
Chapter 5

One-dimensional Schrödinger operators with point
interactions

Let us demonstrate our findings by considering the simplest possible situation: Fix
L 2 .0;1� and let

.xk/k�0 � 	 WD Œ0; L/

be a strictly increasing sequence such that x0 D 0 and xk " L. Considering .xk/ as
a vertex set and the intervals ek D Œxk; xkC1� as edges, we end up with the simplest
infinite metric graph – an infinite path graph. Then the edge weights �; �W	 ! R>0

are given by
�.x/ D

X
k�0

�k1Œxk ;xkC1/.x/;

�.x/ D
X
k�0

�k1Œxk ;xkC1/.x/;
(5.1)

where .�k/k�0 and .�k/k�0 are positive real sequences. For a sequence ˛ D .˛k/k�0

of reals, conditions (2.13) take the form´
f .xk�/ D f .xkC/ DW f .xk/;

�kf 0.xkC/ � �k�1f 0.xk�/ D ˛kf .xk/
(5.2)

for all k � 0, where we set f 0.0�/ D 0 for notational simplicity and hence for
k D 0 the corresponding condition is �0f 0.0/ D ˛0f .0/. The corresponding (max-
imal) operator H˛ WD H�;�;˛ acting in L2.	 I �/ is known as the one-dimensional
Schrödinger operator with ı-interactions on X D .xk/k�0 (see, e.g., [3]), and the
corresponding differential expression is given by

� D
1

�.x/

�
�

d
dx

�.x/
d

dx
C

X
k�0

˛kı.x � xk/

�
: (5.3)

Remark 5.1. There are manifold reasons to investigate the operator H˛ . First of all,
it serves as a toy model in quantum mechanics. Indeed, if �k D �k D 1 for all k � 0,
then (5.3) turns into the usual ı-coupling on X and H˛ in this case is nothing but the
Hamiltonian (see [3, 144])

�
d2

dx2
C

X
k�0

˛nıxn
:

Moreover, (5.3) naturally appears in the study of Kirchhoff Laplacians and Laplacians
with ı-couplings on family preserving graphs (see Section 8.1 for further details).
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5.1 The case ˛ � 0 and Krein strings

We begin with the study of the “unperturbed” case, that is, when ˛ � 0 and hence
(5.3) is the classical weighted Sturm–Liouville operator

� D �
1

�.x/

d
dx

�.x/
d

dx
: (5.4)

Note that in this situation the well-developed spectral theory of Sturm–Liouville oper-
ators [208] and Krein strings [120, 127] leads to rather transparent and complete,
although far from being trivial, answers to some spectral questions.

Let H WD H�;� be the maximal operator associated with (5.4) in L2.	 I �/ and
subject to the Neumann boundary condition at x D 0:

dom.H/D ¹f 2L2.	 I�/ W f;�f 0
2AClocŒ0;L/; f 0.0/D 0; �f 2L2.	 I�/º: (5.5)

The corresponding minimal operator H0 is defined as the closure in L2.	 I�/ of the
pre-minimal operator H0:

H0
D H � dom.H0/; dom.H0/ D dom.H/ \ Cc.	 /:

It is immediate to see that H and H0 coincide with the maximal and, respectively, min-
imal Kirchhoff Laplacians defined in Section 2.4.1. The next result provides a rather
transparent criterion for the equality H D H0 to hold.

Lemma 5.2. The operator H is self-adjoint if and only if the series

X
k�0

�kjekj

�X
j�k

jej j

�j

�2

(5.6)

diverges.

Proof. The self-adjointness criterion follows from the standard limit point/limit circle
classification for (5.4) (see, e.g., [208]). Namely, �y D 0 has two linearly independent
solutions

y1.x/ � 1; y2.x/ D

Z x

0

ds

�.s/
; x 2 Œ0; L/;

and one simply needs to verify whether or not both y1 and y2 belong to L2.	 I�/.
Clearly, y1 2 L2.	 I�/ exactly when the seriesX

k�0

�kjekj (5.7)

converges. Moreover, it is straightforward to check that y2 2 L2.	 I�/ if and only if
the series (5.6) converges. The Weyl alternative finishes the proof.
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The above considerations suggest to introduce the following quantity:

L� WD

Z
	

dx

�.x/
D

X
k�0

jekj

�k

:

Observe that L� < 1 exactly when all solutions to �y D 0 are bounded.

