
Chapter 6

Graph Laplacians as boundary operators

The results in the preceding chapters lead to the following question:

Which graph Laplacians may arise as boundary operators (in the sense of
Chapters 3 and 4) for a Kirchhoff Laplacian on a weighted metric graph?

Let us be more specific in stating the above problem. Suppose a vertex set V

is given. Each graph Laplacian (2.4) is determined by the vertex weight function
mWV ! .0;1/, edge weight function bWV � V ! Œ0;1/ having properties (i), (ii)
and (iv) of Section 2.2, and the killing term cWV ! Œ0;1/. We always assume that
the underlying graphs are connected. With each such b we can associate a locally
finite simple graph Gb D .V ; Eb/ as described in Remark 2.7.

Definition 6.1. A cable system for a graph b over .V ; m/ is a model of a weighted
metric graph .G ; �; �/ having V as its vertex set and such that the functions defined
by (3.1)–(3.5) and (3.6) coincide with m and, respectively, b. If in addition the under-
lying graph .V ; E/ of the model coincides with Gb D .V ; Eb/, then the cable system
is called minimal.

Remark 6.2. Notice that the underlying combinatorial graph .V ; E/ of a cable sys-
tem for .V ; mI b/ can always be obtained from the simple graph Gb D .V ; Eb/ by
adding loops and multiple edges.

Since the killing term c is nothing but the strength of ı-couplings at the vertices
in (3.7), we can restrict our considerations to the case c � 0:

Problem 6.1. Which locally finite graphs .V ; mI b/ have a minimal cable system?

The case of a path graph shows that the answer to the above problem is not trivial
(see Proposition 5.20). However, we stress that a general cable system may have loops
and multiple edges and thus the simplicity assumption on the model of .G ; �; �/ (that
is, the minimality of a cable system for .V ; mI b/) might be too restrictive. In fact, as
discussed in Remark 2.11 and Remark 2.12, we can allow multi-graphs and this leads
us to another question:

Problem 6.2. Which locally finite graphs .V ; mI b/ have a cable system?

Once the above problems will be resolved, the next natural question (also in con-
text with possible applications) is:

Problem 6.3. How can one describe all cable systems of a locally finite graph b over
.V ; m/?



Graph Laplacians as boundary operators 98

On the other hand, there is another closely connected class of second order differ-
ence operators on graphs, however, acting in `2.V/. In particular, the operator defined
in `2.V/ by the difference expression (3.28) is a special case of

.�f /.v/ D ˇ.v/f .v/ �
X
u2V

q.u; v/f .u/; v 2 V ;

where ˇW V ! R and q is a graph over V satisfying properties (i), (ii) and (iv) of
Section 2.2. This leads to a similar problem:

Problem 6.4. Given a graph q over V , which of the above difference expressions
arise as boundary operators for Laplacians with ı-couplings on a weighted metric
graph .G ; �; �/ over Gq D .V ; Eq/?

Despite an obvious similarity and a clear connection between these problems, as
we learned in Section 5.3, they have very different answers even in the case of a path
graph (see Proposition 5.18 and Proposition 5.20).

Remark 6.3. Taking into account an obvious analogy between the above second
order difference expression and Jacobi matrices, it is tempting to call them Jacobi
matrices on graphs (cf., e.g., [8–10]).

6.1 Examples

Before studying Problems 6.1–6.4, let us first give several illustrative examples.

Example 6.4 (Normalized Laplacians/simple random walks). Let Gd D .V ; E/ be
a locally finite simple graph. Let also j � jW E ! .0; 1/ be given and define edge
weights �; �WE ! .0;1/ by setting

�W e 7!
1

jej
; �W e 7! jej:

Notice that the intrinsic edge length is constant on E , that is,

�.e/ D jej

s
�.e/

�.e/
D 1

for all e 2 E in this case, and hence (3.3), (3.5) and (3.6) give

m.v/ D
X
u�v

jej�.e/ D deg.v/; v 2 V ;

and

b.u; v/ D

´
1; u � v;

0; u 6� v;
.u; v/ 2 V � V :
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The corresponding graph Laplacian (3.7) (with ˛ � 0) has the form

.Lnormf /.v/ WD
1

deg.v/

X
u�v

f .v/ � f .u/ D f .v/ �
1

deg.v/

X
u�v

f .u/

for all v 2 V . It is known in the literature as a normalized Laplacian (or physical
Laplacian). This operator has a venerable history. In particular, it appears as the gen-
erator of the simple random walk on Gd D .V ; E/, where “simple” refers to the fact
that the probabilities to move from v to a neighboring vertex are all equal to 1

deg.v/

(see, e.g., [212]).

Example 6.5 (Electrical networks/Random walks). Again, let Gd D .V ; E/ be a lo-
cally finite simple graph. Suppose j � jW E ! ¹1º, that is, the corresponding metric
graph G is equilateral (each e 2 E can be identified with a copy of the interval Œ0; 1�).
Next, suppose that the edge weights �; �WE ! .0;1/ coincide, that is, �.e/ D �.e/

for all e 2 E . Then

�.e/ D

s
�.e/

�.e/
D 1

for all e 2 E and hence, by (3.3), (3.5) and (3.6),

b.u; v/ D

´
�.eu;v/; u � v;

0; u 6� v;
m.v/ D mb.v/ WD

X
e2Ev

�.e/:

The corresponding graph Laplacian (3.7) (with ˛ � 0) is given explicitly by

.Lbf /.v/ WD
1

mb.v/

X
u�v

b.u; v/.f .v/ � f .u//; v 2 V ;

and arises in the study of random walks on Gd (a.k.a. reversible Markov chains),
where the jump probabilities are defined by (see, e.g., [12, Chapter 1.2], [91])

p.u; v/ D
b.u; v/P

x2V b.u; x/
; u; v 2 V :

On the other hand, considering informally an electrical network as a set of wires
(edges) and nodes (vertices), we can interpret b.u; v/ as a conductance of a wire eu;v

connecting u with v, r.u; v/ D 1
b.u;v/

is the resistance of eu;v and m.v/ is the total
conductance at v. Thus, the corresponding weighted Laplacian Lb arises in the study
of pure resistor networks (see [12, 195, 212]).

Therefore, every electrical network operator/generator of a random walk (re-
versible Markov chains) on a locally finite graph arises as a boundary operator for
a Kirchhoff Laplacian on a weighted metric graph. Notice also that by Lemma 2.9
the corresponding graph Laplacian is bounded (in fact, its norm is at most 2).

Remark 6.6. The construction in Example 6.5 connecting a random walk on a graph
with a Brownian motion on a weighted metric graph can be found in [205].
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The above examples show that a very important class of graph Laplacians arises
as boundary operators (in the sense of Proposition 3.11) for Laplacians on weighted
metric graphs. However, as we shall see next, the answer to Problem 6.1 is far from
trivial.

Example 6.7 (Combinatorial Laplacians on antitrees). Again, let Gd D .V ; E/ be
a locally finite simple graph. Set m D 1 on V and define a graph b over .V ; m/ by

b.u; v/ D

´
1; u � v;

0; u 6� v;
.u; v/ 2 V � V :

Notice in particular that the associated combinatorial graph .V ; Eb/ coincides with
Gd D .V ; E/ (see Remark 2.7). The corresponding graph Laplacian acts in `2.V/ and
is given by

.Lcombf /.v/ WD
X
u�v

f .v/ � f .u/ D deg.v/f .v/ �
X
u�v

f .u/: (6.1)

This operator is known as the combinatorial Laplacian1 and A D .b.u; v//u;v2V is
nothing but the adjacency matrix of the graph Gd D .V ; E/.

Suppose additionally that our graph Gd D .V ;E/ is a rooted antitree (see [48,149,
213] and also Section 8.1), that is, fix a root vertex o2V and then order the graph with
respect to the combinatorial spheres Sn, n 2 Z�0 (Sn consists of all vertices v 2 V

such that the combinatorial distance from v to the root o, that is, the combinatorial
length of the shortest path connecting v with o, equals n; notice that S0 D ¹oº). The
graph Gd is called an antitree if it is simple and every vertex in Sn is connected
to every vertex in SnC1 and there are no horizontal edges, i.e., there are no edges
with all endpoints in the same sphere (see Figure 6.1). In this particular situation

o
S0

S1

S2

S3

Figure 6.1. Example of an antitree with sn D #Sn D n C 1.

1It seems that there is no agreement how to call this difference operator and sometimes the
name “physical Laplacian” is used instead. However, taking into account its obvious connection
with the adjacency matrix, the name “combinatorial Laplacian” looks more appropriate to us.
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(a combinatorial Laplacian on an infinite antitree) the next result provides a complete
answer to Problem 6.1.

Proposition 6.8. Let AD .V ;E/ be an (infinite) antitree and let sn WD #Sn, n 2 Z�0,
be its sphere numbers. Then the corresponding combinatorial Laplacian (6.1) on A

arises as a boundary operator for a minimal Kirchhoff Laplacian on a weighted met-
ric antitree if and only if

nX
kD0

.�1/ksn�k > 0 (6.2)

holds for all n 2 Z�0.

We shall give the proof of this result in Section 6.2. Let us only mention the
similarity between (6.2) and (5.33), which is, in fact, not at all surprising in view
of connections between Laplacians on family preserving graphs and Jacobi matrices
(see [30]).

6.2 Life without loops I: Graph Laplacians

We begin with Problem 6.1. Its importance stems from the fact that every regular
Dirichlet form over .V ; m/ arises as the energy form qD for some graph .b; c/ over
.V ; m/ (see [132, Theorem 7]).

