-
tively, transient).

Proof. The claim follows immediately from the recurrence characterization by means
of extended Dirichlet spaces (see Lemma B.7) and the relationship between extended
Dirichlet spaces established in Corollary 4.13. Notice also that G (and hence Gd for
each model of G ) is connected and hence the corresponding Dirichlet form is irre-
ducible, which implies the recurrence/transience dichotomy.

Remark 4.18. Let us stress that recurrence/transience is independent of the choice
of a model of a weighted metric graph (one may even allow models having infinite
intrinsic size). So, the situation is analogous to the self-adjoint uniqueness (cf. Corol-
lary 3.15): If .e�

zHt /t>0 is recurrent, then .e�
zht /t>0 is recurrent for all models of

.G ; �; �/. And conversely, .e�
zHt /t>0 is recurrent if .e�

zht /t>0 is recurrent for one
(and hence for all) models of .G ; �; �/.

Remark 4.19. A similar approach connecting recurrence/transience on graphs and
metric graphs was suggested in [97, Chapter 4].

For the two extremal Markovian extensions, the Dirichlet and Neumann Laplac-
ians HD and HN , we obtain the following characterizations.

Corollary 4.20. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
The following statements are equivalent for the Neumann Laplacian HN :

(i) .e�HN t /t>0 is recurrent.

(ii) .e�hN t /t>0 is recurrent.

(iii) 1 2 dom.Qe
N /, where dom.Qe

N / is the extended Dirichlet space of QN .

(iv) dom.Qe
N / D PH 1.G /.

Proof. Since 1 2 PH 1.G /, in view of Theorem 4.12, Theorem 4.17 and Lemma B.7,
we only need to prove the implication (iii)) (iv). The arguments leading to their
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proofs are well known (see, e.g., [136, Proposition 6.11]), however, we repeat them
for the sake of completeness.

Suppose (iii) holds true and let .fn/n � H 1.G / be an approximating sequence
for 1, that is, limn!1 fn.x/ D 1 for a.e. x 2 G and limn!1 QŒfn� D 0. Replacing
fn by zfn WD 0 _ Re.fn/ ^ 1, if necessary, we can assume that 0 � fn � 1. Suppose
also that g 2 PH 1.G / is bounded. Then gn WD fng belongs to H 1.G / as well for all
n 2 Z�0. Moreover, the sequence .gn/n converges to g pointwise a.e. on G and

lim
n!1

QŒg � gn� � lim
n!1

2kgk2
1QŒfn� C 2

Z
G

.1 � fn/2
jrgj2�.dx/ D 0:

Hence every bounded function g 2 PH 1.G / belongs to dom.Qe
N / and satisfies

Qe
N Œg� D QŒg�:

On the other hand, for every (real-valued) function g 2 PH 1.G /, the sequence defined
by

gn WD .�n/ _ gn ^ n; n 2 Z�0;

converges pointwise to g and, moreover, limn!1 QŒg � gn� D 0. In particular, it
follows that (iv) holds true.

In the case of Dirichlet Laplacians, the characterization looks slightly differently.
If H0 admits a unique Markovian extensions, then HD coincides with HN and in
this case the above characterization applies. It turns out that Markovian uniqueness is
necessary for .e�HD t /t>0 to be recurrent.

Corollary 4.21. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
The following statements are equivalent for the Dirichlet Laplacian HD:

(i) .e�HD t /t>0 is recurrent.

(ii) .e�hD t /t>0 is recurrent.

(iii) 1 2 dom.Qe
D/, where dom.Qe

D/ is the extended Dirichlet space of QD .

(iv) dom.Qe
D/ D PH 1.G /.

(v) HD D HN and dom.Qe
D/ D PH 1.G /.

Proof. Clearly, we only need to prove that HD D HN if .e�HD t /t>0 is recurrent.
However, QD is a regular Dirichlet form and the corresponding fact connecting
recurrence and Markovian uniqueness is rather well known (see, e.g., [98, Theo-
rem 5.20]).

Remark 4.22. A few remarks are in order.

(i) Let us stress that Markovian uniqueness is not necessary for the Neumann
Laplacian to be recurrent. Intuitively, this is explained by the fact that
Neumann boundary conditions are considered as a reflecting boundary.
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On the other hand, one can easily construct simple examples (see, e.g.,
Lemma 5.13).

