
Chapter 8

Examples

The main aim of the final chapter is to demonstrate our findings by considering several
important and interesting classes of graphs.

8.1 Antitrees

Recall the following definition (see Section 6.1):

Definition 8.1. A connected simple rooted graph Gd is called an antitree if every
vertex in the combinatorial sphere Sn, n � 1,1 is connected to all vertices in Sn�1 and
SnC1 and no vertices in Sk for all jk � nj ¤ 1.

Notice that combinatorial antitrees admit radial symmetry and every antitree is
uniquely determined by its sphere numbers sn D #Sn, n 2 Z�0 (see Figure 6.1, where
the antitree with sphere numbers sn D n C 1, n 2 Z�0 is depicted).

8.1.1 Radially symmetric antitrees

Both weighted graph Laplacians and Kirchhoff Laplacians on weighted antitrees
admit a very detailed analysis in the situation when their coefficients respect the
radial symmetry of the underlying combinatorial antitree. In this subsection we focus
on radially symmetric weighted metric antitrees and follow [149] in our exposition.
More specifically, we assume that the weighted metric antitree .A; �; �/ is radially
symmetric, that is, for each n � 0, all edges connecting the combinatorial spheres Sn

and SnC1 have the same length, say `n > 0, and the same weights � and �, say �n > 0

and �n > 0.
The next result plays a crucial role in further analysis, however, to state it, we first

need to introduce the following objects. Let

xn WD

n�1X
kD0

`k; L WD

X
n�0

`n 2 .0;1�;

and then set

�A.x/ D
X
n�0

�nsnsnC11Œxn;xnC1/.x/; �A.x/ D
X
n�0

�nsnsnC11Œxn;xnC1/.x/;

1By definition, the root o is connected to all vertices in S1 and no vertices in Sk , k � 2.
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for all x 2 Œ0; L/. Notice that L can be interpreted as the height of a metric antitree.
Next, we define three different types of operators associated with the differential
expression

�A D �
1

�A.x/

d
dx

�A.x/
d

dx
: (8.1)

• The operator HA is associated with �A in the Hilbert space L2.Œ0; L/I�A/ and
acts on the maximal domain subject to the Neumann boundary condition at x D 0,
see (5.5).

• For each integer n � 1, the operator H1
n is associated with �A in the Hilbert space

L2.Œxn; xnC1/I�A/ and with Dirichlet boundary conditions at the endpoints,

dom.H1
n/ D ¹f 2 H 2.Œxn; xnC1// W f .xn/ D f .xnC1/ D 0º:

• For each integer n � 1, the operator H2
n is associated with �A in the Hilbert space

L2.Œxn�1; xnC1/I�A/ and with Dirichlet boundary conditions at the endpoints,

dom.H2
n/ D ¹f 2 H 1

0 .Œxn�1; xnC1// W �Af 0
2 H 1.Œxn�1; xnC1//º:

With these definitions at hand, we are in a position to state the key result.

Theorem 8.2. Let .A;�;�/ be a radially symmetric antitree. Then the corresponding
maximal Kirchhoff Laplacian H is unitarily equivalent to the orthogonal sum

HA ˚

M
n�1

.I.sn�1/.snC1�1/ ˝ H1
n/ ˚

M
n�1

.Isn�1 ˝ H2
n/: (8.2)

Here sn D #Sn, n � 0 are the sphere numbers of A and Ik is the identity operator
in Ck , k 2 Z�0.

Proof. Follows line by line the proof of [149, Theorem 3.5] (see also [31]), where the
case � D � � 1 is considered, and we omit it. Let us only mention that the operator
HA is nothing but the restriction of H onto the subspace Fsym of radially symmetric
functions

Fsym D ¹f 2 L2.AI�/ W f .x/ D f .y/ if %0.x; o/ D %0.y; o/º;

which follows easily by comparing the corresponding quadratic forms. Here %0.x; o/

denotes the distance from the point x 2 A to the root o of A with respect to the length
metric %0.

Thus, Theorem 8.2 reduces the analysis of the Kirchhoff Laplacian H on .A;�;�/

to the analysis of Sturm–Liouville operators (8.1). In particular, since both H1
n and H2

n

are self-adjoint and have purely discrete simple spectra for each n � 1, the operator
HA acting in L2.Œ0;L/I�A/ encodes the main spectral and parabolic properties of H.
Moreover, take into account that HA allows a rather detailed treatment (see Chap-
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ter 5). First of all, we easily obtain the following characterization of the self-adjoint
and Markovian uniqueness.

Theorem 8.3. Let .A; �; �/ be a radially symmetric antitree.

(i) The Kirchhoff Laplacian H is self-adjoint if and only if the series

X
n�0

snsnC1�n`n

�X
k�n

`k

skskC1�k

�2

(8.3)

diverges. If the series converges, then the deficiency indices of the minimal
Kirchhoff Laplacian H0 D H� equal 1.

(ii) The Kirchhoff Laplacian H admits a unique Markovian restriction if and
only if either it is self-adjoint or the series

LA
� WD

X
n�0

`n

snsnC1�n

(8.4)

diverges.

Proof. Taking into account decomposition (8.2) and the self-adjointness of the sec-
ond and the third summands, the self-adjoint uniqueness (resp., Markovian unique-
ness) for H is equivalent to the self-adjoint uniqueness (resp., Markovian uniqueness)
for HA. Applying Lemma 5.2 and Lemma 5.11, we prove (i) and, respectively, (ii).

Remark 8.4. It might be useful to compare the self-adjointness criterion obtained in
Theorem 8.3 with the Gaffney-type results from Section 7.1.1. Taking into account
that by the Hopf–Rinow theorem (see Section 6.4.5), completeness is equivalent to
the geodesic completeness, we conclude:

(i) .A; %�/ is complete exactly when (cf. Theorem 7.1)X
n�0

`n

r
�n

�n

D 1:

(ii) if, for simplicity,2

sup
n

`n

r
�n

�n

< 1;

then .V ; %m/ is complete exactly when (cf. Theorem 7.7)X
n�0

.sn C snC1/`n�n D 1:

2Here we need to take into account the definition of the vertex weight in Section 3.1



Examples 168

On the one hand, the last condition is equivalent to (8.3) only under the restrictive
assumptions that (a) LA

� < 1, and (b) snsnC1 . sn C snC1 for all n. On the other
hand, its main drawback that it does not take � into account.

The next immediate corollary is of some interest when one looks at the self-
adjointness and Markovian uniqueness by using graph ends (cf. Section 7.2.1).

Corollary 8.5. Let .A; �; �/ be a radially symmetric antitree.

(i) If

�.A/ D

Z
A

�.dx/ D
X
n�0

snsnC1�n`n D 1; (8.5)

then the Kirchhoff Laplacian H is self-adjoint. Moreover, (8.5) is also nec-
essary for the self-adjointness if LA

� < 1.

(ii) If LA
� < 1, then the Kirchhoff Laplacian H admits a unique Markovian

restriction if and only if �.A/ D 1.

Remark 8.6. Every infinite antitree has exactly one graph end. By Definition 7.23,
this graph end has finite volume if and only if the total volume of a given antitree is
finite, �.A/ < 1. By Corollary 8.5, the absence of finite volume ends is equivalent
to both self-adjoint and Markovian uniqueness exactly when LA

� < 1, that is, when
the series in (8.4) converges.

Remark 8.7. If H is not self-adjoint, then one can describe its self-adjoint restrictions
in the following way. First of all, the decomposition (8.2) implies that it suffices to
restrict to the subspace of spherically symmetric functions: for each f 2 dom.H/,
define the function fsymW Œ0; L/ ! C by setting

fsym.x/ D
1

s.x/

X
y2AW%0.o;y/Dx

f .y/;

s.x/ D
X
n�0

snsnC11Œxn;xnC1/.x/:

It is straightforward to check that fsym 2 dom.HA/ (cf. [149, Lemma 3.2]). Next,
define

fsym.L/ WD lim
x!L

�
fsym.x/ � �A.x/f 0

sym.x/

Z x

0

ds

�A.s/

�
;

f 0
sym.L/ WD lim

x!L
�A.x/f 0

sym.x/:

By Lemma 5.5, both limits exist for each f 2 dom.H/ and applying (5.9), we con-
clude that the one-parameter family H� , � 2 Œ0; �/ of self-adjoint restrictions of H is
explicitly given by

dom.H� / D ¹f 2 dom.H/ W cos.�/fsym.L/ C sin.�/f 0
sym.L/ D 0º: (8.6)
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Corollary 8.8. Let H be non-self-adjoint. If LA
� <1, then the corresponding Dirich-

let Laplacian is given by

dom.HD/ D
°
f 2 dom.H/ W lim

x!L
fsym.x/ D 0

±
:

Otherwise, the Dirichlet Laplacian coincides with the Neumann Laplacian

dom.HN / D dom.H�=2/ D
°
f 2 dom.H/ W lim

x!L
�A.x/f 0

sym.x/ D 0
±
:

Proof. If LA
� D

R L

0
ds

�A.s/
<1, then boundary conditions can be written in a standard

way since in this case

fsym.L/ D lim
x!L

fsym.x/ � LA
� f 0

sym.L/;

which implies that the limit on the right-hand side exists for all f 2 dom.H/. Hence
we can replace fsym.L/ in (8.6) by zfsym.L/ WD limx!L fsym.x/. Taking into account
the definition of the Dirichlet Laplacian, this implies the first claim. The second one
follows from Theorem 8.3 (ii).