Suppose that a connected locally finite graph .b; c/ over .V ;m/ is given. Let Gb D

.V ; Eb/ be the simple graph associated with .b; c/: u � v exactly when b.u; v/ ¤ 0

(see Remark 2.7). Then for each weighted metric graph .G ; �; �/ over .V ; Eb/ the
functions defined by (3.1)–(3.5) and (3.6) take the following form:

mG .v/ D
X

uWb.u;v/¤0

r.eu;v/; (6.3)

where r is defined by (3.1), (3.3)–(3.4), and

bG .u; v/ D

8̂<̂
:

�.eu;v/

jeu;vj
; b.u; v/ > 0;

0; b.u; v/ D 0:

Comparing the form of the boundary operator (3.7) with (2.4), it is clear that the
killing term c is nothing but the strength of ı-couplings at the vertices and hence we
can restrict our considerations to the case c � 0. In fact, the next result shows that
Problem 6.1 can be reduced to a description of all possible vertex weights m:

Proposition 6.9. A locally finite graph .V ; mI b/ admits a minimal cable system if
and only if there is a function rbWEb ! .0;1/ such that, for all v 2 V ,

m.v/ D
X
e2Ev

rb.e/: (6.4)
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Proof. Necessity immediately follows from (6.3). Let us prove sufficiency. Suppose
there is rbWEb ! .0;1/ such that (6.4) holds true for all v 2 V . First of all, we set
jeu;vj � 1 and �.eu;v/ WD b.u; v/ for all edges eu;v 2 Eb . If supu;v

rb.eu;v/

b.u;v/
< 1, then

we define �.eu;v/ D rb.eu;v/ and otherwise set

�.eu;v/ D

8̂<̂
:

rb.eu;v/; rb.eu;v/ � b.u; v/;

rb.eu;v/2

b.u; v/
; rb.eu;v/ > b.u; v/;

for each eu;v 2 Eb . It is then straightforward to check that the corresponding functions
defined by (3.1)–(3.5) and (3.6) coincide with m and b.

In fact, the above result shows that the answer to Problem 6.1 is analogous to the
answer in the case of a path graph (see Proposition 5.20 and Remark 5.21). Indeed, let
Gd D .V ; E/ be a simple locally finite graph and consider the map DWC.V/ ! C.E/

given by
.Df /.eu;v/ D f .u/ C f .v/:

If we define the Hilbert space `2.E/ as

`2.E/ D

²
�WE ! C W

X
e2E

j�.e/j2 < 1

³
;

then D defines a possibly unbounded operator from `2.V/ to `2.E/ (in fact, D is
bounded if and only if the graph Gd has bounded geometry, supv2V deg.v/ < 1). Its
(formal) adjoint D�WC.E/ ! C.V/ is given by

.D��/.v/ D
X
e2Ev

�.e/; v 2 V :

Comparing this formula with (6.4), we immediately arrive at the following result:

Corollary 6.10. A locally finite graph .V ; mI b/ admits a minimal cable system if
and only if m belongs to the image of the positive cone CC.E/ under the map D�.

Remark 6.11. Taking into account Example 6.5, Corollary 6.10 admits the following
reformulation: A locally finite graph .V ; mI b/ admits a minimal cable system if and
only if there are resistances RWEb ! R>0 such that total conductances on V coincide
with m.

Let us apply the above result to antitrees in order to prove Proposition 6.8.

Proof of Proposition 6.8. By Proposition 6.9, we need to show that for a given anti-
tree AD .V ;E/ with sphere numbers .sn/n�0 condition (6.2) holds for all n� 0 if and
only if there is a strictly positive function r WE ! .0;1/ such that

P
e2Ev

r.e/ D 1

for all v 2 V .
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Suppose first that (6.2) holds for all n � 0. Then setting

r.e/ WD
1

snsnC1

nX
kD0

.�1/ksn�k

for all e 2 En, where En the set of edges connecting the spheres Sn and SnC1, we get
for each v 2 Sn, n � 0,X

e2Ev

r.e/ D
X

e2En\Ev

r.e/ C
X

e2En�1\Ev

r.e/

D snC1

1

snsnC1

nX
kD0

.�1/ksn�k C sn�1

1

sn�1sn

n�1X
kD0

.�1/ksn�1�k

D 1:

Conversely, suppose r WE ! .0;1/ is such that D�r D 1V . Then we haveX
e2E0

r.e/ D
X
e2Eo

r.e/ D 1 D #S0 D s0;

and hence

0 <
X
e2En

r.e/ D
X

v2Sn

X
e2Ev

r.e/ �
X

e2En�1

r.e/

D sn �

X
e2En�1

r.e/

D

nX
kD0

.�1/ksn�k

for all n � 0, where the last equality follows immediately by induction.

Remark 6.12. A few remarks are in order.

(i) Proposition 6.8 can be generalized to family preserving graphs (see [30] for
definitions).

(ii) We stress that, by the above results, the combinatorial Laplacian on an infi-
nite path graph Gd D Z�0 has no minimal cable system. Indeed, every
infinite path graph is an antitree with sphere numbers sn D 1 for all n � 0

and (6.2) clearly fails to hold in this case (see also Proposition 5.20).

Despite its simple form, for a given vertex weight it is not so easy to verify the
conditions in Proposition 6.9 and Corollary 6.10. In particular, returning to Exam-
ple 6.7, the corresponding vertex weight m is a constant function, m D 1V , and
one may ask: for which graphs Gd D .V ; E/ the constant function 1V belongs to
D�.CC.E//? The answer to this question is provided by the following elegant result:
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Lemma 6.13. Let Gd D .V ; E/ be a simple graph satisfying Hypotheses 2.1. Then
1V 2 D�.CC.E// if and only if for each e 2 E there is a disjoint cycle cover of Gd

containing e in one of its cycles.

Recall that a disjoint cycle cover of Gd is a collection of vertex-disjoint cycles
in Gd such that every vertex in Gd lies on some edge in one of the cycles. Here,
by a cycle of length n 2 Z�2 in a simple graph Gd , we mean a path P D .vk/n

kD0

such that v0 D vn and all other vertices are distinct. Notice that this definition differs
slightly from the one given in Section 2.1.1, that is, in the present section we allow
for a moment cycles of length two (consisting of “going back and forth” along one
fixed edge).

Remark 6.14. Lemma 6.13 is due to G. Zaimi and was published in MathOverflow2

as the answer to a question posed by M. Folz. It is curious to mention that Folz
came up in [72] with a problem similar to Problem 6.1 when studying stochastic
completeness of weighted graphs and attempting to prove a volume growth test by
employing connections between Dirichlet forms on graphs and metric graphs, which
allow to transfer the results from strongly local Dirichlet forms to Dirichlet forms on
graphs (see Sections 4.2 and 4.6 for further information).

Remark 6.15. Notice that in the case of finite graphs, for each e 2E there is a disjoint
cycle cover containing e in one of its cycles if and only if removing an edge decreases
the permanent of the corresponding adjacency matrix. The appearance of permanents
is not at all surprising since

.D�Df /.v/ D
X
u�v

f .v/ C f .u/ D deg.v/f .v/ C
X
u�v

f .u/

is the so-called signless Laplacian. Here the second summand is the usual adjacency
matrix.

6.3 Life with loops

As we have seen in Section 6.2, a minimal cable system for .V ; mI b/ may not exist.
Moreover, to verify its existence is a rather complicated task even in some simple
cases. It turns out that the situation changes once we drop the minimality assumption.
In particular, we obtain an affirmative answer to Problem 6.2:

Theorem 6.16. Every locally finite graph .V ; mI b/ has a cable system.

2See httpsW//mathoverflow.net/questions/59117/: Assigning positive edge weights to a graph
so that the weight incident to each vertex is 1, (2011).

https://mathoverflow.net/questions/59117/
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Proof. The proof is by construction. As before, denote by Gb D .V ; Eb/ the simple
graph associated with b (see Remark 2.7). Let Gloop D .V ; Eloop/ be the (combinato-
rial) graph obtained from Gb D .V ; Eb/ by adding a loop ev D ev;v at each vertex
v 2 V . More precisely, its edge set is given by

Eloop D Eb [ ¹ev W v 2 Vº:

Next, define the edge weight pWEloop ! .0;1/ by

p.eu;v/2
D

8<:
1

2 max¹1; Deg.u/; Deg.v/º
; u ¤ v;

1; u D v;

where Deg is the weighted degree function (2.9). The edge lengths are then defined
by j � j D p.�/ on Eloop and the edge weights � and � are given by

�.eu;v/ D �.eu;v/ D

8̂̂<̂
:̂

b.u; v/p.u; v/; u ¤ v;

m.v/ �
X
u�v

b.u; v/p.eu;v/2; u D v:

By construction, �.ev/D �.ev/ > 0 and hence we indeed obtain well-defined weights
�; �W Eloop ! .0;1/. Moreover, it is easy to check that .Gloop; j � j; �; �/ is a cable
system for .V ; mI b/.

Remark 6.17. A few remarks are in order:

(i) The above construction is taken from [72, Remark 2, p. 2107], where it was
suggested in context with synchronizing Brownian motions and random
walks on graphs. However, we stress that, due to the presence of a loop at
every vertex, this cable system is never minimal.

(ii) After establishing existence of cable systems, the next natural question is
their uniqueness. In fact, every locally finite graph b over .V ;m/ has a large
number of cable systems. In particular, the above cable system is a spe-
cial case of a general construction using different metrizations of discrete
graphs. These connections will be discussed in the next section.

6.4 Intrinsic metrics

In this section we discuss connections between intrinsic metrics for the Kirchhoff
Laplacian on a weighted metric graph .G ; �; �/ and the associated discrete Laplacian
on a fixed model. Notice that we cannot expect a close link between the properties of
the length metric %0 (see Section 2.1) and Kirchhoff Laplacians on weighted metric



Graph Laplacians as boundary operators 106

graphs since %0 does not depend on � and �. However, it is known that the spectral
properties of an operator associated to a (regular) Dirichlet form relate closely to
its associated intrinsic metrics (see, e.g., [74, 198] for precise definitions and further
references).

Historically, intrinsic metrics appear first in context with strongly local forms (see
[53, Chapter 3.2] and [27]). More precisely, to each strongly local, regular Dirichlet
form there is an associated intrinsic metric and this notion allows to generalize many
results known for the Laplace–Beltrami operator on a Riemannian manifold and the
Riemannian metric (see [198–200] for details and further references).

A rather general notion of intrinsic metrics for arbitrary (regular) Dirichlet forms
was introduced in [74]. With its help, a variety of results could be recovered also in
the non-local setting (see, e.g., [18,74,113,116,129] and the references therein). One
of the crucial differences is that it is no longer possible to associate a unique intrinsic
metric to a general Dirichlet form. More precisely, if the Dirichlet form is strongly
local, then the classical intrinsic metric is intrinsic in the sense of [74]. Moreover, it
is in a certain sense the largest one among all such metrics (see [74, Theorem 6.1])
and hence provides a canonical choice. For a non-local Dirichlet form (including the
setting of graph Laplacians), there is in general no largest intrinsic metric and hence
it is not possible to make a canonical choice.