(ii) For the Kirchhoff Laplacian H˛ with nonzero ˛ � 0 (which is equivalent to
the presence of a nonzero killing term for h˛) the corresponding Dirichlet
form is always transient.

(iii) As in the manifold case (see, e.g., [90]), transience/recurrence for both
Kirchhoff Laplacians and graph Laplacians admits several equivalent refor-
mulations in terms of harmonic and subharmonic functions. We shall return
to this issue in Section 7.4.

4.6 Stochastic completeness

The preceding sections suggest a connection between stochastic completeness of
the Kirchhoff Laplacian H on a weighted metric graph .G ; �; �/ and its associated
discrete Laplacian h on a fixed model. In fact, the results of [72, 114] imply that
(assuming the model has finite intrinsic size and, for simplicity, that H and h are
self-adjoint2)

.e�tH/t>0 stochastically complete H) .e�th/t>0 stochastically complete: (4.31)

It can be shown by examples that the converse direction fails (even for models of
finite intrinsic size). However, we are going to show that equivalence holds true in
(4.31) if the corresponding model is in a certain sense fine enough.

Theorem 4.23. Let .G ; �; �/ be a weighted metric graph with a fixed model of finite
intrinsic size. Let zH 2 ExtM .H0/ be a Markovian extension of H0 together with the
corresponding extension zh 2 ExtM .h0/ defined on `2.V Im/ by (4.20).

(i) If .e�t zH/t>0 is stochastically complete, then .e�tzh/t>0 is stochastically
complete.

(ii) If .e�tzh/t>0 is stochastically complete and the model additionally satisfiesX
e2E

�.e/
p
jej�.e/ < 1; (4.32)

then .e�t zH/t>0 is stochastically complete.

Notice that one can always find a model satisfying (4.32) since by cutting a given
edge e into N equal edges, the corresponding summand �.e/

p
jej�.e/ in (4.32) is

2It is assumed in [72, 114] that G is complete as a metric space with respect to the corre-
sponding intrinsic metric, which implies the self-adjointness of both H and h, see Theorem 7.1.
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replaced with 1p
N

�.e/
p
jej�.e/. Taking this into account we end up with the follow-

ing immediate corollary.

Corollary 4.24. Let .G ; �; �/ be a weighted metric graph and let zH 2 ExtM .H0/ be
a Markovian extension of H0. Then:

(i) The heat semigroup .e�t zH/t>0 is stochastically complete exactly when for
each model of .G ; �; �/ having finite intrinsic size the heat semigroup
.e�tzh/t>0 with the generator zh defined by (4.20) is stochastically complete.

(ii) The heat semigroup .e�t zH/t>0 is not stochastically complete exactly when
for each model of .G ; �; �/ having finite intrinsic size and satisfying (4.32)
the corresponding heat semigroup .e�tzh/t>0 is not stochastically complete.

Remark 4.25. From Corollary 4.24 (i), we know that stochastic incompleteness of
.e�t zH/t>0 is equivalent to the existence of a model of finite intrinsic size such that
.e�tzh/t>0 is not stochastically complete. The point of Corollary 4.24 (ii) is to pro-
vide an explicit class of models for which zH and zh are simultaneously stochastically
complete.

Proof of Theorem 4.23. (i) This was essentially obtained in [72, 114] and we only
slightly adapt the proof of [114, pp. 137–140] to our setting. Suppose .e�t zH/t>0 is
stochastically complete and consider the operator zh (see (4.20)) for some fixed model
of .G ;�;�/ satisfying (4.11). By Lemma B.6, there exists a sequence .fn/ � dom. zQ/

such that 0 � fn � 1 for all n � 0, limn!1 fn D 1 a.e. on G , and

lim
n!1

zQŒfn; g� D 0

for all g 2 dom. zQ/ \ L1.G I m/. By Corollary 4.14, fn D {V .fn/ 2 dom.zq/ and,
clearly, 0 � fn � 1 for all n � 0. Moreover, using additionally Lemma 4.2, we see
that