If H is not self-adjoint, then the spectral analysis is reduced to that of HA and
Lemma 5.5. Therefore, in the following results we restrict to the case when H is
self-adjoint, that is, the series (8.3) diverges. Using Lemma 5.7, we arrive at the next
result.

Lemma 8.9. Suppose that the Kirchhoff Laplacian H is self-adjoint. Then:

(i) We have �0.H/ > 0 if and only if

LA
� < 1 and sup

n�0

X
k�n

skskC1�k`k

X
k�n

`k

skskC1�k

< 1: (8.7)

(ii) We have �ess
0 .H/ > 0 if and only if either (8.7) holds true or

LA
� D 1 and sup

n�0

X
k�n

`k

skskC1�k

X
k�n

skskC1�k`k < 1: (8.8)

(iii) The spectrum of H is purely discrete if and only if

• either LA
� < 1 and

lim
n!1

X
k�n

skskC1�k`k

X
k�n

`k

skskC1�k

D 0;

• or �.A/ < 1 and

lim
n!1

X
k�n

`k

skskC1�k

X
k�n

skskC1�k`k D 0:



Examples 170

Proof. Taking into account the decomposition (8.2), observe that

�0.H/ D �0.HA/; �ess
0 .H/ D �ess

0 .HA/

since �0.HA/ � �0.Hj
n/ for all n � 1, as well as �ess

0 .HA/ � lim infn!0 �0.Hj
n/,

j 2 ¹1; 2º, which follows by using the variational characterization of �0 provided by
the Rayleigh quotient. Thus, applying Lemma 5.7, we complete the proof.

Remark 8.10. A few remarks are in order.

(i) If H is not self-adjoint, then one can conclude that the spectrum of each
self-adjoint restriction H� (see (8.6)) is purely discrete. Furthermore, taking
into account that

�.H1
n/ D

²
�2k2

�2
n

³
k2Z�1

;

where �n D `n

p
�n=�n, n � 0 are the intrinsic edge lengths, the Weyl

law (5.10) for HA together with the standard Dirichlet–Neumann brack-
eting argument applied to H2

n (see the proof of [149, Corollary 5.1]), one
arrives at the Weyl law for self-adjoint restrictions of H:3

lim
�!1

N.�IH� /
p

�
D

1

�
� intrinsic volume of A; (8.9)

and the intrinsic volume of A is

�.A/ D

Z
A

�.dx/ D
X
n�0

snsnC1�n D

X
n�0

snsnC1`n

r
�n

�n

:

(ii) If H is self-adjoint, however, has purely discrete spectrum, then Weyl’s
law (8.9) still takes place. If �.A/ D 1, then one can prove criteria for the
inclusion .H C I/�1 2 Sp , p 2 .1

2
;1/ (see Remark 5.8 and [149, Theo-

rem 5.6 and Remark 5.7]).

The following result provides an explicit form of the isoperimetric constant for
.A; �; �/ in the radially symmetric case.

Proposition 8.11. The isoperimetric constant of a radially symmetric metric antitree
.A; �; �/ is

Ch.A/ D inf
n�0

snsnC1
p

�n�nPn
kD0 skskC1�k`k

: (8.10)

In particular, the following estimate holds true:

�0.HD/ �
1

4
Ch.A/2:

3Here N.�IA/ is the eigenvalue counting function of a (bounded from below) self-adjoint
operator A with purely discrete spectrum: N.�IA/ D #¹k W �k.A/ � �º, where ¹�k.A/ºk�0

are the eigenvalues of A (counting multiplicities) in increasing order.
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Proof. The decomposition (8.2) as well as the proof of Lemma 8.9 suggests taking
the infimum in (7.15) only over radially symmetric subgraphs. Thus, evaluating (7.15)
over subantitrees An, where one cuts out the part of A above the combinatorial sphere
Sn, the inequality “�” in (8.10) is trivial. The proof of the converse inequality “�”
follows line by line the proof of [149, Theorem 7.1] and we leave it to the reader.

Applying the volume growth estimates from Section 7.3.3, we arrive at the fol-
lowing upper bounds.

Proposition 8.12. Suppose that the radially symmetric antitree .A; �; �/ has infinite
intrinsic height (i.e., .A; %�/ is complete),X

n�0

�n D

X
n�0

`n

r
�n

�n

D 1:

Then H is self-adjoint and

�0.H/ �
1

4
v.A/2; v.A/ D lim inf

n!1

1P
k�n �k

log
�X

k�n

skskC1�k`k

�
:

Remark 8.13. It might be useful to compare the isoperimetric and volume growth
bounds with the positive spectral gap criterion obtained in Lemma 8.9 (i)–(ii). It is
rather curious that the volume of the sub-antitrees An (defined in the proof of Propo-
sition 8.11), X

k�n

skskC1�k`k

enters all the estimates and criteria. However, it appears there in rather different ways.
The meaning of the quantity X

k

`k

skskC1�k

in both (8.7) and (8.8) remains unclear to us, however, it plays crucial role in under-
standing both spectral and parabolic properties of the Kirchhoff Laplacian.

Let us finish this subsection by quickly discussing basic parabolic properties.

Lemma 8.14. Let HG be the Gaffney Laplacian on a radially symmetric antitree
.A; �; �/. If HG is self-adjoint, then it is recurrent if and only if LA

� D 1. If HG is
not self-adjoint, then H� is recurrent if and only if � D

�
2

.

Proof. By Lemma B.5, recurrence is equivalent to the fact that there is a sequence
approximating (in a suitable sense) the constant function 1. However, 1 is radially
symmetric and thus belongs to the reducing subspace Fsym of all radially symmetric
functions. Thus, HG is recurrent exactly when so is its radial part HA. It remains to
apply Lemma 5.13.



Examples 172

Lemma 8.15. Let HG be the Gaffney Laplacian on a radially symmetric antitree A.
If HG is self-adjoint, then it is stochastically incomplete if and only if

LA
� < 1 and

1

�A.x/

Z x

0

�A.s/ ds 2 L1.Œ0; L//:

Proof. By the very definition of stochastic completeness (B.2), decomposition (8.2)
clearly reduces the problem to the stochastic completeness of the operator HA since
1A 2 Fsym. It remains to apply Lemma 5.14.

8.1.2 General case

Removing the symmetry assumption, that is, if at least one of the weights � or � or the
lengths j � j are no longer radially symmetric, the analysis of the Kirchhoff Laplacian
becomes much more complicated. The very first problem – the self-adjoint unique-
ness – remains open and, as the next example from [146, Section 7] demonstrates, far
from being trivial.

Example 8.16 (Antitrees with arbitrary deficiency indices). We shall assume that the
metric antitree is unweighted, that is, � D � D 1 on A (notice that both weights are
radially symmetric). Fix N 2 Z�1 and consider the antitree AN with sphere numbers
sn D n C N , n 2 Z�1 (for N D 1 this antitree is depicted on Figure 6.1). To assign
lengths, let us enumerate the vertices in every combinatorial sphere Sn by .vn

i /
sn

iD1

and then denote the edge connecting vn
i with vnC1

j by en
ij , 1 � i � sn, 1 � j � snC1

and n � 0. For a sequence of positive real numbers .`n/n�0, we first assign edge
lengths

jen
ij j D

´
2`n; if 1 � i D j � N;

`n; otherwise;

for all n 2 Z�0. It turns out that for the corresponding metric antitree AN the space
of harmonic functions has dimension N C 1 (see Lemma 7.4 in [146]). Choosing
lengths such that vol.AN / �

P
n�1 n2`n < 1, the deficiency indices of the minimal

Kirchhoff Laplacian H0 are equal to the dimension of the space of harmonic functions
belonging to L2.A/. By [146, Proposition 7.5], if we choose lengths such that

`n D O

�
1

.36N /n..n C N C 3/Š/2

�
; n ! 1;

then all harmonic functions belong to L2.A/ and hence n˙.H0/ D N C 1.

Remark 8.17. A few concluding remarks are in order.

(i) Slightly modifying the antitree in Example 8.16 one can construct an exam-
ple of a metric antitree such that the corresponding minimal Kirchhoff
Laplacian has infinite deficiency indices (see [146, Section 7.4]). The above
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example also demonstrates that the space of harmonic functions, even in
the unweighted case, depends in a complicated way on the choice of edge
lengths (notice that in the radially symmetric case constants are the only
harmonic functions). Thus, the self-adjoint uniqueness becomes a highly
non-trivial problem already in the case � D � D 1.

(ii) In contrast to the self-adjoint uniqueness in the case of no radial symmetry,
the Markovian uniqueness problem can be answered in several situations of
interest. For example, in the case � D � D 1 it was observed in [146] that
the Markovian uniqueness is equivalent to the infinite total volume of A

(and the latter is independent of whether the antitree is radially symmetric
or not). Moreover, the results of Section 7.2 extend this claim to a much
wider setting: if at least one the two conditions

(a) 1
�

, 1
�
2 L1.A/, or

(b) A has finite �-diameter D1=�.A/ < 1, see (7.12),

is satisfied, then the minimal Kirchhoff Laplacian admits a unique Markov-
ian uniqueness if and only if �.A/ D 1. If �.A/ < 1, then H admits
a one-parameter family of Markovian extensions and their description is
very much similar to the one in the radial case. Let us also stress that in the
radially symmetric case the condition relating Markovian uniqueness with
infinite total volume is LA

� < 1 (see (8.4)), and this condition is much
weaker than both (a) and (b).