6.4.1 Intrinsic metrics on metric graphs

We define the intrinsic metric of a weighted metric graph .G ; �; �/ as the (largest)
intrinsic metric of its Dirichlet Laplacian HD (in particular, note that QD is a strongly
local, regular Dirichlet form). By [198, equation (1.3)] (see also [74, Theorem 6.1]),
%intr is given by

%intr.x; y/ D sup¹f .x/ � f .y/ W f 2 yDlocº; x; y 2 G ;

where the function space yDloc is defined as

yDloc D ¹f 2 H 1
loc.G / W �.x/jrf .x/j2 � �.x/ for a.e. x 2 G º:

It turns out that %intr admits a rather explicit description. First of all, the above suggest
to define the intrinsic weight �WG ! .0;1/,

� D ��;� WD

r
�

�
on G :

This weight gives rise to a new measure on G whose density with respect to the
Lebesgue measure is exactly � (as in the case of the edge weights on a metric graph,
we abuse the notation and denote with � both the edge weight and the corresponding
measure).
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Recall from Remark 2.2 that a path P in G is a continuous and piecewise injective
map P W I ! G defined on an interval I � R. In case that 	 D Œa; b� is compact, we
call P a path with starting point x WD P .a/ and endpoint y WD P .b/. The (intrinsic)
length of such a path P in G is defined as

jP j� WD

X
j

Z
P ..tj ;tjC1//

�.ds/; (6.5)

where a D t0 < � � � < tn D b is any partition of 	 D Œa; b� such that P is injective on
each interval .tj ; tjC1/ (clearly, jP j� is well defined).

Lemma 6.18. The metric %� defined by

%�.x; y/ WD inf
P

jP j� D inf
P

Z
P

�.ds/; x; y 2 G ; (6.6)

where the infimum is taken over all paths P from x to y, coincides with the intrinsic
metric on .G ; �; �/ (with respect to QD), that is, %intr D %� .

Notice that in the case � D �, � coincides with the Lebesgue measure and hence
%� is nothing but the length metric %0 on G .

Proof. The proof is straightforward and can be found in, e.g., [97, Proposition 2.21],
however, we decided to present it for the sake of completeness. First, observe that for
any two points x; y on G and every path P from x to y, the estimate

jf .x/ � f .y/j �

Z
P

jrf jds �

Z
P

r
�

�
ds D

Z
P

�.ds/ D jP j�

holds true for every f 2 yDloc, and hence %intr � %� .
On the other hand, fixing some y 2 G , define f 2H 1

loc.G / by f .x/D %�.x; y/

for all x 2 G . It is immediate to see that f is edgewise absolutely continuous and

jrf j D

r
�

�
a.e. on G .

Therefore, f 2 yDloc. Moreover, for each x 2 G we clearly have

%�.x; y/ D f .x/ � f .y/ D f .x/;

which finishes the proof.

Remark 6.19. According to the above definition of the intrinsic weight, we get for
a path Pe consisting of a single edge e 2 E

jPej� D

Z
e

�.ds/ D jej

s
�.e/

�.e/
D �.e/;

which connects the intrinsic path metric %intr D %� on .G ; �; �/ with the notion of the
intrinsic edge length (3.1).
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Remark 6.20 (Eikonal/optical metric). Let us mention that the obtained intrinsic
metric admits a mechanical interpretation. In terms of the wave equation, the weight
p

�
�

is precisely the reciprocal of the speed of wave propagation on a given edge.
Moreover, the distance function f WD %�.x0; � / for a reference point x0 satisfies the
eikonal equation jrf j D

p
�
�

on all edges. From this perspective, one may try to
interpret the intrinsic distance between two points on a weighted metric graph as a
time that the wave initiated at one point needs to reach the other one. In the physics
literature, the latter is often called eikonal or optical metric.

6.4.2 Intrinsic metrics on discrete graphs

The idea to use different metrics on graphs can be traced back at least to [52] and
versions of metrics adapted to weighted discrete graphs have appeared independently
in several works, see, e.g., [71,72,92,165]. Let us now recall the definition of intrinsic
metrics for graph Laplacians, where we follow [18, 74, 129, 136].

Given a connected graph b over .V ; m/, a symmetric function pWV �V ! Œ0;1/

such that p.u;v/>0 exactly when b.u;v/>0 is called a weight function for .V ;mIb/.
Every weight function p generates a path metric %p on V with respect to the graph b

via
%p.u; v/ WD inf

PD.v0;:::;vn/WuDv0; vDvn

X
k

p.vk�1; vk/: (6.7)

Here the infimum is taken over all paths in b connecting u and v, that is, all sequences
P D .v0; : : : ; vn/ such that v0 D u, vn D v and b.vk�1; vk/ > 0 for all k 2 ¹1; : : : ; nº.
We stress that we always assume that b is locally finite (see Section 2.2) and hence
%p.u; v/ > 0 whenever u ¤ v.

Example 6.21. Let us provide a few important examples.

(i) Combinatorial distance: Let pWV � V ! ¹0; 1º be given by

p.u; v/ D

´
1; b.u; v/ ¤ 0;

0; b.u; v/ D 0:

Then the corresponding path metric is nothing but the combinatorial dis-
tance %comb (also known as the word metric in the context of Cayley graphs)
on a graph b over V .

(ii) Natural path metric: Define pbWV � V ! Œ0;1/ by

pb.u; v/ D

8<:
1

b.u; v/
; b.u; v/ ¤ 0;

0; b.u; v/ D 0:

(6.8)

Then the corresponding path metric %b depends only on the graph b and not
on the weight function m, and hence one may call it as a natural path met-



Intrinsic metrics 109

ric. Notice also that the edge weight (6.8) can be interpreted as resistances
(see Example 6.5).

(iii) Star path metric: Let mWV ! .0;1/ be a vertex weight. Set

pm.u; v/ D

´
m.u/ C m.v/; b.u; v/ ¤ 0;

0; b.u; v/ D 0:
(6.9)

Then the corresponding path metric %m is called the star metric on the
graph b over V . The following two choices of m are of particular interest:
the vertex weight

mb.v/ WD
X
u2V

b.u; v/; v 2 V ;

corresponds to a simple random walk on graph b (see Remark 2.11). An-
other choice

m1=b.v/ WD
X
u�v

1

b.u; v/
; v 2 V ;

appears in [68]. In particular, if bWV � V ! ¹0; 1º, then both mb and m1=b

coincide with the combinatorial degree function deg. In both cases the ver-
tex weight can be considered as a weight (or length) of the corresponding
star Ev at v 2 V , which explains the name.

Recall (see [74] and also [115, 129]) the following important notion:

Definition 6.22. A metric % on V is called intrinsic with respect to .V ; mI b/ ifX
u2V

b.u; v/%.u; v/2
� m.v/

holds for all v 2 V .

Similarly, a weight function pWV � V ! Œ0;1/ is called an intrinsic weight for
.V ; mI b/ if X

u2V

b.u; v/p.u; v/2
� m.v/; v 2 V :

If p is an intrinsic weight, then the associated path metric %p is called strongly intrin-
sic (it is obviously intrinsic in the sense of Definition 6.22).

Remark 6.23. For any given locally finite graph .V ; mIb/ an intrinsic metric always
exists (see [115, Example 2.1], [129] and also [45]). Indeed, we obtain an intrinsic
weight by setting

p.u; v/ D

8̂<̂
:

1p
max¹1; Deg.u/; Deg.v/º

; b.u; v/ ¤ 0;

0; b.u; v/ D 0;
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where Deg is the weighted degree function (2.9), and hence the corresponding path
metric % D %p is strongly intrinsic. We are going to provide further examples in the
next sections.

Example 6.24. Let us continue with Example 6.21.

(i) If a graph bWV � V ! ¹0; 1º is locally finite and m D deg on V , then the
combinatorial distance %comb on V is intrinsic.

(ii) If m D m1=b , then the path metric %b is intrinsic. Moreover, the weight pb

is intrinsic as well.

(iii) Let us stress that the star path metric %m is not intrinsic in general since it
does not contain any information on b except the underlying combinatorial
structure.

Remark 6.25. Let us emphasize that the combinatorial distance %comb is not intrinsic
for the combinatorial Laplacian Lcomb (m � 1 on V in this case). However, %comb

is equivalent to an intrinsic path metric if and only if deg is bounded on V , that is,
the corresponding graph has bounded geometry. If supV deg.v/ D 1, then Lcomb is
unbounded in `2.V/ and it turned out that %comb is not a suitable metric on V to study
the properties of Lcomb (in particular, this has led to certain controversies in the past,
see [135, 213]).

Remark 6.26. In the discrete setting we are unaware of any mechanical interpre-
tation of intrinsic metrics (cf. Remark 6.20). In particular, the relationship to wave
propagation speed is unclear since waves on discrete graphs propagate with infinite
speed, which is closely connected to the non-locality of the corresponding Dirich-
let form. It seems to us that exactly these facts are the origin of many difficulties in
analysis on weighted (discrete) graphs.

6.4.3 Connections between discrete and continuous

Consider a weighted metric graph .G ; �; �/ and its intrinsic metric %� defined in
Section 6.4.1. With each model of .G ;�;�/ we can associate the vertex set V together
with the vertex weight mWV ! .0;1/ and the graph bWV � V ! Œ0;1/, see (3.1)–
(3.6). The next result shows that the intrinsic metric %� of .G ; �; �/ gives rise to
a particular intrinsic metric for .V ; mI b/.

Lemma 6.27. Let .G ; �; �/ be a weighted metric graph and %� its intrinsic metric.
Fix further a model of .G ; �; �/ having finite intrinsic size and define the metric %V

on V as a restriction of %� onto V � V ,

%V .u; v/ WD %�.u; v/; .u; v/ 2 V � V : (6.10)
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Then:

(i) %V is an intrinsic metric for .V ; mI b/.

(ii) .G ; %�/ is complete as a metric space exactly when .V ; %V / is complete.