lim
n!1

zqŒfn; g� D lim
n!1

zQŒ{�1
V .fn/; {�1

V .g/� D lim
n!1

zQŒfn; {�1
V .g/� D 0

for all g 2 dom.zq/ \ `1.V Im/. Taking into account again Lemma B.6, it remains to
show that limn!1 fn.v/ D 1 for all vertices v 2 V . We decompose fn D fn;lin C fn;0

as in (4.17), where fn;lin 2 CA.G n V/ and fn;0 2 H 1
0 .G n V/. Denote by ge

n the
restriction of fn;0 to the edge e 2 E and extended by zero to the rest of G . Clearly, ge

n

belongs to dom. zQ/ \ L1.G / and taking into account Corollary 4.14, we see that

lim
n!1

Z
e

jrge
nj

2 �.dxe/ D lim
n!1

zQŒge
n; ge

n� D lim
n!1

zQŒfn; ge
n� D 0:

Since ge
n has support contained in the edge e, this implies that limn!1 ge

n.x/ D 0 for
all x 2 e and hence limn!1 fn;0.x/ D 0 for all x 2 G . Thus limn!1 fn;lin.x/ D 1

on G , which implies the desired property of .fn/.
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(ii) Suppose now that .e�tzh/t>0 is stochastically complete for some model of
.G ; �; �/ satisfying (4.11). By Lemma B.6, there exists a sequence .fn/ � dom.zq/

such that 0 � fn � 1, limn!1 fn.v/ D 1 for all v 2 V and limn!1 zqŒfn; g� D 0 for
all g 2 dom.zq/ \ `1.V Im/. Define fn WD {�1

V
.fn/ 2 CA.G n V/ and notice that .fn/

is a sequence in dom. zQ/ with 0 � fn � 1 and limn!1 fn.x/ D 1 for all x 2 G .
Moreover, by Corollary 4.14 we have

zQŒfn; g� D zQŒfn; glin� D zqŒfn; {V .glin/�

for all g 2 dom. zQ/. Hence, by Lemma B.6, the stochastic completeness of .e�t zH/t>0

would follow if we could prove that g WD {V .glin/ belongs to dom.zq/ \ `1.V Im/ for
all g 2 dom. zQ/ \ L1.G /. Taking into account Corollary 4.14 and Lemma 4.2 with
p D 1, it suffices to show that glin 2 L1.G I�/ and the additional assumption (4.32)
is needed exactly for this purpose. Indeed, for an edge e 2 Ev , the estimate

jglin.x/ � g.x/j � jglin.x/ � glin.v/j C jg.x/ � g.v/j

� jej
1=2

�Z
e

jrglin.xe/j2 dxe

�1=2

C jej
1=2

�Z
e

jrg.xe/j2 dxe

�1=2

holds for all x 2 e. Taking into account Corollary 4.14 this impliesZ
e

jglin.x/ � g.x/j�.dx/ � 2�.e/
p
jej�.e/

q
zQŒg�; e 2 E;

and hence Z
G

jglin.x/j�.dx/ � kgkL1.G I�/ C 2

q
zQŒg�

X
e2E

�.e/
p
jej�.e/;

which proves the claim.

Remark 4.26. A few remarks are in order.

(i) As in the manifold case (see, e.g., [90, Theorem 6.2]), stochastic complete-
ness for both Kirchhoff Laplacians and graph Laplacians admits several
equivalent reformulations in terms of �-harmonic or �-subharmonic func-
tions and the uniqueness for the heat equation in L1 or `1 (Khas’minskii-
type theorems). Therefore, both Theorem 4.23 and Corollary 4.24 can be
reformulated in these terms. For further details we refer to Section 7.5.

(ii) Condition (4.32) in Theorem 4.23 is far from being optimal. Actually, what
one needs in proving the converse implication to (i) in Theorem 4.23 is
the boundedness of {V as a map from dom. zQ/ \ L1.G I �/ to the set
dom.zq/ \ `1.V Im/ equipped with the corresponding norms.

(iii) Theorem 4.23 can be extended in an obvious way to the case of non-trivial
ı-couplings, of course under the positivity assumption that ˛ � 0 on V .