8.1.3 Historical remarks and further references

Antitrees also appear in the literature under the name neural networks and to a certain
extent the corresponding graph Laplacians can be seen a generalization of Jacobi
matrices (one may interpret the recurrence relations as “the values on Sn depend only
on the values on Sn�1 and SnC1”). Seems, exactly this fact allows to perform a rather
detailed analysis of Laplacians (both weighted graph and Kirchhoff) on antitrees.
Below we collect some further information.

8.1.3.1 Spectral analysis in the radially symmetric case. The decomposition (8.2)
of the maximal Kirchhoff Laplacian in the radially symmetric case reduces the spec-
tral analysis to the study of a Sturm–Liouville operator HA. One may employ a num-
ber of results and techniques available in the one-dimensional setting. In particular,
we briefly listed the very basic results (self-adjointness, positive spectral gap, dis-
creteness, etc.). However, one can prove a number of results characterizing the struc-
ture of the spectrum of H in the self-adjoint case. In particular, [149, Section 8] shows
that the occurrence of absolutely continuous spectrum is a rather rare event. Antitrees
with zero-measure spectrum can be found in [49]. However, using Lemma 5.9, one



Examples 174

can construct a rather large and non-trivial class of antitrees whose absolutely contin-
uous spectrum fills the positive semi-axis Œ0;1/ (see [149, Section 9]).

8.1.3.2 Family preserving graphs. An antitree is just a particular example of an
infinite graph having a lot of symmetry. Actually, antitrees belong to the wider class
of family preserving graphs (see [30] for definitions), which, in particular, includes
rooted radially symmetric trees. The decomposition (8.2) is motivated by a simi-
lar decomposition for Laplacians on radially symmetric metric trees observed by
K. Naimark and M. Solomyak [169, 170, 196]. For this very reason Laplacians on
radially symmetric trees form the most studied class of operators on metric graphs.
The literature is enormous and we refer for further references to [31].

Notice that the analog of the decomposition (8.2) for family preserving metric
graphs was obtained in [31], however, in contrast to graph Laplacians [30], the setting
of [31] excludes graphs with horizontal edges.

8.1.3.3 Historical remarks. Antitrees appear in the study of discrete Laplacians on
graphs at least since the 1980s [60] (see [48, Section 2] for a historical overview).
They played an important role in context with the notion of intrinsic metrics on
graphs (see Section 6.4). More precisely, in [213] (see also [135, Section 6] and [92])
R. K. Wojciechowski constructed antitrees of polynomial volume growth (with re-
spect to the combinatorial metric %comb, which is in general not intrinsic) for which the
(discrete) combinatorial Laplacian Lcomb (see Example 6.7) is stochastically incom-
plete and the bottom of the essential spectrum is strictly positive. At first, these
examples presented a sharp contrast to the manifold setting (cf. [34, 90]), but the
discrepancies were resolved later by the notion of intrinsic metrics. In this context,
antitrees appear as key examples for certain thresholds (see [100, 129]). During the
recent years, antitrees were also actively studied from other perspectives and we only
refer to a brief selection of articles [30, 31, 48, 149], where further references can
be found.

8.2 Cayley graphs

Let G be a countable finitely generated group and let S be a generating set of G. We
shall always assume that

• G is countably infinite,

• S is symmetric, S D S�1 and finite, #S < 1,

• the identity element of G does not belong to S (this excludes loops).

The Cayley graph GC D C.G; S/ of G with respect to S is the simple graph whose
vertex set coincides with G and two vertices x; y 2 GC are neighbors x � y if and
only if xy�1 2 S .
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The main aim of this section is to demonstrate some of our findings as well as
their relationships with large scale properties of groups. Notice that Cayley graphs
corresponding to two different generating sets are quasi-isometric as metric spaces
when equipped with the combinatorial distance (word metric), which in particular
indicates that many properties of interest are independent of the choice of S (see, for
instance, [54, 175, 187] for further details). To simplify our considerations we shall
restrict throughout most of Section 8.2 to weighted metric graphs with � D �, that is,
the edge weights � and � are assumed to coincide.

8.2.1 Markovian uniqueness

The self-adjointness for Kirchhoff Laplacians is a very complicated problem already
for abelian groups .ZN ;C/ with N � 2 (it does not seem to us that a complete answer
even in this “simplest” situation is feasible, see also Remark 8.25 below). One can
obtain various sufficient conditions by directly applying the results of Section 7.1
(e.g., Gaffney-type theorems) and we leave this to the interested reader. Our first
goal is to investigate the Markovian uniqueness on metric Cayley graphs, which is
equivalent to the self-adjointness of the corresponding Gaffney Laplacian HG .

Proposition 8.18. Let GC D C.G; S/ be a Cayley graph.4 Suppose .GC ; �; �/ is
a weighted metric graph whose edge weight � satisfies 1

�
2 L1.G /. Then the defi-

ciency indices of the corresponding minimal Gaffney Laplacian HG;min D H�
G coin-

cide with the number of finite volume graph ends of .GC ; �; �/.

Proof. This immediately follows from Theorem 7.24.

Remark 8.19 (Ends of Cayley graphs). Graph ends of countable finitely generated
groups are rather well understood (see [82]). It is not difficult to see that the graphs
depicted in Figure 8.1 have, respectively, 2, 1 and infinitely many ends. However,
by the Freudenthal–Hopf theorem, only these three options are possible: a Cayley
graph of an infinite finitely generated group has 1, 2 or infinitely many ends. More-
over, the end space (equipped with the topology of the end compactification) of
C.G; S/ is independent of the choice of the finite generating set S and hence we
shall denote the set of ends by C.G/. By Hopf’s theorem, #C.G/ D 2 if and only if
G is virtually infinite cyclic5 (equivalently, G has a finite normal subgroup � such
that the quotient group G=� is either infinite cyclic or infinite dihedral). The clas-
sification of finitely generated groups with infinitely many ends (equivalently, with
exactly 1 end) is due to J.R. Stallings (see, e.g., [82, Chapter 13]). In particular, if G
is amenable, then it has finitely many ends (actually, either 1 or 2).

4If it is not explicitly stated otherwise, we shall denote by GC both a Cayley graph and
a metric graph GC equipped with some edge lengths.

5If a finite index subgroup of G has property “P”, then G is called virtually “P”.
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Figure 8.1. Cayley graphs of the abelian groups Z, Z2 and the free nonabelian group F2 (the
Bethe lattice or infinite Cayley tree).

Thus, we arrive at the following result.

Corollary 8.20. Assume the conditions of Proposition 8.18. Let also HG be the cor-
responding Gaffney Laplacian.

(i) If #C.G/ D 1, then HG is self-adjoint if and only if �.G / D 1. Otherwise,
n˙.HG;min/ D 1.

(ii) If #C.G/ D 2 (i.e., G is virtually infinite cyclic), then n˙.HG;min/ � 2. In
particular, HG is self-adjoint if and only if both ends have infinite volume.

(iii) If #C.G/ > 2 and at least one of its ends has finite volume, then HG;min has
infinite deficiency indices.

(iv) If �.G / < 1, then the deficiency indices of HG;min are equal to the number
of ends of G, n˙.HG;min/ D #C.G/.

Proof. Note that (i), (ii) and (iv) are immediate consequences of Proposition 8.18.
(iii) By the Freudenthal–Hopf theorem, we have

#C.G/ D 1 if #C.G/ > 2

(see Remark 8.19). Moreover, the end space is known to be homeomorphic to the
Cantor set (see, e.g., [82, Addendum 13.5.8]), and hence there are no free graph ends.
Thus, having 1 finite volume end would immediately imply the presence of infinitely
many finite volume graph ends. It remains to apply Proposition 8.18.

Taking into account that the self-adjointness of HG is equivalent to the Markovian
uniqueness for the minimal Kirchhoff Laplacian, we arrive at the following charac-
terization in the case of amenable groups.

Corollary 8.21. Assume the conditions of Proposition 8.18. If G is amenable and
not virtually infinite cyclic, then the minimal Kirchhoff Laplacian admits a unique
Markovian extension if and only if

�.GC / D

Z
GC

� D

X
e2E

�.e/jej D 1:
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Remark 8.22. For Cayley graphs of infinite groups with finitely many ends one can
describe the sets of Markovian and finite energy extensions of the minimal Kirchhoff
Laplacian in a rather transparent way (see, e.g., Section 7.2.2 and [146, Section 6],
[148]). If G has infinitely many ends and the Gaffney Laplacian is not self-adjoint,
then it is not closed (see [148, Corollary 3.14]) and the description of its closure is an
open problem (even if � � 1). Moreover, in some cases its closure may coincide with
the maximal Kirchhoff Laplacian (for instance, if GC is a Cayley graph of the free
group F2 and �.GC / < 1, see [148, Lemma 4.6]). In our opinion, the description
of finite energy extensions (via boundary conditions) in the general case is a highly
non-trivial problem (see Sections 7.2.2–7.2.3). On the other hand, Markovian exten-
sions can still be described in terms of Dirichlet forms (in the wide sense) on the
Royden boundary [133], however this correspondence is in general not bijective (see
Section 7.2.2 for a detailed discussion).

Since the deficiency indices of the minimal Kirchhoff Laplacian are not smaller
than the deficiency indices of the Gaffney Laplacian, Corollary 8.20 immediately
provides us with the following result.

Corollary 8.23. Assume the conditions of Proposition 8.18. Let also H0 be the cor-
responding minimal Kirchhoff Laplacian. If #C.G/ > 2 and at least one of its ends
has finite volume, then n˙.H0/ D 1.