Corollary 5.3. If X
k�0

�kjekj D 1; (5.8)

then H is self-adjoint. Moreover, in the case L� < 1, (5.8) is also necessary for the
self-adjointness.

Remark 5.4. A few remarks are in order.

(i) Condition (5.8) admits two transparent geometric reformulations. Namely,
equipping the set XD¹xkºk�0 with weights mWxk 7!�k�1jek�1jC�kjekj,
and considering the path graph (xk � xn exactly when jk � nj D 1) as
a metric space .X; %m/ equipped with the path metric %m (see Section 6.4.2
for a detailed definition), condition (5.8) is equivalent to each of the follow-
ing conditions:

(a) infinite total volume:

m.X/ D
X
k�0

m.xk/ D 2
X
k�0

�kjekj D 1;

(b) completeness of .X; %m/.

In particular, Lemma 5.2 implies that completeness of .X; %m/ is only suf-
ficient for H to be self-adjoint (cf. Theorem 7.7). Moreover, observe that in
the case of a path graph both conditions (a) and (b) become also necessary
for the self-adjointness exactly when the constant L� is finite, that is, when
all solutions to �y D 0 are bounded.

(ii) It is an interesting and, in fact, very difficult question to decide about the
self-adjointness by looking at the geometry of a given metric graph. Lem-
ma 5.2 demonstrates that even in the simplest case of a weighted path graph
its solution involves non-trivial tools.

Despite the well-developed spectral theory of Sturm–Liouville operators, it turns
out that the detailed spectral analysis of the operator (5.5) is already a difficult task
even with this very special class of weights (5.1). However, in one particular situation
the analysis is rather straightforward.

Lemma 5.5. If the series (5.6) is convergent, then the deficiency indices of H0 are
equal to 1 and the self-adjoint extensions of H0 form a one-parameter family H� ,
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where � 2 Œ0; �/ and

dom.H� / WD ¹f 2 dom.H/ W cos.�/f�.L/ C sin.�/f 0
� .L/ D 0º: (5.9)

Here

f�.L/ D lim
x!L

.f .x/ � �.x/f 0.x/y2.x// and f 0
� .L/ D lim

x!L
�.x/f 0.x/:

Moreover, the spectrum of H� is purely discrete, bounded from below, and eigenvalues
(if ordered in the non-decreasing order) obey the Weyl law:

lim
n!1

np
�n.H� /

D
1

�

Z L

0

s
�.x/

�.x/
dx D

1

�

X
k�0

jekj

r
�k

�k

: (5.10)

Proof. The first claim is standard (see, e.g., [208]). The second one follows from,
e.g., [85, Chapter 6.7].

Remark 5.6. A few remarks are in order.

(i) Using the definition (3.1) of the intrinsic edge length, we set

�k WD �.ek/ D jekj

r
�k

�k

(5.11)

for all k 2 Z�0, and then the right-hand side of (5.10) is nothing but

1

�

X
k�0

�.ek/ D
1

�
� intrinsic length of 	 :

(ii) If y2 is bounded, then f�.L/ can be replaced by limx!L f .x/.

The next result mostly follows from the work of I. S. Kac and M. G. Krein [119,
120] on spectral theory of Krein strings. Recall that �0.A/ and �ess

0 .A/ denote the
bottoms of the spectrum, respectively, of the essential spectrum of a self-adjoint oper-
ator A.