Proof. (i) Fix a model of a weighted metric graph of .G ; �; �/ and consider the edge
weight function p�WV � V ! Œ0;1/ given by

p�.u; v/ D

´
mine2Eu;v

�.e/; u � v and u ¤ v;

0; else;
.u; v/ 2 V � V : (6.11)

Here Eu;v denotes the set of edges between u and v (recall that we allow multigraphs).
Using (3.1)–(3.6), notice that for every v 2 V ,X

u2V

b.u; v/p�.u; v/2
D

X
u2Vn¹vº

X
e2Eu;v

�.e/

jej
p�.u; v/2

�

X
u2Vn¹vº

X
e2Eu;v

�.e/

jej
�.e/2

D

X
u2Vn¹vº

X
e2Eu;v

jej�.e/

� m.v/;

where in the last inequality we used the fact that .G ; �; �/ has finite intrinsic size.
Hence p� is an intrinsic weight for .V ; mI b/. It remains to notice that each path P

without self-intersections from u 2 V to v 2 V in the metric graph G can be identified
with a path Pd D .eu;v1

; : : : ; evn�1;v/ in the fixed model from u D v0 to v D vn

without self-intersections. With respect to this identification,

jP j� D

nX
kD1

�.evk�1;vk
/

which immediately implies that %p�
D %�jV�V (notice that both the infima in (6.6)

and (6.7) can be taken over paths without self-intersections).
(ii) The remaining equivalence of the metric space completeness is straightfor-

ward to verify directly (one can also immediately observe it by comparing geodesic
completeness on both metric spaces and then using the corresponding versions of the
Hopf–Rinow theorems, see Section 6.4.5).

Remark 6.28. Notice that the proof also implies that (6.11) is an intrinsic weight for
.V ; mI b/ and %V D %p�

is the corresponding strongly intrinsic path metric.

Let us mention that Lemma 6.27 also has an interpretation in terms of quasi-
isometries (see, e.g., [12, Definition 1.12], [175, Section 1.3] and [187]).
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Definition 6.29. A map �WX1!X2 between two metric spaces .X1;%1/ and .X2;%2/

is called a quasi-isometry if there are constants a; R > 0 and d � 0 such that

a�1.%1.x; y/ � d/ � %2.�.x/; �.y// � a.%1.x; y/ C d/ (6.12)

for all x; y 2 X1 and, moreover,[
x2X1

BR.�.x/I %2/ D X2: (6.13)

One can check that quasi-isometries define an equivalence relation between met-
ric spaces. It turns out that the map {V defined in Section 4.3 is closely related with a
quasi-isometry between weighted graphs and metric graphs:

Lemma 6.30. Assume the conditions of Lemma 6.27. Then the map

'WV ! G ; '.v/ D v

defines a quasi-isometry between the metric spaces .G ; %�/ and .V ; %V /. Moreover,
the map ' is bi-Lipschitz (i.e., b in (6.12) can be set equal to 0).

Proof. The proof is a straightforward check of (6.12) and (6.13) for the map � with
a D 1, b D 0 and R D ��.E/ and we leave it to the reader.

Remark 6.31. The notion of quasi-isometries was introduced in the works [94] of
M. Gromov and [122, 123] of M. Kanai. It is well known in context with Riemann-
ian manifolds and (combinatorial) graphs that quasi-isometric spaces share many
important properties: e.g., geometric properties (such as volume growth and isoperi-
metric inequalities) [122], parabolicity/transience [47, 122, 160], Nash inequalities
[47], Liouville-type theorems for harmonic functions of finite energy [47, 106, 107,
151, 160, 194] and parabolic/elliptic Harnack inequalities [14, 15, 47, 103]. However,
we stress that most of these connections also require additional conditions on the local
geometry of the spaces. Typically, one imposes a bounded geometry assumption for
manifolds [122] and bounded geometry/controlled weights assumptions for graphs
[12, 15], [195, Chapter VII].

Some of our conclusions are reminiscent of this notion (see, e.g., Theorem 4.17,
Theorem 4.30 and Proposition 7.38), but in fact our results go beyond this framework.
For instance, the strong/weak Liouville property (i.e., all positive/bounded harmonic
functions are constant) is not preserved under bi-Lipschitz maps in general [155].
However, the equivalence holds true for our setting (this is a trivial consequence
of Lemma 6.48 below). In addition, we stress that in contrast to the above works,
we do not require any additional local conditions (e.g., bounded geometry). On the
other hand, our results connect only two particular quasi-isometric spaces .G ; %�/ and
.V ; %V / and not the whole equivalence class of quasi-isometric weighted graphs or
weighted metric graphs.
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By Lemma 6.27, each cable system having finite intrinsic size3 gives rise to an
intrinsic metric %V for .V ;mIb/ using a simple restriction to vertices. In view of Prob-
lems 6.1–6.2, it is natural to ask which intrinsic metrics on graphs can be obtained as
restrictions of intrinsic metrics on weighted metric graphs. It turns out that a rather
large class can be covered in this way. Before stating the result, let us recall one more
definition.

Definition 6.32. Let b be a locally finite graph over V . A metric % on V has finite
jump size (with respect to b) if

s.%/ WD sup¹%.u; v/ W u; v 2 V with b.u; v/ > 0º

is finite.

Lemma 6.33. Let .V ;mIb/ be a locally finite graph and let �WV �V ! Œ0;1/ be an
intrinsic path metric having finite jump size s.%/ <1. Then there is a cable system for
.V ; mI b/ satisfying ��.E/ � max¹s.%/; 1º and such that �V D �. Moreover, .V ; %V /

is complete exactly when the corresponding weighted metric graph .G ; �; �/ of the
cable system equipped with its intrinsic metric %� is complete.

Proof. Our proof follows closely the ideas of [114, p. 128] and [72]. The edge set E

of the cable system .V ; E; j � j; �E ; �E/ is defined as follows: first of all, we create an
edge e D eu;v between each pair of vertices u; v 2 V with b.u; v/ > 0. Moreover, we
add a loop edge at each vertex v 2 V satisfyingX

u2Vn¹vº

b.u; v/%.u; v/2 < m.v/:

Notice that the resulting combinatorial graph Gd D .V ;E/ does not have any multiple
edges. Specifying now the edge lengths and weight, assume first that eu;v 2 E is
a non-loop edge, that is, u ¤ v. Then we set

jeu;vj D %.u; v/; �.eu;v/ D �.eu;v/ D %.u; v/b.u; v/:

If e 2 E is a loop at the vertex v 2 V , then we define

jej D 1; �.e/ D �.e/ D m.v/ �
X

u2Vn¹vº

b.u; v/%.u; v/2 > 0:

By definition, �.eu;v/D jeu;vj D %.u;v/ for each non-loop edge eu;v and it is straight-
forward to check that .V ; E; j � j; �E ; �E/ is a cable system for .V ; mI b/. Moreover,
since % is a path metric, we easily infer that % D %V (see Remark 6.28).

3Since by definition a cable system is a model of a weighted metric graph, the notion of
intrinsic size (see Definition 3.16) immediately extends to cable systems.
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Remark 6.34. A few remarks are in order.

(i) Notice that an intrinsic path metric with jump size s.%/ � 1 indeed exists
for every graph .V ; mI b/ (e.g., take the path metric in Remark 6.23).

(ii) We stress that not every intrinsic metric is a path metric. However, in some
sense intrinsic path metrics correspond to particularly large intrinsic met-
rics. Namely, for every intrinsic metric %, the choice p.u; v/ WD %.u; v/

whenever b.u; v/ > 0 defines an intrinsic weight and the corresponding
path metric clearly satisfies % � %p on V � V .

6.4.4 Description of cable systems

The results of the previous sections naturally lead us to Problem 6.3. It does not
seem realistic to obtain a complete answer to this question since the class of all cable
systems of .V ; mI b/ is rather large. Hence our strategy will be to restrict to a certain
class of “well-behaved” cable systems and obtain a precise description of those.

Definition 6.35. A cable system .V ; E; j � j; �; �/ for a graph b over .V ; m/ is called
canonical if it satisfies the following additional assumptions:

(i) the underlying graph Gd D .V ; E/ has no multiple edges,

(ii) the edge weights � and � coincide,

�.e/ D �.e/; e 2 E;

(iii) jej D 1 whenever e is a loop and, moreover, supe2E jej < 1.

The set of canonical cable systems of .V ; mI b/ is denoted by Cab D Cab.V ; mI b/.

Notice that conditions (ii) and (iii) imply that canonical cable systems have finite
intrinsic size since in this case intrinsic edge length coincides with the edge length
and hence

��.E/ D sup
e2E

jej:

The importance of canonical cable systems stems from the fact that the intrinsic
metric %� of the corresponding weighted metric graph coincides with the length met-
ric %0. Moreover, it turns out that canonical cable systems can be described in terms
of intrinsic metrics. More precisely, denote by W.V ; mIb/ the set of intrinsic weights
for .V ; mI b/ having finite jump size, that is, all intrinsic weights pWV � V ! R�0

satisfying
sup

u;vWb.u;v/>0

p.u; v/ < 1:

We already observed that for every canonical cable system, the choice

p.u; v/ D

´
jeu;vj if u ¤ v and u � v;

0 else;
(6.14)
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defines an intrinsic weight on .V ; mI b/ (see Remark 6.28). Hence (6.14) defines
a map

‰WCab.V ; mI b/ ! W.V ; mI b/: (6.15)

In fact, this leads to a one-to-one correspondence between canonical cable systems
and intrinsic weights.

Theorem 6.36. Suppose b is a locally finite connected graph over .V ; m/. Then the
map ‰ defined by (6.14) and (6.15) is a bijection between the set of canonical cable
systems of .V ; mI b/ and intrinsic weights of .V ; mI b/ having finite jump size.

Proof. As noticed above, the map ‰ is well defined and, moreover, its surjectivity
was established in Lemma 6.33. More precisely, if we replace %.u; v/ by p.u; v/ in
its proof, we obtain an explicit construction of a canonical cable system for every
p 2 W.V ; mI b/.