Let us consider the simplest example.

Example 8.24 (Infinite cyclic group). Let G D .Z;C/ be the infinite cyclic group and
S D ¹�1; 1º the standard set of generators. Then C.Z; S/ is nothing but the infinite
path graph (see the first graph on Figure 8.1). In this case the study of self-adjoint and
Markovian extensions of the weighted Kirchhoff Laplacian is reduced to the analysis
in Section 5.1. Lemma 5.2 and Lemma 5.11 provide a complete characterization of
self-adjoint and Markovian uniqueness, however, now one needs to deal with two
ends and hence one has to replace one series (5.6) by two series with summations to
�1 and 1, respectively.

Remark 8.25. A few remarks are in order.

(i) Unfortunately, the above example seems to be the only case when a com-
plete answer to the self-adjoint uniqueness for Kirchhoff Laplacians on
weighted metric graphs can be obtained. Moreover, this characterization
employs Weyl’s limit point/limit circle alternative for Sturm–Liouville op-
erators (see the proof of Lemma 5.2 and also [208]). Thus, upon changing
either the generating set S in the above example or by considering a Cayley
graph of an arbitrary virtually infinite cyclic group (e.g., � �Z with a finite
group � , see Figure 8.2), the problem of finding deficiency indices of the
minimal Kirchhoff Laplacian on the corresponding weighted metric graph
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� �

Figure 8.2. Cayley graphs of G D Z2 � Z (with Z2 D Z=2Z the cyclic group of order 2) for
two different generating sets.

seems rather non-trivial. In particular, the answer clearly depends on both
the generating set S and the group � .

(ii) The free abelian group .Zn;C/, n 2 Z�2 and the free non-abelian group
Fn, n 2 Z�2 are the most natural candidates if one wishes to study the case
of groups with 1 and, respectively, infinitely many ends (see Figure 8.1).
The Gaffney-type theorems (Theorem 7.1 and Theorem 7.7) provide rather
transparent sufficient conditions guaranteeing the self-adjoint uniqueness
(for instance, one can employ the Hopf–Rinow theorem to verify the com-
pleteness assumption, see Section 6.4.5). Imposing the radial symmetry
assumption for Cayley graphs of Fn, one would be able to reduce the
analysis to the one in Section 8.1.1 (see also Section 8.1.3.2), and the self-
adjointness in this case can be characterized analogously to Theorem 8.3
(see [196]).

8.2.2 Spectral gap

For a finitely generated group G and a generating set S , the isoperimetric constant of
its Cayley graph GC D C.G; S/ is defined by

ChS .G/ D inf
X�G

#@X

#X
; @X D ¹.u; v/ 2 X � .G n X/ W uv�1

2 Sº; (8.11)

where the infimum is taken over all finite subsets.6

Remark 8.26. Notice that the discrete isoperimetric constant defined in Section 7.3.2
for a weighted graph .V ;mIb/ looks very much similar to (8.11). In fact, upon choos-
ing b and m as in Example 6.24 (i), that is, the corresponding graph Laplacian is
the normalized graph Laplacian, the combinatorial distance is intrinsic. Taking into
account that C.G; S/ is a regular graph and each vertex has degree equal to the cardi-
nality of S , we get j@X j D #@X , m.X/ D #S � #X for any X � G and hence (7.22)
implies

ChS .G/ D #S � Chd .GC /:

6This definition extends to all connected graphs in an obvious way. A graph Gd has the
strong isoperimetric property if its isoperimetric constant is positive (see [212]).
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Let us recall the following notion (see, e.g., [175, Chapter 3], [212, Section 12.A]).
A group is called amenable if it admits a left-invariant mean. For discrete groups one
can define amenability in a more transparent way: a countable group G is amenable
if it admits a Følner sequence, that is, there is a sequence .Xn/ of non-empty finite
subsets Xn � G which exhausts G,

S
n�0 Xn D G and for each group element g 2 G,

lim
n!1

#.gXn \ Xn/

#Xn

D 1;

where gX D ¹gx W x 2 Xº is the left translation of a set X � G by g.

Remark 8.27. Amenability was introduced by J. von Neumann in 1929 and now
it is one of the most important concepts in analytic group theory. Amenability is
known for many important classes of groups. For instance, all abelian or more gen-
erally all (virtually) nilpotent groups as well as all (virtually) solvable groups are
amenable. The free non-abelian groups Fn, n � 2, as well as any group containing F2

as a subgroup (e.g., the modular group PSL.2; Z/) are not amenable (however, there
are non-amenable groups without free subgroups). Moreover, amenability is invariant
under quasi-isometries.

The analysis of spectral gaps of both weighted graph Laplacians and Kirchhoff
Laplacians heavily relies on Kesten’s amenability criterion [141], which can be seen
as another instance of Følner’s amenability criterion (see [212, Proposition 12.4]):

Theorem 8.28 (H. Kesten [141]). Let GC D C.G; S/ be a Cayley graph of a finitely
generated group G. Then the isoperimetric constant ChS .G/ equals zero if and only
if G is amenable.7

Remark 8.29. Notice that for amenable groups the isoperimetric constant is indepen-
dent of the choice of S since it always equals 0. For non-amenable groups, ChS .G/

depends on S , however, it always stays strictly positive. Thus, we can say that a group
G has the strong isoperimetric property if one (and hence all) of its Cayley graphs sat-
isfies ChS .G/ > 0. By Kesten’s theorem, the strong isoperimetric property for finitely
generated groups is equivalent to non-amenability.

Using connections between discrete isoperimetric constants and isoperimetric
constants for weighted metric graphs, we arrive at the following result.

Proposition 8.30. Assume that GC D C.G; S/ is a Cayley graph of a finitely gener-
ated group G. Also, let .GC ; �; �/ be a weighted metric graph having finite intrinsic
size and HD the corresponding Dirichlet Laplacian.

7The original statement is slightly different and it states that amenability is equivalent to
the zero spectral gap for the generator of the simple random walk on GC . However, it is not
difficult to see that both statements are equivalent (cf., e.g., (7.23)) and for convenience reasons
we decided to state Kesten’s criterion in the above form.
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(i) If G is non-amenable and the weight � satisfies

1

�
2 L1.G / and sup

e2E

�.e/jej < 1;

then �0.HD/ > 0.

(ii) If G is amenable, then �0.HD/ D �ess
0 .HD/ D 0 whenever

� 2 L1.G / and inf
e2E

�.e/jej > 0:

Proof. (i) By assumption, .GC ; �; �/ has finite intrinsic size. Moreover, the intrinsic
length coincides with the edge length and hence the corresponding discrete isoperi-
metric constant is given by (see (7.22))

Chd .GC / D inf
X�G

j@X j

m.X/
;

where

j@X j D

X
e2@X

�.e/; m.X/ D
X
v2X

X
e2Ev

�.e/jej:

Therefore, we get the estimate

j@X j

m.X/
�

infe2E �.e/

supe2E �.e/jej

#@X

#S � #X

for all finite subsets X � G. This immediately implies that Chd .GC / � C ChS .G/

with some positive C > 0. Hence, by Theorem 8.28, Chd .GC / > 0. Therefore, the
estimate (7.28) together with the Cheeger-type bound (7.16) imply the claim.

(ii) Combining Theorem 8.28 with the straightforward estimate

j@X j

m.X/
�

supe2E �.e/

infe2E �.e/jej

#@X

#S � #X
;

we conclude that Chd .GC / D 0 if G is amenable. Since

inf
e2E

jej �
infe2E �.e/jej

supe2E �.e/
> 0;

we can apply Proposition 7.38 and the Buser-type bound (7.16) to conclude that
�0.HD/ D 0. Finally, if �ess

0 .HD/ > 0, then � D 0 is an eigenvalue of HD with eigen-
function f � 1G . However, our assumptions imply that G has infinite total volume
and hence 1G … L2.G ; �/. This contradiction completes the proof.

As an immediate corollary we arrive at the following metric graph analog of
Kesten’s amenability criterion.
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Corollary 8.31. Let GC D C.G; S/ be a Cayley graph. The following assertions are
equivalent:

(i) G is non-amenable.

(ii) Ch.GC / > 0 for all .GC ; �; �/ having finite intrinsic size with the edge
weight satisfying �, 1

�
2 L1.G /.

(iii) �0.HD/ > 0 for all .GC ; �; �/ having finite intrinsic size with the edge
weight satisfying �, 1

�
2 L1.G /.

Remark 8.32. If G is an amenable group, then the analysis of �0.HD/ and �ess
0 .HD/

in the case infe2E �.e/jej D 0 remains an open (and, in our opinion, rather compli-
cated) problem. On the other hand, volume growth estimates (see Section 7.3.3 and
the follow-up section) can be used to establish the equality �0.HD/ D 0 for Cayley
graphs of amenable groups in the case infe2E �.e/jej D 0. In particular, for polyno-
mially growing groups or for groups of intermediate growth (see Section 8.2.3 for
definitions) one may clearly allow a certain qualitative decay of edge lengths and
weights at “infinity” in order to ensure the zero spectral gap.

8.2.3 Interlude: Growth in groups

The growth of a group is one of the most important quasi-isometric invariants (see [54,
159, 175]). Considering the identity element of G as the root o of its Cayley graph
C.G; S/, one defines the growth function GWZ�0 ! Z>0 by setting

G.n/ D #¹g 2 G W %comb.g; o/ � nº;

where %comb is the combinatorial distance (a.k.a. word metric) on GC D C.G; S/ (see
Example 6.21 (i)). Behavior of G for large n is independent of a choice of a generat-
ing set, that is, if zG is the growth function of G corresponding to another generating
set zS , then there is C > 0 such that C�1G.n/ � zG.n/ � CG.n/ for all n 2 Z�0.