Lemma 5.7. Suppose that the series (5.6) diverges, i.e., the operator H is self-adjoint.
Then:

(i) Positive spectral gap: �0.H/ > 0 if and only if

L� D

X
k�0

jekj

�k

< 1 and sup
n�0

X
k�n

�kjekj

X
k�n

jekj

�k

< 1: (5.12)

(ii) Positive essential spectral gap: �ess
0 .H/ > 0 if and only if either (5.12) holds

true orX
k�0

jekj

�k

D 1 and sup
n�0

X
k�n

jekj

�k

X
k�n

�kjekj < 1: (5.13)
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(iii) Discreteness: The spectrum of H is purely discrete if and only if

• either
P

k�0
jek j

�k
< 1 and

lim
n!1

X
k�n

�kjekj

X
k�n

jekj

�k

D 0;

• or
P

k�0 �kjekj < 1 and

lim
n!1

X
k�n

jekj

�k

X
k�n

�kjekj D 0:

Proof. Let us only give a sketch of the proof (details can be found in, e.g., [149]).
First observe that 0 is an eigenvalue of H exactly when y1 D 1 2 L2.	 I�/, that is,
exactly when the series (5.7) converges. Taking this fact into account together with
the divergence of (5.6), to prove (i), (ii) and (iii) it suffices to observe that by using
a simple change of variables, the operator H is unitarily equivalent to the minimal
operator zH defined in the Hilbert space L2.Œ0;L�/I�g/ by the differential expression

z� D �
1

�g.x/

d2

dx2

and subject to the Neumann boundary condition at x D 0. Here

�g WD .� � �/ ı g�1;

where the function gW Œ0; L/ ! Œ0;1/ is given by

g.x/ D

Z x

0

ds

�.s/
; L� WD g.L/ D

Z L

0

ds

�.s/
:

Notice that g is strictly increasing, locally absolutely continuous on Œ0; L/ and maps
Œ0; L/ onto Œ0; L�/. Hence its inverse g�1W Œ0; L�/ ! Œ0; L/ is also strictly increasing
and locally absolutely continuous on Œ0; L/. Now the remaining claims follow from
the results of M. G. Krein and I. S. Kac (see [119, Theorems 1 and 3] or [120, Sec-
tion 11] and [127]).

Remark 5.8. A few remarks are in order.

(i) Using the quantities in (5.12) and (5.13), one can obtain sharp estimates on
�0.H/ and �ess

0 .H/ (cf., e.g., [149, 196]).

(ii) If the spectrum of H is discrete, then it consists of simple eigenvalues such
that

0 � �0.H/ < �1.H/ < �2.H/ < � � �

and the Weyl-type asymptotics (5.10) holds true. If the right-hand side in
(5.10) is infinite (i.e., 	 D Œ0; L/ has infinite intrinsic length), then there
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are criteria (see [127]) to decide whether the seriesX
n�1

1

�n.H/


converges with some 
 > 1
2

(the series diverges for all 
 2 .0; 1
2
�).

If the spectrum of H is not discrete, the study of spectral types of H is a highly
non-trivial problem. However, we would like to mention only one result on the abso-
lutely continuous spectrum established recently in [26].

Lemma 5.9 ([26]). Assume that 	 D Œ0; L/ has infinite intrinsic length,Z L

0

s
�.x/

�.x/
dx D

X
k�0

jekj

r
�k

�k

D

X
k�0

�k D 1; (5.14)

and define the increasing sequence .tn/n�0 � Œ0; L/ by settingZ tn

0

s
�.x/

�.x/
dx D n; n 2 Z�0:

If X
n�0

�Z tnC2

tn

�.x/ dx

Z tnC2

tn

dx

�.x/
� 4

�
< 1;

then �ac.H/ D Œ0;1/.

Remark 5.10. The operator H also plays an important role in the analysis of Kirch-
hoff Laplacians on family preserving graphs .G ; �; �/, which are known to reduce
to Sturm-Liouville operators (see [30, 31]). In this situation, the weights admit the
following description in terms of graph parameters of G (for simplicity we restrict to
the case when the weights in Section 2.1 are constant on G and hence � D � � const
in (5.1)):

• jekj is the length of edges between the consecutive combinatorial spheres Sk and
SkC1,

• �k D �k is the number of edges between the consecutive combinatorial spheres
Sk and SkC1,

• the series (5.7) equals the total volume of the metric graph G .