To prove the injectivity of ‰, we essentially invert the construction in Lem-
ma 6.33. Let C D .V ; E; j � j; �/ be a canonical cable system for .V ; mI b/. First
of all, notice that the non-loop edges of E are determined by (3.6): there is an edge
eu;v between u ¤ v exactly when b.u; v/ > 0. Moreover, if ‰.C / D p, then equali-
ties (6.14) and (3.6) imply that

jeu;vj D p.u; v/; �.e/ D b.u; v/p.u; v/

for each non-loop edge eu;v between u ¤ v. However, this means that the location
of the loop edges of E is determined by (3.5) and the finite intrinsic size assumption.
Namely, it is easy to see that they are attached to exactly those vertices v 2 V with

m.v/ �
X

uWb.u;v/>0

b.u; v/p.u; v/2
D m.v/ �

X
uWb.u;v/>0

jeu;vj�.eu;v/ > 0:

This proves that the edge set E of C is uniquely determined by p D ‰.C /. Moreover,
since we required that jej D 1 for loop edges, it follows that

2�.ev/ D m.v/ �
X

uWb.u;v/>0

b.u; v/p.u; v/2 > 0

if there is a loop ev at a vertex v 2 V . This shows that the weight �WE ! .0;1/ is
determined by p D ‰.C / as well and the injectivity of ‰ is proven.

Remark 6.37. Notice that from a cable system .V ; E; j � j; �; �/ of .V ; mI b/ we can
construct further ones by scaling, that is, we set

jej0 D c.e/jej; �0.e/ D c.e/�1�.e/; �0.e/ D c.e/�.e/; e 2 E;

for some .c.e//e2E � .0;1/. The corresponding Kirchhoff Laplacians and energy
forms are (unitarily) equivalent as well. Among these equivalent cable systems there
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is a unique one satisfying � � � and this explains condition (ii) in Definition 6.35
(cf. also [97, Definition 2.18]). Conditions (ii) and (iii) exclude similar constructions
(i.e., by replacing single edges with multiple ones and different normalizations of
loop edges) and simplify the definition of m (see (3.1)–(3.5)).

6.4.5 Interlude: The Hopf–Rinow theorem on graphs

As it was already mentioned in Remark 2.1, a metric graph G equipped with its length
metric %0 is a length metric space (or simply a length space, see [37] for defini-
tions). Clearly, equipping a weighted metric graph .G ; �; �/ with the intrinsic metric
%� , which is defined by (6.6), turns G into a length space as well. A path P in G ,
a continuous and piecewise injective map P W I ! G defined on an interval I � R,
is called geodesic if it is locally a distance minimizer, i.e., for each x 2 I there is
a neighborhood B.x/ � I of x such that P jB.x/ is a shortest path (with respect to the
corresponding length metric). In the following it would be convenient to assume that
each geodesic is parameterized by its arc length.

Complete length spaces enjoy a number of very important properties. For in-
stance, if .G ; %�/ is complete as a metric space (recall that we always assume G

to be locally finite), then it is a geodesic metric space meaning that any two points
x;y 2 G can be connected by a minimal geodesic, that is, by a shortest path (see, e.g.,
[37, Theorem 2.5.23]). Moreover, the classical Hopf–Rinow theorem, which connects
completeness with geodesic completeness, as well as with compactness of closed
distance balls, extends from the smooth setting of Riemannian manifolds to locally
compact length spaces [37, Theorem 2.5.28], and in the case of metric graphs it reads
as follows.

Theorem 6.38 (Hopf–Rinow’s theorem on metric graphs). Let G be a locally finite
connected weighted metric graph and let % be a path metric on G .4 The following
assertions are equivalent:

(i) .G ; %/ is complete,

(ii) .G ; %/ is boundedly compact (every closed metric ball in .G ; %/ is compact),

(iii) every geodesic P W Œ0; a/ ! G extends to a continuous path P W Œ0; a� ! G .

It is natural to expect that the Hopf–Rinow theorem extends to the case of locally
finite weighted graphs and this was done in [167] and [115, Theorem A.1] (see
also [129]).

4In fact, we are going to use this result with only two particular metrics on G : the length
metric %0 and the intrinsic path metric %�.
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Theorem 6.39 (Hopf–Rinow’s theorem on graphs). Let b be a locally finite graph
over V and let % be a path metric for .V Ib/. The following assertions are equivalent:

(i) .V ; %/ is complete as a metric space,

(ii) every closed metric ball in .V ; %/ is finite,

(iii) every infinite geodesic has infinite length.5

Remark 6.40. A few remarks are in order.

(i) Taking into account the connection between weighted graphs and cable
systems, it is not difficult to derive Theorem 6.39 from Theorem 6.38. For
instance, if additionally % is intrinsic for .V ; mI b/ and has finite jump size,
then by Theorem 6.36 there is a canonical cable system .G ; �; �/ such that
% coincides with the restriction of %� D %0 onto V �V . By Lemma 6.27 (ii),
.V ; %/ is complete if and only if so is .G ; %�/ and hence it remains to apply
Theorem 6.38. Notice that this approach was used in [167, p. 24].

(ii) For a version of the discrete Hopf–Rinow theorem for graphs which are not
locally finite see the recent [137].

6.4.6 Volume growth

We finish this section with a simple but useful estimate between the volume of balls
with respect to the intrinsic metrics %� and %V . For any x 2 G and r > 0, we denote
an intrinsic distance ball of radius r by

Br.x/ WD Br.xI %�/ D ¹y 2 G W %�.x; y/ < rº:

Similarly, for any vertex v 2 V and r > 0, the ball of radius r in the induced metric
%V on V is denoted by

BV
r .v/ WD BV

r .vI %V / D ¹u 2 V W %V .u; v/ < rº:

In particular, we have the obvious relation BV
r .vI %V / D Br.vI %�/ \ V for every

r > 0 and vertex v 2 V .

Lemma 6.41. Assume the conditions of Lemma 6.27. Then

�.Br.vI %�// � m.BV
r .vI %V // � 2�.BrC��.E/.vI %�//

for every r > 0 and vertex v 2 V .

5In a discrete measure space, paths are parameterized by the combinatorial distance and
“infinite geodesic” simply means that as a path it has infinite combinatorial length.
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Proof. First of all, notice that

m.BV
r .v// D

X
u2BV

r .v/

X
Ee2EEu

�.e/jej

D

X
e2EE

�.e/jej.1Br .v/.e{/ C 1Br .v/.e� //;

where as always 1Br .v/ denotes the characteristic function of the subset Br.v/ � G .
This implies the first inequality since clearly

m.BV
r .v// �

X
e2EW e\Br .v/¤¿

�.e/jej �
X
e2E

�.e \ Br.v// D �.Br.v//:

Conversely, every edge e 2 E with at least one endpoint in Br.v/ is contained in the
larger ball BrC��.E/.v/. In particular,

m.BV
r .v// � 2

X
e2E

�.e \ BrC��.E/.v// � 2�.BrC��.E/.v//;

and the proof is complete.

Remark 6.42. On the one hand, Lemma 6.41 establishes connections between vol-
ume growth of large balls in .G ; %�/ and .V ; %V / (e.g., their polynomial/subexponen-
tial/exponential growth rates are the same) and, in fact, this phenomenon is well
known in context with quasi-isometries (indeed, a volume growth is one of the most
important quasi-isometric invariants). On the other hand, Lemma 6.41 indicates a con-
nection between small scales too and this is usually not a part of the quasi-isometric
setting.

6.5 Harmonic functions on graphs

6.5.1 Harmonic functions on weighted graphs

Let us begin by briefly recalling basic definitions. Assume that b is a connected graph
over .V ; m/ satisfying assumptions (i)–(iii) of Section 2.2 (at this point there is no
need to assume that b is locally finite). Also, by L we denote the corresponding
formal Laplacian (2.4) (the killing term c is assumed to be identically zero).

Definition 6.43. A function f WV ! C is called harmonic (subharmonic, superhar-
monic) with respect to .V ; mI b/ (or, simply, L-harmonic, L-subharmonic, L-super-
harmonic) if f belongs to Fb.V/ and satisfies

.Lf /.v/ D 0; ..Lf /.v/ � 0; .Lf /.v/ � 0// (6.16)

for all v 2 V .
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If f 2 Fb.V/ satisfies (6.16) on a subset Y � V , then it is called harmonic on Y

(subharmonic on Y , etc.) with respect to .V ; mI b/.

Remark 6.44. Let us emphasize that the notion of harmonic/subharmonic/super-
harmonic functions is independent of the weight m and hence one can simply set
m � 1 in Definition 6.43 and say harmonic/subharmonic/superharmonic with respect
to .V Ib/. On the other hand, when considering the maximal Laplacian h (see (2.6)) in
the Hilbert space `2.V Im/, its kernel consists of L-harmonic functions which belong
to `2.V Im/, and this subspace of course depends on the weight m.

The following fact is trivial in the setting of weighted graphs.

Lemma 6.45. Suppose f 2 Fb.V/ solves Lf C �f D 0 for some � 2 R�0.6 Then
jf j is subharmonic with respect to .V ; mI b/. If in addition f is real-valued, then
both fC and f� are subharmonic with respect to .V ; mI b/. Here f˙ D

1
2
.jf j ˙ f /.

Proof. First observe that Lf C �f D 0 means that

f .v/

�X
u2V

b.u; v/ C �m.v/

�
D

X
u2V

b.u; v/f .u/

for all v 2 V . Since the second factor on the left-hand side is positive, we get

jf .v/j

�X
u2V

b.u; v/ C �m.v/

�
D

ˇ̌̌̌ X
u2V

b.u; v/f .u/

ˇ̌̌̌
�

X
u2V

b.u; v/jf .u/j;

which immediately implies that

.Ljf j/.v/ D
1

m.v/

X
u2V

b.u; v/.jf .v/j � jf .u/j/

D
1

m.v/

�
jf .v/j

X
u2V

b.u; v/ �
X
u2V

b.u; v/jf .u/j

�
� ��jf .v/j:

Therefore, Ljf j ���jf j � 0 and hence jf j is subharmonic with respect to .V ;mIb/.
It remains to notice that for real-valued f by linearity we have

Lf˙ D
1

2
.Ljf j ˙ Lf / �

1

2
.��jf j � �f / � 0:

6Usually, for � > 0 such a function is called �-harmonic.
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6.5.2 Harmonic functions on metric graphs

In the case of metric graphs, one can start with the definition for strongly local Dirich-
let forms (see, e.g., [198]).