Clearly, G.n/ � exp.C n/ for all n 2 Z�0. A group G has subexponential growth
if log G.n/ D o.n/ as n ! 1; otherwise, G is of exponential growth. Notice that
non-amenable groups have exponential growth. If

dG WD lim sup
n!1

log G.n/

log n

is finite, then G has polynomial growth and in this case dG is its degree.
For large classes of groups the behavior of G is well understood (e.g., Gromov’s

characterization of groups of polynomial growth, the Milnor–Wolf theorem for solv-
able groups, the Tits alternative for linear groups, etc. The subject is enormous and
we only refer to [159] for further details and references). For instance, if G is virtu-
ally nilpotent, then the degree of growth dG of G is a natural number and it can be
efficiently computed by the Bass–Guivarc’h formula (see, e.g., [159, Theorem 4.2],
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[212, f-la (3.15)]). For example, for the Heisenberg group over the integers U.3; Z/,
.n/ � n4 as n ! 1. The celebrated Gromov’s polynomial growth theorem states
that only virtually nilpotent groups have polynomial growth.

There are also groups of intermediate growth: those are groups of subexponential
growth with dG D 1, that is, G grows faster than any polynomial, however, slower
than any exponential function. Let us stress, however, that for groups of intermediate
growth finding the precise rate of growth is a subtle issue. For instance, for the first
Grigorchuk group this question was settled in the very recent work of A. Erschler and
T. Zheng [65]: in this case

log log .n/

log n
D

log 2

log s0

C o.1/

as n ! 1, where s0 is the positive root of s3 � s2 � 2s D 4.

8.2.4 Transience and recurrence

As before, GC D C.G; S/ is a Cayley graph of a finitely generated group G. Also, let
.GC ;�;�/ be a weighted metric graph (notice that in this subsection we allow � ¤ �!)
and let HD be the corresponding Dirichlet Laplacian. Define

b�.u; v/ D

8̂<̂
:

�.eu;v/

jeu;vj
; u�1v 2 S;

0; u�1v … S;

.u; v/ 2 G:

We begin with the following straightforward application of Theorem 7.49:

Corollary 8.33. The heat semigroup .e�tHD /t>0 is recurrent if and only if the dis-
crete time random walk on G with transition probabilities P� D .p�.u; v//u;v2G

defined by

p�.u; v/ D P.XnC1 D v W Xn D u/ D
b�.u; v/P

g2S b�.u; ug/
(8.12)

is recurrent.

The above result reduces the problem of recurrence on weighted metric graphs
to a thoroughly studied field – recurrence of random walks on groups. The literature
on the subject is enormous and we only refer to the classic text [212]. Recall that
a group G is called recurrent if the simple random walk on its Cayley graph C.G; S/

is recurrent for some (and hence for all) S . The classification of recurrent groups was
accomplished in the 1980s and it is a combination of two seminal theorems – rela-
tionship between decay of return probabilities and growth in groups established by
N. Th. Varopoulos [206] and M. Gromov’s characterization of groups of polynomial
growth (see, e.g., [206, Chapter VI.6], [212, Theorem 3.24]).
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Theorem 8.34 (N.Th. Varopoulos). The following assertions are equivalent:

(i) G is recurrent.

(ii) The growth function G has polynomial growth of degree at most two, i.e.,
G.n/ � C.1 C n2/ for all n 2 Z�0.

(iii) G contains a finite index subgroup isomorphic either to Z or to Z2.

Remark 8.35. In fact, the original statement is much stronger. Suppose p is a sym-
metric probability measure on G which generates G. It defines a random walk on G
by setting

P.XnC1 D v W Xn D u/ D p.¹u�1vº/; u; v 2 G:

The problem to characterize groups admitting a recurrent random walk was formu-
lated by H. Kesten in 1967. It turns out that only recurrent groups admit recurrent
random walks. Moreover, if G is recurrent, then every random walk generated by a
symmetric probability measure p with finite second moment is recurrent (we refer
to [212, Chapter I.3] for further details and information).

Therefore, we arrive at the following result.

Theorem 8.36. Let GC D C.G; S/ be a Cayley graph, .GC ; �; �/ a weighted metric
graph, HD the corresponding Dirichlet Laplacian.

(i) If G is recurrent, i.e., G contains a finite index subgroup isomorphic either
to Z or to Z2, and the edge weight � satisfies

sup
e2E

�.e/

jej
< 1; (8.13)

then the heat semigroup .e�tHD /t>0 is recurrent.

(ii) If G is transient (i.e., G does not contain a finite index subgroup isomorphic
either to Z or to Z2) and the edge weight � satisfies

inf
e2E

�.e/

jej
> 0;

then the heat semigroup .e�tHD /t>0 is transient.

Proof. The proof is a straightforward application of Corollary 8.33 and Theorem 8.34.
Namely, Corollary 8.33 reduces the study of recurrence/transience for .e�tHD /t>0 to
the study of recurrence/transience of the discrete time random walk (8.12) on G. On
the other hand, the energy form of the simple random walk on GC D C.G; S/ is given
by

qG;S Œf � D
1

2

X
v2G

X
u2S

jf .v/ � f .u�1v/j2:

By definition, G is recurrent/transient if and only if the energy form qG;S is recur-
rent/transient. Taking into account that the energy form associated with the random
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walk (8.12) is given by

q� Œf � D
1

2

X
v2G

X
u2S

�.eu;v/

jeu;vj
jf .v/ � f .u�1v/j2;

it remains to use Lemma B.7 to complete the proof of both claims.

Let us finish this subsection with one immediate corollary.

Corollary 8.37. Let GC D C.G; S/ be a Cayley graph and let .GC ; j � j/ be an
unweighted metric graph, � D � � 1.

(i) If G contains a finite index subgroup isomorphic either to Z or to Z2 and
infe2E jej > 0, then .e�tHD /t>0 is recurrent.

(ii) If G does not contain a finite index subgroup isomorphic either to Z or to
Z2 and supe2E jej < 1, then the heat semigroup .e�tHD /t>0 is transient.

Remark 8.38. A few remarks are in order.

(i) If G D .Z; C/ and C is the Cayley graph of G with the standard set of
generators S D ¹�1; 1º, one can show (cf. Lemma 5.13) that .e�tHD /t>0

is recurrent if and only ifX
n2Z<0

jenj

�n

D 1 and
X

n2Z>0

jenj

�n

D 1:

(ii) Using the volume test, one can slightly improve both Theorem 8.36 (i) and
Corollary 8.37 (i) in the case when G contains a finite index subgroup iso-
morphic to Z2.

(iii) Applying the volume test (Section 7.4), one may obtain some sufficient
conditions for recurrence for groups which grow faster than quadratic poly-
nomials, however, in this case one needs to know the qualitative behavior
of the corresponding growth function.

8.2.5 Ultracontractivity and eigenvalue estimates

In fact, the results in the previous section have a number of further and much stronger
consequences. However, to simplify the exposition we restrict to unweighted metric
graphs, that is, we shall assume throughout this subsection that � D � � 1 on G .

We begin with the following result.

Theorem 8.39. Let GC D C.G; S/ be a Cayley graph, .GC ; j � j/ a (unweighted)
metric graph, and HD the corresponding Dirichlet Laplacian. Assume also that G is
not recurrent (i.e., it does not contain a finite index subgroup isomorphic either to Z
or to Z2) and the edge lengths satisfy

sup
e2E

jej < 1: (8.14)
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Then .e�tHD /t>0 is ultracontractive and, moreover:

(i) If G.n/ � nN as n ! 1 with some N 2 Z�3, then

ke�tHDk1!1 � CN t�
N
2 ; t > 0: (8.15)

(ii) If G is not virtually nilpotent (i.e., G has superpolynomial growth)8, then
(8.15) holds true for all N > 2.

Proof. Notice that we only need to prove (8.15) since ultracontractivity is its imme-
diate consequence. By Theorem 4.30, (8.15) is equivalent to the analogous ultracon-
tractivity bound for the associated weighted graph Laplacian hD:

ke�thDk1!1 � C t�
N
2 ; t > 0:

However, by Theorem C.2 the latter is equivalent to the Sobolev-type inequality (4.38)�X
v2G

jf .v/j
2N

N�2 m.v/

�N�2
N

� C
X
v2G

X
u2S

1

jeu;vj
jf .v/ � f .u�1v/j2 (8.16)

for all f 2 dom.qD/. Here the vertex weight m is given by (take into account that the
model has finite size by assumption and � � 1)

m.v/ D
X
u2S

jev;uvj: (8.17)

However, (8.14) implies that (8.16) would follow from the inequality�X
v2G

jf .v/j
2N

N�2

�N�2
N

� C
X
v2G

X
u2S

jf .v/ � f .u�1v/j2: (8.18)

Now it remains to notice that the latter inequality is a consequence of our growth
assumptions on G. If G grows polynomially and G.n/ � nN for some N � 3 as
n ! 1, then (8.18) holds true by [206, Theorem VI.5.2]). If G is not virtually nilpo-
tent, then, by the Gromov theorem, G has superpolynomial growth and it remains to
apply [206, Theorem VI.3.2].

Remark 8.40. Let us stress that (8.14) is necessary for the validity of (8.15) with
N > 2 (see Lemma 4.32).