For instance, for radially symmetric antitrees �k D skskC1, where .sk/k�0 � Z�1

are the antitree sphere numbers [31, 149] (see also Section 8.1 for weighted metric
antitrees); for radially symmetric trees �k D b0 : : : bk , where .bk/k�0 � Z�1 are the
tree branching numbers [196].

In conclusion, let us quickly discuss parabolic properties of Markovian extensions
of H0. We begin with the characterization of Markovian uniqueness. Recall that the
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Gaffney Laplacian HG is defined (see Lemma 2.18) as the restriction of H to H 1

functions, that is,

dom.HG/ D ¹f 2 dom.H/ W f 0
2 L2.	 I �/º: (5.15)

Lemma 5.11. The operator HG is self-adjoint if and only if y2.x/ D
R x

0
ds

�.s/
does

not belong to H 1.	 /, that is, either the series (5.6) diverges or L� D 1. If HG is
not self-adjoint, then its Markovian restrictions form a one-parameter family

dom.H� / WD ¹f 2dom.HG/ W cos.�/f .L/Csin.�/f 0
� .L/D0º; � 2 Œ0; �

2
�: (5.16)

Here f .L/ D limx!L f .x/ and f 0
� .L/ D limx!L �.x/f 0.x/.

Proof. If HG is not self-adjoint, then so is H and hence, by Lemma 5.2, the series (5.6)
converges. On the other hand, all self-adjoint extensions in this case are parameterized
by (5.9). For each � ¤

�
2

, dom.H� / contains functions such that f 0
� .L/ D 1, that is,

f 0.x/ D
1

�.x/
.1 C o.1// as x ! L.

However, if L� D 1, then f 0 … L2.	 I �/, which implies that HG admits a unique
self-adjoint restriction corresponding to � D

�
2

. The latter contradicts our assumption
that HG is not self-adjoint since in this case HG admits at least two different self-
adjoint restrictions HD and HN .

Remark 5.12. Notice that the self-adjointness of HG is equivalent to the equality
H 1.	 / D H 1

0 .	 /, where

H 1.	 / D ¹f 2 ACloc.	 / W f 2 L2.	 I�/; f 0
2 L2.	 I �/º;

H 1
0 .	 / D H 1.	 / \ Cc.	 /

k�k
H1

:

The next result provides a characterization of transience/recurrence of Markovian
restrictions of HG .

Lemma 5.13. Let HG be the Gaffney Laplacian (5.15).

(i) If HG is self-adjoint, then it is recurrent if and only if L� D 1.

(ii) If HG is not self-adjoint and H� is its Markovian restriction (5.16), then H�

is recurrent if and only if � D
�
2

.

Proof. It is not difficult to show that HG (or its Markovian restriction when HG is
not self-adjoint) is transient exactly when the Green’s function of HG is well defined
at the zero energy, that is, one needs to look at the limit of the resolvent .HG � z/�1

when z " 0. It remains to use the form of the resolvent of a second order linear
differential operator.

Finally, let us state the stochastic completeness criterion, which essentially goes
back to W. Feller [70].
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Lemma 5.14. Let HG be the Gaffney Laplacian (5.15).

(i) If HG is self-adjoint, then it is stochastically incomplete if and only if

L� < 1 and
1

�.x/

Z x

0

�.s/ ds 2 L1.	 /: (5.17)

(ii) If HG is not self-adjoint and H� is its Markovian restriction (5.16), then H�

is stochastically complete if and only if � D
�
2

.