Definition 6.46. A function f W G ! R is called harmonic with respect to .G ; �; �/

if f 2 H 1
loc.G / and Z

G

rf .x/rg.x/�.dx/ D 0; (6.17)

for all 0 � g 2 H 1
c .G / D H 1.G / \ Cc.G /.

If for an open subset Y � G , (6.17) holds for all 0 � g 2 H 1.G / \ Cc.Y / with
compact support in Y , then f is called harmonic on Y .

Replacing the equality in (6.17) by the inequality “�” (resp., by “�”), one gets the
definition of a subharmonic (resp., superharmonic) function on Y � G with respect
to .G ; �; �/.

Remark 6.47. We stress that the notion of harmonic/subharmonic/superharmonic
functions is independent of the weight �WG ! .0;1/ (since this obviously holds for
the space H 1

loc.G /) and hence we could also call them harmonic/subharmonic/super-
harmonic functions with respect to .G ; �/. However, for our purposes we will mainly
be interested in functions which additionally belong to Lp.G I�/ and of course these
spaces do depend on the edge weight �.

If it is clear from the context which graph (weighted graph or weighted metric
graph) is meant, we shall simply say harmonic, subharmonic, etc. Notice also that on
each edge the structure of the corresponding Sobolev space is very well understood
and hence we can rewrite the above definition in a more convenient form. Recall (see
Section 4.3) that for each fixed model of .G ; �; �/, CA.G n V/ denotes the space of
continuous edgewise affine functions on G .

Lemma 6.48. A function f W G ! R is harmonic with respect to .G ; �; �/ exactly
when f 2CA.G nV/ for some model of .G ;�;�/ and, moreover, f satisfies Kirchhoff
conditions at each vertex v 2 V .

Proof. Clearly, we only need to prove the “only if” claim. Fix an arbitrary model of
.G ; �; �/. Upon choosing test functions g 2 H 1

c .G / whose support is contained in
single edges, it is straightforward to see that f is affine on each edge e 2 E (indeed,
one simply needs to use the fact that a distributional solution to f 00 D 0 is a classical
solution). Next, for each vertex v 2 V , choosing test functions supported in a suffi-
ciently small vicinity of v, a straightforward integration by parts shows that f must
satisfy Kirchhoff conditions at v 2 V .

Remark 6.49. Let us stress that by Lemma 6.48 the set of harmonic functions is
independent of the choice of a model of G .
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Using the same arguments one can easily show the following result:

Lemma 6.50. A function f 2 CA.G n V/ is subharmonic (superharmonic) with re-
spect to .G ; �; �/ exactly when, for all v 2 V ,X

Ee2EEv

�.e/@Eef .v/ � 0;

� X
Ee2EEv

�.e/@Eef .v/ � 0

�
: (6.18)

Remark 6.51. A few remarks are in order.

(i) Similar to the discrete situation, Definition 6.46 can be reformulated in
terms of the Laplacian � (see (2.11)). More specifically, the left-hand side
in (6.17) allows us to define � on locally H 1 functions in a standard
way (as a distribution on the test function space H 1

c .G /). Then a locally
H 1 function f is called harmonic (resp., subharmonic, superharmonic) if
�f D 0 on G (resp., �f is a nonpositive/non-negative distribution on G ).
This definition becomes transparent for edgewise affine functions. Indeed,
if f 2 CA.G n V/ for some model of .G ; �; �/, then a straightforward inte-
gration by parts shows that, as a distribution,

�f D

X
v2V

� X
Ee2EEv

�.e/@Eef .v/
�
ıv: (6.19)

Comparing (6.19) with Lemma 6.48 and Lemma 6.50, one concludes that f

is harmonic (subharmonic or superharmonic) if and only if �f D 0 (respec-
tively, �f � 0 or �f � 0).

(ii) We stress that there are sub-/superharmonic functions which are not edge-
wise affine. For instance, it is easy to check that a continuous, edgewise
H 2-function f is subharmonic exactly when f satisfies (6.18) and is sub-
harmonic on every edge. However, for our purposes it will suffice to con-
sider only edgewise affine sub-/superharmonic functions.

It is not difficult to notice that the above results immediately connect harmonic,
subharmonic, and superharmonic functions on graphs and on metric graphs.

Lemma 6.52. Let .G ; �; �/ be a weighted metric graph together with a fixed model.
Let also .V ; mI b/ be the corresponding weighted graph defined by (3.3)–(3.6). Then
f 2 CA.G n V/ is harmonic (resp., subharmonic, superharmonic) if and only if
f D {V .f / D f jV is harmonic (resp., subharmonic, superharmonic) with respect to
.V ; mI b/. Here the map {V is defined by (4.10).

Proof. Notice that for an edgewise affine function f , its slope at v on an oriented
edge Ee 2 EEv having vertices v and u is simply given by

@Eef .v/ D
f .u/ � f .v/

jej
:
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Thus, comparing (6.19) with (3.6) and then using Lemma 6.48 (resp., Lemma 6.50),
one finishes the proof.

We also need the following analog of Lemma 6.45.

Lemma 6.53. Suppose f 2 H 1
loc.G / solves �f D �f edgewise for some � 2 R�0

and, moreover, satisfies Kirchhoff conditions at all the vertices. Then jf j is subhar-
monic. If in addition f is real-valued, then both fC and f� are subharmonic.

Proof. Due to linearity, we can assume without loss of generality that f is real-
valued. Fix some model of .G ; �; �/. Then the equality �f D �f implies that f

is a classical solution to �.e/f 00 D ��.e/f on each edge e 2 E (upon an identifica-
tion of e with the interval 	e D Œ0; jej�). Hence it is easy to show that

jf j
00
� �

�.e/

�.e/
jf j;

where the inequality is understood in the distributional sense (e.g., use the Kato
inequality [184, Theorem X.27]). It remains to notice thatX

Ee2EEv

�.e/@Eejf j.v/ � 0

for all vertices v 2 V . Since f is continuous at v 2 V , in the case f .v/ ¤ 0, jf j

coincides with sign.f .v//f in a small vicinity of v and hence Kirchhoff conditions
would imply that X

Ee2EEv

�.e/@Eejf j.v/ D
X
Ee2EEv

�.e/@Eef .v/ D 0

at every such vertex. If f .v/ D 0, then it is straightforward to see that in this case

0 D

X
Ee2EEv

�.e/@Eef .v/ �
X
Ee2EEv

�.e/@Eejf j.v/;

which finishes the proof.

The following result is a standard characterization via the mean value property.

Lemma 6.54 (Mean value property). Let f 2 CA.G n V/ be real-valued. Then f is
harmonic (subharmonic, superharmonic) if and only if for each v 2 V

1

�.Br.vI %�//

Z
Br .vI%�/

f .x/�.dx/ D f .v/ .� f .v/; � f .v// (6.20)

for all sufficiently small r > 0. Here %� is the intrinsic metric on .G ; �; �/ and
Br.vI %�/ is the distance ball in .G ; %�/ of radius r > 0 with the center at v.
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Proof. In fact, the mean value property is a straightforward consequence of Lem-
ma 6.48 (resp., and Lemma 6.50). Indeed, suppose r > 0 is such that the correspond-
ing distance ball Br.vI %�/ is isomorphic to a star-shaped set (2.3). Then taking into
account that f is edgewise affine, we easily getZ

Br .vI%�/

f .x/�.dx/ D
X
e2Ev

Z
e\Br .vI%�/

f .xe/�.dxe/

D

X
Ee2EEv

1

2

�
2f .v/ C @Eef .v/

r jej

�.e/

�
r jej

�.e/
�.e/

D f .v/r
X
Ee2EEv

p
�.e/�.e/ C

r2

2

X
Ee2EEv

�.e/@Eef .v/:

It remains to notice that

�.Br.vI %�// D
X
Ee2EEv

�.e/
r jej

�.e/
D r

X
Ee2EEv

p
�.e/�.e/:

Remark 6.55. We stress that the mean-value property on weighted metric graphs
holds only locally. That is, even for a harmonic function f on .G ; �; �/, the equal-
ity (6.20) can fail when the integral is taken over a ball Br.vI%�/ with large radius r .
Indeed, problems arise already if Br.vI %�/ contains more than one vertex of degree
� 3 and the latter is not at all surprising since these vertices can be considered as
singularities of one-dimensional manifolds (see Remark 2.4).

6.5.3 Liouville-type properties on graphs

An important question is which subspaces of harmonic functions are trivial, that is,
which conditions ensure the uniqueness of solutions to the Helmholtz equation

�u D �u:

Such results are referred to as Liouville-type theorems. In Riemannian geometry
Lp-Liouville theorems for harmonic functions were studied, for example, by S.T. Yau
[217], L. Karp [124], P. Li and R. Schoen [153] and many others. Karp’s and Yau’s
theorems were later generalized by K.-T. Sturm [198] to the setting of strongly local,
regular Dirichlet forms. In particular, in the case of metric graphs Sturm’s result reads
as follows (cf. [198, Corollary 1 (a)]).

Theorem 6.56 (Yau’s Lp-Liouville theorem on metric graphs [198]). If .G ; �; �/ is
a locally finite weighted metric graph such that .G ; %�/ is complete, then every non-
negative subharmonic function which belongs to Lp.G I �/ for some p 2 .1; 1/ is
identically zero. In particular, if f 2 Lp.G I�/ is harmonic, then f � 0.
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In the case of weighted graphs, Liouville-type theorems have been investigated
in, e.g., [108,110,164,186] and the analogs of Yau’s and Karp’s theorems were estab-
lished quite recently by B. Hua and M. Keller [113].

Theorem 6.57 (Yau’s Lp-Liouville theorem on graphs [113]). Let b be a locally
finite connected graph over .V ; m/ and let % be an intrinsic path metric of finite jump
size. If .V ; %/ is complete as a metric space, then every non-negative L-subharmonic
function which belongs to `p.V Im/ for some p 2 .1;1/ is identically zero. In par-
ticular, if f 2 `p.V Im/ is L-harmonic, then f � 0.

Remark 6.58. We stated Corollary 1.2 from [113] in a weaker form in order to sim-
plify considerations. In fact, the assumption that % is a path metric can be weakened.
More precisely, the conclusion remains valid for a general intrinsic metric % of finite
jump size such that % generates the discrete topology on V and .V ; %/ is complete (the
latter follows by a simple comparison argument with the path metric %p constructed
in Remark 6.34 (ii)).