Spectral estimates 73

(iv) In [117] and [116], a “refinement” of a graph .V ; mI b/ was suggested (see
[116, Definition 1.4] and [117, Definition 1.10]). It is very much similar
to the construction induced by (3.5)–(3.6) when refining a weighted metric
graph, however, the corresponding difference can be seen as adding loops at
the end vertices of a refined edge in order to keep the same vertex weights.
Moreover, the construction from [116, 117] enjoys the same important sta-
bility property with respect to stochastic completeness: If a refined graph is
stochastically complete, then so is the original graph .V ; mI b/ (see [116,
Theorem 1.5]).

4.7 Spectral estimates

Recall that in Theorem 3.22 (v) we observed the following equivalence between strict
positivity of spectra:

�0.zH/ D inf �.zH/ > 0 ” �0.zh/ D inf �.zh/ > 0

for a non-negative extension zH of H0 on a weighted metric graph .G ; �; �/ and the
associated non-negative extension zh of h0 on a fixed model having finite intrinsic
size. In this section we present a simple two-sided estimate between �0.zH/ and �0.zh/

based on the results of Section 4.3.

Theorem 4.27. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Suppose zH 2 ExtS .H0/ is a non-negative extension of H0 and consider in `2.V Im/

the non-negative extension zh 2 ExtS .h0/ of h0 defined by (4.20). Then

min
²

�0.zh/;
1

2

� �

��.E/

�2
³
� �0.zH/ � min

²
6�0.zh/;

�
�

��.E/

�2³
: (4.33)

Proof. First of all, recall from Theorem 3.22 (ii) that zH � 0 exactly when zh � 0.
Moreover, since zH is a non-negative extension of Hmin D H�

max, whose Friedrichs
extension HF is given by (3.32), we conclude from (3.34) that

�0.zH/ � �0.HF / D
�2

��.E/2
:

In particular, (4.33) trivially holds if the model has infinite intrinsic size since all
three terms vanish in this case (see also Corollary 3.18 (iii)). Hence in the following,
we assume ��.E/ < 1.

Recall the following variational characterization via the Rayleigh quotient:

�0.zH/ D inf
f 2dom.zH/

hzHf; f iL2.G I�/

kf k2
L2.G I�/

; �0.zh/ D inf
f2dom.zh/

hzhf; fi`2.V Im/

kfk2
`2.V Im/

:
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Turning to the upper estimate in terms of �0.zh0/, let f 2 dom.zh/ be fixed. By Corol-
lary 4.9, there is f D flin C f0 2 dom.zH/ such that {V .f / D f and f0 2 PH 1

0 .G n V/.
Moreover, by (4.19) and (4.11), PH 1

0 .G n V/ D H 1
0 .G n V/ algebraically and topo-

logically. Modifying f by edgewise H 2-functions vanishing in a neighborhood of
V , we readily construct a sequence .fn/ � dom.zH/, fn D fn;lin C fn;0 such that
{V .fn/ D {V .fn;lin/ D f and

lim
n!1

QŒfn;0� C kfn;0kL2.G I�/ D 0:

Hence we conclude from Corollary 4.9 that

�0.zH/ � lim
n!1

hzHfn; fniL2.G I�/

kfnk
2
L2.G I�/

D
hzh f; fi`2.V Im/

k{�1
V

.f/k2
L2.G I�/

;

and Remark 4.3 (ii) finishes the proof of the upper estimate in (4.33).
It remains to prove the lower inequality in (4.33). By Corollary 4.9, every function

f 2 dom.zH/ admits a decomposition into f D flin C f0 with flin 2 CA.G n V/ and
f0 2 PH 1

0 .G n V/ (see also (4.17)). Setting f WD {V .f /, (4.24) together with (4.19)
imply

hzHf; f iL2.G I�/ � hzh f; fi`2.V Im/ C
�2

��.E/2
kf0k

2
L2.G I�/

� �0.zh/kfk2
`2.V Im/

C
�2

��.E/2
kf0k

2
L2.G I�/

:

The lower estimate in (4.33) now follows from Remark 4.3 (ii) and the trivial inequal-
ity kf k2

L2.G I�/
� 2kflink

2
L2.G I�/

C 2kf0k
2
L2.G I�/

.

We shall continue the study of the positivity of spectral gaps in Section 7.3 and
now we complete this section with a few remarks.