Proof. (i) If HG is self-adjoint, then stochastic completeness is equivalent to the fact
that for some (and hence for all) � > 0 the boundary value problem

.�.x/y0/0 D ��.x/y; y0.0/ D 0; (5.18)

has only a trivial non-negative bounded solution on 	 (see Remark 7.52 below). Inte-
grating (5.18) with � D 1 yields

y0.x/ D
1

�.x/

Z x

0

y.s/�.s/ ds; x 2 Œ0; L/:

Since a solution to (5.18) is unique up to a scalar multiple, we can assume y.0/ D 1.
Clearly, y 2 L1.	 / exactly when y0 2 L1.	 /. Thus, if y is bounded, then (5.17)
necessarily holds true. Conversely, taking into account that y is non-decreasing, we
get

0 � y0.x/ �
y.x/

�.x/

Z x

0

�.s/ ds DW y.x/b.x/; x 2 Œ0; L/:

Since w0 Dwb has a bounded solution on 	 satisfying w.0/D 1 whenever b 2L1.	 /,
and taking into account that y � w on 	 , this completes the proof of sufficiency.

(ii) If HG is not self-adjoint, then each Markovian restriction H� of HG has purely
discrete, non-negative spectrum. Moreover, each eigenvalue of H� is simple. Thus
the claim is an immediate consequence of the spectral theorem and the definition of
stochastic completeness.

5.2 Connection via boundary triplets

If ˛ ¤ 0 and, in particular, if ˛ takes negative values on X , the analysis of H˛ , the
maximal operator associated with (5.3) in L2.	 I �/,1 becomes more involved. In
particular, we shall see that there is no transparent self-adjointness criterion.

Consider the interval 	 D Œ0; L/ together with the sequence X D .xk/k�0 as
a metric path graph: V D Z�0 is a vertex set, and k � n exactly when jk � nj D 1; the
length of the edge ek connecting k with k C 1 equals jekj WD xkC1 � xk . Following

1The precise definitions of H˛ and the corresponding minimal operator H0
˛ are given in

Section 2.4.1, see (2.18), (2.19) and take into account (5.2).
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(3.3)–(3.6) and using (5.11), we define the weight r WZ�0 ! R>0 as follows:

• if ��.X/ WD supk�0 �k < 1, then

r.k/ D jekj�k; k � 0;

• if ��.X/ D 1, we set

r.k/ D

´
jekj�k; �k � 1;
p

�k�k; �k > 1:

Next, we define the weights mWZ�0 ! .0;1/ and bWZ�0 � Z�0 ! Œ0;1/ by

m.k/ D

´
r.0/; k D 0;

r.k � 1/ C r.k/; k � 1;
(5.19)

and

b.k; n/ D

8<:
�min.n;k/

jxk � xnj
; jn � kj D 1;

0; jn � kj ¤ 1:

(5.20)

First, we can associate the minimal h0
˛ and the maximal h˛ operators in the weighted

Hilbert space `2.Z�0Im/ with the discrete Schrödinger-type expression

.�f /.k/ WD
1

m.k/

�X
n�0

b.k; n/.f .k/ � f .n// C ˛kf .k/

�
; k 2 Z�0: (5.21)

Next, using the map (3.29), we can consider in `2.Z�0/ the minimal zh0
˛ and the

maximal zh˛ operators, which are unitarily equivalent to h0
˛ and, respectively, h˛ . The

corresponding difference expression (3.28) is the following second order difference
expression

.z�˛f /.k/ D

´
a0f .0/ � b0f .1/; k D 0;

�bk�1f .k � 1/ C akf .k/ � bkf .k C 1/; k � 1;

where

ak D
1

m.k/

�
˛k C

�k�1

jek�1j
C

�k

jekj

�
; bk D

�k

jekj
p

m.k/m.k C 1/
; (5.22)

for all k � 0 with ��1=je�1j D 0 for notational simplicity. Hence the operator zh˛ is
nothing but the maximal operator associated in `2.Z�0/ with the Jacobi (tri-diagonal)
matrix

J D

0BBBBB@
a0 �b0 0 0 : : :

�b0 a1 �b1 0 : : :

0 �b1 a2 �b2 : : :

0 0 �b2 a3 : : :
:::

:::
:::

:::
: : :

1CCCCCA : (5.23)
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Therefore, Theorem 3.1 establishes connections between the operator (5.3) and spec-
tral theory of Jacobi (tri-diagonal) matrices. We would like to present only one claim
regarding self-adjointness.