In fact, the connection between intrinsic metrics on weighted graphs and cable
systems shows that Theorem 6.57 easily follows from Theorem 6.56:

Proof of Theorem 6.57. Let % be an intrinsic path metric for .V ; mI b/ having finite
jump size. Then by Lemma 6.33 there is a canonical cable system .G ; �; �/ such that
% coincides with the restriction of %� D %0 onto V � V . Clearly, .V ; %/ is complete
if and only if so is .G ; %�/.

Take now a non-negative function fWV ! R�0 which is L-subharmonic. By Lem-
ma 6.52, the corresponding function f D {�1

V
.f/ is non-negative and subharmonic

with respect to .G ; �; �/. If f 2 `p.V Im/ for some p 2 .1;1/, then f 2 Lp.G I�/

according to Lemma 4.2. Applying Theorem 6.56, we conclude that f is trivial and
hence so is f D {V .f /.

Remark 6.59. Using the same line of reasoning and also connections between vol-
ume growth of metric graphs and weighted graphs (see Lemma 6.41), one can easily
connect, for example, Karp’s Lp Liouville theorems for metric graphs and weighted
graphs (see Section 7.4), Grigor’yan’s L1 theorem, etc.

6.6 Life without loops II: Jacobi matrices on graphs

This section deals with Problem 6.4. For a given ˇWV ! R and a connected graph q

over V satisfying properties (i), (ii) and (iv) of Section 2.2, consider a second order
symmetric difference expression

.�f /.v/ D ˇ.v/f .v/ �
X
u2V

q.u; v/f .u/; v 2 V : (6.21)
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Alternatively, its action can be described by the infinite symmetric matrix

H D .huv/u;v2V

given by

huv D

´
ˇ.v/; u D v;

�q.u; v/; u ¤ v:

As described in Section 2.2, we can associate in `2.V/ the minimal and maximal
operator with the difference expression (6.21).

Remark 6.60. Every difference operator (6.21) is a Schrödinger-type operator on
`2.V/ in the sense of Remark 2.10: the weight function m D 1V on V and its coeffi-
cients are explicitly given by

b.u; v/ D q.u; v/; c.v/ D ˇ.v/ �
X
u2V

q.u; v/:

Symmetric difference expressions (6.21) are also known as Jacobi matrices on graphs
(see, e.g., [8–10]).

On the other hand, every Schrödinger-type operator in `2.V Im/ is unitarily equiv-
alent (by means of the map UW`2.V Im/ ! `2.V/ defined by (3.29)) to a Schrödinger
operator in `2.V/ and hence from this perspective the class of Schrödinger-type oper-
ators on `2.V/ is sufficiently large.

The next result answers Problem 6.4 in the affirmative.

Theorem 6.61. Let qWV � V ! Œ0;1/ be a locally finite connected graph over V

and let Gq D .V ; Eq/ be the underlying simple graph (see Remark 2.7). Then there
exist edge weights �WEq ! .0;1/ and edge lengths j � jWEq ! .0;1/ such that

jej2 � �.e/ (6.22)

for all e 2 Eq , and

q.u; v/ D
�.eu;v/

jeu;vj.
P

e2Eu
jej/1=2.

P
e2Ev

jej/1=2
(6.23)

for all eu;v 2 Eq .

Notice that the difference expression (3.28) is a special case of (6.21):

ˇ.v/ D
1

m.v/

�
˛.v/ C

X
u2V

b.u; v/

�
; q.u; v/ D

b.u; v/p
m.u/

p
m.v/

: (6.24)

Moreover, the minimal operator zh˛ associated with (6.21), (6.24) shares many of
its basic spectral properties with the Laplacian H˛ (see Theorem 3.1 and its proof),
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however, there is in general no connection between their parabolic properties. Theo-
rem 6.61 implies the following result.

Corollary 6.62. Every second-order difference operator (6.21) arises as a boundary
operator of a Laplacian with ı-couplings. More precisely, there is a weighted met-
ric graph .G ; �; �/ such that for its simple model .V ; Eq; j � j; �; �/ and ˛WV ! R
the relations (6.24) holds true, where the graph .V ; mI b/ is given by (3.1)–(3.5)
and (3.6).

The proof of Theorem 6.61 is based on the following two lemmas, however, first
we need to recall a few basic notions. A connected simple graph .V ;E/ without cycles
is called a tree. We shall denote trees by T . Notice that for any two vertices u, v on
a tree T there is exactly one path P connecting u and v, and hence the combinatorial
distance on T is exactly the number of edges in the path connecting u and v. A tree
T D .V ; E/ with a distinguished vertex o 2 V is called a rooted tree and o is called
the root. Each vertex v 2 V having degree 1 is called a leaf.

Lemma 6.63. Let T D .V ; E/ be a locally finite infinite tree. Then there is an infinite
subtree T1 D .V1; E1/ � T such that T1 has at most one leaf and T is obtained
by attaching to each vertex v 2 V1 a (possibly empty) finite tree Tv .

Proof. The proof is by construction, which can informally be considered as “cutting
away” finite subtrees from a given tree. Fix a root o 2 V for T and order the vertices
of T according to combinatorial spheres. The latter also introduces a natural orienta-
tion on T : for every edge e its initial vertex e{ belongs to the smaller combinatorial
sphere.

Next, let us define the standard partial ordering on T . For two edges e; ze 2 E , we
write ze � e, if the path from the root o to the terminal vertex e� of e passes through ze.
For any e 2 E , denote by Te � T the subtree with the edge set

E.Te/ D ¹ze 2 E W e � zeº:

Since “�” is transitive on E , e 2 Tze implies that Te � Tze . Moreover, define

E1
v D ¹e 2 EC

v W Te is infiniteº;

where EC
v is the set of outgoing edges at v, see (2.1), and then for each v 2 V denote

by Tv the (possibly empty) finite subtree of T with the edge set

E.Tv/ D
[

e2E
C
v nE1

v

E.Te/: (6.25)

After all these lengthy preparations, we finally begin our construction. For every
edge e 2 EC

o D Eo consider the subtree Te . Since T is infinite, there is at least one
edge e 2 EC

o such that the corresponding subtree Te is infinite and hence the set
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E1
o is non-empty. Denote the set of terminal vertices of all edges e 2 E1

o by V1
1 .

Notice that V1
1 is a subset of the first combinatorial sphere S1. Next for each v 2 V1

1

consider the corresponding edge sets E1
v . Again all of them are non-empty since,

by construction, each Te is infinite. The union of all terminal vertices of e 2 E1
v

with v 2 V1
1 is denoted by V1

2 . Clearly, V1
2 is a non-empty subset of the second

combinatorial sphere S2. Continuing this process, we end up with an infinite sequence
of vertex sets V1

n � Sn, n � 1. Since our initial tree T is infinite but locally finite,
every vertex set V1

n , n � 1 is non-empty.
Now we define T1 as the subtree of T with the vertex set V1 WD ¹oº [ ¹V1

n ºn�1.
It follows from our construction that T1 is an infinite tree with the only possible leaf o

(this happens exactly when #E1
o D 1). Moreover, it is immediate to see that attaching

to each v 2 V1 the finite subtree Tv defined by (6.25) we recover the given tree T .

The next result proves Theorem 6.61 for trees:

Lemma 6.64. Let q be a locally finite graph over V such that the associated simple
graph Gq (see Remark 2.7) is an infinite tree T D .V ; E/. Then there exist edge
weights �WE ! .0;1/ and edge lengths j � jWE ! .0;1/ such that (6.22) and (6.23)
hold true for all e 2 E .

Proof. We divide the proof into several steps.
(i) First of all, notice that the existence of � and j � j satisfying (6.22) and (6.23)

for all e 2 E is equivalent to the existence of edge lengths j � j satisfying

T .eu;v/ WD
jeu;vj

.
P

e2Eu
jej/1=2.

P
e2Ev

jej/1=2
� q.u; v/ (6.26)

for each u � v, since in this case a suitable choice of the edge weight � is simply
given by

�.e/ WD jej2
q.e/

T .e/
; e 2 E: (6.27)

Here and below we use the obvious notation q.eu;v/ D q.u; v/ for each e D eu;v 2 E .
(ii) Next, by Lemma 6.63, we can find an infinite rooted subtree T1 D .V1; E1/

of T such that T1 has at most one leaf at its root o and such that T is obtained by
attaching to each v 2 V1 a (possibly empty) finite tree Tv . Clearly,

E n E1 D

[
v2V1

E.Tv/:

(iii) We start by assigning edge lengths to each finite non-empty subtree Tv ,
v 2 V1. Consider Tv as a rooted tree with the root at v, o.Tv/ D v. Let h.v/ be
the height of Tv , i.e., the maximal combinatorial distance of a vertex in Tv to v. For
n 2 ¹1; : : : ; h.v/º, denote by En.Tv/ the set of edges e 2 E.Tv/ between the com-
binatorial spheres Sn�1.Tv/ and Sn.Tv/ of Tv . We will assign lengths for the sets
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En.Tv/ inductively in n starting from the top of Tv and going downwards to o.Tv/.
More precisely, we define positive reals `1; : : : ; `h.v/ by first setting `h.v/ D 1 and, if
h.v/ > 1, inductively

`k�1 WD max
e2Ek.Tv/

`k

q.e/2
D

`k

.mine2Ek.Tv/ q.e//2

for all k 2 ¹2; : : : ; h.v/º. Next, we put jej WD `k for all e 2 Ek.Tv/, k 2 ¹1; : : : ; h.v/º.
Clearly, with this choice of lengths we have

T .e/ D
`k

.
P

e2Ee{
jej/1=2.

P
e2Ee�

jej/1=2

�
`k

.
P

e2E�
e{
jej/1=2.

P
e2E�

e�
jej/1=2

�

s
`k

`k�1

� q.e/

for all e 2 Ek.Tv/ and k 2 ¹2; : : : ; h.v/º.
(iv) It remains to define edge lengths for edges in T1 such that (6.26) then holds

true on E1 and also on each non-empty edge set E1.Tv/, v 2 V . Again, we will
assign edge lengths inductively for the sets En.T1/, but now moving “upwards” the
tree T1. Here En.T1/, n � 1, is the set of edges e 2 E1 between the combinatorial
spheres Sn�1.T1/ and Sn.T1/ in T1.