Remark 4.28. The constant in the second estimate in (4.33) can be improved. For
instance, a modified version of [180, Corollary 2.2 and Remark 2.3] yields the bound

�0.zH/ �
�2

2
�0.zh/:

Remark 4.29. Theorem 4.27 remains valid for Laplacians with ı-couplings H0
˛ (see

Section 2.4.3) and their associated discrete Laplacians h0
˛ (see (3.7) and Theorem 3.1

and Remark 3.24), of course under the additional assumption that all strengths are
non-negative, that is, ˛WV ! Œ0;1/.

4.8 Ultracontractivity estimates

Theorem 4.27 shows that under the additional assumption (4.11), there is a connection
between the decay of heat semigroups e�t zH and e�tzh since ke�t zHkL2 D e�t�0.zH/
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and ke�tzhk`2 D e�t�0.zh/ for all t > 0. Our next result indicates that the connection
between the decay of heat semigroups can be specified further if �0.H/ D �0.h/ D 0.
More specifically, we are going to relate small and large time behavior of the heat
kernels by studying the corresponding ultracontractivity estimates.

Theorem 4.30. Let .G ; �; �/ be a weighted metric graph together with a fixed model
having finite intrinsic size. Let also zH 2 ExtM .H0/ be a Markovian extension of
H0 and consider the associated Markovian extension zh of h0 on `2.V I m/ defined
by (4.20).

(i) If .e�t zH/t>0 is ultracontractive and there are D � 1 and C1 > 0 such that

ke�t zH
kL1!L1 � C1t�D=2 (4.34)

holds for all t > 0, then .e�tzh/t>0 is ultracontractive and

ke�tzh
k`1!`1 � C2t�D=2 (4.35)

holds for all t > 0 with some positive constant C2 > 0.

(ii) If there is D > 2 such that the heat kernel of zh satisfies (4.35) for all t > 0

and, in addition, the underlying model satisfies

sup
e2E

.jej�.e//1�2=D jej

�.e/
< 1; (4.36)

then the heat kernel of zH satisfies (4.34) for all t > 0 with some positive
constant C1 > 0.

Proof. (i) Suppose that (4.34) holds true for all t > 0 with some fixed D � 1. Then,
by Theorem C.4, the Nash-type inequality

kf k
2C4=D

L2.G I�/
� C zQŒf � kf k

4=D

L1.G I�/
(4.37)

holds true for all 0 � f 2 dom. zQ/ \ L1.G I�/, where zQ is the Dirichlet form asso-
ciated with zH. However, restricting in (4.37) to edgewise affine functions and then
using Corollary 4.14 and the second inequality in (4.12) with p D 2 together with
the first one with p D 1 (see also Remark 4.3 (iii)), one easily concludes that (4.37)
implies

kfk2C4=D

`2.V Im/
� zC zqŒf� kfk4=D

`1.V Im/
; zC D 42C4=DC;

for all 0 � f 2 dom.zq/ \ `1.V Im/, where zq is the Dirichlet form associated with zh.
By Theorem C.4, this implies (4.35) for all t > 0.

(ii) Suppose now that (4.35) holds true for all t > 0 with some fixed D > 2. Then,
by Varopoulos’ theorem (Theorem C.2), the Sobolev-type inequality

kfk2
`q.V Im/ � C zqŒf�; f 2 dom.zq/; (4.38)
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is valid, where q D q.D/ WD 2D
D�2

. Since the model satisfies (4.11), by Corollary 4.14,
every f 2 dom. zQ/ admits a unique decomposition f D {�1

V
.f/Cf0 with f2 dom.zq/,

f0 2 H 1
0 .G n V/ and, moreover,

zQŒf � D zqŒf� C QŒf0� D zqŒf� C krf0k
2
L2.G I�/

:

Using Lemma 4.2, the first inequality in (4.12) with p D q together with (4.38) imply
that

k{�1
V .f/k2

Lq.G I�/ � C zqŒf�: (4.39)