For groups having at most quadratic growth, the next result is an immediate con-
sequence of recurrence:

Corollary 8.41. Let G be recurrent (i.e., G contains a finite index subgroup isomor-
phic either to Z or to Z2). Let also GC D C.G; S/ be its Cayley graph and .GC ; j � j/

8This means that for each N > 0 there is c > 0 such that G.n/ � cnN for all large n.
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an unweighted metric graph. If infe2E jej > 0, then

lim sup
t>0

tke�tHDk1!1 2 .0;1�:

Let us mention that removing the assumption infe2E jej > 0 in the above corol-
lary, one may construct metric graphs such that the corresponding Dirichlet Laplacian
satisfies (8.15) with some N > 2.

We would like to finish this subsection with a remark on the so-called Cwikel–
Lieb–Rozenblum inequality. Let us consider Laplacians H˛ with ı-couplings on the
vertices, that is, ˛WG ! R and at each vertex v 2 G we replace the Kirchhoff condi-
tion by (2.13). As before, if H˛ is not self-adjoint, we shall consider the Friedrichs
extension of the minimal operator (of course, if it is bounded from below) and by
abusing the notation we shall denote it by the same letter H˛ . Moreover, we shall use
the standard notation ˛˙ D

1
2
.j˛j ˙ ˛/.

Theorem 8.42. Let GC D C.G; S/ be a Cayley graph, .GC ; j � j/ a (unweighted)
metric graph, ˛WG ! R, and H˛ the corresponding Laplacian.

(i) If G.n/ � C.1 C n2/ for all n and infe2E jej > 0, then H˛ has at least one
negative eigenvalue whenever 0 6� ˛ D �˛� 2 Cc.V/.

(ii) If G.n/ � nN as n ! 1 with some N 2 Z�3 and (8.14) is satisfied, then
the operator H˛ is bounded below whenever ˛�

m
2 `N=2.GIm/. Moreover,

its negative spectrum is discrete and

��.H˛/ � C
X
v2G

˛�.v/
N
2 m.v/1�N

2 ; (8.19)

where m is given by (8.17) and the constant C > 0 depends only on the
underlying metric graph.

(iii) If G is not virtually nilpotent, (8.14) is satisfied and ˛� 2 `N=2.GIm/ for
some N > 2, then the operator H˛ is bounded below, its negative spectrum
is discrete and the bound (8.19) holds true.

Proof. To simplify the proof, let us assume that H˛ is self-adjoint.9 First of all, by
Theorem 3.1 (iv), ��.H˛/ D ��.h˛/ and hence we need to prove the corresponding
claims for h˛ .

(i) By Corollary 8.37 (i) and Theorem 4.17, the heat semigroup generated by hD

is recurrent, which immediately implies the claim.
To prove (ii) and (iii), we just need to apply [152, Theorems 1.2 and 1.3], which

relate the ultracontractivity estimates established by Theorem 8.39 and Theorem 4.30
for h˛ with Cwikel–Lieb–Rozenblum bounds.

9One may assume GC is complete with respect to the natural path metric, and then by Theo-
rem 7.9, the operator H˛ is self-adjoint once it is bounded from below; see also Lemma 7.16.
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Remark 8.43. Notice that applying [152, Theorems 1.2 and 1.3] directly to the
Dirichlet Laplacian HD , we arrive at the Cwikel–Lieb–Rozenblum estimates for addi-
tive perturbation, that is, for Schrödinger operators �� C V.x/. It is also well known
(see [75]) that ultracontractivity estimates and Sobolev-type inequalities lead to Lieb–
Thirring bounds (Sp estimates on the negative spectra, see also Theorem 3.1 (viii)),
however, we are not going to pursue this goal here.

Let us also stress that Theorem 8.42 (iii) makes sense only for amenable G since
otherwise HD has a positive spectral gap (see Proposition 8.30).

8.2.6 Historical remarks and further references

The theory of random walks on groups was founded by H. Kesten [142] (in fact, in
his PhD thesis). The idea to relate growth of groups with recurrence is also due to
Kesten (Kesten’s conjecture). The literature on the subject is enormous and in this
respect we only refer to the excellent book by W. Woess [212].

Kesten’s amenability criterion has been heavily exploited to study random walks
on groups. However, we are also aware of some cases when Kesten’s criterion has
been used in the “opposite” direction. The most striking, in our opinion, applica-
tion appears in the solution of the von Neumann–Day problem (widely known as the
“von Neumann conjecture”): A. Yu. Olshanskii constructed a Tarski monster group
in [178]; S. I. Adyan in [1] proved that a simple random walk on the free Burnside
group B.m; n/ of rank m � 2 with odd exponent n � 665 has a spectral radius < 1,
which implies non-amenability of B.m; n/ for this range of m and n.10 Let us also
mention that recently L. Bartholdi and B. Virág [16] proved that the so-called Basil-
ica group is amenable by showing that return probabilities of the simple random walk
decay at subexponential rates.

Let us mention that one of the motivations to investigate random walks on groups
came from manifolds. By the Švarc–Milnor lemma, the fundamental group �1.M/

of a compact manifold M and its universal cover zM are quasi-isometric and thus
there are close relationships between them. For instance, it was proved independently
by R. Brooks [33] and N. Th. Varopoulos [203] that the Laplace–Beltrami operator
on zM has a positive spectral gap if and only if �1.M/ is not amenable. Moreover,
Varopoulos [203] showed that the Brownian motion on zM is recurrent if and only if
the group �1.M/ is recurrent.

10In fact, both A. Yu. Olshanskii and S. I. Adyan used one criterion of R. Grigorchuk [87],
who computed the spectral gap for the generator of the simple random walk by means of the
so-called co-growth function, see [87, Section 4] and also [54, Section VII.D]; notice also that
[87, Theorem 7.1] establishes non-amenability for a class of groups for which the problem of
identity is solved by Dehn’s algorithm.
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The importance of Sobolev-type inequalities for ultracontractivity estimates was
realized by N.Th. Varopoulos. The subject is enormous and we even did not touch
here Nash-type inequalities. We refer for further details and references to [206, 212].

Concluding this section, let us mention recent very active work related to under-
standing spectra of groups. More specifically, the spectrum of G is the spectrum of
a generator of a simple random walk on G, i.e., the spectrum of the normalized
Laplacian (or, equivalently, combinatorial Laplacian since C.G;S/ is a regular graph)
on a Cayley graph C.G; S/ of a given group G. The study of a spectral gap is the sim-
plest (and rather widely studied) issue in this topic. In particular, to understand the
support of the spectrum as well as its structure are much harder tasks. A complete pic-
ture is known only in some specific cases (e.g., abelian groups .Zn;C/, free group Fp

(see [142]), the Lamplighter group (see [89]); however, this list is by no means com-
plete). In particular, it is not completely clear what kind of spectra groups may have
(it is still open whether Cantor spectrum can occur on a Cayley graph, however, it is
shown in [36] that the support of the Kesten–von Neumann–Serre spectral measure of
the Basilica group is a Cantor set). Another interesting question is how the spectrum
depends on the chosen generating set or on the choice of weights on the generators.
The subject is rapidly developing and we only refer to a very brief selection of recent
articles [36, 50, 63, 88] for further results and information.

8.3 Tessellations

In the present section, we discuss graphs arising from tessellations of R2 (see Fig-
ure 8.3 for examples) and combine their distinctive combinatorial properties with our
previous findings.

(a) (b) (c)

Figure 8.3. (a) The Kagome lattice, (b) a Penrose tiling in R2 and (c) a tessellation of the
Poincaré disc by heptagons.11

11Image credit for Figure 8.3: (a) WilliamSix, CC BY-SA 2.5, via Wikimedia Commons;
(b) xJaM derivative work: Sprak, public domain, via Wikimedia Commons; (c) Theon, CC
BY-SA 3.0, via Wikimedia Commons.
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In order to formalize this setting, we first need a few definitions. Recall that
a plane graph is a planar graph Gd D .V ; E/ embedded in R2 by some fixed pla-
nar embedding. In particular, any plane graph Gd can be regarded as a subset of the
Euclidean plane R2, which we always assume to be closed. We denote by F the set
of faces of Gd , i.e., the closures of the connected components of R2 n Gd . We stress
that, since Gd may be infinite, it may have several unbounded faces and all of them
are included in F . We denote by Fb the set of bounded faces of Gd .

In order to avoid technical difficulties, we impose the following assumptions.

Definition 8.44. A plane graph Gd D .V ;E/ is tessellating if the following additional
conditions hold:

(i) F is locally finite, i.e., each compact subset K � R2 intersects only finitely
many faces.

(ii) Each bounded face F 2 Fb is a closed topological disc and its boundary
@F consists of a finite cycle of at least three edges.

(iii) Each unbounded face F 2 F n Fb is a closed topological half-plane and its
boundary @F consists of a (countably) infinite chain of edges.

(iv) #Fe D 2 for all e 2 E , where Fe WD ¹F 2 F W e � @F º.

(v) Each vertex v 2 V has degree � 3.

Here a subset A � R2 is called a closed topological disc (half-plane) if it is an
image of the closed unit ball in R2 (the closed upper half-plane) under a homeomor-
phism �WR2 ! R2. For a face F 2 F , we define

EF WD ¹e 2 E W e � @F º;

dF .F / WD #EF ;

where the latter is called the degree of a face F 2 F . Notice that according to Defini-
tion 8.44, dF .F / � 3 for all faces F and deg.v/ � 3 for all vertices v. In particular,
the graph Gd D .V ; E/ has no loops and vertices of degree one or two. Moreover,
every tessellating graph Gd is an infinite, locally finite graph.