Theorem 5.15. Let zh0
˛ be the minimal operator defined in `2.Z�0/ by the Jacobi

matrix (5.23) with Jacobi parameters (5.22). Then the deficiency indices of H0
˛ and

zh0
˛ are equal and

nC.H0
˛/ D n�.H0

˛/ D n˙.zh0
˛/ � 1:

In particular, H˛ is self-adjoint if and only if zh˛ is self-adjoint.

Applying spectral theory of Jacobi matrices and using Theorem 3.1, we would
be able to investigate spectral properties of the operators H˛ and this approach was
taken in [143, Section 5.2] for the case � D � � 1. Let us only provide some simple
self-adjointness criteria.

Lemma 5.16. Let H˛ be the maximal operator defined by (5.3) in L2.	 I�/.

(i) If the series X
k�0

�2
k D

X
k�0

jekj
2 �k

�k

(5.24)

diverges, then H˛ is self-adjoint for any ˛.

(ii) If 	 has infinite intrinsic length, i.e., (5.14) holds, and ˛WX ! R is such
that zh0

˛ is bounded from below, then H˛ is self-adjoint and bounded from
below.

Proof. (i) By the Carleman test [2, Problem I.1], zh0
˛ is self-adjoint if the seriesX

k�0

1

bk

(5.25)

diverges. However,

1

bk

D
jekj

p
m.k/m.k C 1/

�k

�
jekjr.k/

�k

�

´
�2

k
; �k � 1;

1; �k > 1:
(5.26)

Therefore, (5.25) diverges if so is (5.24). It remains to apply Theorem 5.15.
(ii) By the Wouk test [2, Problem I.4], zh0

˛ is self-adjoint if it is bounded from
below and X

k�0

1
p

bk

D 1:

It remains to take into account (5.26) and then apply Theorem 5.15.

Remark 5.17. One can apply other self-adjointness tests (see, e.g., [2, Chapter I]) to
J with the Jacobi parameters given by (5.22) in order to get various self-adjointness
conditions for the operator H˛ (cf., e.g., [143, Section 5]). For instance, Berezanskii’s
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test [2, Problem I.5] would lead to examples with non-trivial deficiency indices even
if (5.14) is satisfied.

5.3 Jacobi matrices and Krein–Stieltjes strings as boundary operators

The results in the previous section connect spectral properties of Sturm–Liouville
operators with a certain family of Jacobi matrices. The natural question arising in this
context is:

How large is the class of Jacobi matrices with Jacobi parameters (5.22)?

The next result shows that for each choice of Jacobi parameters .ak; bk/k�0 one
can find weights �, � and strengths ˛ such that (5.22) holds.

Proposition 5.18. For every symmetric Jacobi (tri-diagonal) matrix (5.23) normal-
ized by the condition bk > 0 for all k � 0 there exist lengths .jekj/k�0 �R>0, weights
.�k/k�0 � R>0 and strengths .˛k/k�0 � R such that:

(i) Normalization: lengths .jekj/k�0 and weights .�k/k�0 satisfy

�k D
jekj
p

�k

� 1 (5.27)

for all k � 0.

(ii) Jacobi parameters have the form

ak D
1

jek�1j C jekj

�
˛k C

�k�1

jek�1j
C

�k

jekj

�
; (5.28)

bk D
�k

jekj
p

.jek�1j C jekj/.jekj C jekC1j/
(5.29)

for all k � 0.