Next, using the simple estimate�Z `

0

jf .s/jq ds

� 2
q

� `
2
q sup

0�x�`

jf .x/j2 � `1C 2
q

Z `

0

jf 0.s/j2 ds;

which holds true for all f 2 H 1
0 .0; `/ and ` > 0, we obtain�Z

e

jf .x/jq�.dx/

� 2
q

� jej1C
2
q

�.e/
2
q

�.e/

Z
e

jrf .x/j2�.dx/; f 2 H 1
0 .G n V/;

for each edge e 2 E . Since q > 2, this immediately implies the inequality

kf0k
2
Lq.G I�/ � Ckrf0k

2
L2.G I�/

(4.40)

for all f0 2 H 1
0 .G n V/, where the constant C D C.E; �; �/ depends only on the

model and edge weights �; � and is given by

C.E; �; �/ D sup
e2E

jej1C
2
q

�.e/
2
q

�.e/
D sup

e2E

.jej�.e//1� 2
D

jej

�.e/
:

Thus, combining (4.40) with (4.39), we arrive at the Sobolev-type inequality

kf k
2
Lq.G I�/ �

zC zQŒf �; f 2 dom. zQ/:

Applying Theorem C.2 once again, we conclude that .e�t zH/t>0 is ultracontractive
and (4.34) holds true for all t > 0.

Remark 4.31. In the special case � D � � 1 on G , Theorem 4.30 was proved in
[68, Section 5]. However, the proof of Theorem 4.30 (i) in [68] was based on the use
of Varopoulos’ theorem and hence was restricted to the case D > 2. Notice that Theo-
rem 4.30 (i) with � D � � 1 was observed by G. Rozenblum and M. Solomyak (see
[189, Theorem 4.1]), however, for a different discrete Laplacian (the vertex weight m

is defined in [189] as the vertex degree function degW v 7! #.EEv/).

The proof of Theorem 4.30 (ii) indicates that (4.36) is necessary for the validity
of (4.34) for t > 0. As the next result shows, it is indeed necessary for all D > 0.
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Lemma 4.32. Let .G ; �; �/ be a weighted metric graph and let zH 2 ExtM .H0/ be
a Markovian extension of H0. Assume also that .e�t zH/t>0 is ultracontractive. If there
is a model of .G ; �; �/ such that (4.36) fails to hold for a given D > 0, then

sup
t2.0;1/

tD=2
ke�t zH

kL1!L1 D 1: (4.41)

In particular, (4.41) always holds for D 2 .0; 1/.

Proof. Assume the converse, that is, (4.34) holds for all t 2 .0; 1/ with some fixed
D > 0. Then, by Theorem C.4, this implies that the Nash-type inequality

kf k
2C4=D

L2.G I�/
� C. zQŒf � C kf k

2
L2.G I�/

/ kf k
4=D

L1.G I�/
(4.42)

holds true for all 0 � f 2 dom. zQ/\L1.G I�/. In particular, this inequality holds for
all 0 � f 2 H 1

0 .G n V/ \ L1.G I�/. It remains to apply a scaling argument. Indeed,
take a positive function 0 ¤ f0 2 H 1

0 .Œ0; 1�/ with kf0kL1 D 1 and choose a model
of .G ; �; �/ satisfying (4.11). Next define fe 2 H 1

0 .G n V/ as f0. � =jej/ on e (upon
identification of e 2 E with 	e D Œ0; jej�) and then extend it by 0 to the rest of G n e.
Clearly, 0 � fe 2 dom. zQ/ \ L1.G I�/ for all e 2 E and

kfekL1.G I�/ D jej�.e/;

kfek
2
L2.G I�/

D jej�.e/kf0k
2
2;

QŒfe� D
�.e/

jej
kf 0

0k
2
2:

(4.43)

Plugging fe into (4.42), we get

C �
.jej�.e//1C2=Dkf0k

2C4=D
2�

�.e/
jej

kf 0
0k

2
2 C jej�.e/kf0k

2
2

�
.jej�.e//4=D

�
.jej�.e//1�2=Dkf0k

2C4=D
2

�.e/
jej

�
kf 0

0k
2
2 C ��.E/2kf0k

2
2

�
D

�
�.e/2D�2

�.e/�.e/

� 1
D kf0k

2C4=D
2

kf 0
0k

2
2 C ��.E/2kf0k

2
2

for all e 2 E . Since ��.E/ < 1, the latter is unbounded from above if (4.36) fails to
hold, and hence we arrive at a contradiction, which proves the first claim.