The above assumptions imply that F is a locally finite tessellation (or tiling)
of R2, i.e., a locally finite, countable family T of closed subsets T � R2 such that
the interiors are pairwise disjoint and[

T2T

T D R2:

In addition, the original graph Gd D .V ; E/ coincides with the edge graph of the
tessellation F : by calling a connected component of the intersection of at least two
sets in F an F -vertex, if it has only one point and an F -edge otherwise, we recover
precisely the vertex and edge sets V and E . In fact, this connection is the motivation
behind our terminology.
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Remark 8.45. Tessellating graphs include all infinite trees T D .V ; E/ satisfying
deg.v/ � 3 for each vertex v 2 V .

A plane weighted metric graph is a weighted metric graph .G ; �; �/ together
with a fixed model whose underlying combinatorial graph Gd D .V ; E/ is planar
and embedded into R2. If the plane graph Gd is tessellating, then .G ; �; �/ is called
a tessellating weighted metric graph. Let us also stress that the edge lengths and
weights of .G ; �; �/ are in general not related to the Euclidean arc lengths of the
corresponding plane graph Gd .

Remark 8.46. Notice that the fixed model in the definition of a tessellating weighted
metric graph .G ; �; �/ is unique according to (v) in Definition 8.44, which excludes
inessential vertices. Moreover, it is easily seen that the weighted metric graph .G ;�;�/

has finite intrinsic size exactly when this particular model has finite intrinsic size. On
the other hand, let us emphasize that the embedding of a planar graph Gd D .V ; E/

into R2 is not unique. For instance, the degrees of the faces depend on the embed-
ding (whereas their number is invariant by Euler’s formula) and, in general, different
embeddings lead to non-isomorphic dual graphs (see, e.g., [73, Chapter 5.5 and Fig-
ure 5.7] for further details).

8.3.1 Markovian uniqueness

The combinatorial structure of plane graphs leads to simple criteria for Markovian
uniqueness.

Corollary 8.47. Let .G ; �; �/ be a tessellating weighted metric graph such that all
faces are bounded, F D Fb . Assume that either 1

�
; 1

�
2 L1.G / or that G has finite

�-diameter (see (7.12)). Then the following are equivalent:

(i) H0 admits a unique Markovian extension,

(ii) HD D HN ,

(iii) the Gaffney Laplacian HG is self-adjoint,

(iv) H 1
0 .G ; �; �/ D H 1.G ; �; �/,

(v) G has infinite volume, �.G / D 1.

If one (equivalently, all) of the above properties fails, then the deficiency indices of
the minimal Gaffney Laplacian HG;min are equal to

n˙.HG;min/ D 1:

Proof. The claims follow immediately from Theorem 7.24 (see also (7.12)) and the
fact that G has exactly one graph end since F D Fb .

Remark 8.48. If F contains unbounded faces, then the graph might have more than
one end. For instance, every infinite tree T D .G ; E/ with deg.v/ � 3 for all v 2 V
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can be embedded in R2 as a tessellating graph with infinitely many unbounded faces.
On the other hand, T has uncountably many graph ends.

8.3.2 Spectral gap estimates

In this subsection, we discuss lower estimates for the isoperimetric constant of tessel-
lating weighted metric graphs. To simplify our considerations, in this subsection we
consider only weighted metric graphs with equal weight functions .G ; �; �/, that is,
we assume that � D �. Without loss of generality we shall also assume that .G ; �; �/

has finite intrinsic size since otherwise

0 D Ch.G / D �0.HD/;

according to Corollary 3.18 and estimate (7.16). For each edge e 2 E of Gd , we define
its characteristic value as (see (3.5) for the definition of m)

c.e/ WD
1

jej�.e/
�

X
vWv2e

1

m.v/
�

X
F 2Fe\Fb

1

�.@F /
; (8.20)

and also set
c.E/ WD inf

e2E
c.e/:

All summands on the right-hand side (8.20) admit a clear interpretation in terms of
the edge weight �:

• the first summand is the reciprocal of
R

e
� D jej�.e/,

• we have, because of finite intrinsic size,

m.v/ D
X
e2Ev

jej�.e/ D �.Ev/ D

Z
Ev

�;

• finally, �.@F / D
R

@F
� D

P
e2EF

jej�.e/ is the weighted perimeter of F .

Remark 8.49. A few remarks are in order.

(i) Setting �.e/ D jej D 1 for all e 2 E in (8.20),

c.e/ D 1 �

X
vWv2e

1

deg.v/
�

X
F 2Fe\Fb

1

dF .F /
;

which coincides with the characteristic number �.e/ of the edge e intro-
duced in [211].

(ii) As is easily shown, the characteristic values c.e/, e 2 E , depend on the
embedding of the planar graph Gd D .V ; E/ in R2. Namely, the definition
of c.e/ takes into account all edges e0 2 E which share a face with e, and
this edge set depends heavily on the embedding.
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(iii) As is discussed below in Section 8.3.3.2, the characteristic values are re-
lated to discrete curvature notions for plane graphs. However, our choice
of the sign differs from the standard one in the literature and this explains
why our results are formulated in terms of positive curvature.

It turns out that, if the weight function �WG ! .0;1/ is uniformly positive on G ,
that is, it additionally satisfies

1

�
2 L1.G /;

then the characteristic edge values give rise to lower estimates for the isoperimetric
constant Ch.G /.

Theorem 8.50. Let .G ; �; �/ be a tessellating weighted metric graph. Then

c.E/

k
1
�
k1

� Ch.G /:

In particular, if c.E/ � 0, the following spectral estimate holds true for the Dirichlet
Laplacian HD:

1

4

�
c.E/

k
1
�
j1

�2

� �0.HD/:

The method of proof follows closely [211] and consists in a rather elegant appli-
cation of Euler’s identity for finite plane graphs K D .V.K/; E.K//,

#V.K/ � #E.K/ C #Fb.K/ D #C.K/; (8.21)

where Fb.K/ denotes the set of bounded faces of K and C.K/ is the set of connected
components of K (see, e.g., [28, Section 1.4]).

Proof of Theorem 8.50. The estimates in Theorem 8.50 are trivial if c.E/ � 0, thus
we can assume without loss of generality that c.E/ is positive. Therefore, taking into
account (7.31) and the Cheeger-type bound in Theorem 7.33, it suffices to prove that
the estimate

c.E/

k
1
�
k1

�
area.@K/

�.K/
(8.22)

holds true for all finite subgraphs K D .V.K/;E.K// of Gd . Here (see (7.13)–(7.14))

�.K/ D
X

e2E.K/

jej�.e/; area.@K/ D area.@K; �; �/ D
X

v2@K

X
e2Ev.K/

�.e/;

where @K D ¹v 2 V.K/ W degK.v/ < degG .v/º. Clearly,

c.E/�.K/ D c.E/

Z
K

�.dx/ �

Z
K

c.x/�.dx/;
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and hence it is enough to show thatZ
K

c.x/�.dx/ �

 1

�


1

area.@K/:

By (8.20), the left-hand side in the above inequality is equal toZ
K

c.x/�.dx/ D
X

e2E.K/

c.e/jej�.e/

D #E.K/ �
X
v2V

�.Ev \ E.K//

m.v/
�

X
F 2Fb

�.EF \ E.K//

�.@F /
:

Notice that for a non-boundary vertex v 2 V.K/ n @K , the equality

�.Ev \ E.K// D �.Ev/ D
X
e2Ev

�.e/jej D m.v/

holds true (recall that our graph has finite intrinsic size and hence we have equality
instead of � on the right-hand side). Consider the subgraph Kı D .V.Kı/; E.Kı//

of K which consists of all vertices in V.Kı/ WD V.K/ n @K and all edges between
such vertices. Notice also that each face F 2 F whose boundary consists only of
edges in Kı, that is @F � E.Kı/, defines a bounded face of Kı and satisfies

�.EF \ E.K// D �.EF \ E.Kı// D �.EF / D �.@F /:

Denoting by P .Kı/ the set of all such faces F 2 F , we arrive at the estimateZ
K

c.x/ �.dx/ � #E.K/ � #V.Kı/ � #P .Kı/: (8.23)

Clearly, we also have the elementary inequality

#.E.K/ n E.Kı// �

 1

�


1

area.@K/:

Hence, if all bounded faces of Kı are of the above form, that is,

Fb.Kı/ D P .Kı/; (8.24)

we can apply Euler’s formula (8.21) to the subgraph Kı and conclude that

RHS of (8.23) D #E.K/ � #E.Kı/ � #C.Kı/ �

 1

�


1

area.@K/:

In particular, we have established the estimate (8.22) in this special case.
On the other hand, if (8.24) fails for some finite subgraph K of the fixed model,

we can construct a new subgraph yK by “filling up its holes”. That is, we consider all
faces F 2 F which are contained in some bounded face F of Kı and add all vertices
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and edges of such faces to K . It is easily shown that the obtained subgraph yK satisfies
the estimates

�.K/ � �. yK/ and area.@ yK/ � area.@K/

together with condition (8.24). Hence inequality (8.22) holds in the general case and
the proof is complete.

Remark 8.51. The estimate in Theorem 8.50 is not optimal and can be improved
using methods similar to [173, Theorem 3.3], where the case � D � � 1 was con-
sidered (see also [138, Theorem 1] and [128, Theorem 6]). On the other hand, these
results look more technical and, for the sake of a clear exposition, we decided not to
include them.