(iii) Boundary operator: the minimal operator zh associated in `2.Z�0/ with the
matrix (5.23) having Jacobi parameters (5.28)–(5.29) serves as a bound-
ary operator (in the sense of Proposition 3.11) for the minimal operator
H0 D H0

1;�;˛ defined by the differential expression

��;˛ D �
d

dx
�.x/

d
dx

C

X
k�0

˛kı.x � xk/; (5.30)

in the Hilbert space L2.	 /. Here 	 D Œ0; L/ and the weight �W 	 ! R>0

is defined by

xk D

k�1X
jD0

jej j; L D

X
k�0

jekj; �.x/ D
X
k�0

�k1Œxk ;xkC1/.x/: (5.31)
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Proof. Since ˛k 2 R in (5.22) can be chosen arbitrary, the main difficulty is of course
to show that every sequence .bk/k�0 of positive real numbers can be realized as
(5.22). Let .bk/k�0 � .0;1/ be given. First set je0j D 1. Then (5.29) holds for k D 0

if
je1j D

�2
0

b2
0

� 1:

If b0 < 1, we set �0 D 1 and define je1j by the above equation, otherwise, we set
�0 D

p
2b0 > 1 and je1j D 1. Clearly, both (5.27) and (5.29) hold true for k D 0.

Next we proceed inductively. Assume we have already defined positive numbers
�0; : : : ; �n�1 and je0j; : : : ; jenj such that (5.29) holds for k D 0; : : : ; n � 1. Set

sn WD
jenjp

jen�1j C jenj
p
jenj C 1

:

If sn � bn, we set

jenC1j D 1; �n D
bn

sn

jenj
2
� jenj

2;

and otherwise we choose

jenC1j D
s2

n

b2
n

.1 C jenj/ � jenj > 1; �n D jenj
2:

Clearly, by construction, both (5.27) and (5.29) hold true for k D n. Therefore, pro-
ceeding inductively, we obtain sequences of lengths .jekj/k�0 and weights .�k/k�0

such that (5.29) holds together with (5.27).

Remark 5.19. A few remarks are in order.
(i) Combining Proposition 5.18 with Theorem 3.1, we conclude that basic

spectral theory of Jacobi matrices (e.g., self-adjointness, semiboundedness,
etc.) can be included into the spectral theory of Sturm–Liouville operators
of the form (5.30)–(5.31).

(ii) The choice of lengths and weights is not unique. Indeed, taking into account
that (3.1)–(3.6) are invariant under the scaling jej ! jejc.e/, �.e/ ! �.e/

c.e/
,

and �.e/ ! �.e/c.e/ for any cW E ! .0;1/, one can rescale parameters
and construct lengths and weights with the following properties:
• jekj � 1 and �k D �k for all k � 0 (hence � D � in (5.3)),
• �k D 1 and jekj

2�k � 1 for all k � 0 (hence � � 1 in (5.3)),
• jekj D 1 and �k � �k for all k � 0 (hence X D N in (5.3)).

(iii) Let us also stress that for Jacobi (tri-diagonal) matrices (5.23) still there is
no self-adjointness criterion formulated in closed form in terms of Jacobi
parameters (there are only various necessary and sufficient conditions).
This in particular means that even in the simplest case of a weighted path
graph one cannot hope for a transparent self-adjointness criterion formu-
lated in terms of weights and interaction strengths.
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If ˛ � 0, then the Hamiltonian H˛ generates a Markovian semigroup in L2.	 I�/

(assume, for a moment, that H˛ is self-adjoint). However, the boundary operator zh˛

does not reflect the parabolic properties of H˛ (it is not difficult to see that the semi-
group generated by zh˛ in `2.Z�0/ is positivity preserving, however, in general it is
not `1 contractive). From this perspective, let us look at the minimal operator h0

defined in `2.Z�0Im/ by (5.21) with the coefficients (5.19) and (5.20) and ˛ � 0.
It serves as the boundary operator for the Sturm–Liouville operator H, however, it
also captures the parabolic properties of H (see Chapter 4). Following the setting of
Section 2.2, every weight function b given by (5.20) defines an infinite path graph.
Since the coefficients of b depend only on the weight � and edge lengths, it is clear
that every weighted path graph can be obtained via (5.20). However, the difference
expression (5.21) (see (3.7)) also contains the vertex weight m defined by (5.19).
Thus, we can reformulate the question posed at the very beginning of Section 5.3
as follows:

Does every path graph b over .Z�0; m/ arise as a boundary operator for H?

Taking into account Proposition 5.18, the answer may look a bit surprising.