To prove the last claim it suffices to mention that 2D � 2 < 0 if D 2 .0; 1/ and
hence we can always find a model such that (4.36) is not true with D 2 .0; 1/.

By using Theorem C.6, it is possible to extend the above connections to subex-
ponential scales. In the next result we shall always assume that sW R>0 ! R>0 is
a decreasing differentiable bijection such that its logarithmic derivative has polyno-
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mial growth (see (C.5)). A typical example are functions that behave like t�d=2 with
d > 0 for small t , and e�ct˛

with ˛ 2 .0; 1� for large t (notice that ˛ > 1 is also
allowed, however, heat semigroups cannot have such a fast decay at infinity).

Theorem 4.33. Let .G ; �; �/ be a weighted metric graph together with a fixed model
having finite intrinsic size. Let also zH 2 ExtM .H0/ be a Markovian extension of
H0 and consider the associated Markovian extension zh of h0 on `2.V I m/ defined
by (4.20).

(i) If .e�t zH/t>0 is ultracontractive and

ke�t zH
kL1!L1 � s.t/; t > 0; (4.44)

then .e�tzh/t>0 is ultracontractive and

ke�tzh
k`1!`1 � s.ct/ (4.45)

holds for all t > 0 with some positive constant c > 0.

(ii) If (4.44) holds true, then there is a positive constant C > 0 such that�
8jej�.e/

�2

�2

�s

�
�2

8 jej�.e/

�
� 8

�.e/

jej
; �s WD �s0 ı s�1; (4.46)

for all e 2 E .

Proof. (i) For simplicity we assume that H is self-adjoint. Our proof is based on the
use of Theorem C.6 and its proof in [46]. First of all, by [46, Proposition II.2], (4.44)
implies that


s.kf k
2
L2.G I�/

/ � QŒf �

for all 0 � f 2 dom.Q/ with kf kL1.G I�/ � 1. Here the function 
sWR>0 ! R>0 is
given by


s.x/ WD sup
r>0

x

2r
log
�

x

s.r/

�
:

In particular, the latter holds for edgewise affine functions and hence restricting to
0 � f 2 CA.G n V/ we get by taking into account (4.15) and (4.16) that


s.4�1
kfk2

`2.V Im/
/ � 4qŒf�

for all 0 � f 2 dom.q/ with kfkL1.V Im/ � 1. Here we also used the estimate (4.12)
with p D 2 together with the monotonicity of the logarithm. Now, taking into account
that �4s.x/ D 4�s.x=4/, by [46, Lemma II.3], there is zC > 0 such that

�.4�1
kfk2

`2.V Im/
/ � zC qŒf�

for all 0 � f 2 dom.q/ with kfk`1.V Im/ � 1. It remains to use Theorem C.6 once again.
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(ii) By Theorem C.6, (4.44) implies the Nash-type inequality

�s.kf k
2
L2.G I�/

/ � C QŒf � (4.47)

for all f 2 dom.Q/ with kf kL1.G I�/ D 1. Pick 0 � f0 2 H 1
0 .Œ0; 1�/ with kf0k1 D 1.

For each e 2 E , define fe 2 H 1
0 .G / as in the proof of Lemma 4.32. After plugging

f D
1

jej�.e/
fe into (4.47) and taking into account (4.43), we get

�s

�
kf0k

2
2

jej�.e/

�
�

�.e/

jej

�
kf 0

0k2

jej�.e/

�2

(4.48)

for all e 2 E and each 0 � f0 2 H 1
0 .Œ0; 1�/ with kf0k1 D 1. Finally, upon choosing

f0.x/ D �
2

sin.�x/ in (4.48), we end up with (4.46).

Remark 4.34. We are convinced that (4.45) together with (4.46) should imply esti-
mate (4.44), however, we have not succeeded in proving it by applying T. Coulhon’s
extension of Theorem C.4. Let us also stress that in the case of a polynomial decay
our proof of Theorem 4.30 (ii) is based on Varopoulos’ theorem (Theorem C.2) and
hence the range of the corresponding exponent is restricted to D > 2.