For n D 1, we set jej D 1 for all e 2 E1.T1/ if E1.T1/ D E1
o D Eo (that is, if

To is empty). Otherwise, we define

z̀
1 WD max

e2E1.To/

jej

q.e/2
D

`1.o/

.mine2E1.To/ q.e//2
;

and then set jej D z̀
1 for all e 2 E1.T1/. Hence for each e 2 E1.To/ we get

T .e/ D
`1.o/

.
P

e2Eo
jej/1=2.

P
e2Ee�

jej/1=2

�
`1.o/

.
P

e2E1.To/ jej/
1=2.

P
e2E1.T1/ jej/

1=2
�

s
`1.o/

z̀
1

� q.e/:

Now assume we have already defined edge lengths for edges in Ek.T1/ for all
k � n, such that (6.26) holds true on each

zEk
WD Ek�1.T1/ [

[
v2Sk�1

E1.Tv/

for k � n. Now we define again

z̀
nC1 WD max

e2zEnC1

jej

q.e/2
;
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and then we set jej D z̀
nC1 for all e 2 EnC1.T1/. By our choice of the root, every

vertex v 2 Sn.T1/ is adjacent to at least one e 2 EnC1.T1/. Hence T .ze/ � q.ze/ for
all ze in zEnC1. Since

S
n�1 En.T1/ D E1, by induction we obtain edge lengths on E

such that (6.26) holds true for all e 2 E .

Now we are ready to prove Theorem 6.61 and Corollary 6.62.

Proof of Theorem 6.61. As in the proof of Lemma 6.64, it suffices to show the exis-
tence of lengths j � j satisfying (6.26) since in this case a suitable choice of edge
weights is provided by (6.27). The main idea behind our construction is the observa-
tion that we assign weights and lengths to edges, and hence we can “transform” in
a suitable way our graph to a tree and then apply Lemma 6.64 .

Suppose that T is a spanning tree for the underlying combinatorial graph Gq .
Denote the edge set of T by E.T / � Eq . Now we decouple each remaining edge
eu;v 2 Eq n E.T / at exactly one vertex (say, v) and thereby transform it to a leaf
attached to the remaining vertex u.

Applying this to all edges e 2 Eq n E.T / yields a new graph zGq . Clearly, zGq is
a tree and its edge set zEq can be identified in the above way with Eq . Hence every
choice of edge lengths j � j on Gq corresponds to a respective choice on zGq . Moreover,
by construction we have

TGq
.e/ � TzGq

.e/

for all e 2 Eq , where TzGq
.e/ and TGq

.e/ are given by (6.26). More precisely, within
the identification we have zEv � Ev for every v 2 V and zEve

D ¹eº for each of the
new vertices ve , e 2 Eq n E.T /. Hence

TGd
.eu;v/ D

jeu;vj

.
P

e2Eu
jej/1=2.

P
e2Ev

jej/1=2
�

p
jeu;vj

.
P

e2Eu
jej/1=2

D TzGd
.eu;v/

for every eu;v 2 Eq n E.T / and similar for each e 2 E.T /. Thus every choice of edge
lengths satisfying (6.26) for zGq defines a suitable choice of edge lengths for Gq . It
remains to apply Lemma 6.64.

Proof of Corollary 6.62. We simply need to set �.e/ D 1 for each e 2 Eq and then
choose � and j � j as in Theorem 6.61. By construction, this implies �.e/ � 1 for
all edges e 2 Eq . Taking into account (6.23), it follows that q coincides with (6.24).
Moreover, choosing the function ˛WV ! R in a suitable way, we can achieve that ˇ

coincides with (6.24) as well.

Remark 6.65. A few remarks are in order.

(i) Theorem 6.61 can be seen as an extension of Proposition 5.18 to an arbi-
trary locally finite graph.

(ii) According to the proof of Theorem 3.1, the graph Laplacian h0
˛ associ-

ated in `2.V I m/ with (3.7) is unitarily equivalent (by means of the map
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UW `2.V Im/ ! `2.V/ defined by (3.29)) to the minimal symmetric opera-
tor zh0

˛ defined in `2.V/ by (6.21) with the coefficients (6.24) and therefore,
by Theorem 3.1, zh0

˛ shares its basis spectral properties with the Laplac-
ian H0

˛ . However, the map U does not preserve the Dirichlet form structure
(e.g., the quadratic form of zh0

˛ may fail to be a Dirichlet form even if ˛ � 0)
and hence there is in general no connection between their parabolic prop-
erties.

6.7 Further comments and open problems

We would like to conclude this part with a few comments.

1. The results of this chapter suggest viewing connections between weighted graphs
and metric graphs from geometric perspective. Namely, it is proved that with every
weighted locally finite graph .V ; mI b/ one can always associate at least one cable
system, that is, a weighted metric graph .G ; �; �/ such that for one of its mod-
els the weight m and the graph b are expressed via (3.1)–(3.5) and (3.6). Next,
.G ; �; �/ is always equipped with the intrinsic path metric %� and it turns out that
the induced metric %V D %�jV�V is intrinsic with respect to the corresponding graph
.V ; mI b/. Moreover, the spaces .V ; %V / and .G ; %�/ are quasi-isometric and this
fact connects their large scale geometric properties. However, their local combinato-
rial structures are also connected in an obvious way and these facts together provide
a partial explanation for the close connections between graph Laplacians and metric
graph Laplacians established in Chapters 3 and 4. Notice also that .G ; %�/ is a length
space, a widely studied class of metric spaces, and this provides a lot of tools and
techniques. This is reminiscent of the following common practice in geometric group
theory: a finitely generated group can be turned into a length space by viewing its
Cayley graph as an equilateral metric graph equipped with the length metric %0; more-
over, the word metric %comb in this case is nothing but the induced metric %0jV�V .

2. It is hard to overestimate the role of intrinsic metrics in the progress achieved for
weighted graph Laplacians during the last decade. Surprisingly, the above described
procedure to construct an intrinsic metric for .V ;mIb/ in fact provides a way to obtain
all finite jump size intrinsic path metrics on .V ; mI b/. Moreover, upon some normal-
ization assumptions on cable systems (e.g., canonical cable systems) the correspon-
dence between intrinsic weights on .V ; mI b/ and cable systems becomes bijective
(Theorem 6.36).

3. Let us also briefly mention the following perspective on the results of Chapter 6
and on Problems 6.1–6.4. Suppose a vertex set V is given and consider a weighted
metric graph .V ; E; j � j; �E ; �E/ over V , i.e., a model of a weighted metric graph
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having V as its vertex set. To this weighted metric graph, equations (3.5) and (3.6)
associate a vertex weight mW V ! .0; 1/ and an edge weight bW V � V ! Œ0; 1/

with the properties (i)–(iv) of Section 2.2. In other words, we obtain a map

ˆV WGraphmetr.V/ ! Graphdiscr.V/;

where Graphmetr and Graphdiscr denote the sets of all connected, locally finite weighted
metric graphs and connected, locally finite weighted graphs over V , respectively.

From this point of view, the results in Chapters 3 and 4 say that the map ˆV

connects the basic spectral and parabolic properties of the respective Laplacian-type
operators, as well as spectral properties of Laplacians with ı-couplings on weighted
metric graphs and Schrödinger operators on weighted discrete graphs. Moreover, the
results of Section 6.4 connect certain basic geometric features (see also Proposi-
tion 7.38). In terms of this map, the results of Sections 6.2–6.3 and Section 6.4.4
can be formulated as follows:

• The map ˆV is surjective (see Theorem 6.16).

• When restricted to simple metric graphs, the map ˆV is no longer surjective (Sec-
tion 6.2).

• Unfortunately, the map ˆV is not injective, that is, the correspondence between
weighted metric and weighted discrete graphs is not one-to-one. However, after
restricting ˆV further to the class of canonical weighted metric graphs over V , we
can at least describe the preimage ˆ�1

V
.m; b/ of a locally finite graph .V ; mI b/

using intrinsic weights (see Theorem 6.36 and the map ‰ given by (6.15)).

4. The results of Section 6.6 show that similar connections work for Jacobi matrices
on graphs. We decided not to proceed in this direction and demonstrate it by only one
application in the next chapter. More specifically, in Section 7.1.3 we briefly discuss
the self-adjointness problem for the minimal operator associated with (6.21) in `2.V/

and prove the analogs of some classical self-adjointness tests for the usual Jacobi
matrices, which also improve several recent results (Theorem 7.17).

5. Taking into account the said above, the following problems remain open.

Problem 6.5. Given a locally finite b graph over .V ; m/, is there an efficient way to
decide whether it admits a minimal cable system?

This problem can be reformulated in other terms (e.g., given a simple graph, how
can one describe the image of the positive cone CC.E/ under the map D�?).

Of course, stated this way, Problem 6.5 is too complicated to obtain a complete
answer and hence it makes sense either to restrict to some classes of weights (for
constant weights the answer is given by means of a disjoint cycle cover) or to partic-
ular classes of graphs (seems, for antitrees the answer depends on sphere numbers in
a rather non-trivial way).
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Taking into account the fact that each graph admits an infinite family of cable
systems, one can specify the above problem:

Problem 6.6. Given a locally finite b graph over .V ; m/, is there an efficient proce-
dure/algorithm to construct a cable system with certain desirable properties?

The same kind of questions can be asked about Jacobi matrices on graphs:

Problem 6.7. Given a Jacobi matrix (6.21) on a graph, is there an efficient pro-
cedure/algorithm to construct a weighted metric graph such that Jacobi parameters
admit the representation (6.24)?

The direction “from .V ; mI b/ to a cable system” seems to be rather non-trivial
despite the fact that we have provided some constructions. Namely, Problems 6.6
and 6.7 are of practical importance since it is desirable to get as accurate information
as possible regarding the properties of the obtained cable system. For instance, in
Theorem 7.19 it is desirable to know the qualitative behavior of the corresponding
length function j � j, however, even for the usual Jacobi matrix it is not trivial to get this
information out of its Jacobi parameters using the construction in Proposition 5.18
(see (5.28)).