Notice that Theorem 8.50 applies to infinite trees.

Proposition 8.52. Let .T ; �; �/ be a weighted metric tree having a model such that
all vertices satisfy deg.v/ � 3. Then

Ch.G / �
1

k
1
�
k1

inf
e2E

�
1

�.e/jej
�

X
v2e

1

m.v/

�
:

Example 8.53. Consider the graphs depicted in Figure 8.3. For simplicity, we con-
sider unweighted, equilateral metric graphs: � D � � 1 and jej D 1 for all e 2 E .

(a) Kagome lattice: All vertices have degree deg.v/ D 3 and each edge is adja-
cent to a triangle and a hexagon. In particular, the characteristic value of all
edges e 2 E is equal to

c.e/ D 1 � 2 �
1

4
�

1

3
�

1

6
D 0:

(b) Penrose tiling: Notice first that each face is a rhombus. However, the char-
acteristic edge value is not constant in this case, since the degrees of the
adjacent vertices vary. For instance, there are infinitely many edges e D euv

such that deg.u/ D 3 and deg.v/ D 5 and in this case

c.e/ D 1 �
1

3
�

1

5
� 2 �

1

4
D �

1

30
:

(c) Hyperbolic tessellation: As each face is a hyperbolic heptagon, dF .F / D 5

for all F 2 F and all vertices have degree deg.v/ D 3. More generally, we
can consider .p; q/-regular tessellations (i.e., deg.v/ D p for all vertices v

and dF .F / D q for all faces F ) for some p 2 Z�3 and q 2 Z�3 [ ¹1º

(note that q D 1 corresponds to p-regular trees, in which case all faces are
unbounded). In this case, the characteristic value c.e/ of all edges e 2 E is
equal to

cp;q WD 1 �
2

p
�

2

q
:
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It turns out that cp;q � 0 for every .p; q/-regular tessellation of R2 (see,
e.g., [57, Theorem 1.7]). Clearly,

cp;q D 0

exactly when
.p; q/ 2 ¹.4; 4/; .3; 6/; .6; 3/º;

and in these cases Gd is isomorphic to the square, hexagonal or triangle
lattice in R2. In particular, one easily shows that Ch.G / D 0 in all three
cases. On the other hand, if cp;q > 0, then Gd is isomorphic to the edge
graph of a tessellation of the Poincaré disc H2 with regular q-gons of inte-
rior angle 2�

p
(see [101, Remark 4.2]). Moreover, Theorem 8.50 implies that

Ch.G / > 0. The explicit value is given by (see [173, equation (4.6)])

Ch.Gp;q/ D
p � 2

p � 1 C
p
2

�q
.p�2/.q�2/
pq�2.pCq/

� 1
�

and can be found from results on isoperimetric constants of discrete graphs
(see [101, 105]).

Notice that Theorem 8.50 leads to trivial bounds for the Kagome lattice and the
Penrose tiling in Example 8.53. However, one can easily show directly that Ch.G /D 0

for these examples. It turns out that these graphs actually satisfy a stronger property:

Proposition 8.54. Let .G ; �; �/ be a tessellating weighted metric graph such that
infe2E jej > 0 and supF 2F �.@F / < 1. Suppose further that

inf
F 2F

mes.F / > 0 and sup
F 2F

sup
x;y2@F

kx � ykR2 < 1;

where mes.F / denotes the Lebesgue measure of the subset F � R2 and kx � ykR2

is the Euclidean distance in R2. Then the Kirchhoff Laplacian H is self-adjoint and
the corresponding heat semigroup .e�tH/t>0 is recurrent. In particular,

�0.H/ D Ch.G / D 0:

Proof. Under the above assumptions, the intrinsic metric %� of .G ; �; �/ coincides
with the length metric %0 and .G ; %0/ is complete. Hence, by Theorem 7.1, the Kirch-
hoff Laplacian H is self-adjoint. Moreover, by Theorem 7.42, it suffices to prove that

�.Br.x// D O.r2/ as r ! 1

for some fixed (and hence all) points x on G . Here, Br.x/ D Br.xI %0/ � G denotes
the distance ball of radius r centered at x 2 G with respect to the length metric %0.
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By assumption, the Lebesgue measure of all faces F of G is uniformly bounded
below. Using the condition on the diameter of the faces, it follows that for some
uniform constant b > 0, each Euclidean ball in R2 of (large) radius r can intersect at
most br2 faces of G . Moreover, observe that for some a > 0,

ku � vkR2 � a%0.u; v/; u; v 2 V :

Indeed, by our assumptions, the length jej of each edge e 2 E is comparable to the
distance of its endpoints in R2 and the estimate immediately follows. Altogether, for
every vertex u 2 V and large r ,

�.Br.u//

supF 2F �.@F /
� #¹F 2 F W @F \ V \ Br.u/ ¤ ¿º � ba2r2

and this completes the proof.

Remark 8.55. A few remarks are in order.

(i) The recurrence of random walks on edge graphs of tessellations was stud-
ied by P. M. Soardi [193] and W. Woess [212]. By [212, Theorem 6.29],
the simple random walk on the edge graph of every quasi-regular tessella-
tion of R2 is recurrent (see [212, Definition 6.28] for definitions and [193]
for a preceding result). In fact, [212, Theorem 6.29] can be used to show
that Proposition 8.54 holds for weighted metric graphs on quasi-regular
tessellations, allowing general edge lengths and weights � ¤ � with the
only assumption (8.13) (see the proof of Theorem 8.36). However, the
assumptions in Proposition 8.54 allow to give an elegant short proof and
we decided to include only this elementary statement.

(ii) The same arguments apply in case when Gd D .V ;E/ is an infinite semipla-
nar graph with non-negative vertex curvature (see [111,112] for details and
definitions). Again, in this case [112, Theorem 1.3] implies that the simple
random walk on Gd is recurrent, and under the assumption (8.13), the same
holds for the semigroup .e�tHD /t>0 on a weighted metric graph .G ; �; �/

over Gd D .V ; E/.

8.3.3 Historical remarks and further comments

8.3.3.1 Markovian uniqueness. The strong assumptions on the weights in Corol-
lary 8.47 are indeed necessary. For instance, it was proved in [40] (see also [21, 22]
for preceding results) that every locally finite, vertex-nonamenable12 planar graph

12This means that there exists some " > 0 such that for all finite vertex sets X � V the
inequality #¹u 2 V n X W there exists v 2 X with u � vº � "#X holds true.
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Gd D .V ; E/ admits a non-constant Lcomb-harmonic function of finite energy, where
Lcomb is the combinatorial Laplacian from Example 6.7. Notice that all graphs Gp;q

in Example 8.53 (iii) with cp;q > 0 are vertex-nonamenable and have exactly one
graph end if q < 1. Hence, setting jej D �.e/ D 1 for all edges e 2 E , one can
obtain a weighted metric graph .Gp;q; �; �/ admitting at least two linearly indepen-
dent harmonic functions of finite energy. Choosing edge weights � sufficiently small,
these finite energy harmonic functions would also belong to H 1. In particular, this
immediately implies that the corresponding (minimal) Gaffney Laplacian has defi-
ciency indices n˙.HG;min/ � 2 regardless of the number of ends (for example, one
can choose � sufficiently small in order to ensure a positive spectral gap).

8.3.3.2 Discrete curvature for plane graphs. The results in Section 8.3.2 can also
be seen in context with discrete curvature notions for plane graphs and their relation
to geometric properties. Going back to earlier works such as [95, 118, 197], several
notions of curvature have been introduced for plane graphs and they have been used to
investigate their geometric properties (see, e.g., the survey [130] and the works [19,
57, 101, 104, 111, 112, 128, 138, 177, 197, 211, 218]). In particular, these curvature
notions have been used to investigate isoperimetric constants (see, e.g., [104, 138,
173, 176, 177, 211, 218]) and the obtained spectral estimates resemble an estimate
by H. P. McKean in the manifold setting [166]. In the unweighted case � D � � 1,
the characteristic edge values (8.20) coincide with the ones introduced in [173, 211]
for (unweighted) discrete and metric graphs, respectively (up to the choice of sign).
Theorem 8.50 can be seen as the analog of [173, eq. (1.3)] in the weighted setting.

8.3.3.3 Parabolic properties. The above recurrence results (see Proposition 8.54
and Remark 8.55) are also connected to the notion of quasi-isometries between met-
ric spaces (see Remark 6.31). In fact, by [193, Theorem 4.11] the edge graph of every
normal tessellation of R2 is quasi-isometric to R2 and in this case, the recurrence
of the associated discrete Laplacians (and related Kirchhoff Laplacians on metric
graphs) follows from the equivalence of recurrence between quasi-isometric spaces,
see [47, Théorème 7.2] and also [122, 160]. Clearly, similar considerations apply to
(sufficiently well-behaved) tessellations of other two-dimensional Riemannian mani-
folds (e.g., the Poincaré disc), however, we cannot point to an explicit reference. On
the other hand, it should be stressed that the quasi-isometry property breaks down for
general quasi-regular tessellations of R2 (see [193, Section 7]) and hence the results
of [193, 212] indeed go beyond this setting.

As for the question of stochastic completeness on weighted tessellating graphs,
one can either proceed with the volume tests or by employing various curvature condi-
tions. Notice that, similar to the manifold setting, stochastic incompleteness is related
to a very fast decay of curvature to negative infinity (see, e.g., [214, Section 8]).