Proposition 5.20. Let mW Z�0 ! .0; 1/ and bW Z�0 � Z�0 ! Œ0; 1/ be positive
weights such that b defines an infinite path graph (i.e., b.k; n/ D b.n; k/ > 0 exactly
when jk � nj D 1). Then the minimal operator h0 associated in `2.Z�0Im/ with the
weighted Laplacian

.�f /.k/ WD
1

m.k/

X
n�0

b.n; k/.f .k/ � f .n//; k 2 Z�0; (5.32)

arises as a boundary operator for some Sturm–Liouville operator (5.4) with the
weights (5.1) if and only if

nX
kD0

.�1/n�km.k/ > 0 (5.33)

for all n � 0.

Proof. The necessity of (5.33) follows from (5.19) since m.0/ D r.0/ > 0 and for all
n � 1 we have

nX
kD0

.�1/n�km.k/ D .�1/nm.0/ C

nX
k�1

.�1/n�k.r.k � 1/ C r.k//

D r.n/ > 0:

To prove sufficiency, suppose that mWZ�0 ! .0;1/ satisfies (5.33) for all n � 0

and set b.k/ WD b.k;k C 1/, k � 0. Thus the left-hand side of (5.33) defines a positive
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sequence r WZ�0 ! .0;1/. Setting

jekj WD

8̂̂̂<̂
ˆ̂:
s

r.k/

b.k/
; r.k/ � b.k/;

r.k/

b.k/
; r.k/ > b.k/;

�k WD

´p
r.k/b.k/; r.k/ � b.k/;

r.k/; r.k/ > b.k/;

for all k � 0, we end up with a suitable and, in fact unique, choice of the weight
function

�.x/ D
X
k�0

�k1Œxk ;xkC1/; xk D

k�1X
jD0

jej j;

such that the minimal operator h0 associated in `2.ZIm/ with (5.32) is the boundary
operator for H0 associated with (5.4) (with the weights � D �).

Remark 5.21. Surprisingly enough, we are not able to obtain all difference expres-
sions of the form (3.7) even in the simplest case of a path graph. The main restriction
is the form of the weight function m. More precisely, the formal Laplacian L asso-
ciated to a path graph b over the measure space .Z�0; m/ can be obtained via (5.19)
and (5.20) only if the weight function m belongs to the image of the cone of strictly
positive functions CC.Z�0/ under the map I C � , where � is the right shift operator
defined on C.Z�0/ by

� W .f .k//k�0 7! .f .k � 1//k�0;

where f .�1/ WD 0 for notational simplicity. Indeed, with this notation (5.19) takes
the form

m D .I C �/r;

and then the validity of (5.33) for all n � 0 is exactly the inclusion m 2 CC.Z�0/.

Remark 5.22 (Krein–Stieltjes strings). Set

`k D
1

b.k; k C 1/
D

jekj

�k

; �k D

k�1X
jD0

j̀ ; !k D m.k/

for all k � 0. Next define the positive measure ! on Œ0; `/, where ` WD
P

k�0 `k , by

!.Œ0; �// WD
X
�k��

!k :

If ˛k D 0 for all k � 0, then the spectral problem �f D zf associated with the
difference expression (5.21), (5.19), (5.20) admits a mechanical interpretation (see
[2, Appendix], [120, Section 13]): it describes small oscillations of a string of length
` with mass density !. The corresponding spectral problem can be written as

�y00
D z!y; � 2 Œ0; `/;
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which is similar to the form of (5.4), however, the coefficient ! is a measure bear-
ing point masses only. Strings whose mass density has the above form are usually
called Krein–Stieltjes strings (the corresponding finite difference expressions appear
in the study of the Stieltjes moment problem and their mechanical interpretation was
observed by M. G. Krein [120]). Thus, the results of this section establish a connec-
tion between two classes of strings: strings whose mass density is piecewise constant
and Krein–Stieltjes strings. However, Proposition 5.20 says that we cannot cover the
whole class of Krein–Stieltjes strings.


